
conference

proceedings

10th USENIX Symposium 
on Operating Systems 
 Design and  
Implementation  
(OSDI ’12)

Hollywood, CA, USA
October 8–10, 2012

Proceedings of the 10th U
SEN

IX Sym
posium

 on Operating System
s Design and Im

plem
entation  H

ollyw
ood, CA

, USA 
October 8–10, 2012

Sponsored by 

in cooperation with 
ACM SIGOPS



© 2012 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers 
remain with the author or the author’s employer. Permission is granted for 
the noncommercial reproduction of the complete work for educational or 
research purposes. Permission is granted to print, primarily for one person’s 
exclusive use, a single copy of these Proceedings. USENIX acknowledges all 
trademarks herein.

ISBN 978-1-931971-96-6





USENIX Association

Proceedings of the 

10th USENIX Symposium on Operating 

Systems Design and Implementation 

(OSDI ’12)

October 8–10, 2012
Hollywood, CA



Conference Organizers

Program Co-Chairs
Chandu Thekkath, Microsoft Research Silicon Valley
Amin Vahdat, Google and University of California,  

San Diego

Program Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Mike Dahlin, University of Texas, Austin
Jason Flinn, University of Michigan
Steve Gribble, University of Washington
Tim Harris, Oracle Labs
Jon Howell, Microsoft Research Redmond
Dejan Kostić, École Polytechnique Fédérale de 

 Lausanne (EPFL)
Jinyang Li, New York University
Shan Lu, University of Wisconsin—Madison
Petros Maniatis, Intel Labs
Jeff Mogul, HP Labs
Robert Morris, Massachusetts Institute of Technology
Florentina Popovici, Google
Timothy Roscoe, ETH Zurich

Stefan Savage, University of California, San Diego
Emin Gün Sirer, Cornell University
Ion Stoica, University of California, Berkeley
John Wilkes, Google
Junfeng Yang, Columbia University
Yuan Yu, Microsoft Research Silicon Valley
Nickolai Zeldovich, Massachusetts Institute of 

 Technology
Lidong Zhou, Microsoft Research Asia

Poster Session Co-Chairs
Shan Lu, University of Wisconsin—Madison
Junfeng Yang, Columbia University

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Brad Chen, Google
Brian Noble, University of Michigan
Margo Seltzer, Harvard School of Engineering and 

 Applied Sciences and Oracle

External Review Committee

Atul Adya, Google
Katerina Argyraki, École Polytechnique Fédérale de 

Lausanne (EPFL)
Ranjita Bhagavan, Microsoft Research
Frank Dabek, Google
Rodrigo Fonseca, Brown University
Roxana Geambasu, Columbia University
Krishna Gummadi, Max Planck Institute for Software 

Systems (MPI-SWS)

Chip Killian, Purdue University
Rama Kotla, Microsoft Research
Harsha Madhyastha, University of California, Riverside
J.P. Martin, Microsoft Research
George Porter, University of California, San Diego
Michael Walfish, University of Texas, Austin



10th USENIX Symposium on Operating Systems Design and Implementation 
October 8–10, 2012 

Hollywood, CA, USA

Message from the USENIX OSDI ’12 Program Co-Chairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

Monday, October 8
Big Data
Flat Datacenter Storage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Edmund B. Nightingale, Jeremy Elson, and Jinliang Fan, Microsoft Research; Owen Hofmann, University of 
Texas at Austin; Jon Howell and Yutaka Suzue, Microsoft Research

PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, and Danny Bickson, Carnegie Mellon University; Carlos 
Guestrin, University of Washington

GraphChi: Large-Scale Graph Computation on Just a PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Aapo Kyrola and Guy Blelloch, Carnegie Mellon University; Carlos Guestrin, University of Washington

Privacy
Hails: Protecting Data Privacy in Untrusted Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, and John C. Mitchell, Stanford 
University; Alejandro Russo, Chalmers University 

Eternal Sunshine of the Spotless Machine: Protecting Privacy with Ephemeral Channels . . . . . . . . . . . . . . . . . . . .61
Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark Silberstein, Yuanzhong Xu, Vitaly 
Shmatikov, and Emmett Witchel, The University of Texas at Austin

CleanOS: Limiting Mobile Data Exposure with Idle Eviction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, and Nikhil Sarda, Columbia 
University

Mobility
COMET: Code Offload by Migrating Execution Transparently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, and Z. Morley Mao, University of Michigan; Xu Chen, 
AT&T Labs—Research

AppInsight: Mobile App Performance Monitoring in the Wild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Obermiller, and Shahin Shayandeh, 
Microsoft Research

Tuesday, October 9
Distributed Systems and Networking
Spotting Code Optimizations in Data-Parallel Pipelines through PeriSCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Zhenyu Guo, Microsoft Research Asia; Xuepeng Fan, Microsoft Research Asia and Huazhong University 
of Science and Technology; Rishan Chen, Microsoft Research Asia and Peking University; Jiaxing Zhang, 
Hucheng Zhou, and Sean McDirmid, Microsoft Research Asia; Chang Liu, Microsoft Research Asia and 
Shanghai Jiao Tong University; Wei Lin and Jingren Zhou, Microsoft Bing; Lidong Zhou, Microsoft Research 
Asia

MegaPipe: A New Programming Interface for Scalable Network I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Sangjin Han and Scott Marshall, University of California, Berkeley; Byung-Gon Chun, Yahoo! Research; Sylvia 
Ratnasamy, University of California, Berkeley

DJoin: Differentially Private Join Queries over Distributed Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Arjun Narayan and Andreas Haeberlen, University of Pennsylvania

(Tuesday, October 9, continues on p. iv)



Security
Improving Integer Security for Systems with KINT  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 163
Xi Wang and Haogang Chen, MIT CSAIL; Zhihao Jia, Tsinghua University IIIS; Nickolai Zeldovich and  
M . Frans Kaashoek, MIT CSAIL

Dissent in Numbers: Making Strong Anonymity Scale  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
David Isaac Wolinsky, Henry Corrigan-Gibbs, and Bryan Ford, Yale University; Aaron Johnson, U.S. Naval 
Research Laboratory

Efficient Patch-Based Auditing for Web Application Vulnerabilities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .193
Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich, MIT CSAIL

Potpourri
Experiences from a Decade of TinyOS Development  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .207
Philip Levis, Stanford University

Automated Concurrency-Bug Fixing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .221
Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu, University of Wisconsin–Madison

All about Eve: Execute-Verify Replication for Multi-Core Servers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .237
Manos Kapritsos and Yang Wang, University of Texas at Austin; Vivien Quema, Grenoble INP; Allen Clement, 
MPI-SWS; Lorenzo Alvisi and Mike Dahlin, University of Texas at Austin

Replication
Spanner: Google’s Globally-Distributed Database   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
James C . Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, Sanjay Ghemawat, 
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, 
Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay 
Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford, Google, Inc.

Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .265
Cheng Li, Max Planck Institute for Software Systems; Daniel Porto, CITI/Universidade Nova de Lisboa and 
Max Planck Institute for Software Systems; Allen Clement, Max Planck Institute for Software Systems; Johannes 
Gehrke, Cornell University; Nuno Preguiça and Rodrigo Rodrigues, CITI/Universidade Nova de Lisboa

Wednesday, October 10
Testing & Debugging
SymDrive: Testing Drivers without Devices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .279
Matthew J . Renzelmann, Asim Kadav, and Michael M . Swift, University of Wisconsin–Madison

Be Conservative: Enhancing Failure Diagnosis with Proactive Logging  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .293
Ding Yuan, University of Illinois at Urbana-Champaign and University of California, San Diego; Soyeon Park, 
Peng Huang, Yang Liu, Michael M . Lee, Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage, University of 
California, San Diego

X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production Software  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .307
Mona Attariyan, University of Michigan and Google, Inc.; Michael Chow and Jason Flinn, University of 
Michigan

Isolation
Pasture: Secure Offline Data Access Using Commodity Trusted Hardware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 321
Ramakrishna Kotla and Tom Rodeheffer, Microsoft Research; Indrajit Roy, HP Labs; Patrick Stuedi,  
IBM  Research; Benjamin Wester, Facebook

Dune: Safe User-level Access to Privileged CPU Features  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 335
Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos Kozyrakis,  
Stanford University

Performance Isolation and Fairness for Multi-Tenant Cloud Storage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .349
David Shue and Michael J . Freedman, Princeton University; Anees Shaikh, IBM T.J. Watson Research Center



Message from the USENIX OSDI ’12 Program Co-Chairs

We are delighted to welcome you to the 10th USENIX Symposium on Operating Systems Design and Implementa-
tion. In recent years, OSDI has rightly come to be regarded as the strongest conference for systems research held in 
even years, and this year’s program continues that trend. The program contains 25 papers representing some of the 
best research done in academia and industry.

This year’s program was selected in three rounds of double-blind reviews from 215 submissions, followed by a day 
and a half Program Committee meeting. The Program Committee of 25 did the bulk of the reviews, relying on a 
13-member External Review Committee for a set of first-round reviews. Each paper discussed in the final round 
at the PC meeting had nine reviews, written primarily by PC members, each of whom wrote at least 40 reviews 
during the course of about two months. The resulting discussions were collegial and the final papers were selected 
through broad and well informed consensus. No paper was accepted or rejected with less than a strong majority 
of the PC in agreement. While the workload for the PC was substantial, we benefitted from discussions involving 
typically half of the PC for each paper. We also benefitted from allotting an extra half-day to the PC meeting, al-
lowing decisions to be made in a deliberate manner.

In addition to the accepted papers, we also have a keynote by David Haussler from UC Santa Cruz, and we would 
like to record our thanks to him. We also have two poster sessions where you will see works-in-progress as well as 
posters representing accepted papers.

We would like to thank the many authors who submitted papers and posters to OSDI; it was a privilege to get a 
preview of some of the current research in our field. We also would like to thank the External Review Commit-
tee members for their work, which was essential given the number of submissions to OSDI. Finally, we would like 
to express our thanks to the PC members for the tremendous amount of work that went into the reviews; this was 
exemplary service on their part for our community.

Amin Vahdat, Google and University of California, San Diego 
Chandu Thekkath, Microsoft Research Silicon Valley 
OSDI ’12 Program Co-Chairs





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 1

Flat Datacenter Storage

Edmund B. Nightingale, Jeremy Elson,
Jinliang Fan, Owen Hofmann∗, Jon Howell, and Yutaka Suzue

Microsoft Research University of Texas at Austin∗

Abstract

Flat Datacenter Storage (FDS) is a high-performance,
fault-tolerant, large-scale, locality-oblivious blob store.
Using a novel combination of full bisection bandwidth
networks, data and metadata striping, and flow control,
FDS multiplexes an application’s large-scale I/O across
the available throughput and latency budget of every disk
in a cluster. FDS therefore makes many optimizations
around data locality unnecessary. Disks also commu-
nicate with each other at their full bandwidth, making
recovery from disk failures extremely fast. FDS is de-
signed for datacenter scale, fully distributing metadata
operations that might otherwise become a bottleneck.

FDS applications achieve single-process read and
write performance of more than 2GB/s. We measure re-
covery of 92GB data lost to disk failure in 6.2s and re-
covery from a total machine failure with 655GB of data
in 33.7s. Application performance is also high: we de-
scribe our FDS-based sort application which set the 2012
world record for disk-to-disk sorting.

1 Introduction
A shared and centralized model of storage is one of

simplicity. Consider a centralized file server in a small
computer science department. Data stored by any com-
puter can be retrieved by any other. This conceptual
simplicity makes it easy to use: computation can hap-
pen on any computer, even in parallel, without regard to
first putting data in the right place. As a result, applica-
tions are much less complex than they would be without
a shared filesystem.

At the scale of large, big-data clusters that routinely
exceed thousands of computers, this “flat” model of stor-
age is still highly desirable. While some blob stor-
age systems such as Amazon S3 [10] provide one, they
come with a significant performance penalty because
networks at datacenter scales have historically been over-
subscribed. Individual machines were typically attached
in a tree topology [12]; for cost efficiency, links near the
root had significantly less capacity than the aggregate ca-
pacity below them. Core oversubscription ratios of hun-
dreds to one were common, which meant communication

∗Work completed during a Microsoft Research internship.

was fast within a rack, slow off-rack, and worse still for
nodes whose nearest ancestor was the root.

The datacenter bandwidth shortage has had unfortu-
nate and far-reaching consequences in systems where
performance is paramount. Software developers ac-
customed to treating the network as an abstraction are
forced to think in terms of “rack locality.” New pro-
gramming models (e.g., MapReduce [13], Hadoop [1],
and Dryad [19]) emerged to help exploit locality, pref-
erentially moving computation to data rather than vice-
versa. They effectively expose a cluster’s aggregate disk
throughput for tasks with high reduction factors (search-
ing for a rare string), but many important computations
(sort, distributed join, matrix operations) fundamentally
require data movement and are still not well served by
systems whose performance is locality-dependent. Soft-
ware must also be expressed in a data-parallel style,
which is unnatural for many tasks.

Counterintuitively, locality constraints can sometimes
even hinder efficient resource utilization. One example is
stragglers: if data is singly replicated, a single unexpect-
edly slow machine can preclude an entire job’s timely
completion even while most of the resources are idle.
The preference for local disks also serves as a barrier
to quickly retasking nodes: since a CPU is only use-
ful for processing the data resident there, retasking re-
quires expensive data movement. If the resident data is
not needed, the CPUs may not be usable. In addition, be-
cause a node has a fixed ratio of CPUs to disks, tasks that
run there will nearly always leave either CPUs or disks
partially idle, depending on the resource ratio required
by the task.

The root of this cascade of consequences was the lo-
cality constraint, itself rooted in the datacenter band-
width shortage. When bandwidth was scarce, these sac-
rifices were necessary to achieve the best performance.
However, recently developed CLOS networks [16, 15,
24]—large numbers of small commodity switches with
redundant interconnections—have made it economical to
build non-oversubscribed full bisection bandwidth net-
works at the scale of a datacenter for the first time. Flat
Datacenter Storage (FDS) is a datacenter storage system
designed from first principles under the formerly unreal-
istic assumption that datacenter bandwidth is abundant.



2 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Unconventionally for a system of this scale, FDS re-
turns to the flat storage model: all compute nodes can ac-
cess all storage with equal throughput. Even when com-
putation is co-located with storage, all storage is treated
as remote; in FDS, there are no “local” disks. By spread-
ing data over disks uniformly at a relatively fine grain
(§2.2), FDS statistically multiplexes workloads over all
of the disks in a cluster. FDS effectively eliminates the
need to imbue locality constraints into storage systems,
schedulers, or programming models.

Despite the conceptual simplicity afforded by the flat
storage model, FDS achieves cluster-wide I/O perfor-
mance on par with systems that exploit locality. Single-
process read and write performance exceeds 2GB/s
(§5.2), and FDS dramatically accelerates data movement
workloads. For example, our sorting application beat a
world record for disk-to-disk sort performance (§6.1) by
a factor of 2.8 while using about 1/5 as many disks. It
is the first system in the competition’s history to do so
without exploiting locality.

A consequence of our design is that disk-to-disk band-
width is also extremely high, facilitating fast recovery
from disk and machine failures. In our 1,000 disk clus-
ter, FDS recovers 92GB lost from a failed disk in 6.2
seconds. Recovery of 655GB lost from a failed 7-disk
machine takes 33.7 seconds (§5.3).

FDS is more efficient for many workloads because ev-
ery job can use the cluster’s I/O bandwidth and CPU
resources in exactly the ratio required. FDS therefore
moves away from conflating high performance with data-
parallel programming. Further, since data locality is im-
material to compute nodes, they are easily and quickly
retasked. This can even be done at a fine grain within a
single task; as demonstrated in §2.4, dynamic work allo-
cation retasks at the granularity of individual data reads
to dramatically reduce the effect of stragglers.

Much past research has been directed towards solving
the individual problems brought about by the need for
locality. FDS, in contrast, is a clean redesign from which
many of these solutions fall out naturally. Our goal is
to move datacenters back to a flat storage model so that
these benefits may be widely realized.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the design of FDS. Sec-
tion 3 describes FDS’ strategy for replication and failure
recovery. Section 4 explores our network in greater detail
and describes our novel congestion avoidance strategy
needed in full bisection bandwidth networks. Section 5
presents microbenchmarks. Section 6 reviews how FDS
can speed up real workloads, including sort and serving
a web index. We review related work in Section 7 and
conclude in Section 8.

2 Design Overview
FDS’ main goal is to expose all of a cluster’s disk

bandwidth to applications. Blobs are divided into tracts
(§2.1), parallelizing both storage of data (§2.2) and han-
dling of metadata (§2.3) across all disks. We exploit our
locality-oblivious storage to dynamically assign work to
workers, preventing stragglers (§2.4). FDS provides the
best of both worlds: a scale-out system with aggregate
I/O throughput equal to systems that exploit local disks
combined with the conceptual simplicity and flexibility
of a logically centralized storage array.

For simplicity we will first describe the system with-
out regard to fault tolerance. §3 will describe replication,
failure recovery, and cluster growth. In addition, this sec-
tion assumes the network core is never congested; our
network is described in §4.

2.1 Blobs and Tracts
In FDS, data is logically stored in blobs. A blob is a

byte sequence named with a 128-bit GUID. The GUID
can either be selected by the application or assigned ran-
domly by the system. Blobs can be any length up to the
system’s storage capacity. Reads from and writes to a
blob are done in units called tracts. Each tract within a
blob is numbered sequentially starting from 0. Blobs and
tracts are mutable; nothing prevents a client from over-
writing a previously-written tract with new data.

Tracts are sized such that random and sequential ac-
cess achieves nearly the same throughput. In our cluster,
tracts are 8MB (§5.1). The tract size is set when the clus-
ter is created based upon cluster hardware. For example,
if flash were used instead of disks, the tract size could be
made far smaller (e.g., 64kB).

Every disk is managed by a process called a tract-
server that services read and write requests that arrive
over the network from clients. Tractservers do not use a
file system. Instead, they lay out tracts directly to disk by
using the raw disk interface. Since there are only about
106 tracts per disk (for a 1TB disk), all tracts’ metadata
is cached in memory, eliminating many disk accesses.

Tractservers and their network protocol are not ex-
posed directly to FDS applications. Instead, these details
are hidden in a client library with a narrow and straight-
forward interface. Figure 1 shows a simplified version of
it; some parameters and return values have been elided.
In addition to the listed parameters, each function takes a
callback function and an associated context pointer. All
calls in FDS are non-blocking; the library invokes the
application’s callback when the operation completes.

The application’s callback functions must be re-
entrant; they are called from the library’s threadpool and
may overlap. Tract reads are not guaranteed to arrive in
order of issue. Writes are not guaranteed to be commit-
ted in order of issue. Applications with ordering require-

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 3

Getting access to a blob
CreateBlob(UINT128 blobGuid)
OpenBlob(UINT128 blobGuid)
CloseBlob(UINT128 blobGuid)
DeleteBlob(UINT128 blobGuid)

Interacting with a blob
GetBlobSize()
ExtendBlobSize(UINT64 numberOfTracts)
WriteTract(UINT64 tractNumber, BYTE *buf)
ReadTract(UINT64 tractNumber, BYTE *buf)
GetSimultaneousLimit()

Figure 1: FDS API

ments are responsible for issuing operations after pre-
vious acknowledgments have been received, rather than
concurrently. FDS guarantees atomicity: a write is either
committed or failed completely.

The non-blocking API helps applications achieve
good performance. By spreading a blob’s tracts over
many tractservers (§2.2) and issuing many requests in
parallel, many tractservers can begin reading tracts off
disk and transferring them back to the client simulta-
neously. In addition, deep read-ahead allows a tract
to be read off disk into the tractserver’s cache while
the previous one is transferred over the network. The
FDS API GetSimultaneousLimit() tells the applica-
tion how many reads and writes to issue concurrently. A
typical simultaneous limit is 50 tracts, though the exact
value depends on the client’s bandwidth.

2.2 Deterministic data placement
A key issue in parallel storage systems is data place-

ment and rendezvous, that is: how does a writer know
where to send data? How does a reader find data that has
been previously written?

Many systems solve this problem using a metadata
server that stores the location of data blocks [14, 30].
Writers contact the metadata server to find out where
to write a new block; the metadata server picks a data
server, durably stores that decision and returns it to the
writer. Readers contact the metadata server to find out
which servers store the extent to be read. This method
has the advantage of allowing maximum flexibility of
data placement and visibility into the system’s state.
However, it has drawbacks: the metadata server is a cen-
tral point of failure, usually implemented as a replicated
state machine, that is on the critical path for all reads and
writes.

In FDS, we took a different approach. FDS uses a
metadata server, but its role during normal operations
is simple and limited: collect a list of the system’s ac-
tive tractservers and distribute it to clients. We call this
list the tract locator table, or TLT. In a single-replicated

system, each TLT entry contains the address of a sin-
gle tractserver. With k-way replication, each entry has k
tractservers; see §3.3.

To read or write tract number i from a blob with GUID
g, a client first selects an entry in the TLT by computing
an index into it called the tract locator, designed to both
be deterministic and produce uniform disk utilization:

Tract Locator = (Hash(g)+ i) mod TLT Length

Hashing the GUID “randomizes” each blob’s starting
point in the table, ensuring clients better exploit the avail-
able parallelism whether or not the GUIDs themselves
are assigned randomly. FDS uses SHA-1 for this hash.

Adding the tract number outside the hash ensures that
large blobs use all entries in the TLT uniformly. An early
(discarded) locator equation used Hash(g+ i). This ef-
fectively selected a TLT entry independently at random
for each tract, producing a binomial rather than a uni-
form distribution of tracts on tractservers. As the number
of tractservers increased, so did the occupancy deviation
between the most-filled and least-filled disk. In the re-
jected design, writing 1TB of 8MB tracts to 1,000 tract-
servers was expected to write between 92 and 161 tracts
to each (µ = 125; σ = 11.2). The one tractserver with
29% more data than average was an unwanted straggler.

Once clients find the proper tractserver address in the
TLT, they send read and write requests containing the
blob GUID, tract number, and (in the case of writes) the
data payload. Readers and writers rendezvous because
tractserver lookup is deterministic: as long as a reader
has the same TLT the writer had when it wrote a tract, a
reader’s TLT lookup will point to the same tractserver.

In a single-replicated system, the TLT is constructed
by concatenating m random permutations of the tract-
server list. Using only a single permutation can lead to
unwanted client convoys. Sequential reads from a blob
use TLT entries sequentially, so clients that bunch up in
the queue of a slow tractserver will move in lockstep
through the TLT, overloading some tractservers while
many others are idle. Setting m > 1 ensures that after
being delayed in a slow queue, clients will fan out to m
other tractservers for their next operation. Our system
uses m = 20, but we have not tested the system’s sensi-
tivity to this parameter.

In the case of non-uniform disk speeds, the TLT is
weighted so that different tractservers appear in propor-
tion to the measured speed of the disk.

To be clear, the TLT does not contain complete infor-
mation about the location of individual tracts in the sys-
tem. It is not modified by tract reads and writes. The only
way to determine if a tract exists is to contact the tract-
server that would be responsible for the tract if it does
exist. Since the TLT changes only in response to clus-
ter reconfiguration or failures it can be cached by clients

3



4 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

for a long time. Its size in a single-replicated system is
proportional to the number of tractservers in the system
(hundreds, or thousands), not the number of tracts stored
(millions or billions).

When the system is initialized, tractservers locally
store their position in the TLT. This means the metadata
server does not need to store durable state, simplifying its
implementation. In case of a metadata server failure, the
TLT is reconstructed by collecting the table assignments
from each tractserver.

To summarize, our metadata scheme has a number of
nice properties:

• The metadata server is in the critical path only when
a client process starts. This is the key factor that
allows us to practically keep tract sizes arbitrarily
small. Systems such as GFS [14] require larger
chunks partially to reduce load on the metadata
server.

• The TLT can be cached long-term since it changes
only on cluster configuration, not each read and
write, eliminating all traffic to the metadata server
in a running system under normal conditions.

• The metadata server stores metadata only about the
hardware configuration, not about blobs. Since traf-
fic to it is low, its implementation is simple and
lightweight.

• Since the TLT contains random permutations of the
list of tractservers, sequential reads and writes by
independent clients are highly likely to utilize all
tractservers uniformly and are unlikely to organize
into synchronized convoys.

Our design is enabled by running on a full bisection
bandwidth network. The locality-oblivious uniform ac-
cess pattern would cause crippling congestion on a tradi-
tional network with hierarchical oversubscription.

2.3 Per-Blob Metadata
Each blob has metadata such as its length. FDS stores

it in each blob’s special metadata tract (“tract −1”).
Clients find a blob’s metadata on a tractserver using
the same TLT used to find regular data. Distributed
metadata is a particular advantage for atomic blob op-
erations that require serialization to avoid inconsistency
(e.g. CreateBlob, DeleteBlob and ExtendBlobSize).
Even if thousands of clients are requesting atomic op-
erations on blobs simultaneously, operations that can be
parallelized (by virtue of referring to different blobs) are
likely serviced in parallel by independent tractservers.

When a blob is created, the tractserver responsible for
its metadata tract creates that tract on disk and initializes
the blob’s size to 0. When a blob is deleted, that tract-
server deletes the metadata. A scrubber application scans
each tractserver for orphaned tracts with no associated
metadata, making them eligible for garbage collection.

Newly created blobs have a length of 0 tracts. Appli-
cations must extend a blob before writing past the end
of it. The extend operation is atomic, is safe to execute
concurrently with other clients, and returns the new size
of the blob as a result of the client’s call. A separate API
tells the client the blob’s current size. Extend operations
for a blob are sent to the tractserver that owns that blob’s
metadata tract. The tractserver serializes it, atomically
updates the metadata, and returns the new size to each
caller. If all writers follow this pattern, the extend opera-
tion provides a range of tracts the caller may write with-
out risk of conflict. Therefore, the extend API is func-
tionally equivalent to the Google File System’s “atomic
append.” Space is allocated lazily on tractservers, so
tracts claimed but not used do not waste storage.

2.4 Dynamic Work Allocation
A result that flows naturally from FDS is that the as-

signment of work to worker can be done at very short
timescales. This enables FDS to mitigate stragglers—a
significant bottleneck in large systems because a task is
not complete until its slowest worker is complete [5].

Hadoop- and MapReduce-style clusters that primarily
process data locally are very sensitive to machines that
are slow due to factors such as misbehaving hardware,
jobs running concurrently, hotspots in the network, and
non-uniformity in the input. If a node falls behind, there
are not many options for recovery other than restarting
its computation elsewhere [5]. The straggler period can
also represent a great loss in efficiency if most resources
are idle while waiting for a slow task to complete.

In FDS, since storage and compute are no longer co-
located, the assignment of work to worker can be done
dynamically, at fine granularity, during task execution.
The best practice for FDS applications is to centrally (or,
at large scale, hierarchically) give small units of work to
each worker as it nears completion of its previous unit.
This self-clocking system ensures that the maximum dis-
persion in completion times across the cluster is only the
time required for the slowest worker to complete a single
unit. Such a scheme is not practical in systems where the
assignment of work to workers is fixed in advance by the
requirement that data be resident at a particular worker
before the job begins.

In many applications, the effect is significant. For
example, in our sort application (§6.1), elimination of
stragglers in the reading phase accounted for a 1/3 re-
duction in total job runtime.

3 Replication and Failure Recovery
Thus far, we have described FDS as single-replicated

and thus not resilient to disk failures. To improve dura-
bility and availability, FDS supports higher levels of
replication. When a disk fails, redundant copies of the
lost data are used to restore the data to full replication.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 5

The use of full bisection bandwidth networks means
that, with appropriate data layout (§3.3), FDS can per-
form failure recovery dramatically faster than many other
systems. In an n-disk cluster where one disk fails,
roughly 1/nth of the replicated data will be found on
all n of the other disks. All remaining disks send the
under-replicated data to each other in parallel, restoring
the cluster to full replication very quickly. Performance
is bounded only by the aggregate disk and network band-
width. Thus, as the size of the cluster grows failure re-
covery gets faster. As we will see in §5.3, our cluster
of about 1,000 disks recovers 92GB of data lost from a
single disk in only 6.2s, and 655GB lost from 7 disks on
a failed machine in 33.7s. Though the broad approach
of FDS’ failure recovery is similar to RAMCloud [26],
RAMCloud recovers data to DRAM and uses replica-
tion only for fault tolerance. FDS uses replication both
for availability and fault tolerance while recovering data
back to stable storage. Such fast failure recovery signif-
icantly improves durability because it reduces the win-
dow of vulnerability during which additional failures can
cause unrecoverable data loss.

3.1 Replication
As described in §2.2, each entry of the TLT in an n-

way replicated cluster contains n tractservers. (Construc-
tion of such a TLT is described in §3.3.) When an appli-
cation writes a tract, the client library finds the appro-
priate row of the TLT and sends the write to every tract-
server it contains. Reads select a single tractserver at
random. Applications are notified that their writes have
completed only after the client library receives write ac-
knowledgments from all replicas.

Replication also requires changes to CreateBlob,
ExtendBlobSize, and DeleteBlob. Each mutates the
state of the metadata tract and must guarantee that up-
dates are serialized. Clients send these operations only
to the tractserver acting as the primary replica, marked
as such in the TLT. When a tractserver receives one of
these operations, it executes a two-phase commit with the
other replicas. The primary replica does not commit the
change until all other replicas have completed success-
fully. Should the prepare fail, the operation is aborted.

FDS also supports per-blob variable replication, for
example, to single-replicate intermediate computations
for write performance, triple-replicate archival data for
durability, and over-replicate popular blobs to increase
read bandwidth. The maximum possible replication level
is determined when the cluster is created and drives the
number of tractservers listed in each TLT entry. Each
blob’s actual replication level is stored in the blob’s meta-
data tract and retrieved when a blob is opened. For an n-
way replicated blob, the client uses only the first n tract-
servers in each TLT entry.

3.2 Failure recovery
We begin with the simplest failure recovery case: the

failure of a single tractserver. Later sections will de-
scribe concurrent tractserver failures, support for failure
domains, and metadata server failures.

As described earlier, each row of the TLT lists several
tractservers. However, each row also has a version num-
ber, canonically assigned by the metadata server. When
a tractserver is assigned to a row and column of the TLT,
it is also given the row’s current version number.

Tractservers send heartbeat messages to the metadata
server. When the metadata server detects a tractserver
timeout, it declares the tractserver dead. Then, it:

• invalidates the current TLT by incrementing the ver-
sion number of each row in which the failed tract-
server appears;

• picks random tractservers to fill in the empty spaces
in the TLT where the dead tractserver appeared;

• sends updated TLT assignments to every server af-
fected by the changes; and

• waits for each tractserver to ack the new TLT as-
signments, and then begins to give out the new TLT
to clients when queried for it.

When a tractserver receives an assignment of a new
entry in the TLT, it contacts the other replicas and begins
copying previously written tracts. When a failure occurs,
clients must wait only for the TLT to be updated; opera-
tions can continue while re-replication is still in progress.

All operations are tagged with the client’s TLT ver-
sion. If a client attempts an operation using a stale TLT
entry, the tractserver detects the inconsistency and rejects
the operation. This prompts the client to retrieve an up-
dated TLT from the metadata server. Client operations to
tractservers not affected by the failure proceed as usual.

Table versioning prevents a tractserver that failed and
then returned, e.g., due to a transient network outage,
from continuing to interact with applications as soon as
the client receives a new TLT. Further, any attempt by a
failed tractserver to contact the metadata server will re-
sult in the metadata server ordering its termination.

After a tractserver failure, the TLT immediately con-
verges to provide applications the current location to read
or write data. This convergence property differentiates it
from other hash-based approaches, such as those used
within distributed hash tables, which may cause requests
to be routed multiple times through the network before
determining an up-to-date location for data.
3.2.1 Additional failure scenarios

Thus far, we have considered only the case where a
single tract server fails. We now extend our description
to concurrent and cascading tractserver failures as well
as metadata server failures.

5



6 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 2: A Tract Locator Table before (left) and after (right) Disk B fails. B’s appearances in the table are replaced
with different disks and the version numbers of affected rows are incremented. All the disks in rows that contained B
participate in failure recovery in parallel.

When multiple tractservers fail, the metadata server’s
only new task is to fill more slots in the TLT. Similarly, if
failure recovery is underway and additional tractservers
fail, the metadata server executes another round of the
protocol by filling in empty table entries and increment-
ing their version. Data loss occurs when all the tract-
servers within a row fail within the recovery window.

Though not yet implemented, transient failures can be
handled gracefully with partial failure recovery. A tract-
server failure triggers replication of lost data as usual.
If the tractserver later returns to service, the metadata
server has two options: complete failure recovery as if
the disk had never returned or use other replicas to re-
cover the writes the returning tractserver missed while it
was away. The metadata server will choose the option
that requires copying less data. If it completes failure
recovery, the returning tractserver is added to the empty
disk pool. Otherwise, the tractserver resumes its posi-
tions in the TLT, failure recovery is halted, and copy-
ing of missed writes begins. Tractservers identify missed
writes by examining the version of the TLT with which
each tract was written. To further mitigate the effects of
transient faults, the metadata server could separate the
replacement of a failed server in the TLT from the initia-
tion of the data movement required for failure recovery.

Network partitions complicate recovery from meta-
data server failures. A simple primary/backup scheme is
not safe because two active metadata servers will cause
cluster corruption. Our current solution is simple: only
one metadata server is allowed to execute at a time. If it
fails, an operator must ensure the old one is decommis-
sioned and start a new one. We are experimenting with
using Paxos leader election to safely make this process
automatic and reduce the impact to availability. Once a
new metadata server starts, tractservers contact it with
their TLT assignments. After a timeout period, the new
metadata server reconstructs the old TLT.

Tractservers that fail concurrently with a metadata
server are detected by the new metadata server as miss-
ing TLT entries; the normal failure recovery protocol is
executed. One strength our failure recovery protocol is
its simplicity; all tractserver failure cases use the same
protocol and exercise the same code path. This leads to
small, simple, more obviously-correct code.

3.3 Replicated data layout
As mentioned previously, a k-way replicated system

has k tractservers (disks) listed in each TLT entry. The
selection of which k disks appear has an important impact
on both durability and recovery speed.

Imagine first that we wish to double-replicate (k = 2)
all data in a cluster with n disks. A simple TLT might
have n rows with each row listing disks i and i+1. While
data will be double-replicated, the cluster will not meet
our goal of fast failure recovery: when a disk fails, its
backup data is stored on only two other disks (i+ 1 and
i−1). Recovery time will be limited by the bandwidth of
just two disks. A cluster with 1TB disks with 100MB/s
read performance would require 90 minutes for recovery.
A second failure within that time would have roughly a
2/n chance of losing data permanently.1

A better TLT has O(n2) entries. Each possible pair
of disks (ignoring failure domains; §3.3.1) appears in an
entry of the TLT. Since the generation of tract locators
is pseudo-random (§2.2), any data written to a disk will
have high diversity in the location of its replica. When
a disk fails, replicas of 1/nth of its data resides on the
other n disks in the cluster. When a disk fails, all n disks
can exchange data in parallel over FDS’ full bisection
bandwidth network. Since all disks recover in parallel,
larger clusters recover from disk loss more quickly.

While such a TLT recovers from single-disk failure
quickly, a second failure while recovery is in progress is

1More precisely, 1− ( n−1
n )2

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 7

guaranteed to lose data. Since all pairs of disks appear as
TLT entries, any pair of failures will lose the tracts whose
TLT entry contained the pair of failed disks. Replicated
FDS clusters therefore have a minimum replication level
of 3. Perhaps counterintuitively, no level of replication
ever needs a TLT larger than O(n2). For any replica-
tion level k > 2, FDS starts with the “all-pairs” TLT, then
expands each entry with k − 2 additional random disks
(subject to failure domain constraints).

Constructing the replicated TLT this way has several
important properties. First, performance during recovery
still involves every disk in the cluster since every pair of
disks is still represented in the TLT.

Second, a triple disk failure within the recovery win-
dow now has only about a 2/n chance1 of causing per-
manent data loss. To understand why, imagine two disks
fail. Find the entries in the TLT that contain those two
disks. We expect to find 2 such entries. There is a 1/n
chance that a third disk failure will match the random
third disk in that TLT entry.

Finally, adding more replicas decreases the probabil-
ity of data loss. Consider now a 4-way replicated clus-
ter. Each entry in the O(n2)-length TLT has two random
disks added instead of one. 3 or fewer simultaneous fail-
ures are safe; 4 simultaneous failures have a 1/n2 chance
of losing data. Similarly, 5-way replication means that
4 or fewer failures are safe and 5 simultaneous failures
have a 1/n3 chance of loss.

One possible disadvantage to a TLT with O(n2) entries
is its size. In our 1,000-disk cluster, the in-memory TLT
is about 13MB. However, on larger clusters, quadratic
growth is cumbersome: 10,000 disks would require a
600MB TLT.

We have two (unimplemented) strategies to mitigate
TLT size. First, a tractserver can manage multiple disks;
this reduces n by a factor of 5–10. Second, we can
limit the number of disks that participate in failure re-
covery. An O(n2) TLT uses every disk for recovery,
but 3,000 disks are expected to recover 1TB in less than
20s (§5.3). The marginal utility of involving more disks
may be small. To build an n-disk cluster where m disks
are involved in recovery, the TLT only needs O( n

m ×m2)
entries. For 10,000 to 100,000 disks, this also reduces
table size by a factor of 5–10. Using both optimizations,
a 100,000 disk cluster’s TLT would be a few dozen MB.
3.3.1 Failure domains

A failure domain is a set of machines that have a high
probability of experiencing a correlated failure. Com-
mon failure domains include machines within a rack,
since they will often share a single power source, or ma-
chines within a container, as they may share common
cooling or power infrastructure.

FDS leaves it up to the administrator to define a fail-
ure domain policy for a cluster. Once that policy is de-

fined, FDS adheres to that policy when constructing the
tract locator table. FDS guarantees that none of the disks
in a single row of the TLT share the same failure do-
main. This policy is also followed during failure recov-
ery: when a disk is replaced, the new disk must be in a
different failure domain than the other tractservers in that
particular row.

3.4 Cluster growth
FDS supports the dynamic growth of a cluster through

the addition of new disks and machines. For simplicity,
we first consider cluster growth in the absence of failures.

Cluster growth adds both storage capacity and
throughput to the system. The FDS metadata server re-
balances the assignment of table entries so that both ex-
isting data and new workloads are uniformly distributed.
When a tractserver is added to the cluster, TLT entries are
taken away from existing tractservers and given to the
new server. These assignments happen in two phases.
First, the new tractserver is given the assignments but
they are marked as “pending” and the TLT version for
each entry is incremented. The new tractserver then be-
gins copying data from other replicas. During this phase,
clients write data to both the existing servers and the new
server so that the new tractserver is kept up-to-date. Once
the tractserver has completed copying old data, the meta-
data server ‘commits’ the TLT entry by incrementing its
version and changing its assignment to the new tract-
server. It also notifies the now replaced tractserver that it
can safely garbage collect all tracts associated with that
TLT entry.

If a new tractserver fails while its TLT entries are
pending, the metadata server increments the TLT entry
version and expunges it from the list of new tractservers.
If an existing server fails, the failure recovery protocol
executes. However, tractservers with pending TLT en-
tries are not eligible to take over for failed servers as they
are already busy copying data.

Variable replication complicates cluster growth be-
cause each replica will have different data depending
upon the replication level of each blob written to it.
Therefore, new tractservers must read from the existing
tractserver whose TLT entry it is replacing. Should that
server fail, the new tractserver may read from another
tractserver “to the left” of its own entry, since it will have
a superset of the data required. For example, the first
replica in the TLT has all single-replicated tracts whereas
the third replica has all triple-replicated tracts.

3.5 Consistency guarantees
The current protocol for replication depends upon the

client to issue all writes to all replicas. This decision
means that FDS provides weak consistency guarantees
to clients. For example, if a client writes a tract to 1
of 3 replicas and then crashes, other clients reading dif-

7



8 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ferent replicas of that tract will observe differing state.
Weak consistency guarantees are not uncommon; for ex-
ample, clients of the Google File System [14] must han-
dle garbage entries in files. However, if strong consis-
tency guarantees are desired, FDS could be modified to
use chain replication [33] to provide strong consistency
guarantees for all updates to individual tracts.

Tractservers may also be inconsistent during failure
recovery. A tractserver recently assigned to a TLT en-
try will not have the same state as the entry’s other repli-
cas until data copying is complete. While in this state,
tractservers reject read requests; clients use other repli-
cas instead.

4 Networking
FDS’ main goal is to expose all of a cluster’s disk

bandwidth to applications. FDS creates an uncongested
path from disks to CPUs by:

• Giving each storage node network bandwidth equal
to its disk bandwidth, preventing bottlenecks be-
tween the disk and network;

• Using a full bisection bandwidth network, prevent-
ing bottlenecks in the network core; and

• Giving compute nodes as much network bandwidth
as they need I/O bandwidth, preventing bottlenecks
at the client

Our FDS testbed uses a two-layer CLOS network
[15, 16], which in its largest configuration consists of 8
“spine” routers and 14 “TORs” (Top-Of-Rack routers).
Each router is a 64×10Gbps Blade G8264. Each TOR
has a 40Gbps link (4 bonded 10Gbps ports) to each spine
router, giving it 320Gbps total bandwidth to the spine
layer. The other 320Gbps of each TOR’s bandwidth at-
taches to NICs. In total, this provides about 5.5Tbps of
bisection bandwidth for an infrastructure cost of about
$250k. The routers are factory-standard, running the
manufacturer’s OS (BladeOS v6.8.4). We use BGP for
route distribution with each TOR on its own IP subnet.

The TORs load-balance traffic to the spine using
ECMP (equal-cost multipath routing), a standard router
feature that selects a spine route for each TCP flow based
on the hash of the TCP destination. This gives the
network full bisection bandwidth without the need for
global scheduling, and has an important advantage over
round-robin route selection: it ensures packets within a
flow are not reordered.

One drawback of ECMP is that full bisection band-
width is not guaranteed, but only stochastically likely
across multiple flows. Long-lived, high-bandwidth flows
are known to be problematic with ECMP [3]. FDS, how-
ever, was designed to use a large number of short-lived
(tract-sized) flows to a large, pseudo-random sequence of
destinations. This was done in part to satisfy the stochas-
tic requirement of ECMP.

Each computer in our cluster has a dual-port 10Gbps
NIC, primarily the Intel X520. One or both of these ports
are connected to a TOR depending on the server’s role
(compute vs. storage) and the number of data disks it
has. The NICs are configured with large-send offload,
receive-side scaling, and 9kB (jumbo) Ethernet frames.
The TCP stack is configured with a reduced MinRTO to
quickly recover from loss.

We have found it difficult to saturate a 10G NIC using
a single TCP flow: a single CPU core typically cannot
keep up with a 10Gbps NIC’s interrupt load. Our oper-
ating system (Windows Server 2008 R2), in conjunction
with the Intel NIC, uses RSS (Receive Side Scaling) to
spread the interrupt load across cores. Similar to ECMP,
RSS prevents in-flow packet reordering by hashing the
TCP 4-tuple to select a core. As a result, multiple flows
are needed to spread interrupt load. We need 5 flows
per 10Gbps port to reliably saturate the NIC. This is eas-
ily satisfied in FDS because its design dictates that many
flows are active simultaneously.

At 20Gbps, a zero-copy architecture is mandatory.
FDS’ data interfaces pass the zero-copy model all the
way to the application. For clarity, Section 2.1 showed
conventional one-copy versions of WriteTract and
ReadTract interfaces; our applications actually use the
preferred zero-copy versions. We also use buffer pools
to avoid the large page fault penalty associated with fre-
quent allocation of large buffers.

4.1 RTS/CTS
By design, at peak load, all FDS nodes simultaneously

saturate their NICs with short, bursty flows. A disadvan-
tage of short flows is that TCP’s bandwidth allocation al-
gorithms perform poorly. Under the high degree of fan-in
seen during reads, high packet loss can occur as queues
fill during bursts. The reaction of standard TCP to such
losses can have a devastating effect on performance. This
is sometimes called incast [34].

Schemes such as DCTCP [4] ameliorate incast in
concert with routers’ explicit congestion notification
(ECN). However, because our network has full bisec-
tion bandwidth, collisions mostly occur at the receiver,
not in the network core, providing us an opportunity
to prevent them in the application layer. FDS does
so with a request-to-send/clear-to-send (RTS/CTS) flow-
scheduling system. Large sends are queued at the sender,
and the receiver is notified with an RTS. The receiver
limits the number of CTSs outstanding, thus limiting the
number of senders competing for its receive bandwidth
and colliding at its switch port.

RTS/CTS adds an RTT to each large message. This
has the potential to reduce performance by preventing
the network pipeline from ever filling. However, the FDS
API encourages deep read-ahead and write-ahead, ensur-

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 9

10 50 500 5000

0
10
20
30
40
50
60
70
80
90

100
110
120
130

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Read Size (KB)

Random

Sequential

Figure 3: Performance of a single process reading to a
single 10,000 RPM disk. Each point is the mean across
24 disks. Error bars show the standard deviation.

ing the FDS network library always has a large queue of
future messages. This allows it to send an RTS for future
messages in parallel with other data transfers, allowing
the pipeline to fill.

Small and large messages are delivered using separate
TCP flows, reducing the latency of control messages by
enabling them to bypass long queues. FDS network mes-
sage sizes are bimodal: large messages are almost all
about 8MB, and most others are a few kB or less.

5 Microbenchmarks
In this section and §6, we describe microbenchmarks

and application benchmarks. All of our tests were con-
ducted on a heterogeneous cluster of up to 256 HP, Dell
and Silicon Mechanics servers acquired between 2008
and 2012. The machines had between 12 and 96GB
RAM, between 2 and 24 cores, and between 0 and 20
data disks (plus one OS disk). The disks were a combi-
nation of 147GB and 300GB 10,000RPM 2.5” dual-port
SAS drives; and 500GB and 1TB 7,200RPM 3.5” SATA
drives. Dynamic work allocation (§2.4) was key to effi-
ciently using such a heterogeneous cluster. Since some
machines were on loan to us during our quest to break the
sort record (§6.1), some experiments used a subset of the
cluster. In all but one (§6.3) of our experiments, com-
putation and storage are located on different machines,
which guarantees all experiments rely exclusively on re-
mote access to storage. Unless otherwise noted, each test
used an unreplicated cluster with CRC checks disabled.
The network configuration is described in §4.

5.1 Raw Disk Performance
We start with a simple test: a single process writing to

a single local disk. This benchmark establishes the base-
line performance of our cluster’s disks and shows how
large random reads must be to amortize the cost of disk
seeks. Like the tractserver, this benchmark uses the raw
disk interface (that is, does not use NTFS). Results are
shown in Figure 3. Each point is the median performance

of 24 10,000 RPM SAS disks reading continuously us-
ing system calls ranging from 8KB to 32MB. Reads are
sequential on the upper line, random on the lower line.
Sequential performance peaks at about 131MB/s. 8MB
random reads reach ≈117MB/s, or ≈88% of sequential
performance. Write performance, not shown, is similar
to read performance.

5.2 Remote Reading and Writing
SimpleTestClient is the “hello world” FDS application.

It uses the FDS client library to read and write blobs from
and to tractservers. As in a real application, data are sent
over the network and read from or written to disk. We
tested its throughput and scalability by running succes-
sively larger numbers of SimpleTestClient instances con-
currently against 1,033 tractservers. Each client instance
had a single 10G NIC assigned to it. The tract size was
8MB. For each configuration we adjusted the blob size
so that the total read or write lasted between 5 and 10
minutes. We plot the number of clients against their ag-
gregate throughput averaged over the entire experiment.

Figure 4a shows 1 to 180 clients reading and writing
blobs sequentially against an unreplicated cluster. Two
pairs of curves are plotted: a 516-disk and 1,033-disk
cluster. At the left of the graph, the total tractserver band-
width far exceeds the client bandwidth; performance is
constrained by the number of clients. Throughput in-
creases linearly at the rate of about 1,150MB/s/client for
writing and 950MB/s/client for reading, roughly 90%
and 74%, respectively, of the 10Gbps interface. Read-
ing tends to be slower than writing due to the difficulty
of maintaining NIC saturation under fan-in (§4.1).

The right of the curves flatten as client bandwidth
grows larger than tractserver bandwidth, which satu-
rates them. Performance peaks at 32GB/s in the 516-
disk configuration and 67GB/s in the 1,033-disk config-
uration, showing near-linear scalability. In both cases,
FDS achieves remote reading and writing at roughly half
the locally achievable disk throughput measured in §5.1.
Though much better than many existing blob storage sys-
tems (see Table 2) there is room for improvement.

A similar test using random reads and writes is shown
in Figure 4b. As expected, the performance is substan-
tially the same as the sequential read and write tests. This
validates our design goal that for 8MB tracts, random and
sequential I/O deliver the same performance.

Figure 4c shows the bandwidth of sequentially reading
and writing clients against a 1,033 disk triple-replicated
cluster. As expected, the write bandwidth is about one-
third of the read bandwidth since clients must send three
copies of each write. Scaling properties are similar to
that seen in Figures 4a and 4b.

Finally, to test the maximum speed achievable by a
single client process, we tested a single instance of Sim-

9



10 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1 2 5 10 50 200

0

10

20

30

40

50

60

70

T
o
ta

l 
B

a
n
d
w

id
th

 (
G

B
/s

)

Number of Clients

read
write

516 Disks

1,033 Disks

1 2 5 10 50 200

0

10

20

30

40

50

60

70

Number of Clients

read
write

1 2 5 10 50 200

0

10

20

30

40

50

60

70

Number of Clients

read
write

Figure 4: Mean aggregate throughput of 1 to 180 clients reading and writing 8MB tracts on a 1,033-disk cluster.
Standard deviation is less than 1% of the mean of each point. The x axes use logarithmic scales. (a) Sequential reading
and writing in a single-replicated cluster. Results for a 516-disk cluster are also shown. (b) Random reading and
writing in a single-replicated cluster. (c) Sequential reading and writing in a triple-replicated cluster.

Disk count 100 1,000
Disks failed 1 1 1 1 7
Total (TB) 4.7 9.2 47 92 92
GB/disk 47 92 47 92 92
GB recov. 47 92 47 92 655
Recovery 19.2 50.5 3.3 6.2 33.7
time (s) ±0.7 ±16.0 ±0.6 ±0.4 ±1.5

Table 1: Mean and standard deviation of recovery time
after disk failure in a triple-replicated cluster. The high
variance in one experiment is due to a single 80s run.

pleTestClient with 20Gbps assigned to it, rather than
10 Gbps as in the previous tests. We wrote, then read,
10,000 tracts against a single-replicated cluster of 30
tractservers. Over 5 trials, SimpleTestClient achieved
a mean (and standard deviation) write bandwidth of
2,187±32MB/s; for read, 2,045±15MB/s.

5.3 Failure Recovery
Table 1 shows the time taken to re-replicate lost data

after one or more disk failures. Each experiment used
a triple-replicated cluster of 100 or 1,000 146GB, 10K
RPM SAS disks that contained enough data so that each
tractserver held either 47GB or 92GB. We then killed a
random tractserver process and measured the time until
the cluster reported failure recovery was complete. Due
to the random nature of the TLT, the exact amount of data
recovered in each test varied slightly. We ran each test 5
times and we report the mean and standard deviation.

With 100 disks, FDS recovered 47GB in 19.2s and
92GB in 50.5s. Scaling the number of disks up by 10×
to 1,000, recovery times improved by 6.8× to 3.3s for
100 disks and by 8× to 6.2s for 1,000 disks. Scaling is
not quite linear due to the fixed cost of generating and
distributing a new TLT.

We measured whole-machine failure by resetting a
machine running 7 tractservers containing ≈655GB of

data. FDS recovered the lost data in 33.7±1.5s. Com-
pared to single-disk failures, the whole-machine failure
test recovered 7× the data in only 5× the time, as the
fixed costs of recovery were amortized over more linear
recovery time.

Recovery of 655GB involves reading and writing a
total of 1310GB. Doing so in 33.7s with 993 tract-
servers implies an average total read/write bandwidth of
≈40MB/s/disk. Since the disks in these tests were nearly
full, recovery wrote to the innermost, slowest disk tracks.

These results imply that a 1TB disk in a 3,000 disk
cluster could be recovered in ≈17s. Such a small recov-
ery window dramatically lessens the probability of data
loss. Further, it lowers the impact of disk failures on
availability and application performance. Though we are
recovering to disk, our recovery time is comparable to
the best known technique for recovering to RAM [26].

6 Applications
6.1 Sort

Sorting is an important primitive in many big-data ap-
plications. Its load pattern is similar to other common
tasks such as distributed database joins and large matrix
operations. This has made it an important benchmark
since at least 1985 [9]. A group informally sponsored
by SIGMOD curates an annual disk-to-disk sort perfor-
mance competition with divisions for speed, cost effi-
ciency, and energy efficiency [2]. Each has sub-divisions
for general purpose applications (“Daytona”) and imple-
mentations that are allowed to exploit the specifics of the
competition (“Indy”), such as assuming 100-byte records
and uniformly distributed 10-byte keys.

In April 2012, our FDS-based sort application set the
world record for sort in both the Indy and Daytona cat-
egories of MinuteSort [7], which measures the amount
of data that can be sorted in 60 seconds. Using a cluster
of 1,033 disks and 256 computers (136 for tractservers,
120 for the application), our Daytona-class app sorted

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 11

System Computers Data Disks Sort Size Time Implied Disk
Throughput

MinuteSort—Daytona class (general purpose)
FDS, 2012 256 1,033 1,401GB 59s 46MB/s
Yahoo!, Hadoop, 2009 [25] 1,408 5,632 500GB 59s 3MB/s
Yahoo!, Hadoop, 2009 [25] 1,408 5,632 1,000GB 62s 5.7MB/s
(unofficial 1TB run)

MinuteSort—Indy class (benchmark-specific optimizations allowed)
FDS, 2012 256 1,033 1,470GB 59.4s 47.9MB/s
UCSD TritonSort, 2011 [27] 66 1,056 1,353GB 59.2s 43.3MB/s

Table 2: Comparison of FDS MinuteSort results with the previously standing records. In accordance with sort bench-
mark rules, all reported times are the median of 15 runs and 1GB = 109 bytes.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  20  40  60  80  100  120M
ile

s
to

n
e

 C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Number of Nodes Complete

800GB Sort Before Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  20  40  60  80  100  120M
ile

s
to

n
e

 C
o

m
p

le
ti
o

n
 T

im
e

 (
s
)

Number of Nodes Complete

800GB Sort After Dynamic Work Allocation

Input read complete

Shuffled data received from all peers

Output complete

Figure 5: Visualization of the time to reach three milestones in the completion of a sort. The results are shown before
(left) and after (right) implementation of dynamic work allocation. Both experiments depict 115 nodes sorting 800GB.

1,401GB2 in 59.4s. This bested the standing Daytona
record by a factor of 2.8x while using about 1/5 as many
CPUs and disks. Our Indy-class app sorted 1,470GB in
59.0s, breaking the standing record by about 8%. Our
Indy sort was identical to Daytona except for assuming
a uniform key distribution instead of sampling the in-
put. Our results and comparisons to the previous record-
holders are shown in Table 2. The sort application con-
sists of one head process and n worker processes. The
input is given in a single FDS blob, from which each
worker reads a separate subset of tracts. The sort occurs
in three phases: input sampling, reading, and writing.

In the input sampling phase, the head process reads
1.5 million records: 6,000 from each of 256 tracts se-
lected randomly from the input blob. It computes the key
distribution and hence the assignment of key ranges to
buckets. It then unicasts the computed distribution to all
the other sort processes. In the Indy sort, this phase is
skipped; the key distribution is assumed to be uniform
and the bucket partitions are pre-computed.

In the read phase, each sort process performs three
tasks simultaneously. First, each sort process reads tracts

2In this section only, we use the sort benchmark’s definition of 1GB
= 109 bytes.

from its assigned region of the input. Simultaneously,
as each tract arrives (in arbitrary order), the sort process
shuffles the tract’s records into output bins according to
the bucket partitions received after the sampling phase.
As each bin fills, the process sends the bin to the appro-
priate “bucket-receiver,” a peer sort process. The buckets
form an ordered partition of the keyspace. Finally, it re-
ceives bins from peer sort nodes.

In the write phase, each sort process sorts its bucket
and writes it to a separate output blob. The sorted result
is distributed among n blobs.

Sort relied heavily on dynamic work allocation (§2.4).
At first, all workers were responsible for reading equal
portions of the input; 1/3 of the total sort time was lost to
stragglers, partially because of our cluster’s heterogene-
ity. In later versions, the head node coordinated work as-
signments: nodes requested an input range as they neared
completion of their previously assigned range.

Figure 5 shows time diagrams for a sort experiment
before and after dynamic work allocation was imple-
mented. (No other changes were made between the two
experiments shown.) Each graph has three lines that de-
pict the time at which each worker reached three mile-
stones: completing the read phase, starting the write

11



12 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

phase, and completing the write phase. Horizontal lines
would be ideal, indicating every node reached a mile-
stone simultaneously. There is a global barrier between
the read and write phases; stragglers in the read phase
cause significant performance loss as most nodes wait
idly for the last readers to complete. Dynamic work allo-
cation, enabled by FDS’ freeing nodes from data locality,
significantly improved overall sort time by reducing the
time nodes were waiting at the barrier.

FDS is the first system in the history of the sort bench-
mark to set the record using general-purpose remote stor-
age exclusively, without exploiting locality at all. Paral-
lel sorts were previously accomplished by reading input
data off a local disk, bucketing over the network, then
writing to a local disk. In FDS, all storage is remote: our
sort reads data from remote tractservers, buckets, then
writes back to tractservers, sending data over the network
three times. This demonstrates that FDS achieves world-
class performance while still exposing a simple single-
disk model that frees applications from the complexity
associated with reasoning about locality.

In 2011, TritonSort [27] set the MinuteSort record
with code carefully optimized for sorting. The FDS
sort achieved similar per-disk bandwidth despite being
built on top of a general blob store, accessing disks re-
motely. However, the FDS result did use approximately
4× as many computers. Part of this difference is superfi-
cial: tractservers were run on older machines, recycled
from other projects; they did not have sufficient CPU
or memory to act as sort clients. A single modern ma-
chine could act as both tractserver and client whereas our
cluster required two. However, some of the difference is
fundamental; it demonstrates the inefficiency of records
traversing the network three times rather than once.

6.2 Cointegration
A colleague had an application that performs cointe-

gration (a statistical technique) on stock market data to
find correlations in price fluctuations. The raw input is
a time-series of all stock trades. The application’s first
phase reads the time-series data and, for each ticker sym-
bol it finds, generates an “order book,” a list of trades for
that stock on that day. The second phase compares pairs
of order books to find correlations.

This application was originally implemented on a pub-
licly available cloud-computing provider. Measurements
showed it was I/O-bound, so he ported it to FDS. The
public cloud implementation used one single-core VM
for compute and the cloud service’s blob store for stor-
age. The FDS version used one 8-core machine for com-
pute and 98 tractservers in an older version of our cluster
that used 9 1Gbps Ethernet interfaces per machine. Ac-
counting for differences in hardware, the FDS version
was at least 6× faster, as shown in Table 3.

Time Speedup Speedup
System Cores (sec) Per Node Per Core
Public cloud 1 1,200 1 1
FDS 8 24 50x 6.25x

Table 3: Comparison of FDS to a public cloud for read-
ing a single day of stock market data and generating one
order book per stock symbol found.

A 6× speedup might actually under-state the improve-
ment from FDS. On the cloud computing system, the
VM’s single core was underutilized. A multi-core VM
would have been unlikely to significantly improve the
speed since the bottleneck was I/O.

An interesting performance bottleneck emerged. Be-
cause this task had always been I/O-bound, the input
was stored after zlib compression and decompressed on
the fly. This effectively increased I/O throughput by
the compression factor of 7×. In FDS, input tracts ar-
rived so quickly that decompression was the bottleneck.
8MB compressed tracts were, on average, arriving every
70ms per 1Gbps NIC. Zlib decompression took 218ms,
implying 3 cores were needed per NIC, but the ma-
chine had only 8 cores. Configuring zlib to favor speed
rather than compression reduced decompression time to
only 188ms. Switching to a compression library opti-
mized for decompression speed (XPress), compression
ratio was reduced to 3:1 but tract decompression required
only 62ms. FDS transformed cointegration from an I/O-
bound task to a compute-bound task.

6.3 Serving an index of the web
Search portals such as Bing use an index of the web to

provide answers to search queries. In 2011, Bing was
evaluating alternative architectures for serving the tail
(i.e., infrequent) queries from the index. We ported one
system to use FDS and measured its performance.

The tail index serving pipeline is composed, roughly,
of two stages. First, for each term found in a user’s
search query, a list of the documents that contain it are
retrieved from disk. The document list comes annotated
with a static rank of each document’s relevance with re-
spect to that single search term. Second, these document
lists are merged, ranked, and sent to a secondary ranker
which computes each document’s relevance to the total
query based on document contents and other informa-
tion. These document lists were “term-sharded,” mean-
ing each machine in the cluster was responsible for a
subset of the terms found in all crawled web documents.
Each machine spread its document lists across four local
disks. The code had been carefully optimized.

Our effort to use FDS focused initially on a feasibility
experiment that perturbed as little as possible in the index
serving pipeline. Each rack of machines was converted

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 13

into an FDS cluster. The index serving pipeline, also
running on the same machines, was changed to use FDS
as its “local” store instead of local physical disks. This
had the effect of striping all shards’ data across all disks
in the rack.

We ran in-house performance regression tests that is-
sued thousands of queries to the ranker pipeline and mea-
sured the number of queries per second (QPS) served
while keeping 95% of service times below the maximum
specified by the SLA. We measured performance using
two configurations. The first consisted of an unmodified
index serving pipeline on 40 machines, each of which
had 4 disks and a 10Gb/s network connection to a single
switch. The second configuration used only 12 machines
but ran using an FDS cluster with 48 tractservers.

The FDS version showed a dramatic QPS improve-
ment of 2× despite using 1/3 the machines. While the
median latency was essentially the same in both versions,
the FDS version reduced the 95th percentile latency by
2.4×. We attribute the difference to better statistical mul-
tiplexing of disks. Queries require document lists that
vary in size by several orders of magnitude. Using local
disks, long reads delay other queries behind them. FDS,
in contrast, was better at spreading document lists more
uniformly across all available disks, making it less likely
that single machine would fall behind.

The index serving pipeline proved to be a good match
for our weak consistency model. While serving the in-
dex, the document lists are read-only. When the index is
updated, each term’s blob is written by a single writer,
and the front-end does not try to read the new blob until
the update is complete.

7 Related Work
We believe that FDS is the first high performance blob

storage system designed for datacenter scale with a flat
storage model.

The Google File System has a centralized master that
keeps all metadata in memory [14]. This approach is
limiting because as the contents of the store grow, the
metadata server becomes a centralized scaling and per-
formance bottleneck. In a recent interview, Google ar-
chitects described the GFS metadata server as a limiting
factor in terms of scale and performance [22]. Addition-
ally, a desire to reduce the size of a chunk from 64MB
was limited by the proportional increase in the number
of chunks in the system.

FDS uses deterministic placement to eliminate the
scaling limitations of current blob store metadata servers.
The tract locator table’s size is determined by the num-
ber of machines in a cluster, rather than the size of its
contents. Further, the TLT enables FDS to use an unlim-
ited number of small, 8MB tracts to stripe data across
the cluster. Finally, FDS fully distributes the blob meta-

data into the cluster using metadata tracts, which further
minimizes the need to centrally administer the store.

xFS [6] also proposed distributing file system meta-
data among storage nodes through distributed metadata
managers. A replicated manager map determined which
manager was responsible for the location of a particular
file. FDS distributes its metadata among storage nodes
through the metadata tract and uses deterministic place-
ment to eliminate the need for an additional manager ser-
vice to respond to requests for the location of individual
files within the storage system.

DHTs like Chord [31] use techniques such as consis-
tent hashing [20] to eliminating the need for centralized
coordination when locating data. However, under churn,
a request within a DHT might be routed to several differ-
ent servers before finding an up-to-date location for data.
FDS also uses hashing to implement deterministic place-
ment, but the TLT directs clients to data without ambigu-
ity. Failures spur the generation of a new table, providing
an up-to-date location to clients. FDS takes advantage of
deterministic placement to minimize the load on the FDS
metadata server while relying on a small amount of state
to ensure that the location of data is determined within a
single network hop.

RAMCloud [26] provides fast recovery from failures
by distributing data, in the form of log segments, across
many machines and recovering those segments in paral-
lel. However, RAMCloud recovers all data to main mem-
ory, while FDS implements fast failure recovery back
to stable storage. Further, RAMCloud distributes data
to disk purely for reasons of fault tolerance, while FDS
replication is used both for fault tolerance and availabil-
ity. Panasas [35] uses RAID 5 to stripe files, rather than
blocks, across many servers to accelerate RAID recov-
ery, while FDS ensures that all disks participate in re-
covery by striping tracts among all disks in the cluster.

Distributed file systems like Frangiapani [32],
GPFS [28], AFS [18] and NFS [29] export a remote
storage model across a shared, hierarchical name-space.
These systems must contend with strong consistency
guarantees, and the vagaries of remote, shared access to
a POSIX compliant API. By focusing only on fast access
to blob storage, FDS provides weak consistency guaran-
tees with very high performance.

Among many others, systems such as Swift [11], Ze-
bra [17], GPFS [28], Panasas [35], and Petal [21] stripe
files, blocks, or logs across file servers to improve read
and write throughput for traditional hierarchical file sys-
tems. FDS follows in the footsteps of these systems by
using the tract locator table to guarantee a uniform dis-
tribution of disk accesses regardless of the pattern of re-
quests issued by applications.

TritonSort [27] demonstrated the power of a balanced
approach to storage and computation by breaking several

13



14 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

of the world records in sorting. FDS demonstrates that
this approach can be extended to a general purpose, lo-
cality oblivious system to break the sorting record with-
out loss of performance.

PortLand [24] and VL2 [15] make it economically fea-
sible to build datacenter-scale full bisection bandwidth
networks. Other full bisection networks exist, such as
Infiniband [23], but at a cost and scale that limited them
to supercomputing and HPC environments.

Finally, River [8] used a distributed queue to dynami-
cally adjust the assignment of work to applications nodes
at run time in data flow computations. Similarly, FDS ap-
plications use dynamic work allocation to choose which
node will consume a tract of data at runtime to adjust for
performance faults and the varying performance capabil-
ities within a heterogeneous cluster.

8 Conclusion
We have presented Flat Datacenter Storage, a

datacenter-scale blob storage system that exposes the full
bandwidth of its disks to all processors uniformly. It
largely obviates the need for locality without sacrificing
performance. Individual processes can read and write at
near their NIC’s rate—2GBps or more. Aggregate client
bandwidth scales nearly linearly and reaches 50% of the
theoretical bandwidth of the underlying disks. Band-
width capacity scales nearly linearly as disks are added.

This has a number of important consequences. First,
recovery from failed disks can be done in seconds rather
than hours; we recover 655GB in a 1,000 disk cluster in
only 33.5s. Small recovery windows increase durability
by decreasing the likelihood of complete data loss.

Second, FDS has implications for the structure of soft-
ware. By exposing a cluster’s full I/O bandwidth with-
out locality constraints, FDS deconflates high I/O per-
formance from data-parallel programming models such
as MapReduce. Programmers can pick the most natu-
ral model for expressing computation without sacrificing
performance.

Third, FDS has implications for the way clusters are
built. Today’s big-data clusters are often built with “one
size fits all” machines that assume all applications have a
similar balance of CPU to disk bandwidth requirements.
With FDS, I/O and compute resources can be purchased
separately, each independently upgradable depending on
which resource is in shortage.

Finally, systems like FDS may pave the way for new
kinds of applications. Large matrix operations, sorts,
distributed joins, and all-to-all comparisons were largely
off-limits to programmers working at datacenter scales:
if it couldn’t be done within a rack, it couldn’t be
done quickly. FDS makes these applications practical—
potentially even enabling new kinds of science.

9 Acknowledgments
We thank our shepherd, Steve Gribble, and the anony-

mous reviewers for helpful comments and feedback.
John Douceur, Jason Flinn and Eddie Kohler also pro-
vided insightful comments on early drafts. We are in-
debted to Barry Bond, who ported the cointegration ap-
plication to FDS and has provided extensive guidance on
performance-tuning Windows Server. Dave Maltz built
our first CLOS networks and taught us how to build our
own. Johnson Apacible, Rich Draves, and Reuben Olin-
sky were part of the sort record team. Trevor Eberl, Jamie
Lee, Oleg Losinets and Lucas Williamson provided sys-
tems support. Galen Hunt provided a continuous stream
of optimism and general encouragement. Li Lu helped to
integrate FDS with the Bing index serving pipeline. We
also thank Jim Larus for agreeing to fund our initial 14-
machine cluster on nothing more than a whiteboard and
a promise, allowing this work to flourish.

References
[1] Apache Hadoop. http://hadoop.apache.org.

[2] MinuteSort Benchmark. http://sortbenchmark.org.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center net-
works. In the 8th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI ’10), pages 281–296. USENIX
Association, 2010.

[4] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In S. Kalyanaraman, V. N. Padmanabhan, K. K. Ra-
makrishnan, R. Shorey, and G. M. Voelker, editors, SIGCOMM,
pages 63–74. ACM, 2010.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in map-reduce clus-
ters using mantri. In the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’09), October 2010.

[6] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless network file systems. ACM
Trans. Comput. Syst., 14(1):41–79, Feb. 1996.

[7] J. Apacible, R. Draves, J. Elson, J. Fan, O. Hofmann, J. How-
ell, E. Nightingale, R. Olinksy, and Y. Suzue. MinuteSort with
Flat Datacenter Storage. Technical report, Microsoft Research,
http://sortbenchmark.org/FlatDatacenterStorage2012.pdf, 2012.

[8] R. H. Arpaci-Dusseau. Run-time adaptation in River. ACM Trans.
Comput. Syst., 21(1):36–86, Feb. 2003.

[9] D. Bitton, M. Brown, R. Catell, S. Ceri, T. Chou, D. DeWitt,
D. Gawlick, H. Garcia-Molina, B. Good, J. Gray, P. Homan,
B. Jolls, T. Lukes, E. Lazowska, J. Nauman, M. Pong, A. Spec-
tor, K. Trieber, H. Sammer, O. Serlin, M. Stonebraker, A. Reuter,
and P. Weinberger. A measure of transaction processing power.
Datamation, 31(7):112–118, Apr. 1985.

[10] D. Borthakur. The Amazon Simple Storage Service (Amazon
S3). http://aws.amazon.com/s3/.

[11] L.-F. Cabrera and D. D. Long. Swift: Using distributed disk strip-
ing to provide high I/O data rates. Computing Systems, 4(4):405–
436, 1991.

[12] Cisco Systems. Data center: Load balancing Data Center Ser-
vices, 2004.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 15

[13] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In The 6th Symposium on Operating
Systems Design and Implementation (OSDI ’04), pages 137–150,
December 2004.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Op-
erating Systems Principles (SOSP ’03), pages 29–43, New York,
NY, USA, 2003. ACM.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable
and flexible data center network. Commun. ACM, 54(3):95–104,
Mar. 2011.

[16] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Towards a next generation data center architecture: scalability
and commoditization. In Proceedings of the ACM workshop
on Programmable Routers for Extensible Services of Tomorrow,
PRESTO ’08, pages 57–62, New York, NY, USA, 2008. ACM.

[17] J. H. Hartman and J. K. Ousterhout. The Zebra striped network
file system. In Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles (SOSP ’93), pages 29–43, New
York, NY, USA, 1993. ACM.

[18] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Transactions
on Computer Systems, 6(1), February 1988.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks.
In Proceedings of the 2007 Eurosys Conference, pages 59–72,
2007.

[20] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanid-
ina, K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web
caching with consistent hashing. Computer Networks, 31:1203–
1213, May 1999.

[21] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In
ASPLOS-VII: Proceedings of the Seventh International Confer-
ence on Architectural support for Programming Languages and
Operating Systems, volume 31, pages 84–92, New York, NY,
USA, Sept. 1996. ACM.

[22] M. K. McKusick and S. Quinlan. GFS: Evolution on fast-
forward. acmqueue, 7(7), August 2009.

[23] Mellanox. Building a Scalable Storage with InfiniBand, 2012.

[24] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat. Port-
land: a scalable fault-tolerant layer 2 data center network fabric.
In Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, SIGCOMM ’09, pages 39–50, New York, NY,
USA, 2009. ACM.

[25] O. O’Malley and A. C. Murthy. Winning a 60 second dash with
a yellow elephant. http://sortbenchmark.org/Yahoo2009.
pdf, 2009.

[26] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP ’11), pages 29–41, New York, NY, USA, 2011.
ACM.

[27] A. Rasmussen, G. Porter, M. Conley, H. M. andRadhika Niran-
jan Mysore, A. Pucher, and A. Vahdat. Tritonsort: A balanced
large-scale sorting system. In the 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’11), Boston,
MA, April 2011.

[28] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for
large computing clusters. In the Conference on File and Storage
Technologies (FAST ’02), January 2002.

[29] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame,
M. Eisler, and D. Noveck. Network File System (NFS) version 4
Protocol. RFC 3530, Apr. 2003.

[30] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass Storage Systems and Technolo-
gies (MSST), 2010 IEEE 26th Symposium on, pages 1–10, May
2010.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160, New York,
NY, USA, 2001. ACM.

[32] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a scal-
able distributed file system. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles (SOSP ’97), pages
224–237, New York, NY, USA, 1997. ACM.

[33] R. van Renesse and F. B. Schneider. Chain replication for sup-
porting high throughput and availability. In The 6th Symposium
on Operating Systems Design and Implementation (OSDI ’04),
pages 91–104, 2004.

[34] V. Vasudevan, H. Shah, A. Phanishayee, E. Krevat, D. Andersen,
G. Ganger, and G. Gibson. Solving TCP incast in cluster storage
systems. In The 7th USENIX Conference on File and Storage
Technologies (FAST ’09), San Francisco, CA, February 2009.

[35] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small1, J. Zelenka, and B. Zhou. Scalable performance of the
Panasas parallel file system. In The 6th USENIX Conference on
File and Storage Technologies (FAST ’08), 2008.

15





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 17

PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Joseph E. Gonzalez

Carnegie Mellon University

jegonzal@cs.cmu.edu

Yucheng Low

Carnegie Mellon University

ylow@cs.cmu.edu

Haijie Gu

Carnegie Mellon University

haijieg@cs.cmu.edu

Danny Bickson

Carnegie Mellon University

bickson@cs.cmu.edu

Carlos Guestrin

University of Washington

guestrin@cs.washington.edu

Abstract

Large-scale graph-structured computation is central to

tasks ranging from targeted advertising to natural lan-

guage processing and has led to the development of

several graph-parallel abstractions including Pregel and

GraphLab. However, the natural graphs commonly found

in the real-world have highly skewed power-law degree

distributions, which challenge the assumptions made by

these abstractions, limiting performance and scalability.

In this paper, we characterize the challenges of compu-

tation on natural graphs in the context of existing graph-

parallel abstractions. We then introduce the PowerGraph

abstraction which exploits the internal structure of graph

programs to address these challenges. Leveraging the

PowerGraph abstraction we introduce a new approach

to distributed graph placement and representation that

exploits the structure of power-law graphs. We provide

a detailed analysis and experimental evaluation compar-

ing PowerGraph to two popular graph-parallel systems.

Finally, we describe three different implementation strate-

gies for PowerGraph and discuss their relative merits with

empirical evaluations on large-scale real-world problems

demonstrating order of magnitude gains.

1 Introduction

The increasing need to reason about large-scale graph-

structured data in machine learning and data mining

(MLDM) presents a critical challenge. As the sizes of

datasets grow, statistical theory suggests that we should

apply richer models to eliminate the unwanted bias of

simpler models, and extract stronger signals from data. At

the same time, the computational and storage complexity

of richer models coupled with rapidly growing datasets

have exhausted the limits of single machine computation.

The resulting demand has driven the development

of new graph-parallel abstractions such as Pregel [30]

and GraphLab [29] that encode computation as vertex-

programs which run in parallel and interact along edges

in the graph. Graph-parallel abstractions rely on each ver-

tex having a small neighborhood to maximize parallelism

and effective partitioning to minimize communication.

However, graphs derived from real-world phenomena,

like social networks and the web, typically have power-

law degree distributions, which implies that a small subset

of the vertices connects to a large fraction of the graph.

Furthermore, power-law graphs are difficult to partition

[1, 28] and represent in a distributed environment.

To address the challenges of power-law graph compu-

tation, we introduce the PowerGraph abstraction which

exploits the structure of vertex-programs and explicitly

factors computation over edges instead of vertices. As a

consequence, PowerGraph exposes substantially greater

parallelism, reduces network communication and storage

costs, and provides a new highly effective approach to dis-

tributed graph placement. We describe the design of our

distributed implementation of PowerGraph and evaluate it

on a large EC2 deployment using real-world applications.

In particular our key contributions are:

1. An analysis of the challenges of power-law graphs

in distributed graph computation and the limitations

of existing graph parallel abstractions (Sec. 2 and 3).

2. The PowerGraph abstraction (Sec. 4) which factors

individual vertex-programs.

3. A delta caching procedure which allows computation

state to be dynamically maintained (Sec. 4.2).

4. A new fast approach to data layout for power-law

graphs in distributed environments (Sec. 5).

5. An theoretical characterization of network and stor-

age (Theorem 5.2, Theorem 5.3).

6. A high-performance open-source implementation of

the PowerGraph abstraction (Sec. 7).

7. A comprehensive evaluation of three implementa-

tions of PowerGraph on a large EC2 deployment

using real-world MLDM applications (Sec. 6 and 7).

1



18 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

2 Graph-Parallel Abstractions

A graph-parallel abstraction consists of a sparse graph

G = {V,E} and a vertex-program Q which is executed

in parallel on each vertex v ∈ V and can interact (e.g.,

through shared-state in GraphLab, or messages in Pregel)

with neighboring instances Q(u) where (u,v) ∈ E . In con-

trast to more general message passing models, graph-

parallel abstractions constrain the interaction of vertex-

program to a graph structure enabling the optimization

of data-layout and communication. We focus our discus-

sion on Pregel and GraphLab as they are representative

of existing graph-parallel abstractions.

2.1 Pregel

Pregel [30] is a bulk synchronous message passing ab-

straction in which all vertex-programs run simultaneously

in a sequence of super-steps. Within a super-step each

program instance Q(v) receives all messages from the pre-

vious super-step and sends messages to its neighbors in

the next super-step. A barrier is imposed between super-

steps to ensure that all program instances finish processing

messages from the previous super-step before proceed-

ing to the next. The program terminates when there are

no messages remaining and every program has voted to

halt. Pregel introduces commutative associative message

combiners which are user defined functions that merge

messages destined to the same vertex. The following is an

example of the PageRank vertex-program implemented in

Pregel. The vertex-program receives the single incoming

message (after the combiner) which contains the sum of

the PageRanks of all in-neighbors. The new PageRank is

then computed and sent to its out-neighbors.

Message combiner(Message m1, Message m2) :

return Message(m1.value() + m2.value());

void PregelPageRank(Message msg) :

float total = msg.value();

vertex.val = 0.15 + 0.85*total;

foreach(nbr in out_neighbors) :

SendMsg(nbr, vertex.val/num_out_nbrs);

2.2 GraphLab

GraphLab [29] is an asynchronous distributed shared-

memory abstraction in which vertex-programs have shared

access to a distributed graph with data stored on every ver-

tex and edge. Each vertex-program may directly access

information on the current vertex, adjacent edges, and

adjacent vertices irrespective of edge direction. Vertex-

programs can schedule neighboring vertex-programs to

be executed in the future. GraphLab ensures serializabil-

ity by preventing neighboring program instances from

running simultaneously. The following is an example of

the PageRank vertex-program implemented in GraphLab.

The GraphLab vertex-program directly reads neighboring

vertex values to compute the sum.

void GraphLabPageRank(Scope scope) :

float accum = 0;

foreach (nbr in scope.in_nbrs) :

accum += nbr.val / nbr.nout_nbrs();

vertex.val = 0.15 + 0.85 * accum;

By eliminating messages, GraphLab isolates the user

defined algorithm from the movement of data, allowing

the system to choose when and how to move program

state. By allowing mutable data to be associated with both

vertices and edges GraphLab allows the algorithm de-

signer to more precisely distinguish between data shared

with all neighbors (vertex data) and data shared with a

particular neighbor (edge data).

2.3 Characterization

While the implementation of MLDM vertex-programs

in GraphLab and Pregel differ in how they collect and

disseminate information, they share a common overall

structure. To characterize this common structure and dif-

ferentiate between vertex and edge specific computation

we introduce the GAS model of graph computation.

The GAS model represents three conceptual phases

of a vertex-program: Gather, Apply, and Scatter. In the

gather phase, information about adjacent vertices and

edges is collected through a generalized sum over the

neighborhood of the vertex u on which Q(u) is run:

Σ ←
⊕

v∈Nbr[u]

g
(

Du,D(u,v),Dv

)

. (2.1)

where Du, Dv, and D(u,v) are the values (program state

and meta-data) for vertices u and v and edge (u,v). The

user defined sum ⊕ operation must be commutative and

associative and can range from a numerical sum to the

union of the data on all neighboring vertices and edges.

The resulting value Σ is used in the apply phase to

update the value of the central vertex:

Dnew
u ← a(Du,Σ) . (2.2)

Finally the scatter phase uses the new value of the central

vertex to update the data on adjacent edges:

∀v ∈ Nbr[u] :
(

D(u,v)

)

← s
(

Dnew
u ,D(u,v),Dv

)

. (2.3)

The fan-in and fan-out of a vertex-program is determined

by the corresponding gather and scatter phases. For in-

stance, in PageRank, the gather phase only operates on

in-edges and the scatter phase only operates on out-edges.

However, for many MLDM algorithms the graph edges

encode ostensibly symmetric relationships, like friend-

ship, in which both the gather and scatter phases touch all

edges. In this case the fan-in and fan-out are equal. As we

will show in Sec. 3, the ability for graph parallel abstrac-

tions to support both high fan-in and fan-out computation

is critical for efficient computation on natural graphs.

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 19

(a) Twitter In-Degree (b) Twitter Out-Degree

Figure 1: The in and out degree distributions of the Twitter

follower network plotted in log-log scale.

GraphLab and Pregel express GAS programs in very

different ways. In the Pregel abstraction the gather phase

is implemented using message combiners and the apply

and scatter phases are expressed in the vertex program.

Conversely, GraphLab exposes the entire neighborhood to

the vertex-program and allows the user to define the gather

and apply phases within their program. The GraphLab ab-

straction implicitly defines the communication aspects of

the gather/scatter phases by ensuring that changes made

to the vertex or edge data are automatically visible to ad-

jacent vertices. It is also important to note that GraphLab

does not differentiate between edge directions.

3 Challenges of Natural Graphs

The sparsity structure of natural graphs presents a unique

challenge to efficient distributed graph-parallel compu-

tation. One of the hallmark properties of natural graphs

is their skewed power-law degree distribution[16]: most

vertices have relatively few neighbors while a few have

many neighbors (e.g., celebrities in a social network). Un-

der a power-law degree distribution the probability that a

vertex has degree d is given by:

P(d) ∝ d−α , (3.1)

where the exponent α is a positive constant that controls

the “skewness” of the degree distribution. Higher α im-

plies that the graph has lower density (ratio of edges to

vertices), and that the vast majority of vertices are low

degree. As α decreases, the graph density and number

of high degree vertices increases. Most natural graphs

typically have a power-law constant around α ≈ 2. For

example, Faloutsos et al. [16] estimated that the inter-

domain graph of the Internet has a power-law constant

α ≈ 2.2. One can visualize the skewed power-law de-

gree distribution by plotting the number of vertices with a

given degree in log-log scale. In Fig. 1, we plot the in and

out degree distributions of the Twitter follower network

demonstrating the characteristic linear power-law form.

While power-law degree distributions are empirically

observable, they do not fully characterize the properties of

natural graphs. While there has been substantial work (see

[27]) in more sophisticated natural graph models, the tech-

niques in this paper focus only on the degree distribution

and do not require any other modeling assumptions.

The skewed degree distribution implies that a small

fraction of the vertices are adjacent to a large fraction

of the edges. For example, one percent of the vertices

in the Twitter web-graph are adjacent to nearly half of

the edges. This concentration of edges results in a star-

like motif which presents challenges for existing graph-

parallel abstractions:

Work Balance: The power-law degree distribution can

lead to substantial work imbalance in graph parallel ab-

stractions that treat vertices symmetrically. Since the stor-

age, communication, and computation complexity of the

Gather and Scatter phases is linear in the degree, the run-

ning time of vertex-programs can vary widely [36].

Partitioning: Natural graphs are difficult to

partition[26, 28]. Both GraphLab and Pregel de-

pend on graph partitioning to minimize communication

and ensure work balance. However, in the case of natural

graphs both are forced to resort to hash-based (random)

partitioning which has extremely poor locality (Sec. 5).

Communication: The skewed degree distribution of

natural-graphs leads to communication asymmetry and

consequently bottlenecks. In addition, high-degree ver-

tices can force messaging abstractions, such as Pregel, to

generate and send many identical messages.

Storage: Since graph parallel abstractions must locally

store the adjacency information for each vertex, each

vertex requires memory linear in its degree. Consequently,

high-degree vertices can exceed the memory capacity of

a single machine.

Computation: While multiple vertex-programs may

execute in parallel, existing graph-parallel abstractions do

not parallelize within individual vertex-programs, limiting

their scalability on high-degree vertices.

4 PowerGraph Abstraction

To address the challenges of computation on power-law

graphs, we introduce PowerGraph, a new graph-parallel

abstraction that eliminates the degree dependence of the

vertex-program by directly exploiting the GAS decom-

position to factor vertex-programs over edges. By lifting

the Gather and Scatter phases into the abstraction, Pow-

erGraph is able to retain the natural “think-like-a-vertex”

philosophy [30] while distributing the computation of a

single vertex-program over the entire cluster.

PowerGraph combines the best features from both

Pregel and GraphLab. From GraphLab, PowerGraph bor-

rows the data-graph and shared-memory view of compu-

tation eliminating the need for users to architect the move-

ment of information. From Pregel, PowerGraph borrows

the commutative, associative gather concept. PowerGraph

3



20 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

interface GASVertexProgram(u) {

// Run on gather_nbrs(u)

gather(Du, D(u,v), Dv) → Accum

sum(Accum left, Accum right) → Accum

apply(Du,Accum) → Dnew
u

// Run on scatter_nbrs(u)

scatter(Dnew
u ,D(u,v),Dv) → (Dnew

(u,v)
, Accum)

}

Figure 2: All PowerGraph programs must implement the state-

less gather, sum, apply, and scatter functions.

Algorithm 1: Vertex-Program Execution Semantics

Input: Center vertex u

if cached accumulator au is empty then

foreach neighbor v in gather nbrs(u) do

au ← sum(au, gather(Du, D(u,v), Dv))

end

end

Du ← apply(Du, au)

foreach neighbor v scatter nbrs(u) do

(D(u,v),∆a)← scatter(Du, D(u,v), Dv)

if av and ∆a are not Empty then av ← sum(av, ∆a)

else av ← Empty

end

supports both the highly-parallel bulk-synchronous Pregel

model of computation as well as the computationally effi-

cient asynchronous GraphLab model of computation.

Like GraphLab, the state of a PowerGraph program

factors according to a data-graph with user defined ver-

tex data Dv and edge data D(u,v). The data stored in the

data-graph includes both meta-data (e.g., urls and edge

weights) as well as computation state (e.g., the PageRank

of vertices). In Sec. 5 we introduce vertex-cuts which al-

low PowerGraph to efficiently represent and store power-

law graphs in a distributed environment. We now describe

the PowerGraph abstraction and how it can be used to

naturally decompose vertex-programs. Then in Sec. 5

through Sec. 7 we discuss how to implement the Power-

Graph abstraction in a distributed environment.

4.1 GAS Vertex-Programs

Computation in the PowerGraph abstraction is encoded

as a state-less vertex-program which implements the

GASVertexProgram interface (Fig. 2) and therefore

explicitly factors into the gather, sum, apply, and scat-

ter functions. Each function is invoked in stages by the

PowerGraph engine following the semantics in Alg. 1.

By factoring the vertex-program, the PowerGraph execu-

tion engine can distribute a single vertex-program over

multiple machines and move computation to the data.

During the gather phase the gather and sum func-

tions are used as a map and reduce to collect information

about the neighborhood of the vertex. The gather func-

tion is invoked in parallel on the edges adjacent to u. The

particular set of edges is determined by gather nbrs

which can be none, in, out, or all. The gather func-

tion is passed the data on the adjacent vertex and edge

and returns a temporary accumulator (a user defined type).

The result is combined using the commutative and associa-

tive sum operation. The final result au of the gather phase

is passed to the apply phase and cached by PowerGraph.

After the gather phase has completed, the apply func-

tion takes the final accumulator and computes a new ver-

tex value Du which is atomically written back to the graph.

The size of the accumulator au and complexity of the ap-

ply function play a central role in determining the network

and storage efficiency of the PowerGraph abstraction and

should be sub-linear and ideally constant in the degree.

During the scatter phase, the scatter function is in-

voked in parallel on the edges adjacent to u producing

new edge values D(u,v) which are written back to the data-

graph. As with the gather phase, the scatter nbrs

determines the particular set of edges on which scatter is

invoked. The scatter function returns an optional value ∆a

which is used to dynamically update the cached accumu-

lator av for the adjacent vertex (see Sec. 4.2).

In Fig. 3 we implement the PageRank, greedy graph

coloring, and single source shortest path algorithms us-

ing the PowerGraph abstraction. In PageRank the gather

and sum functions collect the total value of the adjacent

vertices, the apply function computes the new PageRank,

and the scatter function is used to activate adjacent vertex-

programs if necessary. In graph coloring the gather and

sum functions collect the set of colors on adjacent ver-

tices, the apply function computes a new color, and the

scatter function activates adjacent vertices if they violate

the coloring constraint. Finally in single source shortest

path (SSSP), the gather and sum functions compute the

shortest path through each of the neighbors, the apply

function returns the new distance, and the scatter function

activates affected neighbors.

4.2 Delta Caching

In many cases a vertex-program will be triggered in re-

sponse to a change in a few of its neighbors. The gather

operation is then repeatedly invoked on all neighbors,

many of which remain unchanged, thereby wasting com-

putation cycles. For many algorithms [2] it is possible to

dynamically maintain the result of the gather phase au

and skip the gather on subsequent iterations.

The PowerGraph engine maintains a cache of the accu-

mulator au from the previous gather phase for each vertex.

The scatter function can optionally return an additional ∆a

which is atomically added to the cached accumulator av

of the neighboring vertex v using the sum function. If ∆a

is not returned, then the neighbor’s cached av is cleared,

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 21

PageRank

// gather_nbrs: IN_NBRS

gather(Du, D(u,v), Dv):

return Dv.rank / #outNbrs(v)

sum(a, b): return a + b

apply(Du, acc):

rnew = 0.15 + 0.85 * acc

Du.delta = (rnew - Du.rank)/

#outNbrs(u)

Du.rank = rnew

// scatter_nbrs: OUT_NBRS

scatter(Du,D(u,v),Dv):

if(|Du.delta|>ε) Activate(v)

return delta

Greedy Graph Coloring

// gather_nbrs: ALL_NBRS

gather(Du, D(u,v), Dv):

return set(Dv)

sum(a, b): return union(a, b)

apply(Du, S):

Du = min c where c /∈ S

// scatter_nbrs: ALL_NBRS

scatter(Du,D(u,v),Dv):

// Nbr changed since gather

if(Du == Dv)

Activate(v)

// Invalidate cached accum

return NULL

Single Source Shortest Path (SSSP)

// gather_nbrs: ALL_NBRS

gather(Du, D(u,v), Dv):

return Dv + D(v,u)

sum(a, b): return min(a, b)

apply(Du, new_dist):

Du = new_dist

// scatter_nbrs: ALL_NBRS

scatter(Du,D(u,v),Dv):

// If changed activate neighbor

if(changed(Du)) Activate(v)

if(increased(Du))

return NULL

else return Du + D(u,v)

Figure 3: The PageRank, graph-coloring, and single source shortest path algorithms implemented in the PowerGraph abstraction.

Both the PageRank and single source shortest path algorithms support delta caching in the gather phase.

forcing a complete gather on the subsequent execution

of the vertex-program on the vertex v. When executing

the vertex-program on v the PowerGraph engine uses the

cached av if available, bypassing the gather phase.

Intuitively, ∆a acts as an additive correction on-top of

the previous gather for that edge. More formally, if the

accumulator type forms an abelian group: has a com-

mutative and associative sum (+) and an inverse (−)
operation, then we can define (shortening gather to g):

∆a = g(Du,D
new
(u,v),D

new
v )−g(Du,D(u,v),Dv). (4.1)

In the PageRank example (Fig. 3) we take advantage of

the abelian nature of the PageRank sum operation. For

graph coloring the set union operation is not abelian and

so we invalidate the accumulator.

4.3 Initiating Future Computation

The PowerGraph engine maintains a set of active vertices

on which to eventually execute the vertex-program. The

user initiates computation by calling Activate(v) or

Activate all(). The PowerGraph engine then pro-

ceeds to execute the vertex-program on the active vertices

until none remain. Once a vertex-program completes the

scatter phase it becomes inactive until it is reactivated.

Vertices can activate themselves and neighboring ver-

tices. Each function in a vertex-program can only activate

vertices visible in the arguments to that function. For ex-

ample the scatter function invoked on the edge (u,v) can

only activate the vertices u and v. This restriction is es-

sential to ensure that activation events are generated on

machines on which they can be efficiently processed.

The order in which activated vertices are executed is up

to the PowerGraph execution engine. The only guarantee

is that all activated vertices are eventually executed. This

flexibility in scheduling enables PowerGraph programs

to be executed both synchronously and asynchronously,

leading to different tradeoffs in algorithm performance,

system performance, and determinism.

4.3.1 Bulk Synchronous Execution

When run synchronously, the PowerGraph engine exe-

cutes the gather, apply, and scatter phases in order. Each

phase, called a minor-step, is run synchronously on all

active vertices with a barrier at the end. We define a super-

step as a complete series of GAS minor-steps. Changes

made to the vertex data and edge data are committed at

the end of each minor-step and are visible in the subse-

quent minor-step. Vertices activated in each super-step

are executed in the subsequent super-step.

The synchronous execution model ensures a determin-

istic execution regardless of the number of machines and

closely resembles Pregel. However, the frequent barriers

and inability to operate on the most recent data can lead

to an inefficient distributed execution and slow algorithm

convergence. To address these limitations PowerGraph

also supports asynchronous execution.

4.3.2 Asynchronous Execution

When run asynchronously, the PowerGraph engine exe-

cutes active vertices as processor and network resources

become available. Changes made to the vertex and edge

data during the apply and scatter functions are immedi-

ately committed to the graph and visible to subsequent

computation on neighboring vertices.

By using processor and network resources as they

become available and making any changes to the data-

graph immediately visible to future computation, an asyn-

chronous execution can more effectively utilize resources

and accelerate the convergence of the underlying algo-

rithm. For example, the greedy graph-coloring algorithm

in Fig. 3 will not converge when executed synchronously

but converges quickly when executed asynchronously.

The merits of asynchronous computation have been stud-

ied extensively in the context of numerical algorithms

[4]. In [18, 19, 29] we demonstrated that asynchronous

computation can lead to both theoretical and empirical

5



22 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

gains in algorithm and system performance for a range of

important MLDM applications.

Unfortunately, the behavior of the asynchronous exe-

cution depends on the number machines and availability

of network resources leading to non-determinism that can

complicate algorithm design and debugging. Furthermore,

for some algorithms, like statistical simulation, the result-

ing non-determinism, if not carefully controlled, can lead

to instability or even divergence [17].

To address these challenges, GraphLab automati-

cally enforces serializability: every parallel execution

of vertex-programs has a corresponding sequential execu-

tion. In [29] it was shown that serializability is sufficient to

support a wide range of MLDM algorithms. To achieve se-

rializability, GraphLab prevents adjacent vertex-programs

from running concurrently using a fine-grained locking

protocol which requires sequentially grabbing locks on

all neighboring vertices. Furthermore, the locking scheme

used by GraphLab is unfair to high degree vertices.

PowerGraph retains the strong serializability guaran-

tees of GraphLab while addressing its limitations. We

address the problem of sequential locking by introducing

a new parallel locking protocol (described in Sec. 7.4)

which is fair to high degree vertices. In addition, the

PowerGraph abstraction exposes substantially more fined

grained (edge-level) parallelism allowing the entire cluster

to support the execution of individual vertex programs.

4.4 Comparison with GraphLab / Pregel

Surprisingly, despite the strong constraints imposed by

the PowerGraph abstraction, it is possible to emulate both

GraphLab and Pregel vertex-programs in PowerGraph. To

emulate a GraphLab vertex-program, we use the gather

and sum functions to concatenate all the data on adjacent

vertices and edges and then run the GraphLab program

within the apply function. Similarly, to express a Pregel

vertex-program, we use the gather and sum functions to

combine the inbound messages (stored as edge data) and

concatenate the list of neighbors needed to compute the

outbound messages. The Pregel vertex-program then runs

within the apply function generating the set of messages

which are passed as vertex data to the scatter function

where they are written back to the edges.

In order to address the challenges of natural graphs,

the PowerGraph abstraction requires the size of the ac-

cumulator and the complexity of the apply function to

be sub-linear in the degree. However, directly executing

GraphLab and Pregel vertex-programs within the apply

function leads the size of the accumulator and the com-

plexity of the apply function to be linear in the degree

eliminating many of the benefits on natural graphs.

3 
2 

1 

D

A 

C 

B  2 
3 

C 

D

B 
A 

1 

D

A 

C C 

B 

(a) Edge-Cut

B A  1 

C  D3 

C  B 2 

C  D

B A  1 

3 

(b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into

three parts. Shaded vertices are ghosts and mirrors respectively.

5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-

graph to store the computation state and encode the in-

teraction between vertex-programs. The placement of the

data-graph structure and data plays a central role in mini-

mizing communication and ensuring work balance.

A common approach to placing a graph on a cluster

of p machines is to construct a balanced p-way edge-cut

(e.g., Fig. 4a) in which vertices are evenly assigned to

machines and the number of edges spanning machines

is minimized. Unfortunately, the tools [23, 31] for con-

structing balanced edge-cuts perform poorly [1, 28, 26] on

power-law graphs. When the graph is difficult to partition,

both GraphLab and Pregel resort to hashed (random) ver-

tex placement. While fast and easy to implement, hashed

vertex placement cuts most of the edges:

Theorem 5.1. If vertices are randomly assigned to p

machines then the expected fraction of edges cut is:

E

[

|Edges Cut|

|E|

]

= 1−
1

p
. (5.1)

For a power-law graph with exponent α , the expected

number of edges cut per-vertex is:

E

[

|Edges Cut|

|V |

]

=

(

1−
1

p

)

E [D[v]] =

(

1−
1

p

)

h|V | (α −1)

h|V | (α)
,

(5.2)

where the h|V | (α) = ∑|V |−1

d=1 d−α is the normalizing con-

stant of the power-law Zipf distribution.

Proof. An edge is cut if both vertices are randomly as-

signed to different machines. The probability that both

vertices are assigned to different machines is 1−1/p.

Every cut edge contributes to storage and network over-

head since both machines maintain a copy of the adja-

cency information and in some cases [20], a ghost (local

copy) of the vertex and edge data. For example in Fig. 4a

we construct a three-way edge-cut of a four vertex graph

resulting in five ghost vertices and all edge data being

replicated. Any changes to vertex and edge data associ-

ated with a cut edge must be synchronized across the

network. For example, using just two machines, a ran-

dom cut will cut roughly half the edges, requiring |E|/2

communication.

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 23

Machine(1( Machine(2(

Accumulator(
(Par4al(Sum)(

Updated((
Vertex(Data(

Gather( M
irror(Sca>er(

Gather(

Ap
pl
y(

Sca>er(

(1)(Gather(

(3)(Apply(

(5)(Sca>er(

(2)(

(4)(

Figure 5: The communication pattern of the PowerGraph ab-

straction when using a vertex-cut. Gather function runs locally

on each machine and then one accumulators is sent from each

mirror to the master. The master runs the apply function and

then sends the updated vertex data to all mirrors. Finally the

scatter phase is run in parallel on mirrors.

5.1 Balanced p-way Vertex-Cut

By factoring the vertex program along the edges in the

graph, The PowerGraph abstraction allows a single vertex-

program to span multiple machines. In Fig. 5 a single high

degree vertex program has been split across two machines

with the gather and scatter functions running in parallel

on each machine and accumulator and vertex data being

exchanged across the network.

Because the PowerGraph abstraction allows a single

vertex-program to span multiple machines, we can im-

prove work balance and reduce communication and stor-

age overhead by evenly assigning edges to machines and

allowing vertices to span machines. Each machine only

stores the edge information for the edges assigned to that

machine, evenly distributing the massive amounts of edge

data. Since each edge is stored exactly once, changes to

edge data do not need to be communicated. However,

changes to vertex must be copied to all the machines it

spans, thus the storage and network overhead depend on

the number of machines spanned by each vertex.

We minimize storage and network overhead by lim-

iting the number of machines spanned by each vertex.

A balanced p-way vertex-cut formalizes this objective

by assigning each edge e ∈ E to a machine A(e) ∈
{1, . . . , p}. Each vertex then spans the set of machines

A(v)⊆ {1, . . . , p} that contain its adjacent edges. We de-

fine the balanced vertex-cut objective:

min
A

1

|V | ∑
v∈V

|A(v)| (5.3)

s.t. max
m

|{e ∈ E | A(e) = m}| ,< λ
|E|

p
(5.4)

where the imbalance factor λ ≥ 1 is a small constant. We

use the term replicas of a vertex v to denote the |A(v)|
copies of the vertex v: each machine in A(v) has a replica

of v. Because changes to vertex data are communicated

to all replicas, the communication overhead is also given

by |A(v)|. The objective (Eq. 5.3) therefore minimizes the

average number of replicas in the graph and as a conse-

quence the total storage and communication requirements

of the PowerGraph engine.

For each vertex v with multiple replicas, one of the

replicas is randomly nominated as the master which main-

tains the master version of the vertex data. All remaining

replicas of v are then mirrors and maintain a local cached

read only copy of the vertex data. (e.g., Fig. 4b). For in-

stance, in Fig. 4b we construct a three-way vertex-cut of a

graph yielding only 2 mirrors. Any changes to the vertex

data (e.g., the Apply function) must be made to the master

which is then immediately replicated to all mirrors.

Vertex-cuts address the major issues associated with

edge-cuts in power-law graphs. Percolation theory [3]

suggests that power-law graphs have good vertex-cuts.

Intuitively, by cutting a small fraction of the very high

degree vertices we can quickly shatter a graph. Further-

more, because the balance constraint (Eq. 5.4) ensures

that edges are uniformly distributed over machines, we

naturally achieve improved work balance even in the pres-

ence of very high-degree vertices.

The simplest method to construct a vertex cut is to

randomly assign edges to machines. Random (hashed)

edge placement is fully data-parallel, achieves nearly per-

fect balance on large graphs, and can be applied in the

streaming setting. In the following theorem, we relate the

expected normalized replication factor (Eq. 5.3) to the

number of machines and the power-law constant α .

Theorem 5.2 (Randomized Vertex Cuts). A random

vertex-cut on p machines has an expected replication:

E

[

1

|V | ∑
v∈V

|A(v)|

]

=
p

|V | ∑
v∈V

(

1−

(

1−
1

p

)D[v]
)

. (5.5)

where D[v] denotes the degree of vertex v. For a power-

law graph the expected replication (Fig. 6a) is determined

entirely by the power-law constant α:

E

[

1

|V | ∑
v∈V

|A(v)|

]

= p−
p

h|V | (α)

|V |−1

∑
d=1

(

p−1

p

)d

d−α ,

(5.6)

where h|V | (α) = ∑|V |−1

d=1 d−α is the normalizing constant

of the power-law Zipf distribution.

Proof. By linearity of expectation:

E

[

1

|V | ∑
v∈V

|A(v)|

]

=
1

|V | ∑
v∈V

E [|A(v)|] , (5.7)

The expected replication E [|A(v)|] of a single vertex v

can be computed by considering the process of randomly

assigning the D[v] edges adjacent to v. Let the indicator

Xi denote the event that vertex v has at least one of its

edges on machine i. The expectation E [Xi] is then:

E [Xi] = 1−P(v has no edges on machine i) (5.8)

= 1−

(

1−
1

p

)D[v]

, (5.9)

7



24 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

0 50 100 150

2

4

6

8

10
α = 1.65

α = 1.7

α = 1.8

α = 2

Number of Machines

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

(a) V-Sep. Bound

0 50 100 150
5

10

20

50

100

200

500

α = 1.65
α = 1.7

α = 1.8

α = 2

Number of Machines

F
a

c
to

r 
Im

p
ro

v
e

m
e

n
t

(b) V-Sep. Improvement

Figure 6: (a) Expected replication factor for different power-

law constants. (b) The ratio of the expected communication and

storage cost of random edge cuts to random vertex cuts as a

function of the number machines. This graph assumes that edge

data and vertex data are the same size.

The expected replication factor for vertex v is then:

E [|A(v)|] =
p

∑
i=1

E [Xi] = p

(

1−

(

1−
1

p

)D[v]
)

. (5.10)

Treating D[v] as a Zipf random variable:

E

[

1

|V | ∑
v∈V

|A(v)|

]

=
p

|V | ∑
v∈V

(

1−E

[

(

p−1

p

)D[v]
])

,

(5.11)

and taking the expectation under P(d) = d−α/h|V | (α):

E

[

(

1−
1

p

)D[v]
]

=
1

h|V | (α)

|V |−1

∑
d=1

(

1−
1

p

)d

d−α .

(5.12)

While lower α values (more high-degree vertices) im-

ply a higher replication factor (Fig. 6a) the effective gains

of vertex-cuts relative to edge cuts (Fig. 6b) actually in-

crease with lower α . In Fig. 6b we plot the ratio of the

expected costs (comm. and storage) of random edge-cuts

(Eq. 5.2) to the expected costs of random vertex-cuts

(Eq. 5.6) demonstrating order of magnitude gains.

Finally, the vertex cut model is also highly effective for

regular graphs since in the event that a good edge-cut can

be found it can be converted to a better vertex cut:

Theorem 5.3. For a given an edge-cut with g ghosts, any

vertex cut along the same partition boundary has strictly

fewer than g mirrors.

Proof of Theorem 5.3. Consider the two-way edge cut

which cuts the set of edges E ′ ∈ E and let V ′ be the set

of vertices in E ′. The total number of ghosts induced by

this edge partition is therefore |V ′|. If we then select and

delete arbitrary vertices from V ′ along with their adja-

cent edges until no edges remain, then the set of deleted

vertices corresponds to a vertex-cut in the original graph.

Since at most |V ′|−1 vertices may be deleted, there can

be at most |V ′|−1 mirrors.

Graph |V | |E|
Twitter [24] 41M 1.4B

UK [7] 132.8M 5.5B

Amazon [6, 5] 0.7M 5.2M

LiveJournal [12] 5.4M 79M

Hollywood [6, 5] 2.2M 229M

(a) Real world graphs

α # Edges

1.8 641,383,778

1.9 245,040,680

2.0 102,838,432

2.1 57,134,471

2.2 35,001,696

(b) Synthetic Graphs

Table 1: (a) A collection of Real world graphs. (b) Randomly

constructed ten-million vertex power-law graphs with varying

α . Smaller α produces denser graphs.

5.2 Greedy Vertex-Cuts

We can improve upon the randomly constructed vertex-

cut by de-randomizing the edge-placement process. The

resulting algorithm is a sequential greedy heuristic which

places the next edge on the machine that minimizes the

conditional expected replication factor. To construct the

de-randomization we consider the task of placing the i+1

edge after having placed the previous i edges. Using the

conditional expectation we define the objective:

argmin
k

E

[

∑
v∈V

|A(v)|

∣

∣

∣

∣

∣

Ai,A(ei+1) = k

]

, (5.13)

where Ai is the assignment for the previous i edges. Using

Theorem 5.2 to evaluate Eq. 5.13 we obtain the following

edge placement rules for the edge (u,v):

Case 1: If A(u) and A(v) intersect, then the edge should be

assigned to a machine in the intersection.

Case 2: If A(u) and A(v) are not empty and do not intersect,

then the edge should be assigned to one of the machines

from the vertex with the most unassigned edges.

Case 3: If only one of the two vertices has been assigned, then

choose a machine from the assigned vertex.

Case 4: If neither vertex has been assigned, then assign the

edge to the least loaded machine.

Because the greedy-heuristic is a de-randomization it is

guaranteed to obtain an expected replication factor that is

no worse than random placement and in practice can be

much better. Unlike the randomized algorithm, which is

embarrassingly parallel and easily distributed, the greedy

algorithm requires coordination between machines. We

consider two distributed implementations:

Coordinated: maintains the values of Ai(v) in a dis-

tributed table. Then each machine runs the greedy

heuristic and periodically updates the distributed ta-

ble. Local caching is used to reduce communication

at the expense of accuracy in the estimate of Ai(v).

Oblivious: runs the greedy heuristic independently on

each machine. Each machine maintains its own esti-

mate of Ai with no additional communication.

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 25

Twitter HWood UK LJournal Amazon
0

5

10

15

20

R
e

p
lic

a
ti
o

n
 F

a
c
to

r

 

 

Random
Oblivious
Coordinated

(a) Actual Replication

Coloring SSSP ALS PageRank
0

0.2

0.4

0.6

0.8

1

R
u

n
ti
m

e
 R

e
la

ti
v
e

 t
o

 R
a

n
d

o
m

 

 

Rand.
Obliv.
Coord.

(b) Effect of Partitioning

Figure 7: (a) The actual replication factor on 32 machines. (b)

The effect of partitioning on runtime.

8 16 32 48 64
1
2

6

10

14

18

#Machines

R
e
p
lic

a
ti
o
n
 F

a
c
to

r

Predicted

Oblivious

Coordinated

Random

(a) Replication Factor (Twitter)

8 16 32 48 64
0

200

400

600

800

1000

#Machines

R
u
n
ti
m

e
 (

s
e
c
s
)

Coordinated

Oblivious

Random

(b) Ingress time (Twitter)

Figure 8: (a,b) Replication factor and runtime of graph ingress

for the Twitter follower network as a function of the number of

machines for random, oblivious, and coordinated vertex-cuts.

In Fig. 8a, we compare the replication factor of both

heuristics against random vertex cuts on the Twitter fol-

lower network. We plot the replication factor as a function

of the number of machines (EC2 instances described in

Sec. 7) and find that random vertex cuts match the pre-

dicted replication given in Theorem 5.2. Furthermore,

the greedy heuristics substantially improve upon random

placement with an order of magnitude reduction in the

replication factor, and therefore communication and stor-

age costs. For a fixed number of machines (p = 32), we

evaluated (Fig. 7a) the replication factor of the two heuris-

tics on five real-world graphs (Tab. 1a). In all cases the

greedy heuristics out-perform random placement, while

doubling the load time (Fig. 8b). The Oblivious heuris-

tic achieves compromise by obtaining a relatively low

replication factor while only slightly increasing runtime.

6 Abstraction Comparison

In this section, we experimentally characterize the de-

pendence on α and the relationship between fan-in and

fan-out by using the Pregel, GraphLab, and PowerGraph

abstractions to run PageRank on five synthetically con-

structed power-law graphs. Each graph has ten-million

vertices and an α ranging from 1.8 to 2.2. The graphs

were constructed by randomly sampling the out-degree

of each vertex from a Zipf distribution and then adding

out-edges such that the in-degree of each vertex is nearly

identical. We then inverted each graph to obtain the cor-

responding power-law fan-in graph. The density of each

power-law graph is determined by α and therefore each

graph has a different number of edges (see Tab. 1b).

We used the GraphLab v1 C++ implementation from

[29] and added instrumentation to track network usage.

As of the writing of this paper, public implementations

of Pregel (e.g., Giraph) were unable to handle even our

smaller synthetic problems due to memory limitations.

Consequently, we used Piccolo [32] as a proxy imple-

mentation of Pregel since Piccolo naturally expresses the

Pregel abstraction and provides an efficient C++ imple-

mentation with dynamic load-balancing. Finally, we used

our implementation of PowerGraph described in Sec. 7.

All experiments in this section are evaluated on an eight

node Linux cluster. Each node consists of two quad-core

Intel Xeon E5620 processors with 32 GB of RAM and is

connected via 1-GigE Ethernet. All systems were com-

piled with GCC 4.4. GraphLab and Piccolo used random

edge-cuts while PowerGraph used random vertex-cuts..

Results are averaged over 20 iterations.

6.1 Computation Imbalance
The sequential component of the PageRank vertex-

program is proportional to out-degree in the Pregel ab-

straction and in-degree in the GraphLab abstraction. Al-

ternatively, PowerGraph eliminates this sequential de-

pendence by distributing the computation of individual

vertex-programs over multiple machines. Therefore we

expect, highly-skewed (low α) power-law graphs to in-

crease work imbalance under the Pregel (fan-in) and

GraphLab (fan-out) abstractions but not under the Power-

Graph abstraction, which evenly distributed high-degree

vertex-programs. To evaluate this hypothesis we ran eight

“workers” per system (64 total workers) and recorded the

vertex-program time on each worker.

In Fig. 9a and Fig. 9b we plot the standard devia-

tion of worker per-iteration runtimes, a measure of work

imbalance, for power-law fan-in and fan-out graphs re-

spectively. Higher standard deviation implies greater im-

balance. While lower α increases work imbalance for

GraphLab (on fan-in) and Pregel (on fan-out), the Power-

Graph abstraction is unaffected in either edge direction.

6.2 Communication Imbalance
Because GraphLab and Pregel use edge-cuts, their com-

munication volume is proportional to the number of

ghosts: the replicated vertex and edge data along the par-

tition boundary. If one message is sent per edge, Pregel’s

combiners ensure that exactly one network message is

transmitted for each ghost. Similarly, at the end of each

iteration GraphLab synchronizes each ghost and thus the

communication volume is also proportional to the number

of ghosts. PowerGraph on the other hand uses vertex-cuts

and only synchronizes mirrors after each iteration. The

communication volume of a complete iteration is there-

fore proportional to the number of mirrors induced by the

9



26 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1.8 1.9 2 2.1 2.2

5

10

15

20

25

30

α

W
o

rk
 I

m
b

a
la

n
c
e

 (
s
td

e
v
) GraphLab Fan−in

PowerGraph Fan−in

Pregel(Piccolo) Fan−in

(a) Power-law Fan-In Balance

1.8 1.9 2 2.1 2.2

10

20

30

40

50

α

W
o

rk
 I

m
b

a
la

n
c
e

 (
s
td

e
v
)

Pregel(Piccolo) Fan−out

GraphLab Fan−out

PowerGraph Fan−out

(b) Power-law Fan-Out Balance

1.8 1.9 2 2.1 2.2
0

5

10

15

α

O
n
e
 i
te

r 
C

o
m

m
s
(G

B
)

Pregel (Piccolo)

PowerGraph

Graphlab

(c) Power-law Fan-In Comm.

1.8 1.9 2 2.1 2.2
0

5

10

15

α

O
n
e
 i
te

r 
C

o
m

m
s
(G

B
)

Pregel (Piccolo)

Graphlab

PowerGraph

(d) Power-law Fan-Out Comm.

Figure 9: Synthetic Experiments: Work Imbalance and Communication. (a, b) Standard deviation of worker computation time

across 8 distributed workers for each abstraction on power-law fan-in and fan-out graphs. (b, c) Bytes communicated per iteration for

each abstraction on power-law fan-in and fan-out graphs.

1.8 1.9 2 2.1 2.2
0

5

10

15

20

25

30

α

O
n
e
 i
te

r 
ru

n
ti
m

e
(s

e
c
o
n
d
s
)

Graphlab

Pregel (Piccolo)

PowerGraph (Random)

PowerGraph (Coord.)

(a) Power-law Fan-In Runtime

1.8 1.9 2 2.1 2.2
0

5

10

15

20

25

30

α

O
n
e
 i
te

r 
ru

n
ti
m

e
(s

e
c
o
n
d
s
)

Pregel (Piccolo)

Graphlab

PowerGraph (Random)

PowerGraph (Coord.)

(b) Power-law Fan-Out Runtime

Figure 10: Synthetic Experiments Runtime. (a, b) Per itera-

tion runtime of each abstraction on synthetic power-law graphs.

vertex-cut. As a consequence we expect that PowerGraph

will reduce communication volume.

In Fig. 9c and Fig. 9d we plot the bytes communicated

per iteration for all three systems under power-law fan-in

and fan-out graphs. Because Pregel only sends messages

along out-edges, Pregel communicates more on power-

law fan-out graphs than on power-law fan-in graphs.

On the other hand, GraphLab and PowerGraph’s com-

munication volume is invariant to power-law fan-in and

fan-out since neither considers edge direction during data-

synchronization. However, PowerGraph communicates

significantly less than GraphLab which is a direct result

of the efficacy of vertex cuts. Finally, PowerGraph’s total

communication increases only marginally on the denser

graphs and is the lowest overall.

6.3 Runtime Comparison

PowerGraph significantly out-performs GraphLab and

Pregel on low α graphs. In Fig. 10a and Fig. 10b we

plot the per iteration runtime for each abstraction. In both

cases the overall runtime performance closely matches

the communication overhead ( Fig. 9c and Fig. 9d) while

the computation imbalance (Fig. 9a and Fig. 9b) appears

to have little effect. The limited effect of imbalance is due

to the relatively lightweight nature of the PageRank com-

putation and we expect more complex algorithms (e.g.,

statistical inference) to be more susceptible to imbalance.

However, when greedy (coordinated) partitioning is used

we see an additional 25% to 50% improvement in runtime.

7 Implementation and Evaluation

In this section, we describe and evaluate our imple-

mentation of the PowerGraph system. All experiments

are performed on a 64 node cluster of Amazon EC2

cc1.4xlarge Linux instances. Each instance has two

quad core Intel Xeon X5570 processors with 23GB of

RAM, and is connected via 10 GigE Ethernet. Power-

Graph was written in C++ and compiled with GCC 4.5.

We implemented three variations of the PowerGraph

abstraction. To demonstrate their relative implementation

complexity, we provide the line counts, excluding com-

mon support code:

Bulk Synchronous (Sync): A fully synchronous implementa-

tion of PowerGraph as described in Sec. 4.3.1. [600 lines]

Asynchronous (Async): An asynchronous implementation of

PowerGraph which allows arbitrary interleaving of vertex-

programs Sec. 4.3.2. [900 lines]

Asynchronous Serializable (Async+S): An asynchronous im-

plementation of PowerGraph which guarantees serializabil-

ity of all vertex-programs (equivalent to “edge consistency”

in GraphLab). [1600 lines]

In all cases the system is entirely symmetric with no

single coordinating instance or scheduler. Each instances

is given the list of other machines and start by reading a

unique subset of the graph data files from HDFS. TCP

connections are opened with other machines as needed to

build the distributed graph and run the engine.

7.1 Graph Loading and Placement

The graph structure and data are loaded from a collection

of text files stored in a distributed file-system (HDFS) by

all instances in parallel. Each machine loads a separate

subset of files (determined by hashing) and applies one of

the three distributed graph partitioning algorithms to place

the data as it is loaded. As a consequence partitioning is

accomplished in parallel and data is immediately placed

in its final location. Unless specified, all experiments were

performed using the oblivious algorithm. Once computa-

tion is complete, the final vertex and edge data are saved

back to the distributed file-system in parallel.

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 27

In Fig. 7b, we evaluate the performance of a collec-

tion of algorithms varying the partitioning procedure. Our

simple partitioning heuristics are able to improve per-

formance significantly across all algorithms, decreasing

runtime and memory utilization. Furthermore, the run-

time scales linearly with the replication factor: halving

the replication factor approximately halves runtime.

7.2 Synchronous Engine (Sync)

Our synchronous implementation closely follows the de-

scription in Sec. 4.3.1. Each machine runs a single multi-

threaded instance to maximally utilize the multi-core ar-

chitecture. We rely on background communication to

achieve computation/communication interleaving. The

synchronous engine’s fully deterministic execution makes

it easy to reason about programmatically and minimizes

effort needed for tuning and performance optimizations.

In Fig. 11a and Fig. 11b we plot the runtime and to-

tal communication of one iteration of PageRank on the

Twitter follower network for each partitioning method. To

provide a point of comparison (Tab. 2), the Spark [37]

framework computes one iteration of PageRank on the

same graph in 97.4s on a 50 node-100 core cluster [35].

PowerGraph is therefore between 3-8x faster than Spark

on a comparable number of cores. On the full cluster of

512 cores, we can compute one iteration in 3.6s.

The greedy partitioning heuristics improves both per-

formance and scalability of the engine at the cost of in-

creased load-time. The load time for random, oblivious,

and coordinated placement were 59, 105, and 239 sec-

onds respectively. While greedy partitioning heuristics

increased load-time by up to a factor of four, they still im-

prove overall runtime if more than 20 iterations of PageR-

ank are performed. In Fig. 11c we plot the runtime of each

iteration of PageRank on the Twitter follower network.

Delta caching improves performance by avoiding unnec-

essary gather computation, decreasing total runtime by

45%. Finally, in Fig. 11d we evaluate weak-scaling: abil-

ity to scale while keeping the problem size per processor

constant. We run SSSP (Fig. 3) on synthetic power-law

graphs (α = 2), with ten-million vertices per machine.

Our implementation demonstrates nearly optimal weak-

scaling and requires only 65s to solve a 6.4B edge graph.

7.3 Asynchronous Engine (Async)

We implemented the asynchronous PowerGraph execu-

tion model (Sec. 4.3.2) using a simple state machine for

each vertex which can be either: INACTIVE, GATHER,

APPLY or SCATTER. Once activated, a vertex enters the

gathering state and is placed in a local scheduler which

assigns cores to active vertices allowing many vertex-

programs to run simultaneously thereby hiding commu-

nication latency. While arbitrary interleaving of vertex

programs is permitted, we avoid data races by ensuring

that individual gather, apply, and scatter calls have exclu-

sive access to their arguments.

We evaluate the performance of the Async engine by

running PageRank on the Twitter follower network. In

Fig. 12a, we plot throughput (number of vertex-program

operations per second) against the number of machines.

Throughput increases moderately with both the number

of machines as well as improved partitioning. We eval-

uate the gains associated with delta caching (Sec. 4.2)

by measuring throughput as a function of time (Fig. 12b)

with caching enabled and with caching disabled. Caching

allows the algorithm to converge faster with fewer opera-

tions. Surprisingly, when caching is disabled, the through-

put increases over time. Further analysis reveals that the

computation gradually focuses on high-degree vertices,

increasing the computation/communication ratio.

We evaluate the graph coloring vertex-program (Fig. 3)

which cannot be run synchronously since all vertices

would change to the same color on every iteration. Graph

coloring is a proxy for many MLDM algorithms [17]. In

Fig. 12c we evaluate weak-scaling on synthetic power-law

graphs (α = 2) with five-million vertices per machine and

find that the Async engine performs nearly optimally. The

slight increase in runtime may be attributed to an increase

in the number of colors due to increasing graph size.

7.4 Async. Serializable Engine (Async+S)

The Async engine is useful for a broad range of tasks,

providing high throughput and performance. However,

unlike the synchronous engine, the asynchronous engine

is difficult to reason about programmatically. We therefore

extended the Async engine to enforce serializability.

The Async+S engine ensures serializability by prevent-

ing adjacent vertex-programs from running simultane-

ously. Ensuring serializability for graph-parallel compu-

tation is equivalent to solving the dining philosophers

problem where each vertex is a philosopher, and each

edge is a fork. GraphLab [29] implements Dijkstra’s solu-

tion [14] where forks are acquired sequentially according

to a total ordering. Instead, we implement the Chandy-

Misra solution [10] which acquires all forks simultane-

ously, permitting a high degree of parallelism. We extend

the Chandy-Misra solution to the vertex-cut setting by en-

abling each vertex replica to request only forks for local

edges and using a simple consensus protocol to establish

when all replicas have succeeded.

We evaluate the scalability and computational effi-

ciency of the Async+S engine on the graph coloring task.

We observe in Fig. 12c that the amount of achieved par-

allelism does not increase linearly with the number of

vertices. Because the density (i.e., contention) of power-

law graphs increases super-linearly with the number of

11



28 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

8 16 32 48 64
0

5

10

15

20

25

30

35

Number of Machines

O
n

e
 I

te
ra

ti
o

n
 R

u
n

ti
m

e
 (

s
) Synchronous(Random)

Synchronous(Oblivious)

Synchronous(Coord.)

(a) Twitter PageRank Runtime

8 16 32 48 64
0

5

10

15

20

25

30

35

Number of Machines

O
n

e
 I

te
ra

ti
o

n
 C

o
m

m
s
 (

G
B

)

Synchronous(Oblivious)

Synchronous(Coord.)

Synchronous(Random)

(b) Twitter PageRank Comms

0 5 10 15 20
10

20

30

40

50

60

Iteration

R
u

n
ti
m

e
(s

)

No Caching

Delta Caching

(c) Twitter PageRank Delta Cache

8 16 32 48 64
0

0.2

0.4

0.6

0.8

1

Number of Machines

R
e

la
ti
v
e

 R
u

n
ti
m

e

Optimal SSSP

(d) SSSP Weak Scaling

Figure 11: Synchronous Experiments (a,b) Synchronous PageRank Scaling on Twitter graph. (c) The PageRank per iteration

runtime on the Twitter graph with and without delta caching. (d) Weak scaling of SSSP on synthetic graphs.

20 40 60
0

50

100

150

200

250

300

Number of Machines

M
ill

io
n

 U
s
e

r 
O

p
s
 P

e
r 

S
e

c
o

n
d

Async (Coord.)

Async (Random)

Async (Oblivious)

(a) Twitter PageRank Throughput

0 500 1000 1500
0

50

100

150

Time (s)

M
ill

io
n

 U
s
e

r 
O

p
s
/s

No Caching

Delta Caching

(b) Twitter PageRank Delta Cache

8 16 32 48 64
0

1

2

3

4

Number of Machines

R
e

la
ti
v
e

 R
u

n
ti
m

e

Async+S

Async

Optimal

(c) Coloring Weak Scaling

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time (s)

N
o

n
−

c
o

n
fl
ic

ti
n

g
 E

d
g

e
 P

ro
p

o
rt

io
n

Async

Async+S

Race Induced
Conflicts

(d) Coloring Conflict Rate

Figure 12: Asynchronous Experiments (a) Number of user operations (gather/apply/scatter) issued per second by Dynamic

PageRank as # machines is increased. (b) Total number of user ops with and without caching plotted against time. (c) Weak scaling

of the graph coloring task using the Async engine and the Async+S engine (d) Proportion of non-conflicting edges across time on a 8

machine, 40M vertex instance of the problem. The green line is the rate of conflicting edges introduced by the lack of consistency

(peak 236K edges per second) in the Async engine. When the Async+S engine is used no conflicting edges are ever introduced.

vertices, we do not expect the amount of serializable par-

allelism to increase linearly.

In Fig. 12d, we plot the proportion of edges that satisfy

the coloring condition (both vertices have different colors)

for both the Async and the Async+S engines. While the

Async engine quickly satisfies the coloring condition for

most edges, the remaining 1% take 34% of the runtime.

We attribute this behavior to frequent races on tightly

connected vertices. Alternatively, the Async+S engine

performs more uniformly. If we examine the total number

of user operations we find that the Async engine does

more than twice the work of the Async+S engine.

Finally, we evaluate the Async and the Async+S en-

gines on a popular machine learning algorithm: Alter-

nating Least Squares (ALS). The ALS algorithm has a

number of variations which allow it to be used in a wide

range of applications including user personalization [38]

and document semantic analysis [21]. We apply ALS to

the Wikipedia term-document graph consisting of 11M

vertices and 315M edges to extract a mixture of topics

representation for each document and term. The number

of topics d is a free parameter that determines the com-

putational complexity O
(

d3
)

of each vertex-program. In

Fig. 13a, we plot the ALS throughput on the Async en-

gine and the Async+S engine. While the throughput of the

Async engine is greater, the gap between engines shrinks

as d increases and computation dominates the consistency

overhead. To demonstrate the importance of serializabil-

4 8 16 32 48 64

2

4

6

8

10

12

14

x 10
7

Number of Machines

O
p
e
ra

ti
o
n
s
 p

e
r 

S
e
c
o
n
d Async+S (d=5)

Async (d=5)

Async (d=20)
Async+S (d=20)

(a) ALS Throughput

0 500 1000 1500
10

−2

10
−1

10
0

Runtime (seconds)

E
rr

o
r 

(R
M

S
E

)

Async (d=5)

Async+S (d=20)

Async (d=20)

Async+S (d=5)

(b) ALS Convergence

Figure 13: (a) The throughput of ALS measured in millions of

User Operations per second. (b) Training error (lower is better)

as a function of running time for ALS application.

ity, we plot in Fig. 13b the training error, a measure of

solution quality, for both engines. We observe that while

the Async engine has greater throughput, the Async+S

engine converges faster.

The complexity of the Async+S engine is justified by

the necessity for serializability in many applications (e.g.,

ALS). Furthermore, serializability adds predictability to

the nondeterministic asynchronous execution. For exam-

ple, even graph coloring may not terminate on dense

graphs unless serializability is ensured.

7.5 Fault Tolerance

Like GraphLab and Pregel, PowerGraph achieves fault-

tolerance by saving a snapshot of the data-graph. The syn-

chronous PowerGraph engine constructs the snapshot be-

tween super-steps and the asynchronous engine suspends

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 29

PageRank Runtime |V | |E| System

Hadoop [22] 198s – 1.1B 50x8

Spark [37] 97.4s 40M 1.5B 50x2

Twister [15] 36s 50M 1.4B 64x4

PowerGraph (Sync) 3.6s 40M 1.5B 64x8

Triangle Count Runtime |V | |E| System

Hadoop [36] 423m 40M 1.4B 1636x?

PowerGraph (Sync) 1.5m 40M 1.4B 64x16

LDA Tok/sec Topics System

Smola et al. [34] 150M 1000 100x8

PowerGraph (Async) 110M 1000 64x16

Table 2: Relative performance of PageRank, triangle counting,

and LDA on similar graphs. PageRank runtime is measured per

iteration. Both PageRank and triangle counting were run on the

Twitter follower network and LDA was run on Wikipedia. The

systems are reported as number of nodes by number of cores.

execution to construct the snapshot. An asynchronous

snapshot using GraphLab’s snapshot algorithm [29] can

also be implemented. The checkpoint overhead, typically

a few seconds for the largest graphs we considered, is

small relative to the running time of each application.

7.6 MLDM Applications

In Tab. 2 we provide comparisons of the PowerGraph sys-

tem with published results on similar data for PageRank,

Triangle Counting [36], and collapsed Gibbs sampling

for the LDA model [34]. The PowerGraph implementa-

tions of PageRank and Triangle counting are one to two

orders of magnitude faster than published results. For

LDA, the state-of-the-art solution is a heavily optimized

system designed for this specific task by Smola et al. [34].

In contrast, PowerGraph is able to achieve comparable

performance using only 200 lines of user code.

8 Related Work

The vertex-cut approach to distributed graph placement is

related to work [9, 13] in hypergraph partitioning. In par-

ticular, a vertex-cut problem can be cast as a hypergraph-

cut problem by converting each edge to a vertex, and

each vertex to a hyper-edge. However, existing hyper-

graph partitioning can be very time intensive. While our

cut objective is similar to the “communication volume”

objective, the streaming vertex cut setting described in

this paper is novel. Stanton et al, in [35] developed several

heuristics for the streaming edge-cuts but do not consider

the vertex-cut problem.

Several [8, 22] have proposed generalized sparse ma-

trix vector multiplication as a basis for graph-parallel

computation. These abstractions operate on commutative

associative semi-rings and therefore also have generalized

gather and sum operations. However, they do not support

the more general apply and scatter operations, as well as

mutable edge-data and are based on a strictly synchronous

model in which all computation is run in every iteration.

While we discuss Pregel and GraphLab in detail, there

are other similar graph-parallel abstractions. Closely re-

lated to Pregel is BPGL [20] which implements a syn-

chronous traveler model. Alternatively, Kineograph [11]

presents a graph-parallel framework for time-evolving

graphs which mixes features from both GraphLab and Pic-

colo. Pujol et al. [33] present a distributed graph database

but do not explicitly consider the power-law structure. Fi-

nally, [25] presents GraphChi: an efficient single-machine

disk-based implementation of the GraphLab abstraction.

Impressively, it is able to significantly out-perform large

Hadoop deployments on many graph problems while us-

ing only a single machine: performing one iteration of

PageRank on the Twitter Graph in only 158s (Power-

Graph: 3.6s). The techniques described in GraphChi can

be used to add out-of-core storage to PowerGraph.

9 Conclusions and Future Work

The need to reason about large-scale graph-structured data

has driven the development of new graph-parallel abstrac-

tions such as GraphLab and Pregel. However graphs de-

rived from real-world phenomena often exhibit power-law

degree distributions, which are difficult to partition and

can lead to work imbalance and substantially increased

communication and storage.

To address these challenges, we introduced the Pow-

erGraph abstraction which exploits the Gather-Apply-

Scatter model of computation to factor vertex-programs

over edges, splitting high-degree vertices and exposing

greater parallelism in natural graphs. We then introduced

vertex-cuts and a collection of fast greedy heuristics to

substantially reduce the storage and communication costs

of large distributed power-law graphs. We theoretically

related the power-law constant to the communication

and storage requirements of the PowerGraph system and

empirically evaluate our analysis by comparing against

GraphLab and Pregel. Finally, we evaluate the Power-

Graph system on several large-scale problems using a 64

node EC2 cluster and demonstrating the scalability and

efficiency and in many cases order of magnitude gains

over published results.

We are actively using PowerGraph to explore new large-

scale machine learning algorithms. We are beginning

to study how vertex replication and data-dependencies

can be used to support fault-tolerance without check-

pointing. In addition, we are exploring ways to support

time-evolving graph structures. Finally, we believe that

many of the core ideas in the PowerGraph abstraction can

have a significant impact in the design and implementa-

tion of graph-parallel systems beyond PowerGraph.

13



30 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Acknowledgments

This work is supported by the ONR Young Investiga-

tor Program grant N00014-08-1-0752, the ARO under

MURI W911NF0810242, the ONR PECASE-N00014-

10-1-0672, the National Science Foundation grant IIS-

0803333 as well as the Intel Science and Technology Cen-

ter for Cloud Computing. Joseph Gonzalez is supported

by the Graduate Research Fellowship from the NSF. We

would like to thank Alex Smola, Aapo Kyrola, Lidong

Zhou, and the reviewers for their insightful guidance.

References

[1] ABOU-RJEILI, A., AND KARYPIS, G. Multilevel algorithms for

partitioning power-law graphs. In IPDPS (2006).

[2] AHMED, A., ALY, M., GONZALEZ, J., NARAYANAMURTHY, S.,

AND SMOLA, A. J. Scalable inference in latent variable models.

In WSDM (2012), pp. 123–132.

[3] ALBERT, R., JEONG, H., AND BARABÁSI, A. L. Error and

attack tolerance of complex networks. In Nature (2000), vol. 406,

pp. 378—482.

[4] BERTSEKAS, D. P., AND TSITSIKLIS, J. N. Parallel and dis-

tributed computation: numerical methods. Prentice-Hall, 1989.

[5] BOLDI, P., ROSA, M., SANTINI, M., AND VIGNA, S. Layered

label propagation: A multiresolution coordinate-free ordering for

compressing social networks. In WWW (2011), pp. 587–596.

[6] BOLDI, P., AND VIGNA, S. The WebGraph framework I: Com-

pression techniques. In WWW (2004), pp. 595–601.

[7] BORDINO, I., BOLDI, P., DONATO, D., SANTINI, M., AND

VIGNA, S. Temporal evolution of the uk web. In ICDM Workshops

(2008), pp. 909–918.

[8] BULUÇ, A., AND GILBERT, J. R. The combinatorial blas: design,

implementation, and applications. IJHPCA 25, 4 (2011), 496–509.

[9] CATALYUREK, U., AND AYKANAT, C. Decomposing irregu-

larly sparse matrices for parallel matrix-vector multiplication. In

IRREGULAR (1996), pp. 75–86.

[10] CHANDY, K. M., AND MISRA, J. The drinking philosophers

problem. ACM Trans. Program. Lang. Syst. 6, 4 (Oct. 1984),

632–646.

[11] CHENG, R., HONG, J., KYROLA, A., MIAO, Y., WENG, X.,

WU, M., YANG, F., ZHOU, L., ZHAO, F., AND CHEN, E. Kineo-

graph: taking the pulse of a fast-changing and connected world.

In EuroSys (2012), pp. 85–98.

[12] CHIERICHETTI, F., KUMAR, R., LATTANZI, S., MITZEN-

MACHER, M., PANCONESI, A., AND RAGHAVAN, P. On com-

pressing social networks. In KDD (2009), pp. 219–228.

[13] DEVINE, K. D., BOMAN, E. G., HEAPHY, R. T., BISSELING,

R. H., AND CATALYUREK, U. V. Parallel hypergraph partitioning

for scientific computing. In IPDPS (2006).

[14] DIJKSTRA, E. W. Hierarchical ordering of sequential processes.

Acta Informatica 1 (1971), 115–138.

[15] EKANAYAKE, J., LI, H., ZHANG, B., GUNARATHNE, T., BAE,

S., QIU, J., AND FOX, G. Twister: A runtime for iterative MapRe-

duce. In HPDC (2010), ACM.

[16] FALOUTSOS, M., FALOUTSOS, P., AND FALOUTSOS, C. On

power-law relationships of the internet topology. ACM SIGCOMM

Computer Communication Review 29, 4 (1999), 251–262.

[17] GONZALEZ, J., LOW, Y., GRETTON, A., AND GUESTRIN, C.

Parallel gibbs sampling: From colored fields to thin junction trees.

In AISTATS (2011), vol. 15, pp. 324–332.

[18] GONZALEZ, J., LOW, Y., AND GUESTRIN, C. Residual splash

for optimally parallelizing belief propagation. In AISTATS (2009),

vol. 5, pp. 177–184.

[19] GONZALEZ, J., LOW, Y., GUESTRIN, C., AND O’HALLARON,

D. Distributed parallel inference on large factor graphs. In UAI

(2009).

[20] GREGOR, D., AND LUMSDAINE, A. The parallel BGL: A generic

library for distributed graph computations. POOSC (2005).

[21] HOFMANN, T. Probabilistic latent semantic indexing. In SIGIR

(1999), pp. 50–57.

[22] KANG, U., TSOURAKAKIS, C. E., AND FALOUTSOS, C. Pe-

gasus: A peta-scale graph mining system implementation and

observations. In ICDM (2009), pp. 229 –238.

[23] KARYPIS, G., AND KUMAR, V. Multilevel k-way partitioning

scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 1

(1998), 96–129.

[24] KWAK, H., LEE, C., PARK, H., AND MOON, S. What is twitter,

a social network or a news media? In WWW (2010), pp. 591–600.

[25] KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi:

Large-scale graph computation on just a PC. In OSDI (2012).

[26] LANG, K. Finding good nearly balanced cuts in power law graphs.

Tech. Rep. YRL-2004-036, Yahoo! Research Labs, Nov. 2004.

[27] LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. Graph

evolution: Densification and shrinking diameters. ACM Trans.

Knowl. Discov. Data 1, 1 (mar 2007).

[28] LESKOVEC, J., LANG, K. J., DASGUPTA, A., , AND MAHONEY,

M. W. Community structure in large networks: Natural cluster

sizes and the absence of large well-defined clusters. Internet

Mathematics 6, 1 (2008), 29–123.

[29] LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D.,

GUESTRIN, C., AND HELLERSTEIN, J. M. Distributed GraphLab:

A Framework for Machine Learning and Data Mining in the Cloud.

PVLDB (2012).

[30] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J.,

HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel: a system

for large-scale graph processing. In SIGMOD (2010).

[31] PELLEGRINI, F., AND ROMAN, J. Scotch: A software package

for static mapping by dual recursive bipartitioning of process and

architecture graphs. In HPCN Europe (1996), pp. 493–498.

[32] POWER, R., AND LI, J. Piccolo: building fast, distributed pro-

grams with partitioned tables. In OSDI (2010).

[33] PUJOL, J. M., ERRAMILLI, V., SIGANOS, G., YANG, X.,

LAOUTARIS, N., CHHABRA, P., AND RODRIGUEZ, P. The little

engine(s) that could: scaling online social networks. In SIGCOMM

(2010), pp. 375–386.

[34] SMOLA, A. J., AND NARAYANAMURTHY, S. An Architecture

for Parallel Topic Models. PVLDB 3, 1 (2010), 703–710.

[35] STANTON, I., AND KLIOT, G. Streaming graph partitioning

for large distributed graphs. Tech. Rep. MSR-TR-2011-121, Mi-

crosoft Research, November 2011.

[36] SURI, S., AND VASSILVITSKII, S. Counting triangles and the

curse of the last reducer. In WWW (2011), pp. 607–614.

[37] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER,

S., AND STOICA, I. Spark: Cluster computing with working sets.

In HotCloud (2010).

[38] ZHOU, Y., WILKINSON, D., SCHREIBER, R., AND PAN, R.

Large-scale parallel collaborative filtering for the netflix prize.

In AAIM (2008), pp. 337–348.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 31

GraphChi: Large-Scale Graph Computation on Just a PC

Aapo Kyrola
Carnegie Mellon University

akyrola@cs.cmu.edu

Guy Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Carlos Guestrin
University of Washington

guestrin@cs.washington.edu

Abstract
Current systems for graph computation require a dis-
tributed computing cluster to handle very large real-world
problems, such as analysis on social networks or the web
graph. While distributed computational resources have be-
come more accessible, developing distributed graph algo-
rithms still remains challenging, especially to non-experts.

In this work, we present GraphChi, a disk-based system
for computing efficiently on graphs with billions of edges.
By using a well-known method to break large graphs into
small parts, and a novel parallel sliding windows method,
GraphChi is able to execute several advanced data mining,
graph mining, and machine learning algorithms on very
large graphs, using just a single consumer-level computer.
We further extend GraphChi to support graphs that evolve
over time, and demonstrate that, on a single computer,
GraphChi can process over one hundred thousand graph
updates per second, while simultaneously performing com-
putation. We show, through experiments and theoretical
analysis, that GraphChi performs well on both SSDs and
rotational hard drives.

By repeating experiments reported for existing dis-
tributed systems, we show that, with only fraction of the
resources, GraphChi can solve the same problems in very
reasonable time. Our work makes large-scale graph com-
putation available to anyone with a modern PC.

1 Introduction
Designing scalable systems for analyzing, processing and
mining huge real-world graphs has become one of the most
timely problems facing systems researchers. For exam-
ple, social networks, Web graphs, and protein interaction
graphs are particularly challenging to handle, because they
cannot be readily decomposed into small parts that could
be processed in parallel. This lack of data-parallelism ren-
ders MapReduce [19] inefficient for computing on such
graphs, as has been argued by many researchers (for ex-
ample, [13, 30, 31]). Consequently, in recent years several
graph-based abstractions have been proposed, most notably

Pregel [31] and GraphLab [30]. Both use a vertex-centric
computation model, in which the user defines a program
that is executed locally for each vertex in parallel. In addi-
tion, high-performance systems that are based on key-value
tables, such as Piccolo [36] and Spark [45], can efficiently
represent many graph-parallel algorithms.

Current graph systems are able to scale to graphs of
billions of edges by distributing the computation. However,
while distributed computional resources are now available
easily through the Cloud, efficient large-scale computation
on graphs still remains a challenge. To use existing graph
frameworks, one is faced with the challenge of partition-
ing the graph across cluster nodes. Finding efficient graph
cuts that minimize communication between nodes, and are
also balanced, is a hard problem [27]. More generally, dis-
tributed systems and their users must deal with managing
a cluster, fault tolerance, and often unpredictable perfor-
mance. From the perspective of programmers, debugging
and optimizing distributed algorithms is hard.

Our frustration with distributed computing provoked us
to ask a question: Would it be possible to do advanced
graph computation on just a personal computer? Handling
graphs with billions of edges in memory would require
tens or hundreds of gigabytes of DRAM, currently only
available to high-end servers, with steep prices [4]. This
leaves us with only one option: to use persistent storage as
memory extension. Unfortunately, processing large graphs
efficiently from disk is a hard problem, and generic solu-
tions, such as systems that extend main memory by using
SSDs, do not perform well.

To address this problem, we propose a novel method,
Parallel Sliding Windows (PSW), for processing very large
graphs from disk. PSW requires only a very small number
of non-sequential accesses to the disk, and thus performs
well on both SSDs and traditional hard drives. Surprisingly,
unlike most distributed frameworks, PSW naturally imple-
ments the asynchronous model of computation, which
has been shown to be more efficient than synchronous
computation for many purposes [7, 29].

We further extend our method to graphs that are continu-



32 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ously evolving. This setting was recently studied by Cheng
et. al., who proposed Kineograph [15], a distributed sys-
tem for processing a continuous in-flow of graph updates,
while simultaneously running advanced graph mining al-
gorithms. We implement the same functionality, but using
only a single computer, by applying techniques developed
by the I/O-efficient algorithm researchers [42].

We further present a complete system, GraphChi, which
we used to solve a wide variety of computational problems
on extremely large graphs, efficiently on a single consumer-
grade computer. In the evolving graph setting, GraphChi
is able to ingest over a hundred thousand new edges per
second, while simultaneously executing computation.

The outline of our paper is as follows. We introduce
the computational model and challenges for the external
memory setting in Section 2. The Parallel Sliding Windows
method is described in Section 3, and GraphChi system
design and implementation is outlined in Section 4. We
evaluate GraphChi on very large problems (graphs with
billions of edges), using a set of algorithms from graph min-
ing, machine learning, collaborative filtering, and sparse
linear algebra (Sections 6 and 7).

Our contributions:

• The Parallel Sliding Windows, a method for process-
ing large graphs from disk (both SSD and hard drive),
with theoretical guarantees.

• Extension to evolving graphs, with the ability to in-
gest efficiently a stream of graph changes, while si-
multaneously executing computation.

• System design, and evaluation of a C++ implementa-
tion of GraphChi. We demonstrate GraphChi’s ability
to solve such large problems, which were previously
only possible to solve by cluster computing. Complete
source-code for the system and applications is re-
leased in open source: http://graphchi.org.

2 Disk-based Graph Computation
In this section, we start by describing the computational
setting of our work, and continue by arguing why straight-
forward solutions are not sufficient.

2.1 Computational Model
We now briefly introduce the vertex-centric model of com-
putation, explored by GraphLab [30] and Pregel [31]. A
problem is encoded as a directed (sparse) graph, G =
(V,E). We associate a value with each vertex v ∈ V , and
each edge e = (source, destination) ∈ E. We assume
that the vertices are labeled from 1 to |V |. Given a directed

Algorithm 1: Typical vertex update-function
Update(vertex) begin1

x[] ← read values of in- and out-edges of vertex ;2

vertex.value ← f(x[]) ;3

foreach edge of vertex do4

edge.value ← g(vertex.value, edge.value);5

end6

end7

edge e = (u, v), we refer to e as vertex v’s in-edge, and
as vertex u’s out-edge.

To perform computation on the graph, programmer spec-
ifies an update-function(v), which can access and modify
the value of a vertex and its incident edges. The update-
function is executed for each of the vertices, iteratively,
until a termination condition is satisfied.

Algorithm 1 shows the high-level structure of a typical
update-function. It first computes some value f(x[]) based
on the values of the edges, and assigns f(x[]) (perhaps after
a transformation) as the new value of the vertex. Finally,
the edges will be assigned new values based on the new
vertex value and the previous value of the edge.

As shown by many authors [15, 29, 30, 31], the vertex-
centric model can express a wide range of problems, for
example, from the domains of graph mining, data mining,
machine learning, and sparse linear algebra.

Most existing frameworks execute update functions in
lock-step, and implement the Bulk-Synchronous Parallel
(BSP) model [41], which defines that update-functions
can only observe values from the previous iteration. BSP
is often preferred in distributed systems as it is simple
to implement, and allows maximum level of parallelism
during the computation. However, after each iteration, a
costly synchronization step is required and system needs to
store two versions of all values (value of previous iteration
and the new value).

Recently, many researchers have studied the asyn-
chronous model of computation. In this setting, an update-
function is able to to use the most recent values of the edges
and the vertices. In addition, the ordering (scheduling) of
updates can be dynamic. Asynchronous computation ac-
celerates convergence of many numerical algorithms; in
some cases BSP fails to converge at all [7, 30]. The Par-
allel Sliding Windows method, which is the topic of this
work, implements the asynchronous1 model and exposes
updated values immediately to subsequent computation.
Our implementation, GraphChi, also supports dynamic se-

1In the context of iterative solvers for linear systems, asynchronous
computation is called the Gauss-Seidel method.

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 33

lective scheduling, allowing update-functions and graph
modifications to enlist vertices to be updated2.

2.1.1 Computational Constraints

We state the memory requirements informally. We assume
a computer with limited memory (DRAM) capacity:

1. The graph structure, edge values, and vertex values
do not fit into memory. In practice, we assume the
amount of memory to be only a small fraction of the
memory required for storing the complete graph.

2. There is enough memory to contain the edges and
their associated values of any single vertex in the
graph.

To illustrate that it is often infeasible to even store just
vertex values in memory, consider the yahoo-web graph
with 1.7 billion vertices [44]. Associating a floating point
value for each vertex would require almost 7 GB of mem-
ory, too much for many current PCs (spring 2012). While
we expect the memory capacity of personal computers
to grow in the future, the datasets are expected to grow
quickly as well.

2.2 Standard Sparse Graph Formats
The system by Pearce et al. [34] uses compressed sparse
row (CSR) storage format to store the graph on disk, which
is equivalent to storing the graph as adjacency sets: the out-
edges of each vertex are stored consecutively in the file. In
addition, indices to the adjacency sets for each vertex are
stored. Thus, CSR allows for fast loading of out-edges of a
vertex from the disk.

However, in the vertex-centric model we also need to
access the in-edges of a vertex. This is very inefficient
under CSR: in-edges of a vertex can be arbitrarily located
in the adjacency file, and a full scan would be required
for retrieving in-edges for any given vertex. This problem
can be solved by representing the graph simultaneously in
the compressed sparse column (CSC) format. CSC format
is simply CSR for the transposed graph, and thus allows
fast sequential access to the in-edges for vertices. In this
solution, each edge is stored twice.

2.3 Random Access Problem
Unfortunately, simply storing the graph simultaneously in
CSR and CSC does not enable efficient modification of the
edge values. To see this, consider an edge e = (v, w), with

2BSP can be applied with GraphChi in the asynchronous model by
storing two versions of each value.

value x. Let now an update of vertex v change its value
to x′. Later, when vertex w is updated, it should observe
its in-edge e with value x′. Thus, either 1) when the set
of in-edges of w are read, the new value x′ must be read
from the the set of out-edges of v (stored under CSR); or
2) the modification x ⇒ x′ has to be written to the in-edge
list (under CSC) of vertex w. The first solution incurs a
random read, and latter a random write. If we assume,
realistically, that most of the edges are modified in a pass
over the graph, either O(|E|) of random reads or O(|E|)
random writes would be performed – a huge number on
large graphs.

In many algorithms, the value of a vertex only depends
on its neighbors’ values. In that case, if the computer has
enough memory to store all the vertex values, this problem
is not relevant, and the system by Pearce et al. [34] is
sufficient (on an SSD). On the other hand, if the vertex
values would be stored on disk, we would encounter the
same random access problem when accessing values of the
neighbors.

2.3.1 Review of Possible Solutions

Prior to presenting our solution to the problem, we discuss
some alternative strategies and why they are not sufficient.

SSD as a memory extension. SSD provides relatively
good random read and sequential write performance, and
many researchers have proposed using SSD as an extension
to the main memory. SSDAlloc [4] presents the current
state-of-the-art of these solutions. It enables transparent
usage of SSD as heap space, and uses innovative methods
to implement object-level caching to increase sequentiality
of writes. Unfortunately, for the huge graphs we study,
the number of very small objects (vertices or edges) is
extremely large, and in most cases, the amounts of writes
and reads made by a graph algorithm are roughly equal,
rendering caching inefficient. SSDAlloc is able to serve
some tens of thousands of random reads or writes per
second [4], which is insufficient, as GraphChi can access
millions of edges per second.

Exploiting locality. If related edges appear close to each
other on the disk, the amount of random disk access could
be reduced. Indeed, many real-world graphs have a sub-
stantial amount of inherent locality. For example, web-
pages are clustered under domains, and people have more
connections in social networks inside their geographical
region than outside it [27]. Unfortunately, the locality of
real-world graphs is limited, because the number of edges
crossing local clusters is also large [27]. As real-world
graphs have typically a very skewed vertex degree distri-
bution, it would make sense to cache high-degree vertices
(such as important websites) in memory, and process the

3



34 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

rest of the graph from disk.
In the early phase of our project, we explored this op-

tion, but found it difficult to find a good cache policy to
sufficiently reduce disk access. Ultimately, we rejected this
approach for two reasons. First, the performance would
be highly unpredictable, as it would depend on structural
properties of the input graph. Second, optimizing graphs
for locality is costly, and sometimes impossible, if a graph
is supplied without metadata required to efficiently cluster
it. General graph partitioners are not currently an option,
since even the state-of-the-art graph partitioner, METIS
[25], requires hundreds of gigabytes of memory to work
with graphs of billions of edges.

Graph compression. Compact representation of real-
world graphs is a well-studied problem, the best algorithms
can store web-graphs in only 4 bits/edge (see [8, 12, 17,
23]). Unfortunately, while the graph structure can often
be compressed and stored in memory, we also associate
data with each of the edges and vertices, which can take
significantly more space than the graph itself.

Bulk-Synchronous Processing. For a synchronous sys-
tem, the random access problem can be solved by writing
updated edges into a scratch file, which is then sorted (us-
ing disk-sort), and used to generate input graph for next
iteration. For algorithms that modify only the vertices, not
edges, such as Pagerank, a similar solution has been used
[14]. However, it cannot be efficiently used to perform
asynchronous computation.

3 Parallel Sliding Windows
This section describes the Parallel Sliding Windows (PSW)
method (Algorithm 2). PSW can process a graph with
mutable edge values efficiently from disk, with only a small
number of non-sequential disk accesses, while supporting
the asynchronous model of computation. PSW processes
graphs in three stages: it 1) loads a subgraph from disk; 2)
updates the vertices and edges; and 3) writes the updated
values to disk. These stages are explained in detail below,
with a concrete example. We then present an extension to
graphs that evolve over time, and analyze the I/O costs of
the PSW method.

3.1 Loading the Graph
Under the PSW method, the vertices V of graph G =
(V,E) are split into P disjoint intervals. For each interval,
we associate a shard, which stores all the edges that have
destination in the interval. Edges are stored in the order of
their source (Figure 1). Intervals are chosen to balance the
number of edges in each shard; the number of intervals, P ,
is chosen so that any one shard can be loaded completely

shard(1) 

interval(1) interval(2) interval(P) 

shard(2) shard(P) 

1 |V| v1 v2 

Figure 1: The vertices of graph (V,E) are divided into P
intervals. Each interval is associated with a shard, which
stores all edges that have destination vertex in that interval.

into memory. Similar data layout for sparse graphs was
used previously, for example, to implement I/O efficient
Pagerank and SpMV [5, 21].

PSW does graph computation in execution intervals,
by processing vertices one interval at a time. To create the
subgraph for the vertices in interval p, their edges (with
their associated values) must be loaded from disk. First,
Shard(p), which contains the in-edges for the vertices
in interval(p), is loaded fully into memory. We call thus
shard(p) the memory-shard. Second, because the edges
are ordered by their source, the out-edges for the vertices
are stored in consecutive chunks in the other shards, requir-
ing additional P − 1 block reads. Importantly, edges for
interval(p+1) are stored immediately after the edges for
interval(p). Intuitively, when PSW moves from an interval
to the next, it slides a window over each of the shards. We
call the other shards the sliding shards. Note, that if the
degree distribution of a graph is not uniform, the window
length is variable. In total, PSW requires only P sequential
disk reads to process each interval. A high-level illustration
of the process is given in Figure 2, and the pseudo-code of
the subgraph loading is provided in Algorithm 3.

3.2 Parallel Updates

After the subgraph for interval p has been fully loaded from
disk, PSW executes the user-defined update-function for
each vertex in parallel. As update-functions can modify the
edge values, to prevent adjacent vertices from accessing
edges concurrently (race conditions), we enforce external
determinism, which guarantees that each execution of PSW
produces exactly the same result. This guarantee is straight-
forward to implement: vertices that have edges with both
end-points in the same interval are flagged as critical, and
are updated in sequential order. Non-critical vertices do
not share edges with other vertices in the interval, and
can be updated safely in parallel. Note, that the update of
a critical vertex will observe changes in edges done by

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 35

����������� ����������� ����������� �����������

Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 

Figure 2: Visualization of the stages of one iteration of the Parallel Sliding Windows method. In this example, vertices
are divided into four intervals, each associated with a shard. The computation proceeds by constructing a subgraph of
vertices one interval a time. In-edges for the vertices are read from the memory-shard (in dark color) while out-edges
are read from each of the sliding shards. The current sliding window is pictured on top of each shard.

Algorithm 2: Parallel Sliding Windows (PSW)
foreach iteration do1

shards[] ← InitializeShards(P)2
for interval ← 1 to P do3

/* Load subgraph for interval, using Alg. 3. Note,4
that the edge values are stored as pointers to the
loaded file blocks. */
subgraph ← LoadSubgraph (interval)5
parallel foreach vertex ∈ subgraph.vertex do6

/* Execute user-defined update function,7
which can modify the values of the edges */8
UDF updateVertex (vertex)9

end10
/* Update memory-shard to disk */11
shards[interval].UpdateFully()12
/* Update sliding windows on disk */ for13
s ∈ 1, .., P , s �= interval do

shards[s].UpdateLastWindowToDisk()14
end15

end16

end17

preceding updates, adhering to the asynchronous model of
computation. This solution, of course, limits the amount of
effective parallelism. For some algorithms, consistency is
not critical (for example, see [29]), and we allow the user
to enable fully parallel updates.

3.3 Updating Graph to Disk

Finally, the updated edge values need to be written to disk
and be visible to the next execution interval. PSW can do
this efficiently: The edges are loaded from disk in large
blocks, which are cached in memory. When the subgraph
for an interval is created, the edges are referenced as point-
ers to the cached blocks; modifications to the edge values
directly modify the data blocks themselves. After finish-
ing the updates for the execution interval, PSW writes the
modified blocks back to disk, replacing the old data. The

Algorithm 3: Function LoadSubGraph(p)
Input : Interval index number p
Result: Subgraph of vertices in the interval p
/* Initialization */1
a ← interval[p].start2
b ← interval[p].end3
G ← InitializeSubgraph (a, b)4

/* Load edges in memory-shard. */5
edgesM ← shard[p].readFully()6
/* Evolving graphs: Add edges from buffers. */7
edgesM ← edgesM ∪ shard[p].edgebuffer[1..P ]8
foreach e ∈ edgesM do9

/* Note: edge values are stored as pointers. */10
G.vertex[edge.dest].addInEdge(e.source, &e.val)11
if e.source ∈ [a, b] then12

G.vertex[edge.source].addOutEdge(e.dest, &e.val)13
end14

end15

/* Load out-edges in sliding shards. */16
for s ∈ 1, .., P , s �= p do17

edgesS ← shard[s].readNextWindow(a, b)18
/* Evolving graphs: Add edges from shard’s buffer p */19
edgesS ← edgesS ∪ shard[s].edgebuffer[p]20
foreach e ∈ edgesS do21

G.vertex[e.src].addOutEdge(e.dest, &e.val)22
end23

end24

return G25

memory-shard is completely rewritten, while only the ac-
tive sliding window of each sliding shard is rewritten to
disk (see Algorithm 2). When PSW moves to the next inter-
val, it reads the new values from disk, thus implementing
the asynchronous model. The number of non-sequential
disk writes for a execution interval is P , exactly same as the
number of reads. Note, if an algorithm only updates edges
in one direction, PSW only writes the modified blocks to
disk.

5



36 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Shard 1 Shard 2 Shard 3
src dst value src dst value src dst value
1 1 2

2 0.3 3 0.4 5 0.6
3 2 3

2 0.2 3 0.3 5 0.9
4 3 6 1.2

1 1.4 4 0.8 4
5 5 5 0.3

1 0.5 3 0.2 5
2 0.6 6 6 1.1

6 4 1.9
2 0.8

(a) Execution interval (vertices 1-2)

1

2

3

4

5

6

(b) Execution interval
(vertices 1-2)

Shard 1  Shard 2 Shard 3
src dst value src dst value src dst value
1 1 2

2 0.273 3 0.364 5 0.545
3 2 3

2 0.22 3 0.273 5 0.9
4 3 6 1.2

1 1.54 4 0.8 4
5 5 5 0.3

1 0.55 3 0.2 5
2 0.66 6 6 1.1

6 4 1.9
2 0.88

(c) Execution interval (vertices 3-4)

1

2

3

4

5

6

(d) Execution interval
(vertices 3-4)

Figure 3: Illustration of the operation of the PSW method on a toy graph (See the text for description).

3.4 Example

We now describe a simple example, consisting of two
execution intervals, based on Figure 3. In this example,
we have a graph of six vertices, which have been divided
into three equal intervals: 1–2, 3–4, and 5–6. Figure 3a
shows the initial contents of the three shards. PSW begins
by executing interval 1, and loads the subgraph containing
of edges drawn in bold in Figure 3c. The first shard is
the memory-shard, and it is loaded fully. Memory-shard
contains all in-edges for vertices 1 and 2, and a subset of
the out-edges. Shards 2 and 3 are the sliding shards, and the
windows start from the beginning of the shards. Shard 2
contains two out-edges of vertices 1 and 2; shard 3 has only
one. Loaded blocks are shaded in Figure 3a. After loading
the graph into memory, PSW runs the update-function for
vertices 1 and 2. After executing the updates, the modified
blocks are written to disk; updated values can be seen in
Figure 3b.

PSW then moves to the second interval, with vertices 3
and 4. Figure 3d shows the corresponding edges in bold,
and Figure 3b shows the loaded blocks in shaded color.
Now shard 2 is the memory-shard. For shard 3, we can see
that the blocks for the second interval appear immediately
after the blocks loaded in the first. Thus, PSW just “slides”
a window forward in the shard.

3.5 Evolving Graphs

We now modify the PSW model to support changes in the
graph structure. Particularly, we allow adding edges to the
graph efficiently, by implementing a simplified version of
I/O efficient buffer trees [2].

Because a shard stores edges sorted by the source, we
can divide the shard into P logical parts: part j contains
edges with source in the interval j. We associate an in-
memory edge-buffer(p, j) for each logical part j, of shard
p. When an edge is added to the graph, it is first added to the
corresponding edge-buffer (Figure 4). When an interval of
vertices is loaded from disk, the edges in the edge-buffers
are added to the in-memory graph (Alg. 2).

interval(1) 

interval(2) 

interval(P) 

shard(j) 

edge-buffer(j, 1) 

edge-buffer(j, 2) 

edge-buffer(j, P) 

Figure 4: A shard can be split into P logical parts cor-
responding to the vertex intervals. Each part is associated
with an in-memory edge-buffer, which stores the inserted
edges that have not yet been merged into the shard.

After each iteration, if the number of edges stored in
edge-buffers exceeds a predefined limit, PSW will write the
buffered edges to disk. Each shard, that has more buffered
edges than a shard-specific limit, is recreated on disk by
merging the buffered edges with the edges stored on the
disk. The merge requires one sequential read and write.
However, if the merged shard becomes too large to fit in
memory, it is split into two shards with approximately
equal number of edges. Splitting a shard requires two se-
quential writes.

PSW can also support removal of edges: removed edges
are flagged and ignored, and permanently deleted when
the corresponding shard is rewritten to disk.

Finally, we need to consider consistency. It would be
complicated for programmers to write update-functions
that support vertices that can change during the computa-
tion. Therefore, if an addition or deletion of an edge would
affect a vertex in current execution interval, it is added to
the graph only after the execution interval has finished.

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 37

3.6 Analysis of the I/O Costs
We analyze the I/O efficiency of PSW in the I/O model by
Aggarwal and Vitter [1]. In this model, cost of an algorithm
is the number of block transfers from disk to main memory.
The complexity is parametrized by the size of block trans-
fer, B, stated in the unit of the edge object (which includes
the associated value). An upper bound on the number of
block transfers can be analyzed by considering the total
size of data accessed divided by B, and then adding to this
the number of non-sequential seeks. The total data size is
|E| edge objects, as every edge is stored once. To simplify
the analysis, we assume that |E| is a multiple of B, and
shards have equal sizes |E|

P . We will now see that QB(E),
the I/O cost of PSW, is almost linear in |E|/B, which is
optimal because all edges need to be accessed:

Each edge is accessed twice (once in each direction)
during one full pass over the graph. If both endpoints of
an edge belong to the same vertex interval, the edge is
read only once from disk; otherwise, it is read twice. If
the update-function modifies edges in both directions, the
number of writes is exactly the same; if in only one direc-
tion, the number of writes is half as many. In addition, in
the worst (common) case, PSW requires P non-sequential
disk seeks to load the edges from the P − 1 sliding shards
for an execution interval. Thus, the total number of non-
sequential seeks for a full iteration has a cost of Θ(P 2)
(the number is not exact, because the size of the sliding
windows are generally not multiples of B).

Assuming that there is sufficient memory to store one
memory-shard and out-edges for an execution interval a
time, we can now bound the I/O complexity of PSW:

2|E|
B

≤ QB(E) ≤ 4|E|
B

+ Θ(P 2)

As the number of non-sequential disk seeks is only
Θ(P 2), PSW performs well also on rotational hard drives.

3.7 Remarks
The PSW method imposes some limitations on the com-
putation. Particularly, PSW cannot efficiently support dy-
namic ordering, such as priority ordering, of computa-
tion [29, 34]. Similarly, graph traversals or vertex queries
are not efficient in the model, because loading the neigh-
borhood of a single vertex requires scanning a complete
memory-shard.

Often the user has a plenty of memory, but not quite
enough to store the whole graph in RAM. Basic PSW
would not utilize all the available memory efficiently, be-
cause the amount of bytes transferred from disk is inde-
pendent of the available RAM. To improve performance,
system can pin a set of shards to memory, while the rest
are processed from disk.

4 System Design & Implementation
This section describes selected details of our implementa-
tion of the Parallel Sliding Windows method, GraphChi.
The C++ implementation has circa 8,000 lines of code.

4.1 Shard Data Format
Designing an efficient format for storing the shards is
paramount for good performance. We designed a com-
pact format, which is fast to generate and read, and ex-
ploits the sparsity of the graph. In addition, we separate the
graph structure from the associated edge values on disk.
This is important, because only the edge data is mutated
during computation, and the graph structure can be often
efficiently compressed. Our data format is as follows:

• The adjacency shard stores, implicitly, an edge array
for each vertex, in order. Edge array of a vertex starts
with a variable-sized length word, followed by the
list of neighbors. If a vertex has no edges in this
shard, zero length byte is followed by the number of
subsequent vertices with no edges in this shard.

• The edge data shard is a flat array of edge values, in
user-defined type. Values must be of constant size3.

The current compact format for storing adjacency files
is quite simple, and we plan to evaluate more efficient
formats in the future. It is possible to further compress the
adjacency shards using generic compression software. We
did not implement this, because of added complexity and
only modest expected improvement in performance.

4.1.1 Preprocessing

GraphChi includes a program, Sharder, for creating shards
from standard graph file formats. Preprocessing is I/O
efficient, and can be done with limited memory (Table 1).

1. Sharder counts the in-degree (number of in-edges)
for each of the vertices, requiring one pass over the
input file. The degrees for consecutive vertices can
be combined to save memory. To finish, Sharder com-
putes the prefix sum [10] over the degree array, and
divides vertices into P intervals with approximately
the same number of in-edges.

2. On the second pass, Sharder writes each edge to a
temporary scratch file of the owning shard.

3. Sharder processes each scratch file in turn: edges are
sorted and the shard is written in compact format.

3The model can support variable length values by splitting the shards
into smaller blocks which can efficiently be shrunk or expanded. For
simplicity, we assume constant size edge values in this paper.

7



38 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

4. Finally, Sharder computes a binary degree file con-
taining in- and out-degree for each vertex, which is
needed for the efficient operation of GraphChi, as
described below.

The number of shards P is chosen so that the biggest
shard is at most one fourth of the available memory, leaving
enough memory for storing the necessary pointers of the
subgraph, file buffers, and other auxiliary data structures.
The total I/O cost of the preprocessing is 5|E|

B + |V |
B .

4.2 Main Execution

We now describe how GraphChi implements the PSW
method for loading, updating, and writing the graph. Figure
5 shows the processing phases as a flow chart.

4.2.1 Efficient Subgraph Construction

The first prototypes of GraphChi used STL vectors to store
the list of edges for each vertex. Performance profiling
showed that a significant amount of time was used in resiz-
ing and reallocating the edge arrays. Therefore, to elimi-
nate dynamic allocation, GraphChi calculates the memory
needs exactly prior to an execution interval. This optimiza-
tion is implemented by using the degreefile, which was
created at the end of preprocessing and stores the in- and
out-degrees for each vertex as a flat array. Prior to initial-
izing a subgraph, GraphChi computes a prefix-sum of the
degrees, giving the exact indices for edge arrays for every
vertex, and the exact array size that needs to be allocated.
Compared to using dynamic arrays, our solution improved
running time by approximately 30%.

Vertex values: In our computational model, each vertex
has an associated value. We again exploit the fact that the
system considers vertices in sequential order. GraphChi
stores vertex values in a single file as flat array of user-
defined type. The system writes and reads the vertex values
once per iteration, with I/O cost of 2�|V |/B�.

Multithreading: GraphChi has been designed to overlap
disk operations and in-memory computation as much as
possible. Loading the graph from disk is done by concur-
rent threads, and writes are performed in the background.

4.2.2 Sub-intervals

The P intervals are chosen as to create shards of roughly
same size. However, it is not guaranteed that the number
of edges in each subgraph is balanced. Real-world graphs
typically have very skewed in-degree distribution; a vertex
interval may have a large number of vertices, with very
low average in-degree, but high out-degree, and thus a full
subgraph of a interval may be too large to load in memory.

Load degree data for 
vertices in interval [a,b] 

Preallocate edge 
arrays and vertex 

objects. 

... in-edges and internal out-
edges from memory shard 

... out-edges from P-1 sliding 
shards 

... vertex values 

LOAD FROM DISK... 

Execute vertex 
update-functions 

... memory shard edge data. 

... edge values of the P-1 
sliding  windows. 

... updated vertex values. 

WRITE TO DISK... 

Next 
interval 

Figure 5: Main execution flow. Sequence of operations
for processing one execution interval with GraphChi.

We solve this problem by dividing execution intervals
into sub-intervals. As the system already loads the degree
of every vertex, we can use this information to compute
the exact memory requirement for a range of vertices, and
divide the original intervals to sub-intervals of appropriate
size. Sub-intervals are preferred to simply re-defining the
intervals, because it allows same shard files to be used with
different amounts of memory. Because sub-intervals share
the same memory-shard, I/O costs are not affected.

4.2.3 Evolving Graphs

We outlined the implementation in previous section. The
same execution engine is used for dynamic and static
graphs, but we need to be careful in maintaining auxil-
iary data structures. First, GraphChi needs to keep track of
the changing vertex degrees and modify the degreefile ac-
cordingly. Second, the degreefile and vertex data file need
to grow when the number of vertices increases, and the ver-
tex intervals must be maintained to match the splitting and
expansion of shards. Adding support for evolving graphs
was surprisingly simple, and required less than 1000 lines
of code (15% of the total).

4.3 Selective Scheduling
Often computation converges faster on same parts of a
graph than in others, and it is desirable to focus computa-
tion only where it is needed. GraphChi supports selective
scheduling: an update can flag a neighboring vertex to
be updated, typically if edge value changes significantly.
In the evolving graph setting, selective scheduling can be
used to implement incremental computation: when an edge
is created, its source or destination vertex is added to the
schedule [15].

GraphChi implements selective scheduling by represent-
ing the current schedule as a bit-array (we assume enough
memory to store |V |/8 bytes for the schedule). A simple

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 39

optimization to the PSW method can now be used: On
the first iteration, it creates a sparse index for each shard,
which contains the file indices of each sub-interval. Using
the index, GraphChi can skip unscheduled vertices.

5 Programming Model
Programs written for GraphChi are similar to those written
for Pregel [31] or GraphLab [29], with the following main
differences. Pregel is based on the messaging model, while
GraphChi programs directly modify the values in the edges
of the graph; GraphLab allows programs to directly read
and modify the values of neighbor vertices, which is not
allowed by GraphChi, unless there is enough RAM to
store all vertex values in memory. We now discuss the
programming model in detail, with a running example.

Running Example: As a running example, we use a
simple GraphChi implementation of the PageRank [32]
algorithm. The vertex update-function is simple: at each up-
date, compute a weighted sum of the ranks of in-neighbors
(vertices with an edge directed to the vertex). Incomplete
pseudo-code is shown in Algorithm 4 (definitions of the
two internal functions are model-specific, and discussed
below).The program computes by executing the update
function for each vertex in turn for a predefined number of
iterations.4

Algorithm 4: Pseudo-code of the vertex update-
function for weighted PageRank.

typedef: VertexType float1
Update(vertex) begin2

var sum ← 03
for e in vertex.inEdges() do4

sum += e.weight * neighborRank(e)5
end6
vertex.setValue(0.15 + 0.85 * sum)7
broadcast(vertex)8

end9

Standard Programming Model: In the standard set-
ting for GraphChi, we assume that there is not enough
RAM to store the values of vertices. In the case of PageR-
ank, the vertex values are floating point numbers corre-
sponding to the rank (Line 1 of Algorithm 4).

The update-function needs to read the values of its neigh-
bors, so the only solution is to broadcast vertex values via
the edges. That is, after an update, the new rank of a vertex
is written to the out-edges of the vertex. When neighboring

4Note that this implementation is not optimal, we discuss a more
efficient version in the next section

vertex is updated, it can access the vertex rank by reading
the adjacent edge’s value, see Algorithm 5.

Algorithm 5: Type definitions, and implementations
of neighborRank() and broadcast() in the standard
model.

typedef: EdgeType { float weight, neighbor rank; }1
neighborRank(edge) begin2

return edge.weight * edge.neighbor rank3
end4
broadcast(vertex) begin5

for e in vertex.outEdges() do6
e.neighbor rank = vertex.getValue()7

end8

end9

If the size of the vertex value type is small, this model
is competitive even if plenty of RAM is available. There-
fore, for better portability, it is encouraged to use this form.
However, for some applications, such as matrix factoriza-
tion (see Section 6), the vertex value can be fairly large
(tens of bytes), and replicating it to all edges is not efficient.
To remedy this situation, GraphChi supports an alternative
programming model, discussed next.

Alternative Model: In-memory Vertices: It is com-
mon that the number of vertices in a problem is relatively
small compared to the number of edges, and there is suf-
ficient memory to store the array of vertex values. In this
case, an update-function can read neighbor values directly,
and there is no need to broadcast vertex values to incident
edges (see Algorithm 6).

Algorithm 6: Datatypes and implementations of
neighborRank() and broadcast() in the alternative
model.

typedef: EdgeType { float weight; }1
float[] in mem vert2
neighborRank(edge) begin3

return edge.weight * in mem vert[edge.vertex id]4
end5
broadcast(vertex) /* No-op */6

We have found this model particularly useful in several
collaborative filtering applications, where the number of
vertices is typically several orders of magnitude smaller
than the number of edges, and each vertex must store a
vector of floating point values. The ability to access directly
vertex values requires us to consider consistency issues.
Fortunately, as GraphChi sequentializes updates of vertices
that share an edge, read-write races are avoided assuming
that the update-function does not modify other vertices.

9



40 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

6 Applications
We implemented and evaluated a wide range of applica-
tions, in order to demonstrate that GraphChi can be used
for problems in many domains. Despite the restrictive ex-
ternal memory setting, GraphChi retains the expressivity of
other graph-based frameworks. The source code for most
of the example applications is included in the open-source
version of GraphChi.

SpMV kernels, Pagerank: Iterative sparse-matrix
dense-vector multiply (SpMV) programs are easy to repre-
sent in the vertex-centric model. Generalized SpMV algo-
rithms iteratively compute xt+1 = Axt =

⊕n
i=1 Ai ⊗ xt,

where xt represents a vector of size n and A is a m×n ma-
trix with row-vectors Ai. Operators ⊕ and ⊗ are algorithm-
specific: standard addition and multiplication operators
yields standard matrix-vector multiply. Represented as a
graph, each edge (u, v) represents non-empty matrix cell
A(u, v) and vertex v the vector cell x(v).

We wrote a special programming interface for SpMV
applications, enabling important optimizations: Instead of
writing an update-function, the programmer implements
the ⊕ and ⊗ operators. When executing the program,
GraphChi can bypass the construction of the subgraph, and
directly apply the operators when edges are loaded, with
improved performance of approx. 25%. We implemented
Pagerank [32] as iterated matrix-vector multiply.

Graph Mining: We implemented three algorithms for
analyzing graph structure: Connected Components, Com-
munity Detection, and Triangle Counting. The first two
algorithms are based on label propagation [47]. On first
iteration, each vertex writes its id (“label”) to its edges. On
subsequent iterations, vertex chooses a new label based on
the labels of its neighbors. For Connected Components,
vertex chooses the minimum label; for Community Detec-
tion, the most frequent label is chosen [28]. A neighbor
is scheduled only if a label in a connecting edge changes,
which we implement by using selective scheduling. Fi-
nally, sets of vertices with equal labels are interpreted as
connected components or communities, respectively.

The goal of Triangle Counting is to count the number
of edge triangles incident to each vertex. This problem is
used in social network analysis for analyzing the graph
connectivity properties [43]. Triangle Counting requires
computing intersections of the adjacency lists of neighbor-
ing vertices. To do this efficiently, we first created a graph
with vertices sorted by their degree (using a modified pre-
processing step). We then run GraphChi for P iterations:
on each iteration, adjacency list of a selected interval of
vertices is stored in memory, and the adjacency lists of

vertices with smaller degrees are compared to the selected
vertices by the update function.

Collaborative Filtering: Collaborative filtering is used,
for example, to recommend products based on purchases of
other users with similar interests. Many powerful methods
for collaborative filtering are based on low-rank matrix
factorization. The basic idea is to approximate a large
sparse matrix R by the product of two smaller matrices:
R ≈ U × V ′.

We implemented the Alternating Least Squares (ALS)
algorithm [46], by adapting a GraphLab implementation
[30]. We used ALS to solve the Netflix movie rating pre-
diction problem [6]: in this model, the graph is bipartite,
with each user and movie represented by a vertex, con-
nected by an edge storing the rating (edges correspond
to the non-zeros of matrix R). The algorithm computes
a D-dimensional latent vector for each movie and user,
corresponding to the rows of U and V . A vertex update
solves a regularized least-squares system, with neighbors’
latent factors as input. If there is enough RAM, we can
store the latent factors in memory; otherwise, each vertex
replicates its factor to its edges. The latter requires more
disk space, and is slower, but is not limited by the amount
of RAM, and can be used for solving very large problems.

Probabilistic Graphical Models: Probabilistic Graph-
ical Models are used in Machine Learning for many struc-
tured problems. The problem is encoded as a graph, with
a vertex for each random variable. Edges connect related
variables and store a factor encoding the dependencies.
Exact inference on such models is intractable, so approxi-
mate methods are required in practice. Belief Propagation
(BP) [35], is a powerful method based on iterative message
passing between vertices. The goal here is to estimate the
probabilities of variables (“beliefs”).

For this work, we adapted a special BP algorithm pro-
posed by Kang et. al. [22], which we call WebGraph-BP.
The purpose of this application is to execute BP on a graph
of webpages to determine whether a page is “good” or
“bad”. For example, phishing sites are regarded as bad and
educational sites as good. The problem is bootstrapped by
declaring a seed set of good and bad websites. The model
defines binary probability distribution of adjacent web-
pages and after convergence, each webpage – represented
by a vertex – has an associated belief of its quality. Repre-
senting Webgraph-BP in GraphChi is straightforward, the
details of the algorithm can be found elsewhere [22].

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 41

7 Experimental Evaluation
We evaluated GraphChi using the applications described
in previous section and analyzed its performance on a
selection of large graphs (Table 1).

7.1 Test setup
Most of the experiments were performed on a Apple Mac
Mini computer (“Mac Mini”), with dual-core 2.5 GHz In-
tel i5 processor, 8 GB of main memory and a standard
256GB SSD drive (price $1,683 (Jan, 2012)). In addition,
the computer had a 750 GB, 7200 rpm hard drive. We ran
standard Mac OS X Lion, with factory settings. Filesystem
caching was disabled to make executions with small and
large input graphs comparable . For experiments with mul-
tiple hard drives we used an older 8-core server with four
AMD Opteron 8384 processors, 64GB of RAM, running
Linux (“AMD Server”).

Graph name Vertices Edges P Preproc.
live-journal [3] 4.8M 69M 3 0.5 min

netflix [6] 0.5M 99M 20 1 min
domain [44] 26M 0.37B 20 2 min

twitter-2010 [26] 42M 1.5B 20 10 min
uk-2007-05 [11] 106M 3.7B 40 31 min

uk-union [11] 133M 5.4B 50 33 min
yahoo-web [44] 1.4B 6.6B 50 37 min

Table 1: Experiment graphs. Preprocessing (conversion
to shards) was done on Mac Mini.

7.2 Comparison to Other Systems
We are not aware of any other system that would be able
to compute on such large graphs as GraphChi on a sin-
gle computer (with reasonable performance). To get flavor
of the performance of GraphChi, we compare it to sev-
eral existing distributed systems and the shared-memory
GraphLab [29], based mostly on results we found from
recent literature5. Our comparisons are listed in Table 2.

Although disk-based, GraphChi runs three iterations
of Pagerank on the domain graph in 132 seconds, only
roughly 50% slower than the shared-memory GraphLab
(on AMD Server)6. Similar relative performance was ob-
tained for ALS matrix factorization, if vertex values are
stored in-memory. Replicating the latent factors to edges
increases the running time by five-fold.

A recently published paper [38] reports that Spark [45],
running on a cluster of 50 machines (100 CPUs) [45] runs

5The results we found do not consider the time it takes to load the
graph from disk, or to transfer it over a network to a cluster.

6For GraphLab we used their reference implementation of Pagerank.
Code was downloaded April 16, 2012.

five iterations of Pagerank on the twitter-2010 in 486.6
seconds. GraphChi solves the same problem in less than
double of the time (790 seconds), with only 2 CPUs. Note
that Spark is implemented in Scala, while GraphChi is
native C++ (an early Scala/Java-version of GraphChi runs
2-3x slower than the C++ version). Stanford GPS [37] is
a new implementation of Pregel, with compelling perfor-
mance. On a cluster of 30 machines, GPS can run 100
iterations of Pagerank (using random partitioning) in 144
minutes, approximately four times faster than GraphChi
on the Mac Mini. Piccolo [36] is reported to execute one
iteration of synchronous Pagerank on a graph with 18.5B
edges in 70 secs, running on a 100-machine EC2 cluster.
The graph is not available, so we extrapolated our results
for the uk-union graph (which has same ratio of edges to
vertices), and estimated that GraphChi would solve the
same problem in 26 minutes. Note, that both Spark and
Piccolo execute Pagerank synchronously, while GraphChi
uses asynchronous computation, with relatively faster con-
vergence [7].

GraphChi is able to solve the WebGraph-BP on yahoo-
web in 25 mins, almost as fast as Pegasus [24], a Hadoop-
based 7 graph mining library, distributed over 100 nodes
(Yahoo M-45). GraphChi counts the triangles of the twitter-
2010 graph in less then 90 minutes, while a Hadoop-based
algorithm uses over 1,600 workers to solve the same prob-
lem in over 400 minutes [39]. These results highlight the
inefficiency of MapReduce for graph problems. Recently,
Chu et al. proposed an I/O efficient algorithm for trian-
gle counting [18]. Their method can list the triangles of a
graph with 106 mil. vertices and 1.9B edges in 40 minutes.
Unfortunately, we were unable to repeat their experiment
due to unavailability of the graph.

Finally, we include comparisons to PowerGraph [20],
which was published simultaneously with this work (Pow-
erGraph and GraphChi are projects of the same research
team). PowerGraph is a distributed version of GraphLab
[29], which employs a novel vertex-partitioning model and
a new Gather-Apply-Scatter (GAS) programming model
allowing it to compute on graphs with power-law degree
distribution extremely efficiently. On a cluster of 64 ma-
chines in the Amazon EC2 cloud, PowerGraph can execute
one iteration of PageRank on the twitter-2010 graph in less
than 5 seconds (GraphChi: 158 s), and solves the trian-
gle counting problem in 1.5 minutes (GraphChi: 60 mins).
Clearly, ignoring graph loading, PowerGraph can execute
graph computations on a large cluster many times faster
than GraphChi on a single machine. It is interesting to
consider also the relative performance: with 256 times the
cores (or 64 times the machines), PowerGraph can solve

7http://hadoop.apache.org/

11



42 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Application & Graph Iter. Comparative result GraphChi (Mac Mini) Ref
Pagerank & domain 3 GraphLab[30] on AMD server (8 CPUs) 87 s 132 s -
Pagerank & twitter-2010 5 Spark [45] with 50 nodes (100 CPUs): 486.6 s 790 s [38]
Pagerank & V=105M, E=3.7B 100 Stanford GPS, 30 EC2 nodes (60 virt. cores), 144 min approx. 581 min [37]
Pagerank & V=1.0B, E=18.5B 1 Piccolo, 100 EC2 instances (200 cores) 70 s approx. 26 min [36]
Webgraph-BP & yahoo-web 1 Pegasus (Hadoop) on 100 machines: 22 min 27 min [22]
ALS & netflix-mm, D=20 10 GraphLab on AMD server: 4.7 min 9.8 min (in-mem)

40 min (edge-repl.) [30]
Triangle-count & twitter-2010 - Hadoop, 1636 nodes: 423 min 60 min [39]
Pagerank & twitter-2010 1 PowerGraph, 64 x 8 cores: 3.6 s 158 s [20]
Triange-count & twitter- 2010 - PowerGraph, 64 x 8 cores: 1.5 min 60 min [20]

Table 2: Comparative performance. Table shows a selection of recent running time reports from the literature.

the problems 30 to 45 times faster than GraphChi.
While acknowledging the caveats of system compar-

isons, this evaluation demonstrates that GraphChi provides
sufficient performance for many practical purposes. Re-
markably, GraphChi can solve as large problems as re-
ported for any of the distributed systems we reviewed, but
with fraction of the resources.

7.3 Scalability and Performance
Here, we demonstrate that GraphChi can handle large
graphs with robust performance. Figure 7 shows the nor-
malized performance of the system on three applications,
with all of our test graphs (Table 1). The x-axis shows
the number of edges of the graph. Performance is mea-
sured as throughput, the number of edges processed in
second. Throughput is impacted by the internal structure
of a graph (see Section 3.6), which explains why GraphChi
performs slower on the largest graph, yahoo-web, than on
the next largest graphs, uk-union and uk-2007-5, which
have been optimized for locality. Consistent with the I/O
bounds derived in Section 3.6, the ratio between the fastest
and slowest result is less than two. For the three algorithms,
GraphChi can process 5-20 million edges/sec on the Mac
Mini.

The performance curve for SSD and hard drive have
similar shape, but GraphChi performs twice as fast on an
SSD. This suggests that the performance even on a hard
drive is adequate for many purposes, and can be improved
by using multiple hard drives, as shown in Figure 8a. In
this test, we modified the I/O-layer of GraphChi to stripe
files across disks. We installed three 2TB disks into the
AMD server and used stripe-size of 10 MB. Our solution
is similar to the RAID level 0 [33]. At best, we could get a
total of 2x speedup with three drives.

Figure 8b shows the effect of block size on performance
of GraphChi on SSDs and HDs. With very small blocks, the
observed that OS overhead becomes large, affecting also

��� ���� ���� ���� ���� ����� �����

��������������������

���������

���������

�����������������

���������

���������

����������������

���������

���������

�������� ����������������������������

Figure 6: Relative runtime when varying the number of
threads used used by GraphChi. Experiment was done on
a MacBook Pro (mid-2012) with four cores.

the SSD. GraphChi on the SSD achieves peak performance
with blocks of about 1 MB. With hard drives, even bigger
block sizes can improve performance; however, the block
size is limited by the available memory. Figure 8c shows
how the choice of P affects performance. As the number
of non-sequential seeks is quadratic in P , if the P is in the
order of dozens, there is little real effect on performance.

Application SSD In-mem Ratio
Connected components 45 s 18 s 2.5x
Community detection 110 s 46 s 2.4x
Matrix fact. (D=5, 5 iter) 114 s 65 s 1.8x
Matrix fact. (D=20, 5 iter.) 560 s 500 s 1.1x

Table 3: Relative performance of an in-memory version
of GraphChi compared to the default SSD-based imple-
mentation on a selected set of applications, on a Mac Mini.
Timings include the time to load the input from disk and
write the output into a file.

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 43

0 2 4 6 8
x 109

0.5

1

1.5

2

2.5

3x 107

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Pagerank

WebBP

Conn. comp.

(a) Performance: SSD

0 2 4 6 8
x 109

4

6

8

10

12

14 x 106

Number of edges

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn. comp.

WebBP

Pagerank

(b) Performance : Hard drive

0 

500 

1000 

1500 

2000 

2500 

1 thread 2 threads 4 threads 

Disk IO Graph construction Exec. updates 

(c) Runtime breakdown

Figure 7: (a,b) Computational throughput of GraphChi on the experiment graphs (x-axis is the number of edges)
on SSD and hard drive (higher is better), without selective scheduling, on three different algorithms. The trend-line
is a least-squares fit to the average throughput of the applications. GraphChi performance remains good as the input
graphs grow, demonstrating the scalability of the design. Notice different scales on the y-axis. . (c) Breakdown of the
processing phases for the Connected Components algorithm (3 iterations, uk-union graph; Mac Mini, SSD).

0 

500 

1000 

1500 

2000 

2500 

3000 

Pagerank Conn. components 

Secs 1  disk 2 disks 3 disks 

(a) Multiple hard drives

102 104 106 1080

5

10

15
x 106

Blocksize (bytes)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

SSD

Hard drive

(b) Disk block size

101 102 1030

0.5

1

1.5

2x 107

Number of shards (P)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Conn comp. (SSD)

Pagerank (SSD)

Pagerank (HD)

Conn comp. (HD)

(c) Number of shards

Figure 8: (a) Runtime of 3 iterations on the uk-union graph, when data is striped across 2 or 3 hard drives (AMD
server). (b) Impact of the block size used for disk I/O (x-axis is in log-scale). (c) The number of shards has little impact
on performance, unless P is very large.

Next, we studied the bottlenecks of GraphChi. Figure
7c shows the break-down of time used for I/O, graph con-
struction and actual updates with Mac Mini (SSD) when
running the Connected Components algorithm.We disabled
asynchronous I/O for the test, and actual combined running
time is slightly less than shown in the plot. The test was
repeated by using 1, 2 and 4 threads for shard processing
and I/O. Unfortunately, the performance is only slightly
improved by parallel operation. We profiled the execution,
and found out that GraphChi is able to nearly saturate the
SSD with only one CPU, and achieves combined read/write
bandwidth of 350 MB/s. GraphChi’s performance is lim-
ited by the I/O bandwidth. More benefit from parallelism
can be gained if the computation itself is demanding, as
shown in Figure 6. This experiment was made with a mid-
2012 model MacBook Pro with a four-core Intel i7 CPU.

We further analyzed the relative performance of the

disk-based GraphChi to a modified in-memory version of
GraphChi. Table 3 shows that on tasks that are computa-
tionally intensive, such as matrix factorization, the disk
overhead (SSD) is small, while on light tasks such as com-
puting connected components, the total running time can
be over two times longer. In this experiment, we compared
the total time to execute a task, from loading the graph
from disk to writing the results into a file. For the top two
experiments, the live-journal graph was used, and the last
two experiments used the netflix graph. The larger graphs
did not fit into RAM.

Evolving Graphs: We evaluated the performance of
GraphChi on a constantly growing graph. We inserted
edges from the twitter-2010 graph, with rates of 100K and
200K edges in second, while simultaneously running Pager-
ank. Edges were loaded from the hard drive, GraphChi
operated on the SSD. Figure 9a shows the throughput over

13



44 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

0 2 4 6
0

2

4

6

8

10 x 106

Time (hours)

Th
ro

ug
hp

ut
 (e

dg
es

/s
ec

)

Static graph

Ingest goal: 100K/s

Ingest goal: 200K/s

(a) Evolving Graph: Throughput

0 2 4 6
0

0.5

1

1.5

2

2.5x 105

Time (hours)

In
ge

st
 ra

te
 (e

dg
es

/s
ec

)

Target (200K/s)

Target (100K/s)

Actual

Actual

(b) Ingest rate

Figure 9: (a,b) Evolving graphs: Performance when
twitter-2010 graph is ingested with a cap of 100K or 200K
edges/sec, while simultaneously computing Pagerank.

time. The throughput varies as the result of periodic flush-
ing of edge-buffers to disk, and the bumps in throughput,
just after half-way of execution, are explained by a a series
of shard splits. Throughput in the evolving graph case is
roughly 50% compared to normal execution on the full
graph. GraphChi currently favors computation over ingest
rate, which explains the decreasing actual ingest rate over
time shown in Figure 9b. A rate of 100K edges/sec can
be sustained for a several hours, but with 200K edges/sec,
edge buffers fill up quickly, and GraphChi needs to flush
the updates to disk too frequently, and cannot sustain the in-
gestion rate. These experiments demonstrate that GraphChi
is able to handle a very quickly growing graph on just one
computer.

8 Related Work
Pearce et al. [34] proposed an asynchronous system for
graph traversals on external and semi-external memory.
Their solution stores the graph structure on disk using the
compressed sparse row format, and unlike GraphChi, does
not allow changes to the graph. Vertex values are stored in
memory, and computation is scheduled using concurrent
work queues. Their system is designed for graph traversals,
while GraphChi is designed for general large-scale graph
computation and has lower memory requirements.

A collection of I/O efficient fundamental graph algo-
rithms in the external memory setting was proposed by
Chiang et. al. [16]. Their method is based on simulating
parallel PRAM algorithms, and requires a series of disk
sorts, and would not be efficient for the types of algorithms
we consider. For example, the solution to connected com-
ponents has upper bound I/O cost of O(sort(|V |)), while
ours has O(|E|). Many real-world graphs are sparse, and
it is unclear which bound is better in practice. A similar ap-
proach was recently used by Blelloch et. al. for I/O efficient
Set Covering algorithms [9].

Optimal bounds for I/O efficient SpMV algorithms was
derived recently by Bender [5]. Similar methods were
earlier used by Haveliwala [21] and Chen et. al. [14].
GraphChi and the PSW method extend this work by al-
lowing asynchronous computation and mutation of the
underlying matrix (graph), thus representing a larger set of
applications. Toledo [40] contains a comprehensive survey
of (mostly historical) algorithms for out-of-core numerical
linear algebra, and discusses also methods for sparse ma-
trices. For most external memory algorithms in literature,
implementations are not available.

Finally, graph databases allow for storing and querying
graphs on disk. They do not, however, provide powerful
computational capabilities.

9 Conclusions
General frameworks such as MapReduce deliver disap-
pointing performance when applied to real-world graphs,
leading to the development of specialized frameworks for
computing on graphs. In this work, we proposed a new
method, Parallel Sliding Windows (PSW), for the external
memory setting, which exploits properties of sparse graphs
for efficient processing from disk. We showed by theoret-
ical analysis, that PSW requires only a small number of
sequential disk block transfers, allowing it to perform well
on both SSDs and traditional hard disks.

We then presented and evaluated our reference imple-
mentation, GraphChi, and demonstrated that on a consumer
PC, it can efficiently solve problems that were previously
only accessible to large-scale cluster computing. In addi-
tion, we showed that GraphChi relatively (per-node basis)
outperforms other existing systems, making it an attractive
choice for parallelizing multiple computations on a cluster.
Acknowledgments
We thank Joey Gonzalez, Yucheng Low, Jay Gu, Joseph Bradley,
Danny Bickson, Phillip B. Gibbons, Eriko Nurvitadhi, Julian
Shun, the anonymous reviewers and our shepherd Prof. Arpaci-
Dusseau for feedback and helpful discussions. Funded by ONR
PECASE N000141010672, Intel Science & Technology Center
on Embedded Computing, ARO MURI W911NF0810242.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 45

References
[1] A. Aggarwal, J. Vitter, et al. The input/output com-

plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A new technique for opti-
mal i/o-algorithms. Algorithms and Data Structures,
pages 334–345, 1995.

[3] L. Backstrom, D. Huttenlocher, J. Kleinberg, and
X. Lan. Group formation in large social networks:
membership, growth, and evolution. The 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’06. ACM, 2006.

[4] A. Badam and V. S. Pai. Ssdalloc: hybrid ssd/ram
memory management made easy. In Proc. of the 8th
USENIX conference on Networked systems design
and implementation, NSDI’11, pages 16–16, Boston,
MA, 2011. USENIX Association.

[5] M. Bender, G. Brodal, R. Fagerberg, R. Jacob, and
E. Vicari. Optimal sparse matrix dense vector mul-
tiplication in the i/o-model. Theory of Computing
Systems, 47(4):934–962, 2010.

[6] J. Bennett and S. Lanning. The netflix prize. In Proc.
of the KDD Cup Workshop 2007, pages 3–6, San Jose,
CA, Aug. 2007. ACM.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and dis-
tributed computation: numerical methods. Prentice-
Hall, Inc., 1989.

[8] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Com-
pact representations of separable graphs. In In Proc.
of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 679–688, 2003.

[9] G. Blelloch, H. Simhadri, and K. Tangwongsan. Par-
allel and i/o efficient set covering algorithms. In
Proc. of the 24th ACM symposium on Parallelism in
algorithms and architectures, pages 82–90, 2012.

[10] G. E. Blelloch. Prefix sums and their applications.
Synthesis of Parallel Algorithms, 1990.

[11] P. Boldi, M. Santini, and S. Vigna. A large time-
aware graph. SIGIR Forum, 42(2):33–38, 2008.

[12] P. Boldi and S. Vigna. The webgraph framework
i: compression techniques. In Proc. of the 13th in-
ternational conference on World Wide Web, pages
595–602. ACM, 2004.

[13] R. Chen, X. Weng, B. He, and M. Yang. Large graph
processing in the cloud. In Proceedings of the 2010
ACM SIGMOD International Conference on Man-
agement of data, SIGMOD ’10, pages 1123–1126,
Indianapolis, Indiana, USA, 2010. ACM.

[14] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the eleventh
international conference on Information and knowl-
edge management, pages 549–557, McLean, Virginia,
USA, 2002. ACM.

[15] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: taking the pulse of a fast-changing and
connected world. In Proc. of the 7th ACM european
conference on Computer Systems, EuroSys ’12, pages
85–98, Bern, Switzerland, 2012. ACM.

[16] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamas-
sia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. of the sixth annual ACM-
SIAM symposium on Discrete algorithms, SODA ’95,
pages 139–149, Philadelphia, PA, 1995. Society for
Industrial and Applied Mathematics.

[17] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzen-
macher, A. Panconesi, and P. Raghavan. On com-
pressing social networks. In Proc. of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 219–228, Paris,
France, April 2009. ACM.

[18] S. Chu and J. Cheng. Triangle listing in massive
networks and its applications. In In Proc. of the 17th
ACM SIGKDD international conf. on Knowledge dis-
covery and data mining, pages 672–680, 2011.

[19] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proc. of the 6th
USENIX conference on Operating systems design and
implementation, OSDI’04, pages 10–10, San Fran-
cisco, CA, 2004. USENIX.

[20] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In Proc. of the 10th
USENIX conference on Operating systems design and
implementation, OSDI’12, Hollywood, CA, 2012.

[21] T. Haveliwala. Efficient computation of pagerank.
Technical report, Stanford University, 1999.

[22] U. Kang, D. Chau, and C. Faloutsos. Inference of be-
liefs on billion-scale graphs. In The 2nd Workshop on
Large-scale Data Mining: Theory and Applications,
Washington, D.C., 2010.

15



46 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[23] U. Kang and C. Faloutsos. Beyond’caveman com-
munities’: Hubs and spokes for graph compression
and mining. In 11th International Conference on
Data Mining (ICDM’11), pages 300–309, Vancouver,
Canada, 2011.

[24] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pega-
sus: A peta-scale graph mining system implementa-
tion and observations. ICDM ’09. IEEE Computer
Society, 2009.

[25] G. Karypis and V. Kumar. Multilevel k-way partition-
ing scheme for irregular graphs. J. Parallel Distrib.
Comput., 48(1):96–129, 1998.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In Proc.
of the 19th international conference on World wide
web, pages 591–600. ACM, 2010.

[27] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney.
Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clus-
ters. Internet Mathematics, 6(1):29–123, 2009.

[28] X. Liu and T. Murata. Advanced modularity-
specialized label propagation algorithm for detecting
communities in networks. Physica A: Stat. Mechan-
ics and its Applications, 389(7):1493–1500, 2010.

[29] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A
new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island, CA, July 2010.

[30] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
GraphLab: A Framework for Machine Learning and
Data Mining in the Cloud. PVLDB, 2012.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. SIGMOD
10: Proc. of the 2010 international conference on
Management of data, Indianapolis, IN, 2010.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[33] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID).
In Proc. of the 1988 ACM SIGMOD international
conference on Management of data, SIGMOD ’88,
pages 109–116, Chicago, IL, 1988.

[34] R. Pearce, M. Gokhale, and N. Amato. Multithreaded
Asynchronous Graph Traversal for In-Memory and
Semi-External Memory. In SuperComputing, 2010.

[35] J. Pearl. Reverend Bayes on inference engines: A
distributed hierarchical approach. Cognitive Sys-
tems Laboratory, School of Engineering and Applied
Science, University of California, Los Angeles, 1982.

[36] R. Power and J. Li. Piccolo: building fast, distributed
programs with partitioned tables. In Proc. of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–14, 2010.

[37] S. Salihoglu and J. Widom. GPS: a graph processing
system. Technical report, Stanford University, 2012.

[38] I. Stanton and G. Kliot. Streaming graph partition-
ing for large distributed graphs. Technical report,
Microsoft Research, 2012.

[39] S. Suri and S. Vassilvitskii. Counting triangles and
the curse of the last reducer. In In Proc. of the 20th
international conference on World wide web, pages
607–614, Lyon, France, 2011. ACM.

[40] S. Toledo. A survey of out-of-core algorithms in nu-
merical linear algebra. External Memory Algorithms
and Visualization, 50:161–179, 1999.

[41] L. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[42] J. Vitter. External Memory Algorithms. ESA, 1998.

[43] D. Watts and S. Strogatz. Collective dynamics of
small-world networks. Nature, 393(6684):440–442,
1998.

[44] Yahoo WebScope. Yahoo! altavista web page hyper-
link connectivity graph, circa 2002, 2012. http:
//webscope.sandbox.yahoo.com/.

[45] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster comput-
ing with working sets. In HotCloud, 2010.

[46] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize. In In Proc. of the 4th international
conference on Algorithmic Aspects in Information
and Management, AAIM ’08, pages 337–348, Berlin,
Heidelberg, 2008. Springer-Verlag.

[47] X. Zhu and Z. Ghahramani. Learning from labeled
and unlabeled data with label propagation. Technical
report, Carnegie Mellon University, 2002.

16



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 47

Hails: Protecting Data Privacy in Untrusted Web Applications

Daniel B. Giffin, Amit Levy, Deian Stefan Alejandro Russo

David Terei, David Mazières, John C. Mitchell Chalmers

Stanford

Abstract
Modern extensible web platforms like Facebook and

Yammer depend on third-party software to offer a rich

experience to their users. Unfortunately, users running a

third-party “app” have little control over what it does with

their private data. Today’s platforms offer only ad-hoc

constraints on app behavior, leaving users an unfortunate

trade-off between convenience and privacy. A principled

approach to code confinement could allow the integra-

tion of untrusted code while enforcing flexible, end-to-end

policies on data access. This paper presents a new web

framework, Hails, that adds mandatory access control and

a declarative policy language to the familiar MVC archi-

tecture. We demonstrate the flexibility of Hails through

GitStar.com, a code-hosting website that enforces ro-

bust privacy policies on user data even while allowing un-

trusted apps to deliver extended features to users.

1 Introduction
Extensible web platforms that run third-party apps in a

restricted manner represent a new way of developing and

deploying software. Facebook, for example, has popular-

ized this model for social networking and personal data,

while Yammer provides a similar platform geared toward

enterprises. The functionality available to users of such

sites is no longer the product of a single entity, but the

combination of a potentially trustworthy platform running

code provided by less-trusted third parties.

Many apps are only useful when they are able to ma-

nipulate sensitive user data—personal information such

as financial or medical details, or non-public social

relationships—but once access to this data has been

granted, there is no holistic mechanism to constrain what

the app may do with it. For example, the Wall Street

Journal reported that some of Facebook’s most popular

apps, including Zynga’s FarmVille game, had been trans-

mitting users’ account identifiers (sufficient for obtaining

personal information) to dozens of advertisers and online

tracking companies [38].

In this conventional model, a user sets privacy settings

regarding specific apps, or classes of apps. However, users

who wish to benefit from the functionality of an app are

forced to guess what risk is posed by granting an app ac-

cess to sensitive information: the platform cannot provide

any mechanistic guarantee that the app will not, for exam-

ple, mine private messages for ad keywords or credit card

numbers and export this information to a system run by

the app’s developer.

Even if they are aware of how an app behaves, users

are generally poorly equipped to understand the conse-

quences of data exfiltration. In fact, a wide range of

sophisticated third-party tracking mechanisms are avail-

able for collecting and correlating user information, many

based only on scant user data [27].

In order to protect the interests of its users, the operator

of a conventional web platform is burdened with imple-

menting a complicated security system. These systems

are usually ad-hoc, relying on access control lists, human

audits of app code, and optimistic trust in various software

authors. Moreover, each platform provides a solution dif-

ferent from the other.

To address these problems, we have developed an alter-

nate approach for confining untrusted apps. We demon-

strate the system by describing GitStar.com, a social

code hosting website inspired by GitHub. GitStar takes a

new approach to the app model: we host third-party apps

in an environment designed to protect data. Rather than

ask users whether to disclose their data to certain apps, we

support policies that restrict information flow into and out

of apps, allowing them to give up communication privi-

leges in exchange for access to user data.

GitStar is built on a new web framework called Hails.

While other frameworks are geared towards monolithic

web sites, Hails is explicitly designed for building web

platforms, where it is expected that a site will comprise

many mutually-distrustful components written by various

entities.

Hails is distinguished by two design principles. First,

access policies should be specified declaratively alongside

data schemas, rather than strewn throughout the codebase

as guards around each point of access. Second, access



48 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

policies should be mandatory even once code has obtained

access to data.

The first principle leads to an architecture we call

model–policy–view–controller (MPVC), an extension to

the popular model–view–controller (MVC) pattern. In

MVC, models represent a program’s persistent data struc-

tures. A view is a presentation layer for the end user. Fi-

nally, controllers decide how to handle and respond to par-

ticular requests. The MVC paradigm does not give access

policy a first-class role, making it easy for programmers

to overlook checks and allow vulnerabilities [34]. By con-

trast, MPVC explicitly associates every model with a pol-

icy governing how the associated data may be used.

The second principle, that data access policies should

be mandatory, means that policies must follow data

throughout the system. Hails uses a form of mandatory

access control (MAC) to enforce end-to-end policies on

data as it passes through software components with dif-

ferent privileges. While MAC has traditionally been used

for high-security and military operating systems, it can be

applied effectively to the untrusted-app model when com-

bined with a notion of decentralized privileges such as that

introduced by the decentralized label model [32].

The MAC regime allows a complex system to be imple-

mented by a reconfigurable assemblage of software com-

ponents that do not necessarily trust each other. For exam-

ple, when a user browses a software repository on GitStar,

a code-viewing component formats files of source code

for convenient viewing. Even if this component is flawed

or malicious, the access policy attached to the data and

enforced by MAC will prevent it from displaying a file to

users without permission to see it, or transmitting a private

file to the component’s author. Thus, the central GitStar

component can make repository contents available to any

other component, and users can safely choose third-party

viewers based solely on the features they deliver rather

than on the trustworthiness of their authors.

A criticism of past MAC systems has been the per-

ceived difficulty for application programmers to under-

stand the security model. Hails offers a new design point

in this space by introducing MAC to the popular MVC

pattern and binding access control policy to the model

component in MPVC. Because GitStar is a public site in

production use by more than just its developers, we are

able to report on the experiences of third-party app au-

thors. While our sample is yet small, our experience sug-

gests MAC security does not impede application develop-

ment within an MPVC framework.

The remainder of this paper describes Hails, GitStar,

and several add-on components built for GitStar. We dis-

cuss design patterns used in building Hails applications.

We then evaluate our system, provide a discussion, survey

related work, and conclude.

2 Design
The Hails MPVC architecture differs from traditional

MVC frameworks such as Rails and Django by making

security concerns explicit. An MVC framework has no

inherent notion of security policy. The effective policy re-

sults from an ad-hoc collection of checks strewn through-

out the application. By contrast, MPVC gives security

policies a first-class role. Developers specify policies

in a domain-specific language (DSL) alongside the data

model. Relying primarily on language-level security, the

framework then enforces these policies system-wide, re-

gardless of the correctness or intentions of untrusted code.

MPVC applications are built from mutually distrustful

components. These components fall into two categories:

MPs, comprising model and policy logic, and VCs, com-

prising view and controller logic. An MP provides an API

through which other components can access a particular

database, subject to its associated policies.

MPs and VCs are explicitly segregated. An MP can-

not interact directly with a user, while a VC cannot

access a database without invoking the corresponding

MP. Our language-level confinement mechanism en-

forces MAC, guaranteeing that a data-model’s policy is

respected throughout the system. For example, if an MP

specifies that “only a user’s friends may see his email ad-

dress,” then a VC (or other MP) reading a user’s email

address loses the ability to communicate over the network

except to the user’s friends (who are allowed to see that

email address).

Figure 1 illustrates the interaction between different ap-

plication components in the context of GitStar. Two MPs

are depicted: GitStar, which manages projects and git

data; and Follower, which manages a directional relation-

ship between users. Three VCs are shown invoking these

modules: a source-code viewer, a git-based wiki, and

a bookmarking tool. Each VC provides a distinct inter-

face to the same data. The Code Viewer presents syntax-

highlighted source code and the results of static analysis

tools such as splint [19]. Using the same MP, the wiki VC

interprets text files using markdown to transform articles

into HTML. Finally, the bookmarking VC leverages both

MPs to give users quick access to projects owned by other

users whom they follow.

Because an application’s components are mutually dis-

trustful, MPVC also leads to greater extensibility. Any

of the VCs depicted in Figure 1 could be developed af-

ter the fact by someone other than the author of the MPs.

Anyone who doesn’t like GitStar’s syntax highlighting is



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 49

Bookmark

Se
rv

er

View

Controller

View

Controller

View

Controller

Git-Wiki

Se
rv

er

View

Controller

View

Controller

View

Controller

Code Viewer

Se
rv

er

View

Controller

View

Controller

View

Controller

GitStarFollower

ViewView

ControllerControllerPolicy

Model

Figure 1: Hails platform with three VCs and two MPs. Dashed lines denote HTTP communication; solid lines denote local function

calls; dashed-dotted lines denote communication with OS processes. MPs and VCs are confined at the programming language level;

OS processes are jailed and only communicate with invoking VCs; the Browser is restricted to communicating with the target VCs.

free to run a different code viewer. No special privileges

are required to access an MP’s API, because Hails’s MAC

security continues to restrict what code can do with data

even after gaining access to the data.

2.1 Principals and privileges

Hails specifies policy in terms of principals who are al-

lowed to read or write data. There are four types of prin-

cipal. Users are principals, identified by user-names (e.g.,

alice). Remote web sites that an app may communi-

cate with are principals, identified by URL (e.g., http:/

/maps.google.com:80/). Each VC has a unique princi-

pal, by convention starting with prefix “@”, and each MP

has a unique principal starting “ ” (e.g., @Bookmark and

GitStar for the components in Figure 1).

An example policy an MP may want to enforce is “user

alice’s mailing address can be read only by alice or by

http://maps.google.com:80/.” Such a policy would

allow a VC to present alice her own address (when she

views her profile) or to fetch a google map of her address

and present it to her, but not to disclose the address or map

to anyone else. For maximum flexibility, read and write

permissions can each be expressed using arbitrary con-

junctions and disjunctions of principals. Enforcing such

policies requires knowing what principals an app repre-

sents locally and what principals it is communicating with

remotely.

Remote principals are ascertained as one would expect.

Hails uses a standard cookie-based authentication facility;

a browser presenting a valid session cookie represents the

logged-in user’s principal. When VCs or MPs initiate out-

going requests to URLs, Hails considers the remote server

to act on behalf of the URL principal of the web site.

Within the confines of Hails, code itself can act on be-

half of principals. The trusted Hails runtime supports un-

forgeable objects called privileges with which code can

assert the authority of principals. Hails passes appropriate

privilege objects to MPs and VCs upon dynamically load-

ing their code. For example, the GitStar MP is granted the

GitStar privilege. When a user wishes to use GitStar to

manager her data, the policy on the data in question must

specify GitStar as a reader and writer so as to give Git-

Star permission to read the data and write it to its database

should it chose to exercise its GitStar privileges.

2.2 Labels and confinement

Hails associates a security policy with every piece of data

in the system, specifying which principals can read and

write the data. Such policies are known as labels. The par-

ticular labels used by Hails are called DC labels. We de-

scribed and formalized DC labels in a separate paper [39],

so limit our discussion to a brief overview of their format

and use in MAC. We refer readers to the full DC labels

paper for more details.

A DC label is a pair of positive boolean formulas over

principals: a secrecy formula, specifying who can read the

data, and an integrity formula, specifying who can write

it. For example, a file labeled �alice∨bob,alice� spec-

ifies that alice or bob can read from the file and only

alice can write to the file. Such a label could be used

by the Code Viewer of Figure 1 when fetching alice’s

source code. The label allows the VC to present the source

code to the project participants, alice and bob, but not

disseminate it to others.

The trusted runtime checks that remote principals sat-

isfy any relevant labels before permitting communication.



50 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

For instance, data labeled �alice∨ bob,alice� cannot

be sent to a browser whose only principal is charlie.

The actual checks performed involve verifying logical im-

plications. Data labeled �S, I� can be sent to a principal

(or combination of principals) p only when p =⇒ S. Con-

versely, remote principal p can write data labeled �S, I�
only when p =⇒ I. Given these checks, �TRUE,TRUE� la-

bels data readable and writable by any remote principal,

i.e., the data is public, while p = TRUE means a remote

party is acting on behalf of no principals.

The same checks would be required for local data ac-

cess if code had unrestricted network access. Hails could

only allow code to access data it had explicit privileges

to read. For example, code without the alice privilege

should not be able to read data labeled �alice,TRUE� if

it could subsequently send the data anywhere over the net-

work. However, Hails offers a different possibility: code

without privileges can read data labeled �alice,TRUE�
so long as it first gives up the ability to communicate with

remote principals other than alice. Such communication

restrictions are the essence of MAC.

To keep track of communication restrictions, the run-

time associates a current label with each thread. The util-

ity of the current label stems from the transitivity of a par-

tial order called “can flow to.” We say a label L1 = �S1, I1�
can flow to another label L2 = �S2, I2� when S2 =⇒ S1

and I1 =⇒ I2—in other words, any principals p allowed

to read data labeled L2 can also read data labeled L1 (be-

cause p=⇒ S2 =⇒ S1) and any principals allowed to write

data labeled L1 can also write data labeled L2 (because

p =⇒ I1 =⇒ I2).

A thread can read a local data object only if the object’s

label can flow to the current label; it can write an object

only when the current label can flow to the object’s. Data

sent over the network is always protected by the current

label. (Data may originate in a labeled file or database

record but always enters the network via a thread with a

current label.) The transitivity of the can flow to relation

ensures no amount of shuffling data through objects can

result in sending the data to unauthorized principals.

A thread may adjust the current label to read otherwise

prohibited data, only if the old value can flow to the new

value. We refer to this as raising the current label. Allow-

ing the current label to change without affecting security

requires very carefully designed interfaces. Otherwise,

labels themselves could leak information. In addition,

threads could potentially leak information by not termi-

nating (so called “termination channels”) or by changing

the order of observable events (so called “internal timing

channels”). GitStar is the first production system to ad-

dress these threats at the language level. We refer inter-

ested readers to [41] for the details and security proof of

our solution.

A final point is that Hails prevents the current la-

bel from accumulating restrictions that would ultimately

prevent the VC from communicating back to the user’s

browser. In MAC parlance, a VC’s clearance is set ac-

cording to the user making the request, and serves as an

upper bound on the current label. Thus, an attempt to read

data that could never be sent back to the browser will fail,

confining observation to a “need-to-know” pattern.

2.3 Model-Policy (MP)

Hails applications rely on MPs to define the application’s

data model and security policies. An MP is a library with

access to a dedicated database. The MP specifies what

sort of data may be stored in the database and what access-

control policies should be applied to it. Though MPs may

contain arbitrary code, we provide and encourage the use

of a DSL, described in Section 2.3.1, for specifying data

policies in a concise manner.

The Hails database system is similar to and built atop

MongoDB [7]. A Hails database consists of a set of col-

lections, each storing a set of documents. In turn, each

document contains a set of fields, or named values. Some

fields are configured as keys, which are indexed and iden-

tify the document in its collection. All other fields are

non-indexed elements.

An MP restricts access to the different database lay-

ers using labels. A static label is associated with every

database, restricting who can access the collections in the

database and, at a coarse level, who can read from and

write to the database. Similarly, a static label is associ-

ated with a collection, restricting who can read and write

documents in the collection. The collection label addi-

tionally serves the role of protecting the keys that identify

documents—a computation that can read from a collec-

tion can also read all the key values.

2.3.1 Automatic, fine-grained labeling

In many web applications, dynamic fine-grained policies

on documents and fields are desired. Consider the user

model shown in Figure 2: each document contains fields

corresponding to a user-name, email address, and list of

friends. In this scenario, the Follower MP may config-

ure user-names as keys in order to allow VCs to search

for alice’s profile. Additionally, the MP may specify

database and collection labels that restrict access to doc-

uments at a coarse grained level. However, these static

labels are not sufficient to enforce fine grained dynamic

policies such as “only alice may modify her profile in-

formation” and “only her friends (bob, joe, etc.) may see

her email address.”



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 51

user: alice

friends: bob, joe,...

email: alice@...

Document:

DocumentCollectionLabeled by: Field

,

,

,

,

Figure 2: Hails user documents. Each document is indexed by

a key (user-name) and contains the user’s email address and

list of friends. Documents and email fields are dynamically

labeled using a data-dependent policy; the secrecy of the user

key and is protected by the static collection label, the document

label protects its integrity. The “unlabeled” friends fields are

protected by their corresponding document labels.

Hails introduces a novel approach to specifying doc-

ument and field policies by assigning labels to docu-

ments and fields as a function of the document contents

itself.1 This approach is based on the observation that,

in many web applications, the authoritative source for

who should access data resides in the data itself. For

example, in Figure 2, the user-name and friends field

values can be used to specify the document and field

policies mentioned above: alice’s document is labeled

�TRUE,alice∨ Follower�, while the email field value

is labeled �alice∨bob∨joe∨·· · ∨ Follower,TRUE�.
The document label guarantees that only alice or the MP

can modify any of the constituent fields. The label on

the email-address field additionally guarantees that only

alice, the MP, or her friends can read her address.

Hails’s data-dependent “automatic labeling” simplifies

reasoning about security policies and localizes label logic

to a small amount of source code. Figure 3 shows

the implementation of the Follower users policy, as de-

scribed above, using our DSL. Specifying static labels

on the database and collections is simply done by set-

ting the respective readers and writers in the database

and collection sections. Similarly, setting a document

or field label is done using a function from the document

itself to a pair of readers and writers.

2.3.2 Database access and policy application

MP policies are applied on every database insert. When

a thread attempts to insert a document into an MP col-

lection, the Hails runtime first checks that that the thread

can read and write to the database and collection, by com-

paring the thread’s current label with that of the database

and collection. Subsequently, the field- and document-

labeling policy functions are applied to the document and

fields. If the policy application succeeds—it may fail if

1 These labeling functions are pure: they cannot perform side effects

and must always return the same value for the same input.

database $ do

-- Set database label:

access $ do

readers ==> anybody

writers ==> anybody

-- Set policy for new "users" collection:

collection "users" $ do

-- Set collection label:

access $ do

readers ==> anybody

writers ==> anybody

-- Declare user field as a key:

field "user" key

-- Set document label, given document doc:

document $ λdoc -> do

readers ==> anybody

writers ==> ("user" ‘from‘ doc) \/ _Follower

-- Set email field label, given document doc:

field "email" $ labeled $ λdoc -> do

readers ==> ("user" ‘from‘ doc)

\/ fromList ("friends" ‘from‘ doc)

\/ _Follower

writers ==> anybody

Figure 3: DSL-specification of the Follower users policy. Here,

anybody corresponds to the boolean formula TRUE; fromList

converts a list of principals to a disjunction of principals; and,

"x" ‘from‘ doc retrieves the value of field x from document

doc. The database and collection labels are static. Field

user is configured as a key. Finally, each document and email

field is labeled according to a function from the document itself

to a set of readers and writers.

the thread cannot label data as requested—the Hails run-

time removes all the labels on the document and performs

the write.

Hails also allows threads to insert already-labeled doc-

uments (e.g., documents retrieved from another MP or

directly from the user). As before, when inserting a la-

beled document, the MP database and collection must be

readable and writable at the current label. Different from

above, the thread does not need to apply the policy func-

tions; instead, the Hails runtime verifies that the labels

on fields and the document agree with those specified by

the MP. Finally, if the check succeeds, the Hails runtime

strips the labels and performs the write.

Application components, including VCs, can fetch el-

ements from an MP’s database collection by specifying

a query predicate. Predicates are restricted to solely in-

volve indexed keys (or be TRUE). Similar to insert, when

performing a fetch, the runtime first checks that that the

thread can read from the database and collection. Next,

the documents matching the predicate are retrieved from



52 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

the database. Finally, the field- and document-labeling

policy functions are applied to each document and field;

the resultant labeled documents are returned to the invok-

ing thread.

Hails supports additional database operations, includ-

ing update and delete. These operations are similar to

those of MongoDB [7], though Hails enforces the MP’s

policies whenever its database is accessed. Since the re-

strictions on most operations are similar to those of insert

and fetch, we do not describe them further.

2.4 View-Controller (VC)

VCs interact with users. Specifically, controllers handle

user requests, and views present interfaces to the user.

However, VCs do not define database-backed models. In-

stead, a controller invokes one or more MPs when it needs

to store or retrieve user data. This data can also be passed

on to views when rendering user interfaces.

Each VC is a standalone process, linked against the MP

libraries it depends on to provide a data model. The VC

author solely provides a definition for a main controller,

which is a function from an HTTP request to an HTTP

response. This function may perform side-effects: it may

access a database-backed model by invoking an MP, read

files from the labeled filesystem, etc. Hails uses language-

level confinement to prevent the VC and MPs it invokes

from modifying or leaking data in violation of access per-

missions. Additionally, since each VC is a process, OS-

level isolation and resource management mechanisms can

be leveraged to enforce additional platform-specific poli-

cies.

At the heart of every VC is the Hails HTTP server.

The server, a privileged part of the trusted computing base

(TCB), receives HTTP requests and invokes the main VC

controller to process them. When a request is from an au-

thenticated user, the server sets the X-Hails-Userheader

to the user-name and attests to the request’s contents for

the benefit of MPs that care about request provenance

and integrity. In turn, the main controller processes the

supplied request, by potentially calling into MPs to in-

teract with persistent state, and finally returns an HTTP

response. The server returns the provided response to the

browser on the condition that it depend only on data the

user is permitted to observe.

In carrying out their duties, many VCs rely on com-

munication with external web sites. Hence, Hails appli-

cations have access to an HTTP client. Before establish-

ing a connection, and on each read or write, the HTTP

client checks that the current label of the invoking thread

is compatible with the remote server principal. In prac-

tice, this means VCs can only communicate with exter-

nal hosts when they have not read any sensitive data or

they have only read data explicitly labeled for the external

server.

Additionally, VCs may need to run arbitrary programs.

For example, as highlighted in Figure 1, GitStar’s Code

Viewer relies on splint, a standalone C program, to flag

possible coding errors. Addressing this need, Hails pro-

vides a mechanism for spawning confined Linux pro-

cesses with no network access, no visibility of other pro-

cesses, and no writable file system shared by other pro-

cesses. Each such processes is governed by a fixed label,

namely the VC’s current label at the time the program was

spawned. In turn, labeled file handles can be used to com-

municate with the process, subject to the restrictions im-

posed by the current thread’s label.

2.5 Life-cycle of an application

In this section, we use GitStar’s deployment model to il-

lustrate the life-cycle of a Hails application from develop-

ment, through deployment, to a user-request.

2.5.1 Application development and deployment

A third-party application developer may introduce a new

data model to the GitStar platform by writing an MP. For

example, the Follower MP shown earlier specifies a data-

model for storing a relation between users, as well as a

policy specifying who is able to read, create and modify

those relationships. Once written, the developer uploads

the library code to the GitStar servers where it is com-

piled and installed. The platform administrator generates

a unique privilege for the new MP and associates it with

a specific database in a globally-accessible configuration

file. Subsequently, any Hails code may import the MP,

which when invoked, will be loaded with its privilege and

database-access.

The third-party developer may build a user interface to

the newly-created model by writing a VC controller. As

with MPs, developers upload their VC code to the GitStar

servers where it is compiled and linked against any MPs

it depends on. Thereafter, a program called hails, which

contains the Hails runtime and HTTP server, is used to

dynamically load the main VC controller and service user

requests on a dedicated TCP port.

While in this example both the VC and MP were im-

plemented by a single developer, third-party developers

can implement applications consisting solely of a VC that

interacts with MPs created by others. In fact, in GitStar,

most applications are simply VCs that use the GitStar MP

to manage projects and retrieve git objects. For example,

the git-based wiki application, as shown in Figure 1, is

simply a VC that displays formatted text from a particular

branch of a git repository.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 53

2.5.2 An example user request

When an end-user request is sent to the GitStar platform,

an HTTP proxy routes the request to the appropriate VC

HTTP server based on the hostname in the request.

The Hails server receiving the forwarded request in-

vokes the main controller of the corresponding VC in a

newly spawned thread. The controller is executed with the

VC’s privileges and sanitized request. The HTTP server

sanitizes the incoming request by removing headers such

as Cookie; it also sets the X-Hails-User header to the

user-name, if the request is from an authenticated user.

The main controller may be a simple request handler

that returns a basic HTML page without accessing any

sensitive data (e.g., an index or about page). A more in-

teresting VC may access sensitive user data from an MP

database before computing a response. In this case, the

VC invokes the MP by performing a database operation

such as insert or fetch. The invocation consists of sev-

eral steps. First, the Hails runtime instantiates the MP

with its privilege and establishes a connection to the as-

sociated database, as specified in the global configura-

tion file. Then, the MP executes the database operations

supplied by the VC, and, in coordination with the Hails

runtime, labels the data according to its policies. While

some database operations are not sensitive (e.g., accessing

a public git repository in GitStar), many involve private

information. In such cases, the database operation will

also “raise” the current label of the VC, and thereby affect

all its future communication.

When a VC produces an HTTP response, the runtime

checks that the current label, which reflects all data ac-

cesses or other sensitive operations, is still compatible

with the end-user’s browser. For example, if alice has

sent a request to the Code Viewer asking for code from a

private repository, the response produced by Code Viewer

will only be forwarded by the Hails server if the final label

of Code Viewer can flow to �alice,TRUE�
On the client side, the Hails browser extension, detailed

in Section 3.3, restricts all incoming responses and outgo-

ing requests according to the response label. For example,

if the Code Viewer returns a response labeled �alice∨
http://code.google.com,TRUE�, the rendered page

may retrieve scripts for prettifying code from http://

code.google.com, but not retrieve images from http:/

/haskell.org. On the other hand, a publicly labeled

response imposes no restrictions on the requests triggered

by the page.

2.6 Trust assumptions

The Hails runtime, including the confinement mechanism,

HTTP server, and libraries are part of the TCB. Parts of

the system, namely our labels and confinement mecha-

nism, have been formalized in [30, 39–41]. We remark

that different from other work, our language-level concur-

rent confinement system is sound even in the presence of

termination and timing covert channels [41]. However,

similar to other MAC systems (e.g., [24]), we assume that

the remaining Hails components are correct and that the

underlying OS and network are not under the control of

an attacker.

By visiting a web page, the MPs invoked by the VC

presenting the page are trusted by users to preserve their

privacy. This is a consequence of MPs being allowed

to manage all aspects of their database. However, one

MP cannot declassify data managed by another, and thus

users can choose to use trustworthy MPs. Facilitating this

choice, Hails makes the MP policies and dependency rela-

tionships between VCs and MPs available for inspection.

Since a user can choose to invoke a VC according

to the MPs it depends on, VCs are mostly untrusted.

On the server-side, VCs cannot exfiltrate user data from

the database without collusion from an MP the user has

trusted. Nevertheless, VCs cannot be considered com-

pletely untrusted since they directly interact with users

through their browser. Unfortunately, in today’s browsers,

even with our client-side sandbox, a malicious VC can co-

erce a user to declassify sensitive data.

3 Implementation

Hails employs a combination of language-level, OS-level

and browser-level confinement mechanisms spread across

all layers of the application stack to achieve its security

goals. Most notably, we use a language-level information

flow control (IFC) framework to enforce fine-grained poli-

cies on VCs and MPs. This section describes this frame-

work, and some of the implementation details of our OS

and browser confinement mechanisms.

3.1 Language-level confinement

Hails applications are written in Haskell. Haskell is

a statically- and strongly-typed, memory-safe language.

Crucially, Haskell’s type system distinguishes operations

involving side-effects (such as potentially data-leaking

I/O) from purely-functional computation. As a conse-

quence, for example, compiling a VC’s main controller

with an appropriately specified type is sufficient to assert

that the VC cannot perform arbitrary network communi-

cation.

Hails relies on the safety of the Haskell type sys-

tem when incorporating untrusted code. However, like

other languages, Haskell “suffers” from a set of features

that allow programmers to perform unsafe, but useful,

actions (e.g., type coercion). To address this, we ex-



54 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

tended the Glasgow Haskell Compiler (GHC) with Safe

Haskell [44]. Safe Haskell, deployed with GHC as of

version 7.2, guarantees type safety by removing the small

set of language features that otherwise allow programs to

violate the type system and break module boundaries.

With this change, Haskell permits the implementation

of language-level dynamic IFC as a library. Accord-

ingly, we implemeted LIO [40], which employs the label-

tracking and confinement mechanisms of Section 2.2. De-

spite sharing many abstractions with OS-level IFC sys-

tems, such as HiStar [46] and Flume [17], LIO is more

fine-grained (e.g., it allows labels to be associated with

values, such as documents and email addresses) and thus

better suited for web applications.

We believe the Hails architecture is equally realizable

in other languages, though possibly with less backward

compatibility. For example, JiF [33], Aeolus [5] and

Breeze [15] provide similar confinement guarantees and

are also good choices. However, to use existing libraries

JiF and Aeolus typically require non-trivial modifications,

while Breeze requires porting to a new language. Con-

versely, about 4,000 modules in Hackage (27%), a popu-

lar Haskell source distribution site, are currently safe for

Hails applications to import. Of course, the functions that

perform arbitrary I/O are not directly useful, and, like in

JiF, must be modified to run in LIO. Nevertheless, many

core libraries require no modifications. Moreover, we ex-

pect the number of safe modules to grow significantly

with the next GHC release, which refactors core libraries

to remove unsafe functions from general-purpose mod-

ules.

3.2 OS-level confinement

Hails uses Linux isolation mechanisms to confine pro-

cesses spawned by VCs. These techniques are not novel,

but it is important that they work properly. Using clone

with the various CLONE NEW* flags, we give each con-

fined process its own mount table and process ID names-

pace, as well as a new network stack with a new loop-

back device and no external interfaces. Using a read-only

bind-mount and the tmpfs file system, we create a system

image in which the only writable directory is an empty

/tmp. Using cgroups, we restrict the ability to create and

use devices and consume resources. With pivot root

and umount, we hide filesystems outside of the read-only

system image. The previous actions all occur in a setuid

root wrapper utility, which finally calls setuid and drops

capabilities before executing the confined process.

3.3 Browser-level confinement

VC responses are protected from inappropriate leaks on

the client side using a sandbox. The sandbox, imple-

Figure 4: Hails client sandbox configuration. Users may

(dis)allow communication to explicit hosts when the page label

does not permit the flow directly.

mented as a browser extension for chrome, intercepts all

network communication. In turn, all requests triggered by

the page are allowed only if they are guaranteed to not

leak information.

The Hails client-side sandbox arbitrates traffic accord-

ing to the label of the page, which is analogous to a server-

side thread label. The Hails HTTP server sends the header

X-Hails-Label with every VC response containing the

initial page label, i.e., the label of response. As previ-

ously mentioned, if the page label is public, the sandbox

does not impose any restrictions on the external requests

triggered by the page. If the page label is not public, the

sandbox only allows a request to a remote host if the page

label is compatible with the principal implied by the re-

mote host name. For instance, an image will be fetched

from maps.google.com and a link will be followed to

hackage.haskell.org if the page label is �alice∨
http://maps.google.com:80/ ∨ http://hackage.

haskell.org:80/,TRUE�. However, an XMLHttpRe-

quest to evil.appspot.com will not be allowed. Sim-

ilarly, if the page was instead labeled �alice,TRUE� the

sandbox would reject all requests.

Users may approve otherwise disallowed network com-

munication at the risk of potentially leaking their sensitive

data to designated remote hosts. The first time a request

to a disallowed host is intercepted, our extension requires

the user to intervene. Specifically, the user is alerted and

asked to approve network communication to the host in

question. Clicking “No” blocks network access to the host

for that iframe or tab. (The user can still view the con-

tents of the page, except for resources, such as images or

style-sheets, from the blocked host.) Conversely, clicking

“Yes” allows the page to load normally; however, as illus-

trated in Figure 4, an icon is used to warn the user of a

potential leak. In both cases, the user decision is saved for

future requests and may easily be changed, as also high-

lighted in Figure 4.

The client-side sandbox is the least satisfying aspect

of Hails’s security, in part because it requires each user

to install a new extension. In Section 7 we discuss the

limitations of our current extension and future research



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 55

directions that could help address leaking sensitive data

through the browser. Here, we finally remark that stan-

dards proposals such as Mozilla’s CSP [42] show that

browser vendors are open to incorporating mechanisms

that coordinate with web servers to enforce security poli-

cies. Addressing data leaks on the server-side first, with

systems like Hails, will help compel changes in tomor-

row’s browsers.

4 Applications
We built and deployed GitStar.com, a Hails platform

centered around source code hosting and project manage-

ment. We and others have authored a number Hails ap-

plications for the GitStar platform. Below we detail some

of these applications including the core interface, a code

viewer, follower application, wiki and messaging system.

GitStar At its core, GitStar includes a basic MP and

VC. The MP manages users’ SSH public-keys, project

membership and project meta-data such as name and de-

scription; the VC provides a simple user interface for

managing such projects and users.

Since Hails does not have built-in support for git or

SSH, the GitStar platform includes an SSH server (and

git’s transport utilities) as an external service. Our modi-

fied SSH server queries the GitStar VC when authenticat-

ing users and determining access control for repositories.

Conversely, the GitStar MP communicates with an HTTP

service atop this external git-repository server to access

git objects.

GitStar allows users to create projects to which they can

push files via git. Projects may be public (anyone can

view or checkout repository contents) or private, in which

case only specific users identified as readers or collabora-

tors may access the project. In both cases, only collabora-

tors may push contents to the project repository. GitStar

provides an interface for managing these settings.

The rest of GitStar.com is provided by separately-

administered, mutually-distrustful Hails applications,

some of which were written by third-party developers.

Each application is independently accessible through a

unique subdomain of GitStar.com. When a user “in-

stalls” an application in a project, GitStar creates a link

on the project page that embeds an iframe pointing to

the application. This gives third-party applications a first-

class role in extending the user experience.

Code Viewer One of the most useful features of source-

code hosting sites is the ability to browse a project’s code.

We have implemented a code-viewing VC that allows

users to navigate to different branches in a project’s repos-

itory, view syntax-highlighted code, etc. Source code

markup is done on the client-side using Google’s Prettify

JavaScript library [14]. Additionally, if the source file is

written in C or Haskell, the VC provides the user with an

option to see the output of static-analysis tools splint [19]

and hlint [29], respectively.

Like all third-party applications, the Code Viewer is un-

trusted and accesses repository contents through the Git-

Star MP. When accessing objects in a private repository,

the GitStar MP changes the VC’s current label to restrict

communication to authorized readers of the repository.

Note that this may also restrict the VC from subsequently

writing to the database.

git-based Wiki The git-based Wiki displays Mark-

down files from the “wiki” branch of a project reposi-

tory as formatted HTML. It uses the pandoc library [25]

to convert Markdown to HTML. Like the Code Viewer,

the wiki VC accesses source files through the GitStar

MP, meaning it cannot show private wiki pages to the

wrong users. This application leverages functionality

originally intended for the Code Viewer for different pur-

poses, demonstrating the power of separating policies

from application logic.

Standalone Wiki The standalone wiki is similar to the

git-based Wiki, except that pages are stored directly in

a database rather than in files checked into git. To ac-

complish this, the developer wrote both an MP and a VC.

The MP stores a mapping between project names and

wiki pages. Wiki pages are labeled dynamically to allow

project readers and collaborators to read and write wiki

pages. This is different from the git-based Wiki in that it

allows a more relaxed policy: readers can create and mod-

ify wiki pages. Moreover, it is a concrete example of one

MP that depends on another (namely the GitStar MP).

Follower GitHub introduced the notion of “social cod-

ing,” which combines features from social networks with

project collaboration. This requires that a user be able to

“follow” other users and projects. GitStar does not pro-

vide this feature natively, but a Follower MP has been de-

veloped to manage such relationships. Users may now

add the “Bookmark” application (implemented as a VC)

to their project pages, which allows other users to add the

project to their list of followed repositories.

Messenger The Messenger application provides a sim-

ple private-messaging system for users. Its MP, as im-

plemented by the developer, defines a message model and

policies on the messaging data. The policy allows any

user to create a message, but restricts the reading of a mes-

sage to the sender and intended recipient. Interfacing with

the Messenger MP, the Messenger VC provides a page

where users may compose messages, and a separate page



56 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

where they may read incoming messages.

5 Design Patterns
In this section, we detail the applicability of some existing

security patterns within Hails, and various design patterns

that we have identified in the process of building GitStar.

Privilege separation Since MPs are trusted by users to

protect the confidentiality and integrity of their data, a

well-designed MP should be coded defensively. More-

over, an MP should treat all invoking VCs as untrusted,

including ones written by the same author.

The easiest way to program defensively is to minimize

use of an MP’s privileges, i.e., practice separation of priv-

ilege [35]. When doing so, invoking VCs will only be able

to fetch data that the end user can observe, as opposed to

all data when using the MP’s privileges. Similarly, this re-

stricts VCs to inserting already-labeled documents, as dis-

cussed in Section 2.3.2. This is important as it effectively

limits a VC to inserting user-endorsed data, as opposed to

almost-arbitrary data when using the MP privilege.

Trustworthy user input VC-constructed documents

cannot necessarily be trusted to represent user intentions;

thus, MPs should not allow VCs to arbitrarily insert data

on behalf of the user. Consider, for example, the policy

of the Follower MP imposed on user documents, as given

in Figure 3. Here, a VC, even one running on behalf of

alice, should not be allowed to construct and insert the

document of Figure 2, without alice or the MP endors-

ing its contents.

Since VCs do not own user privilege and, as discussed

above, MPs should not grant their privileges, Hails pro-

vides a mechanism for transforming user input data to

a labeled document, that retains integrity. Recall that a

VC’s main controller is invoked, by the Hails server, with

a pre-labeled HTTP request; the label on this request has

the integrity of the user (e.g., 〈TRUE,alice〉). If the VC

directly manipulates the request to construct an appro-

priate document, the integrity will be stripped. Hence,

Hails provides a library for transforming a labeled, URL-

encoded body (e.g., submitted from an HTML form in the

user’s browser) into a labeled document, that MPs may

expose to VCs. This transformer takes a user-endorsed re-

quest and returns an MP-endorsed document that the VC

may, in turn, insert into the database.

Users must still trust VCs to construct HTML forms

that will reflect their intentions. However, an MP may in-

spect requests before transforming them to labeled docu-

ments. Moreover, policies, such as that of Figure 3, would

prevent a VC trusted only by bob from modifying alice’s

data.

Partial update The trustworthy user input pattern is

suitable for inserting and updating documents in whole;

it is not, however, directly applicable to partially updat-

ing documents. Returning to the Follower user model of

Figure 2, a VC that wishes to present a form for updat-

ing the user’s email address would have to include all the

remaining fields as hidden input variables. Though this

would allow the VC to update the email field by effec-

tively inserting a new labeled document, this approach is

error prone and not scalable.

Instead, we found that a partial document that contains

the newly-updated fields, the document keys, and a token

$hailsDbOp indicating the operation (partialUpdate,

in this case) is sufficient for the MP to update an existing

document. This partial-document must be endorsed by the

user or MP, by, for example, applying the previous pat-

tern. Directly, to carry out the partial update, the MP first

verifies that the user is aware of the update by checking

the presence of the operation token $hailsDbOp. Next,

the MP uses the keys to fetch the existing document and

merges the newly-updated fields into the document. Fi-

nally, the document update is performed, imposing re-

strictions similar to those of Section 2.3.2.

Delete We have found that most applications use a pat-

tern similar to the partial update pattern when deleting

documents: a VC invokes an MP with a document con-

taining the target-document’s keys and an operation token

indicating a delete, i.e., $hailsDbOp set to delete. As

in the partial update, this document must be endorsed by

the user or MP by applying the trustworthy input pattern.

Directly, the VC may invoke the MP with the labeled doc-

ument, who, in turn, removes the target document after

inspection.

Privilege delegation Hails provides a call-gate mech-

anism, inspired by [46], with which code can authenti-

cate itself to a called function, i.e., prove possession of

privileges, without actually granting any privileges to the

called function. One use of call gates is to delegate priv-

ileges. For instance, an MP can provide a gate that sim-

ply returns its own privilege, on the condition that it was

called by a particular VC.

While earlier version of GitStar utilized privilege dele-

gation, we now largely avoid it; in many cases, we found

modifying the policy to be a better alternative. For in-

stance, the early version of the GitStar VC used the Git-

Star MP’s privilege to look up project readers and collab-

orators for the SSH server. Now, we simply created a user

account for the SSH server and added this principal as

a reader in the project collection policy. Nevertheless,

such refactoring may not always be possible and privilege

delegation may prove necessary.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Pong Table DB Read DB Write

N
or

m
al

iz
ed

 R
eq

ue
st

s/
Se

co
nd

 (R
/S

)

82,275 R/S 618 R/S 23,118 R/S 9,9434 R/S

47,577 R/S

479 R/S

1,140 R/S
1,370 R/S

Hails
Sinatra

Java Jetty
Apache PHP

Figure 5: Micro-benchmarks of basic web application oper-

ations. The measurements are normalized to the Java Jetty

throughput. All database operations are on MongoDB.

6 Evaluation
We compare the performance of the Hails framework

against existing web frameworks, and report on the ex-

perience of application authors not involved in the design

and implementation of the framework.

6.1 Performance Benchmarks

To demonstrate how Hails performs in comparison to

other widely-used frameworks, we present the results of

four micro-benchmarks that reflect basic operations com-

mon to web applications. Figure 5 shows the performance

of Hails, compared with:

⊲ Ruby Sinatra framework [36] on the Unicorn web

server. Sinatra is a common application framework

for small Ruby applications and APIs (e.g., the GitHub

API is written using Sinatra).

⊲ PHP on the Apache web server with mod php.

Apache+PHP is one of the most widely deployed

technology for web applications, including WordPress

blogs, Wikipedia, and earlier versions of Facebook.

⊲ Java on the Jetty web server [10]. Jetty is a container for

Oracle’s Java Servlet specification, and is widely used

in production Java web-applications including Twitter’s

streaming API, Zimbra and Google AppEngine.

We use httperf [31] to measure the throughput of

each server setup when 100 client connections continu-

ously make requests in a closed-loop—we report the av-

erage responses/second. The client and server were ex-

ecuted on separate machines, each with two Intel Xeon

E5620 (2.4GHz) processors, and 48GB of RAM, con-

nected over a Gigabit local network.

In the Pong benchmark the server simply responds with

the text “PONG”. This effectively measures the through-

put of the web server itself and overhead of the frame-

work. Hails responds to 1.7× fewer requests/second

than Jetty. However, the measured throughput of 47,577

requests/second is roughly 28% and 47× higher than

Apache+PHP and Sinatra, respectively.

In the Table benchmark, the server dynamically renders

an HTML table containing 5,000 entries, effectively mea-

suring the performance of the underlying language. Hails

respectively responds to 30% and 23% fewer request-

s/second than Jetty and Apache+PHP, but 6× more than

Sinatra. Hails is clearly less performant than Jetty and

Apache+PHP for such workloads, even though Haskell

should be faster than PHP at CPU workloads. We be-

lieve that this is primarily because Hails does not allow

pipelined HTTP responses, so a large response body must

be generated in memory and sent in its entirety at once

(as opposed to sent in chunks as output is available).

Nonetheless, Hails responds to 6× more requests/second

than Sinatra.

The DB Read and DB Write benchmarks compare the

performance of the read and write database throughput.

Specifically, for the DB Read benchmark the server re-

sponds with a document stored in the MongoDB, while

for the DB Write the server inserts (with MongoDB’s

fsync and safe settings on) a new document into a

database collection and reports success. Like the Ruby

library, the Haskell MongoDB library does not imple-

ment a connection pool, so we loose significant paral-

lelism in the DB Read workload when compared to Jetty

and Apache+PHP. In the DB Write workload, this effect

is obviated since the fsync option serializes all writes.

6.2 Experience Report

We gathered experience reports from four developers that

used Hails to build applications. Their reflections validate

some of the design choices we made in Hails, as well as

highlight some ways in which we could make Hails appli-

cations easier to write.

We conjectured that separating code into MPs and VCs

leads to building applications for which it is easier to rea-

son about security. This was validated by the application

authors who remarked that although “experienced devel-

opers [need to] write the tough [MP] code and present a

good interface,” when compared to frameworks such as

Rails, not having to “sprinkle [security] checks in the con-

troller” made it easier to be sure that “a check was not

missing.” With Hails, they, instead, “spent time focus-

ing on developing the [VC] functionality.” We further

found that developers (ourselves included) had a num-

ber of mass-assignment bugs in VC code [34]. Different

from [20, 34], these bugs did not prove to be vulnerabil-

ities in GitStar—the policies specified by the GitStar MP



58 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

trivially prevents attacks wherein one user tries to imper-

sonate another. Though such vulnerabilities can be ad-

dressed differently, we found that similar bugs are easy

to introduce and a well-specified policy can prevent them

from becoming privacy concerns.

Implementing MPs using an earlier version of Hails

proved challenging for most of the developers. In par-

ticular, while devising policies for a model was generally

straightforward, developers felt that the API for actually

implementing policy modules was difficult to learn. In

fact, inspecting the code of one of the blog applications,

we found that the developer had a bug that leaked blog

posts regardless of whether the user decided to publish

the blog post or not. This bug was a result of inadver-

tently making posts, as opposed to just post IDs, keys. We

believe that this was due in part due to the terse policy-

specification API.

Addressing the challenges with specifying policies, we

designed the DSL presented in Section 2.3. We found this

DSL to make policy specification much simpler. Equally

important, developers have found it easier to understand

what an MP enforces and thus make a more informed de-

cision when deciding to use the library.

We are actively working on improving the Hails devel-

opment experience. Compared to other frameworks, Hails

needs more “good documentation with recipes.” Develop-

ers found that the lack of “scaffolding tools for generating

boiler-plate code [and] a template framework” impedes

the development process. Part of our ongoing work in-

cludes building scaffolding tools for both VCs and MPs,

adopting a templating language, and creating additional

tutorials that illustrate typical application development.

7 Discussion and Limitations

In this section, we discuss the ramifications of the de-

sign and implementation of Hails and suggest solutions

to some of its limitations.

Browser-level confinement As previously noted, we

cannot expect all users to install the Hails browser exten-

sion which provides confinement in the browser. A differ-

ent approach would be to re-write VC output at the server-

side before sending it to the client, neutralizing data-

exfiltration risks. Until recently, such content-rewriting

was a dangerous proposition. In particular, Google [28],

Yahoo [11], Facebook [13], and Microsoft [16] have all

developed technology to constrain the effects of third-

party web content such as advertisements; but the design

of existing browser interfaces made those tools vulnerable

to attack [26].

However, ECMAScript 5 Strict mode, now supported

by most browsers, makes the prospect of safe re-writing

far more tractable. For instance, SES [43], one promis-

ing approach with solid theoretical foundations, can now

be implemented in about 200 lines of JavaScript. Though

SES is not compatible with popular JavaScript libraries

such as jQuery, this may well change. In our prelimi-

nary experimentation with Caja [28], a system which in-

fluenced SES, we successfully sandboxed VC responses

in a similar fashion to our browser extension. Hence, if

we cannot get traction from the browser vendors with our

custom HTTP header, in the future we will experiment

with a server-side filter that parses and regenerates HTML

(so as to sanitize URLs in src and href attributes), and

enforces JavaScript confinement with SES.

Query interface Hails queries are limited to expres-

sions on keys. By separating keys from elements, the

decision to permit a query is simple: if a Hails compo-

nent can read from the database collection, it may per-

form a key-based query. This limited interface is sufficient

for many VCs, which may perform further refinement of

query results by inspecting labeled fields in their own ex-

ecution contexts.

For larger datasets, better performance would result

from filtering on all relevant fields in the underlying

database system itself. Additionally, this would obviate

the need to reason about the security semantics of keys.

However, providing this more-general interface to a Hails

application would require sensitivity to label policies in-

side the query engine. Since Hails builds atop MongoDB,

which provides a JavaScript interface, we hope to compile

policies to code that can implement the necessary label-

checking logic.

8 Related Work

Information flow control and web applications A se-

ries of work based on Jif addresses security in web ap-

plications. SIF (Servlet Information Flow) is a framework

that essentially allows programmers to write their web ap-

plications as Servlets in Jif [9]. Swift [8], based on Jif/s-

plit [45, 47], compiles Jif-like code for web applications

into JavaScript code running on the client-side and Java

code running on the server by applying a clever partition-

ing algorithm. SIF and Swift do not support information

flow control with databases or untrusted executables; on

the other hand, Hails provides weak security guarantees

on the client side.

Ur/Web [6] is a domain specific language for web appli-

cation development that includes a static information flow

analysis called UrFlow. Policies are expressed in the form

of SQL queries and while statically enforced, can depend



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 59

on dynamic data from the database. Security can also be

enforced on the client side in a similar manner to Swift,

with Ur/Web compiling to both the server and client. A

crucial difference from Hails is that Ur/Web does not aim

to support a platform architecture consisting of mutually

distrustful applications as Hails does. Moreover, Hails is

more amendable to extensions such as executing untrusted

binaries or scaling to a distributed setting.

Logical attestation [37] allows specifying a security

policy in first-order logic and the system ensures that the

policy is obeyed by all server-side components. This sys-

tem was implemented as a new OS, called Nexus. Hails’s

DC labels are similar to Nexus’ logical attestation, but

based on a simpler logic, namely propositional logic. A

crucial difference between the Nexus OS [37] and Hails

is that we provide very fine grained labeling and a frame-

work for separating data-manipulating code from other

application logic at the language level. For a web frame-

work, fine grained policies are desirable; the language-

level approach also addresses the limitations of cobufs

used in Nexus [37]. Moreover, requiring users to install

a new OS as opposed to a library is not always feasible.

Nevertheless, their work is very much complimentary:

GitStar can potentially use Nexus to execute untrusted ex-

ecutables in an environment that is less restricting that our

Linux jail (e.g., it could have network access as directed

by Nexus).

The closest related work to Hails is W5 [18]. Similar to

Hails, they propose a separation of user data and policies

(MPs), from from the application logic (VCs). Moreover,

they propose an architecture that, like Hails, uses IFC to

address issues with current website architectures. W5’s

design is structured around OS-level IFC systems. This

approach is less flexible in being coarser grained, but, like

Nexus, complimentary. A distinguishing factor from W5

is our ability to report on the implementation and evalua-

tion of production system.

Trust management Trust Management is an approach

to distributed access control and authorization, popular-

ized in [2]. Related work includes [1, 3, 12, 21, 22]. One

central idea in trust management, which we follow in the

present paper, is to separate policy from other components

of the system. However, trust management makes access

control decisions based on policy supplied by multiple

parties; in contrast, our approach draws on information

flow concepts, avoiding the need for access requests and

grant/deny decisions.

Persistent storage Li and Zdancewic [23] enforce in-

formation flow control in PHP programs that interact with

a relational database. They statically indicate the types of

the input fields and the results of a predetermined num-

ber of database queries. In contrast, Hails allows arbitrary

queries on keys and automatically infers the security lev-

els of the returned results.

Extending Jif, Fabric [24] is an IFC language that is

used to build distributed programs with support for data

stores and transactions. Fabric safely stores objects, with

exactly one security label, into a persistent storage con-

sisting of a collection of objects. Different from Fabric,

Hails store units (documents) can have different security

labels for individual elements. Like Fabric, Hails can only

fetch documents based on key fields.

BStore [4] separates application and data storage code

in a similar fashion to Hails’s separation of code into VCs

and MPs. Their abstraction is at the file system granu-

larity, enforcing policies by associating labels with files.

Our main contribution provides a mechanism for associ-

ating labels with finer grained objects—namely Haskell

values. We believe that BStore is complimentary since

they address similar issues, but on the client side.

9 Conclusion

Ad-hoc mechanisms based on access control lists are an

awkward fit for modern web frameworks that incorporate

third-party software components but must protect user

data from inappropriate modification or sharing. By ap-

plying confinement mechanisms at the language, OS, and

browser levels, Hails allows mutually-untrusted applica-

tions to interact safely. Because the framework promotes

data-flow policies to first-class status, authors may spec-

ify policy concisely in one place and be assured that the

desired constraints on confidentiality and integrity are en-

forced across all components in the system, in a manda-

tory fashion, whatever their quality or provenance.

As a demonstration of the expressiveness of Hails,

we built a production system, GitStar, whose central

function of hosting source-control repositories with user-

configurable sharing is enriched by various third-party

applications for viewing documents and collaborating

within and between development projects. Through our

active use of this system and the experience of other de-

velopers who built VCs and MPs for it, we were able to

confirm the ability of the framework to support a modular

system of heterogeneously-trusted software components

that nevertheless can enforce flexible data-protection poli-

cies demanded by real-world users.

Acknowledgments

We thank Amy Shen, Eric Stratmann, Ashwin Siripurapu,

and Enzo Haussecker for sharing their Hails development

experience with us. We thank Diego Ongaro, Mike Piatek,



60 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Justine Sherry, Joe Zimmerman, our shepard Jon Howell

and the anonymous reviewers for their helpful comments

on earlier drafts of this paper. This work was funded by

DARPA CRASH under contract #N66001-10-2-4088, by

multiple gifts from Google, and by the Swedish research

agency VR and STINT. Deian Stefan is supported by the

DoD through the NDSEG Fellowship Program.

References
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access

control in distributed systems. ACM Transactions on Programming Lan-

guages and Systems, 15(4):706–734, Oct. 1993.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages

164–173, 1996.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote

Trust-Management System Version 2. RFC 2704 (Informational), Sept.

1999. URL http://www.ietf.org/rfc/rfc2704.txt.

[4] R. Chandra, P. Gupta, and N. Zeldovich. Separating web applications from

user data storage with BSTORE. In Proceedings of the 2010 USENIX con-

ference on Web application development, pages 1–1, 2010.

[5] W. Cheng, D. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling, D. Cur-

tis, L. Shrira, and B. Liskov. Abstractions for usable information flow control

in Aeolus. In Proceedings of the 2012 USENIX Annual Technical Confer-

ence, 2012.

[6] A. Chlipala. Static checking of dynamically-varying security policies in

database-backed applications. In Proceedings of the 9th USENIX Sympo-

sium on Operating Systems Design and Implementation, OSDI’10, 2010.

[7] K. Chodorow and M. Dirolf. MongoDB: the definitive guide. O’Reilly Me-

dia, Inc., 2010.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.

Secure web applications via automatic partitioning. pages 31–44, Oct. 2007.

[9] S. Chong, K. Vikram, and A. C. Myers. Sif: Enforcing confidentiality and

integrity in web applications. In Proc. USENIX Security Symposium, pages

1–16, Aug. 2007.

[10] M. B. Consulting. Jetty webserver, March 2012. http://jetty.
codehaus.org/jetty/.

[11] D. Crockford. Making JavaScript safe for advertising. http://adsafe.

org/.

[12] J. DeTreville. Binder, a logic-based security language. In Proceedings of

the 2002 IEEE Symposium on Security and Privacy, pages 105–113. IEEE

Computer Society Press, May 2002.

[13] Facebook. Fbjs (Facebook JavaScript). http://developers.facebook.

com/docs/fbjs/.

[14] Google. Google code prettify, September 2012. http://code.google.
com/p/google-code-prettify/.

[15] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. Excep-

tionally available dynamic IFC. Submitted to POPL, July 2012.

[16] S. Isaacs. Microsoft web sandbox. http://www.websandbox.org/.

[17] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and

R. Morris. Information flow control for standard OS abstractions. In Pro-

ceedings of the 21st Symposium on Operating Systems Principles, October

2007.

[18] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M. Walfish. A World Wide

Web Without Walls. In 6th ACM Workshop on Hot Topics in Networking

(Hotnets), Atlanta, GA, November 2007.

[19] D. Larochelle and D. Evans. Statically detecting likely buffer overflow vul-

nerabilities. In USENIX Security Symposium, August 2001.

[20] L. Latif. Github suffers a Ruby on Rails public key vulnerability, March

2012. http://www.theinquirer.net/inquirer/news/2157093/
github-suffers-ruby-rails-public-key-vulnerability.

[21] N. Li and J. C. Mitchell. RT: A role-based trust-management framework.

In The Third DARPA Information Survivability Conference and Exposition

(DISCEX III). IEEE Computer Society Press, Apr. 2003.

[22] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain

discovery in trust management. Journal of Computer Security, 11(1):35–86,

Feb. 2003.

[23] P. Li and S. Zdancewic. Practical information-flow control in web-based in-

formation systems. In Proceedings of the 18th IEEE workshop on Computer

Security Foundations. IEEE Computer Society, 2005.

[24] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, , and A. C. Myers. Fabric:

A platform for secure distributed computation and storage. In Proceedings

of the 22nd ACM Symposium on Operating Systems Principles, Big Sky, MT,

October 2009.

[25] J. MacFarlane. Pandoc:a universal document converter. http://

johnmacfarlane.net/pandoc/.

[26] S. Maffeis and A. Taly. Language-based isolation of untrusted javascript.

In Computer Security Foundations Symposium, 2009. CSF’09. 22nd IEEE,

pages 77–91, 2009.

[27] J. Mayer and J. Mitchell. Third-party web tracking: Policy and technology.

In Security and Privacy (SP), 2012 IEEE Symposium on, pages 413–427,

2012.

[28] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active

content in sanitized javascript. http://google-caja.googlecode.com/
files/caja-spec-2008-06-07.pdf, June 2008.

[29] N. Mitchell. HLint Manual. http://community.haskell.org/~ndm/

darcs/hlint/hlint.htm.

[30] B. Montagu, B. Pierce, R. Pollack, and A. Surée. A theory of information-

flow labels. Draft, July, 2012.

[31] D. Mosberger and T. Jin. httperf-a tool for measuring web server perfor-

mance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31–37,

1998.

[32] A. C. Myers and B. Liskov. A decentralized model for information flow

control. In Proceedings of the 16th ACM symposium on Operating systems

principles, pages 129–142, 1997.

[33] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label

model. ACM Transactions on Computer Systems, 9(4):410–442, October

2000.

[34] T. Preston-Werner. Public key security vulnerability and mitiga-

tion, March 2012. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation.

[35] J. H. Saltzer and M. D. Schroeder. The protection of information in computer

systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[36] Sinatra. Sinatra, September 2012. http://www.sinatrarb.com/.

[37] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams, and

F. Schneider. Logical attestation: an authorization architecture for trustwor-

thy computing. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, pages 249–264, 2011.

[38] E. Steel and G. Fowler. Facebook in privacy breach. The Wall Street Journal,

18, October 2010.

[39] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction category

labels. In Proceedings of the NordSec 2011 Conference, October 2011.

[40] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic

information flow control in Haskell. In Proceedings of the 4th Symposium

on Haskell, pages 95–106, September 2011.

[41] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Mazières.

Addressing covert termination and timing channels in concurrent informa-

tion flow systems. In The 17th ACM SIGPLAN International Conference on

Functional Programming (ICFP), 2012.

[42] B. Sterne, M. Corporation, A. Barg, and G. Inc. Content security policy,

May 2012. https://dvcs.w3.org/hg/content-security-policy/
raw-file/tip/csp-specification.dev.html.

[43] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated

analysis of security-critical javascript APIs. In IEEE Symposium on Security

and Privacy, 2011.

[44] D. Terei, S. Marlow, S. P. Jones, , and D. Mazières. Safe Haskell. In Pro-

ceedings of the 5th Symposium on Haskell, September 2012.

[45] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Untrusted hosts and

confidentiality: Secure program partitioning. Oct. 2001.

[46] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making in-

formation flow explicit in HiStar. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation, pages 263–278, Seattle, WA,

November 2006.

[47] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and

partitioning to build secure distributed systems. In Proceedings of the 2003

IEEE Symposium on Security and Privacy, SP ’03, Washington, DC, USA,

2003. IEEE Computer Society.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 61

Eternal Sunshine of the Spotless Machine:
Protecting Privacy with Ephemeral Channels

Alan M. Dunn Michael Z. Lee Suman Jana Sangman Kim Mark Silberstein
Yuanzhong Xu Vitaly Shmatikov Emmett Witchel

The University of Texas at Austin

Abstract
Modern systems keep long memories. As we show in
this paper, an adversary who gains access to a Linux
system, even one that implements secure deallocation,
can recover the contents of applications’ windows, au-
dio buffers, and data remaining in device drivers—long
after the applications have terminated.

We design and implement Lacuna, a system that al-
lows users to run programs in “private sessions.” After
the session is over, all memories of its execution are
erased. The key abstraction in Lacuna is an ephemeral
channel, which allows the protected program to talk to
peripheral devices while making it possible to delete
the memories of this communication from the host. La-
cuna can run unmodified applications that use graphics,
sound, USB input devices, and the network, with only
20 percentage points of additional CPU utilization.

1. Introduction
Computers keep memories of users’ activities—whether
users want it or not. A political dissident may want to
upload text and photos to a social media site, watch a
forbidden video, or have a voice-over-IP conversation
without leaving incriminating evidence on her laptop.
A biomedical researcher may want to read a patient’s
file or run a data-mining computation on a database of
clinical histories and then erase all traces of the sensitive
data from his computer. You, the reader, may wish to
browse a medical, adult, or some other sensitive website
without your machine keeping a record of the visit.

None of the above are possible in modern computers.
Traces of users’ activities remain in application and OS
memory, file systems (through both direct and indirect
channels such as OS swap), device drivers, memories
of peripheral devices, etc. [7, 12, 17, 56]. Even when
applications such as Web browsers explicitly support
“private” or “incognito” mode, intended to leave no
evidence of users’ activities on the host machine, they
fail to achieve their objective because traces are kept by
system components outside the application’s control [1].

Secure memory deallocation (the eager clearing of
deallocated memory) [8] and secure file deletion [2,
4, 23] do not completely solve the problem because
they do not address the issue of a user’s data remain-
ing in long-lived shared servers (including the OS) on
that user’s machine. We show how to recover sensitive

data—including screen images of private documents
and SSH sessions—from memory that is not controlled
by the application and remains allocated even after the
application terminates: memory of the X server, kernel
device drivers, and the mixing buffer of the PulseAu-
dio audio server (see § 2). Furthermore, the PaX patch,
a common implementation of secure deallocation for
Linux [37], does not apply it pervasively and leaves
sensitive data, such as buffer cache pages, in memory.

In this paper, we describe the design and implementa-
tion of Lacuna, a system that protects privacy by erasing
all memories of the user’s activities from the host ma-
chine. Inspired by the “private mode” in Web browsers,
Lacuna enables a “private session” abstraction for the
whole system. The user may start multiple private ses-
sions, which run concurrently with each other and with
non-private computer activities. Within a private ses-
sion, the user may browse the Web, read documents,
watch video, or listen to audio. Once the private ses-
sion ends, all evidence, including application memory,
keystrokes, file data, and IP addresses of network con-
nections, is destroyed or made unrecoverable.

We use the term forensic deniability for the novel
privacy property provided by Lacuna: after the program
has terminated, an adversary with complete control of
the system and ability to threaten or coerce the user,
cannot recover any state generated by the program.

Lacuna executes private sessions in a virtual machine
(VM) under a modified QEMU-KVM hypervisor on a
modified host Linux kernel. Using a VM helps protect
applications that consist of many executables communi-
cating via inter-process communication (IPC), e.g., most
modern Web browsers.

After the VM is terminated, Lacuna erases its state
and all memories of its interaction with the devices. To
make the latter task tractable, Lacuna introduces a new
system abstraction, ephemeral channels. We support
ephemeral channels of two types. Encrypted channels
encrypt all data and erase the key when the channel is
destroyed. Hardware channels transfer data using hard-
ware, leaving no trace in host software—for example, by
having a guest OS directly read and write a hardware-
virtualized NIC. In both cases, application data is ex-
posed to hundreds of lines of code rather than millions,
making secure erasure feasible.

In summary, we make the following contributions:

1



62 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1. Demonstrate how sensitive data from terminated ap-
plications persists in the OS kernel and user-level
servers. This motivates forensic deniability as an in-
teresting privacy property that merits system support.

2. Design and implement ephemeral channels, an ab-
straction that allows a host kernel and hypervisor to
erase memories of programs executed within a VM.

3. Evaluate a full-system Lacuna prototype, based on
Linux and QEMU-KVM, that supports any Linux or
Windows program —including Web browsers, PDF
readers, and VoIP clients—and provides forensic de-
niability for workloads simultaneously accessing the
display, audio, USB keyboards, mice, and the net-
work, with minimal performance cost, e.g., 20 per-
centage points of additional CPU utilization.

2. Remembrance of things past
In this section, we describe two new attacks that re-
cover screen and audio outputs of applications after they
terminate. These outputs remain in allocated buffers at
user and kernel level, thus even properly implemented
secure deallocation would have not erased them. We
also show that a popular implementation of secure deal-
location (the Linux PaX patch) does not implement it
completely, leaving sensitive application data in system
memory caches and compromising forensic deniability.

2.1 Display
The following experiments were conducted on a recent
version of the Linux graphics stack: X.org X server
1.10.6 (referred to as X below), Nouveau open-source
NVIDIA GPU DRI2 module 0.0.16, kernel module
1.0.0, and Linux 3.3.0 with the PaX patch.

EXA caches in X server. Figure 1 is a visualization of
a particular data structure found in X’s heap after all ap-
plications terminated and no open windows remain on
the screen. It shows the screen outputs of several ap-
plications—an SSH client, a PDF viewer, and a Web
browser—that were not invoked concurrently and ter-
minated at different times.

The availability of the entire visual state of a window
from a terminated application within the memory of the
X server illustrates a general point. Modern systems
have deep software stacks that can retain the data of even
“secure” programs running on top of them.

In this specific case, the X server allocates memory
for its own use1 as part of the EXA acceleration layer, a
standard part of the modern X server architecture used
by many open-source GPU drivers. EXA accelerates 2D
graphical operations performed during screen updates

1 exaPrepareAccessReg mixed() allocates memory for each
pixel on the screen (file exa/exa migration mixed.c, line 203). The
pointer to the memory is stored in the Client data structure for X’s
own X client and referenced from the global array of pointers to the
Client data structures for all active X clients.

Figure 1. The display state of recently used applica-
tions cached in the X server after their termination.

when application windows are moved or their visibil-
ity changes. EXA uses the memory allocated by the X
server as a cache—for example, to cache the bitmap rep-
resentation of window contents when part of the window
is obscured. When an occluding window is relocated,
the exposed part of the screen is recovered by fetching
the bitmap from the EXA cache instead of redrawing the
entire application window (assuming that the window’s
contents are unchanged). The cache is not invalidated
when an application terminates, and is kept allocated
until the last X client terminates. Typically, the last X
client is an X window manager whose termination coin-
cides with the termination of the X server itself.

The EXA subsystem cache contains desktop contents
only for certain window managers which employ 2D
acceleration, such as TWM and FVMW2. We also re-
covered window bitmaps from an X server without any
window manager. With Xfce 4 and the Gnome/Unity en-
vironments, however, this memory buffer contains only
a static desktop wallpaper image. Furthermore, we ob-
served this leak when using the open-source Nouveau
graphics driver deployed by all major Linux distribu-
tions, but not with the proprietary NVIDIA driver be-
cause the latter does not use the EXA buffer.

TTM DMA driver memory pool. Window contents of
terminated applications can also be retrieved from ker-
nel memory, in a way that does not depend on X’s user-
space behavior. We exploit the TTM module, a gen-
eral memory manager for a Direct Rendering Manager
(DRM)2 subsystem used by most modern open-source
GPU drivers in Linux.

The TTM module manages a DMA memory pool for
transferring data between the host and GPU memories3.

2 http://dri.freedesktop.org/wiki/DRM
3 See drivers/gpu/drm/ttm/ttm page alloc dma.c in the Linux kernel
source.

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 63

Scanning the pages in this memory pool reveals bitmaps
rendered on the screen by previously terminated appli-
cations, including the QEMU VM and VNC (used for
remote access to graphical desktops).

This technique works for the Gnome/Unity environ-
ment (the current Ubuntu default) and is likely indepen-
dent of the choice of window manager because all of
them use the kernel modules. The lifetime of data re-
covered this way is measured in hours if the system is
idle, but it is sensitive to the churn rate of windows on
the desktop and applications’ behavior. For example, the
display contents of a terminated VM remain in memory
almost intact after running various desktop applications,
such as terminal emulator and word processor, that do
relatively little image rendering. Only about half of the
contents remain after invoking a new VM instance, but
some remnants survive all the way until the DMA mem-
ory pool is cleared as a result of the X server’s termina-
tion or virtual console switch.

We also found a similar leak with the proprietary
NVIDIA driver when displaying static images outside
the QEMU VM. Its lifetime was limited to about 10
minutes. Without the driver’s source code, however, we
are unable to identify the exact reasons for the leak.

2.2 Audio
Most popular Linux distributions use the PulseAudio
server, which provides a uniform interface for advanced
audio functions like mixing and resampling. PulseAudio
uses shared memory segments of at most 64MB to com-
municate with applications. These segments are allo-
cated when applications create “PulseAudio streams” by
calling pa simple new and pa stream new. If an
application crashes or exits without freeing its segment
via pa simple free or pa stream free4, its au-
dio output remains in PulseAudio’s memory. PulseAu-
dio lazily garbage-collects segments whose owners have
exited, but only when a new shared segment is mapped.

Sound streams recovered from PulseAudio shared
segments after the application terminated are noisy be-
cause the PulseAudio client library stores memory man-
agement metadata inline with stream contents in the
same segment.5 Nevertheless, we were able to recover
up to six seconds of audio generated by Skype (suffi-
cient to reveal sensitive information about the conversa-
tion and its participants) and music players like mplayer.
In general, duration of the recovered audio depends on
the application’s and input file’s sampling rate.

2.3 “Secure” deallocation that isn’t
System caches. Not all system memory caches are
explicitly freed when no longer in use, thus secure deal-

4 See src/pulse/stream.c and src/pulse/simple.c in the PulseAudio
source.
5 See src/pulsecore/memblock.c in the PulseAudio source.

location is not sufficient for forensic deniability. For
example, PaX leaves file data read from disk in the sys-
tem buffer cache because those pages are not freed on
program exit. Buffer cache pages compromise foren-
sic deniability even for programs inside a VM. We ran
LibreOffice in an Ubuntu 11.10 guest VM on a host
without LibreOffice installed, then shut down the VM
and dumped the host’s physical memory. Examination
of the memory image revealed symbol names from
the libi18nisolang1gcc3.so library, disclosing
(with the help of apt-file) that LibreOffice had run.

Network data. Contrary to the advice from [8], PaX
does not clean sk buff structures which store network
packets. In general, PaX does not appear to eagerly erase
any kmem cache memory at all, which can completely
compromise forensic deniability. For example, we vis-
ited websites with Google Chrome in private mode run-
ning inside a VM with NAT-mode networking on a PaX-
enabled host. After closing Chrome and shutting down
the VM, a physical memory dump revealed complete
packets with IP, TCP, and HTTP headers.

3. Overview
The purpose of Lacuna is to execute applications within
private sessions, then erase all memories of execution
once the session is over. Lacuna runs applications in a
VM which confines their inter-process communications.
Applications, however, must interact with the user and
outside world via peripheral devices. If an application’s
data leaks into the memories of the kernel or shared,
user-level servers on the host, erasing it after the appli-
cation terminates becomes difficult or even impossible.

A key contribution of Lacuna is the ephemeral chan-
nel abstraction, depicted in Figure 2. Ephemeral chan-
nels connect the VM to hardware or small bits of soft-
ware so that only the endpoints see the data from private
sessions. The bulk of the kernel and user-level server
code does not see this data except possibly in encrypted
form. Ephemeral channels facilitate secure erasure af-
ter a private session is over because the unencrypted
data from the session (1) is confined into a few easy-
to-inspect paths, and (2) leaves the system only through
a few well-defined endpoints located as close as possible
to the hardware.

3.1 Usability properties
Run private and non-private applications concur-
rently. Users can perform sensitive tasks within a pri-
vate session concurrently with non-private tasks. For
example, a user can fill out a medical questionnaire or
visit her bank while continuing to poll for new email or
listening to music from a cloud service.

Incur extra costs only for private applications. La-
cuna is “pay as you go.” If the user is not concerned
about some application (for example, a computer game)

3



64 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 2. Overview of ephemeral channels. Sensitive
data flow is shown for both types of channels. Hardware
ephemeral channels connect guest system software di-
rectly to hardware, while encrypted ephemeral channels
connect guest system software to small software proxies
on the host or peripheral device. Black boxes represent
unencrypted data, white boxes encrypted data.

leaving its data on her computer, the application exe-
cutes directly on the host OS and Lacuna does not im-
pose a performance overhead.

Minimize application, VM, and guest OS changes.
To implement ephemeral channels, Lacuna must change
the host OS and the virtual machine manager (VMM),
but it supports completely unmodified guest OSes and
applications. We were able to run Lacuna with a Mi-
crosoft Windows guest and watch streaming video using
Internet Explorer. However, in some cases minor modi-
fications to the guest OS yield privacy and performance
benefits (e.g., §5.3.3).

Improve with hardware support but keep legacy com-
patibility. Ephemeral channels benefit from special-
ized hardware. For example, single root I/O virtu-
alization (SR-IOV) network cards enable hardware
ephemeral channels for network packets. However, de-
vice support for virtualization is not yet commonplace;
SR-IOV is predominantly available in server-class net-
work cards. Lacuna is designed to take advantage of
hardware support when it exists, but also works on older
systems that lack such support.

Don’t interfere with VM-based security techniques.
Users can augment the security of an application be-
cause of its encapsulation in a VM, and Lacuna will not
interfere. For example, a user can wrap a Web browser
into a Lacuna VM confined by iptables so that it
can connect only to the range of IP addresses associated
with a particular bank.

Allow user to revoke protection from certain files. For
usability, Lacuna lets users save files from a private
session into the host system. This revocation of privacy

protection requires the user to explicitly identify the file
via a trusted dialog box. Such a dialog, which executes
under the control and with the privileges of the VMM
(not the guest OS), is often called a “powerbox” [45].
Lacuna also supports explicit, user-directed file import
from the host into a private session, but hides neither the
fact that import took place, nor the imported data.

3.2 Privacy properties
Our threat model is similar to the “private mode” in Web
browsers, which is familiar to many users and matches
their intuitive understanding of what it means for one’s
computer activities to remain private.

Suppose the user ends a private session at time Tuser,
all of its memories are erased by time Tclean, and the
OS reports the process exited at Texit (where Texit >
Tclean > Tuser). At time T > Texit, the computer is
seized by a local attacker who gains complete control
of the entire system, including the OS.

This adversary should not be able to extract any us-
able evidence of activities conducted in a private ses-
sion, except (1) the fact that the machine ran a private
session at some point in the past (but not which pro-
grams were executed during the session), and (2) which
devices were used during the session. He should not
be able to answer even binary questions (“Did the user
watch this video?”, “Did she browse that website?”, etc.)
any better than by random guessing. We refer to this
property as forensic deniability because it allows the
user to plausibly deny any computer activity that she
may have engaged in while in a private session.

Forensic deniability must be coercion-resistant (this
property is sometimes called “rubber-hose resistance”):
the user herself should not be able recover any evidence
from her private sessions. Lacuna does not persist se-
crets from one private session to another (e.g., a pro-
gram in a Lacuna VM cannot save encrypted state to be
reused during its next invocation). The attacker controls
the host, and if a secret is kept by the user instead—e.g.,
as a password or in a hardware device—she can be co-
erced to open the persistent state. To avoid keeping se-
crets with the user, the contents of the initial VM image
are not protected for privacy or integrity.

Lacuna aims to minimize the window from Tuser

(user completes the private session) to Tclean (all mem-
ories are erased). For example, we rejected any design
that requires searching the disk as part of sanitization.

3.3 Out-of-scope threats
In keeping with the browsers’ “private mode” abstrac-
tion, Lacuna is not intended to protect users’ privacy
against concurrent attackers. If the adversary runs on
the host concurrently with a private session (e.g., the
host has been compromised by malware before the pri-
vate session terminated), he can observe the user’s data
in memory and learn everything. We must also assume

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 65

that the host operating system is not malicious. A mali-
cious or “pathologically buggy” OS could accidentally
persist the contents of memory, expose arbitrary secrets,
and not erase them when the private session terminates.

The concept of a “trusted computing base” (TCB) is
typically used in contexts where trusted and untrusted
components coexist on the same machine. It is not ap-
plicable in our threat model, where the attacker gains
access to the machine after the private session is over.
Before the session terminates, the TCB for Lacuna is
the entire system; after Tclean, the TCB is empty—any
software can be malicious. In Section 4.5, we discuss
resistance of Lacuna to side-channel attacks.

Lacuna makes its best effort to erase the peripher-
als’ memories, but it cannot prevent them from keeping
state that is not erasable via public APIs. For example,
Lacuna does not protect against a hypothetical GPU or
NIC that logs data in hardware and makes the logs avail-
able via an undocumented protocol.

Lacuna does not protect sensitive data stored outside
the system. For example, websites may keep evidence of
users’ visits and reveal it to third parties. An adversary
who seizes a router or modem that caches IP addresses
or DNS queries may recover traces of network activity
even after Tclean. Note that some local attackers—for
example, malware that compromises the machine after
the private session is over—do not have access to the
state kept in the network. Users concerned about net-
work surveillance can run Tor [53] inside a Lacuna VM.

4. Design
This section details the design of Lacuna. In the follow-
ing, “VMM” refers to Lacuna’s virtual machine man-
ager (which is a modified QEMU VMM in our proto-
type).

4.1 Constructing ephemeral channels
A Lacuna VM communicates with peripheral devices
via ephemeral channels. Lacuna uses two mechanisms
to construct ephemeral channels: encryption and hard-
ware. Table 1 lists all device types supported by our La-
cuna prototype and the corresponding channels.

Lacuna takes advantage of recent developments in
hardware. Hardware support for efficient virtualization
(e.g., nested page tables) allows fast execution of private
sessions in a VM, confining most forms of inter-process
communications. Lacuna relies on a programmable
GPU and obtains great performance benefits from hard-
ware support for encryption (§ 6). Ephemeral channels
based on dedicated hardware are only practical with an
IOMMU, otherwise a buggy guest kernel could dam-
age the host. Hardware ephemeral channels also benefit
from hardware virtualized peripheral devices which are
just becoming widely available.

Device Endpoints (� VMM, � host) HW
of the ephemeral channel

Display � Frame buffer
� CUDA routine on GPU

GPGPU

Audio � Sound card
� Lacuna software mixer

None

Network � Network card
� NIC driver

SR-IOV
NICs

USB input
devices

� USB controller
� USB generic host controller
driver

VT-d/
IOMMU

Table 1. Ephemeral channels implemented by Lacuna
and the corresponding hardware support, if any.

Hardware channels. A hardware ephemeral channel
can use either dedicated hardware, or hardware virtual-
ization support. To assign exclusive control of hardware
to the guest kernel, Lacuna uses peripheral component
interconnect (PCI) device assignment. Assigned devices
are not available to the host, thus host drivers need not
be modified. Because the host never handles the data
flowing to or from assigned devices (not even in en-
crypted form), this data leaves no trace in the host. Dedi-
cated hardware sometimes makes sense (e.g., USB con-
trollers), but can be expensive (e.g., multiple network
cards), awkward to use (e.g., multiple keyboards), or
even impossible (e.g., physical limitations on the num-
ber or topology of peripherals).

When available, hardware support for virtualization
combines the performance of dedicated hardware with
the economy and convenience of dynamic partitioning.
For example, a single-root I/O virtualization (SR-IOV)
network interface card (NIC) appears to software as
multiple NICs, each of which can be directly assigned to
a guest. Hardware virtualization is great when available,
but is not always an option, thus for some devices—for
example, GPUs and audio devices—Lacuna constructs
an encrypted channel instead.

Encrypted channels. Encrypted channels use standard
key exchange and encryption to establish a trusted chan-
nel over an untrusted medium, just like encryption is
used to secure network communication. An encrypted
channel connects the VMM with a small software proxy
for each piece of hardware. Only the VMM process and
the proxy handle raw data from the private session, the
rest of the system handles only encrypted data. When
the VM terminates, the OS zeroes its memory, the proxy
zeroes its own memory (if it has one), and the symmet-
ric key that encrypted the data in the channel is deleted.
Deleting the key cryptographically erases the data,
making it unrecoverable [4].

The software proxies are different for each class of
devices, but most Lacuna support is relatively device-

5



66 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

independent and can be used for a variety of hardware
without the need to port low-level driver changes. For
example, Lacuna modifies the generic USB host con-
troller driver to encrypt packets from USB input devices;
the hypervisor decrypts the packets just before the vir-
tual keyboard device delivers them to the guest kernel.

One important question is whether we plugged all
possible leaks in the software that handles unencrypted
data. We believe we did, but that is not the point. The
system abstraction of ephemeral channels reduces the
auditing burden from impossible to feasible (i.e., about
1,000 lines in our prototype according to Table 3).

4.2 Ephemeral channels for specific device types
Our Lacuna prototype provides ephemeral channels for
display, audio, USB, and the network.

4.2.1 Display
All accesses by applications to a graphics card in a typ-
ical Linux desktop system are controlled by the X server.
X processes display requests and sends hardware-specific
commands and data to the GPU kernel-mode driver for
rendering. Even if a program is running inside a VM,
its graphical output is captured by the VMM and ren-
dered as a bitmap in a standard application window on
the host.6 The memory of the host’s X server may hold
the complete display from the private session, as shown
in Section 2.1. The problem of erasing graphical out-
put is thus not confined to a specific driver, but requires
in-depth analysis of the code of the X server, which is
notorious for its size and complexity.

Lacuna uses an ephemeral channel to remove trust
in all user-level servers and kernel-level drivers for dis-
play data. The VMM encrypts the virtual frame buffer
and sends it directly to GPU memory. GPU memory is
exclusively owned by the GPU and is not directly ad-
dressable from the CPU. Lacuna thus avoids exposure
of the display data to any code running on the CPU such
as GPU libraries, the X server, or the host kernel. The
VMM then invokes Lacuna’s CUDA routine which runs
entirely on the GPU, decrypts the data in GPU memory,
and renders it on the screen via an OpenGL shader. The
unencrypted display data is thus present only in VMM
memory and Lacuna-controlled GPU memory.

4.2.2 Audio
In Lacuna, audio functionality is split between mixing
and everything else (e.g., resampling, equalization, and
sound effects). A guest system processes and mixes its
own audio, then the VMM virtual sound card encrypts
it. To allow multiple VMs to share a single audio device
with each other and with non-private processes, the host
mixes all of these audio streams. Mixing an unlimited
number of audio streams in hardware is not practical and

6 Lacuna does not currently support 3D acceleration inside VMs.

not supported by most sound cards, so Lacuna provides
a hardware-agnostic software mixer that runs on the
host. The mixer decrypts guest audio just before the final
mix is written to the DMA buffer in the host sound card
driver. Each VM has an ephemeral channel for audio
input and another one for audio output. These channels
connect the VMM sound card device with the DMA
buffer in the sound card driver.

4.2.3 USB
Lacuna supports a wide variety of USB input devices—
including, at a minimum, keyboard and mouse7—with
ephemeral channels based on either PCI device assign-
ment (a hardware ephemeral channel), or encrypted
USB passthrough (an encrypted ephemeral channel).

Many USB input peripherals must communicate with
both private and non-private applications, but not at the
same time. For example, the user will not be typing into
both private and non-private windows simultaneously.
Therefore, Lacuna can dynamically switch control of
USB devices between the host and the guest.

Using PCI device assignment, Lacuna can assign an
entire host USB controller to a VM, thus avoiding any
handling of USB data on the host. However, device as-
signment requires an IOMMU. Furthermore, all devices
downstream of the controller (reachable via hubs) are
assigned to the same guest, which may be undesirable.

Using encrypted USB passthrough, Lacuna can switch
between host drivers and thus let the user toggle the des-
tination of input keystrokes between the private VM and
the host. This channel does not require an IOMMU and
allows device assignment at a per-port level.

Lacuna minimizes USB-related code modifications
by using features common across USB versions and de-
vices. The USB passthrough mode requires no modi-
fication to the lowest-level host controller drivers that
control specific USB port hardware on motherboards.
This mode takes advantage of the output format for USB
Human Interface Device (HID) class devices (which in-
clude all keyboards and mice) to determine when to re-
turn device control to the host, but in general can support
any device of this class.

4.2.4 Network
Network support is important for both usability and
privacy. Some of the attacks we consider (e.g., malware
infecting the host after the private session is over) do not
control the network, but can learn private information
from IP headers leaked by the VM.

Lacuna creates an ephemeral channel from the host
NIC driver to the VMM where it delivers the packet
to the virtual network card. This channel can be based
on either encryption, or SR-IOV hardware. Encrypted
ephemeral channels connect to the host in layer 2: each

7 Keyboard input can leak via TTY buffers [7].

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 67

VM connects to a software tap device, which connects
to the NIC via a software bridge. The entire packet, in-
cluding IP (layer-3) header, is encrypted while it passes
through the host. Hardware ephemeral channels based
on SR-IOV network cards give a VM direct control over
a virtual network PCI device in the card hardware that
multiplexes a single network connection.

To minimize the changes to specific device drivers,
we encapsulate most routines for MAC registration and
encryption/decryption in a generic, device-independent
kernel module, privnet. This module checks whether
a MAC address belongs to some VM and encrypts or
decrypts a packet when needed.

4.3 Clearing swap
Some users avoid swap. Ubuntu guidelines, however,
recommend enabling swap [54] to accommodate memory-
hungry programs, support hibernation, prevent program
termination in case of unforeseen disaster, and to al-
low the kernel to manage memory effectively. Lacuna
supports swap for greater usability.

Swapped-out memory must be encrypted lest it leaks
data from a private session. Existing solutions (dm-crypt
in Linux) associate a single, system-wide key with the
entire swap. This is unacceptable in our design because
when a private session ends, the key used to encrypt
this session’s swap must be erased. Erasing the key
would make any data swapped by a concurrent non-
private process undecryptable. There exists a research
system [42] that uses multiple rotating keys, but it must
swap in any live data upon key rotation, with negative
impact on performance.

Lacuna adds metadata so that swap code can recog-
nize pages associated with private sessions. These pages
are not shared and only they are encrypted upon swap.

4.4 Clearing stack memory
The kernel puts sensitive data in stack-allocated vari-
ables that can persist after the function returns [34]. We
take advantage of the fact that 64-bit Linux confines a
kernel thread’s activities to (a) its own kernel stack, and
(b) interrupt and exception stacks. When a private VM
terminates, Lacuna clears the thread’s kernel stack and
sends an inter-processor interrupt (IPI) to clear all per-
core interrupt and exception stacks.

PaX has a mechanism for zeroing the kernel stack on
every return from a system call, but Lacuna does not use
this technique because it has a significant performance
cost, e.g., a 20% drop in TCP throughput over a loop-
back connection in one experiment.

4.5 Mitigating side channels
In this section, we analyze two classes of side channels,
but a comprehensive study of side channels in Linux is
well beyond the scope of this paper. Note that a typical
side-channel attack assumes that the adversary monitors

some aspect of the system concurrently with the pro-
tected program’s execution. In our threat model, how-
ever, the adversary gains access to the system only after
the execution terminates. This dramatically reduces the
bandwidth of side channels because the adversary ob-
serves only a single value, as opposed to a sequence of
values correlated with the program’s execution.

Statistics. Linux keeps various statistics that can po-
tentially compromise forensic deniability. For instance,
/proc/net/dev keeps the number of bytes trans-
ferred by the NIC, while /proc/interrupts keeps
per-device received interrupt counts. These counters are
scattered through kernel code and data structures, mak-
ing it difficult to design a single mitigation strategy.

Low counts mean that the machine has not been used
for certain activities. For example, if the number of bytes
transferred over the network is low, then the machine
has not been used for streaming video. If the number of
keyboard and mouse interrupts is low, then the machine
has not been used to create a PowerPoint presentation.
High counts, on the other hand, may not convey much
useful information about activity in a private session
because all statistics are aggregates since boot.

Device metadata. Lacuna cannot hide that a particular
device was used during a private session, but in-memory
data structures that describe device activity can leak
additional information. For example, the USB request
block contains the length of the USB packet, which may
leak the type of the USB device or the type of data
transferred (e.g., photos have characteristic sizes).

Lacuna eliminates this side channel by carefully ze-
roing all metadata fields.

4.6 Design alternatives
We survey design alternatives that may appear to—but
do not—provide the same guarantees as Lacuna.

“Just use a virtual machine.” Running an application
in a VM and then erasing the VM’s memory when it ex-
its does not provide forensic deniability. As we show in
Section 2, programs running in a VM leave traces in the
host’s data structures, OS swap, and shared user-level
servers. Furthermore, saving data from the protected
program is essential for usability, but requires a secure
dialog (§5.5) that is not a standard feature of VMs.

“Just use secure deallocation.” All of our experi-
ments demonstrating recovery of sensitive data after the
program terminated were conducted on a Linux sys-
tem patched with PaX security modifications. One of
these modifications is secure deallocation: freed kernel
buffers are eagerly scrubbed of their contents. Secure
deallocation does not address the problem of sensitive
data in shared memory that remains allocated on pro-
gram exit, including X, PulseAudio, and the kernel.

7



68 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Additionally, PaX fails to scrub the kernel’s numer-
ous memory caches on deallocation, even though this is
a known data-lifetime hazard [8, 17]. Ephemeral chan-
nels make it easier to implement secure deallocation
correctly and comprehensively by limiting the num-
ber of memory locations potentially containing unen-
crypted program data. Rather than eagerly scrubbing
freed cache memory, which would harm performance
(e.g., over 10% reduction in throughput for our TCP
stream to localhost experiment), we manually audit the
(few) Lacuna code pathways that require secure dele-
tion to make sure they don’t use memory caches. Where
memory caches are unavoidable, unencrypted data is ei-
ther overwritten in place by encrypted data, or (as a last
resort) eagerly erased on being freed.

“Just use hardware.” Recent research [26, 50] pro-
posed comprehensive virtualization in hardware. These
approaches require static partitioning of resources that
would be very unattractive for the home user. For exam-
ple, the number of VMs must be fixed in advance, and
a fixed amount of RAM must be dedicated to each VM
whether it is used or not. By contrast, Lacuna can run
as many concurrent VMs as can be efficiently executed
by the underlying hardware (see §6.9 for empirical scal-
ability measurements). Lacuna, too, can take advantage
of hardware virtualization where available.

“Just reboot the machine.” Rebooting the machine
does not guarantee that no traces of application data
remain on disk or even in RAM [21]. More importantly,
rebooting has an unacceptable impact on usability. For
example, few users would be willing to reboot before
and after every online banking session.

5. Implementation
5.1 VMM setup and teardown
Lacuna builds upon the QEMU-KVM hypervisor and a
kernel patched with the secure deallocation portion of
the PaX patch. Lacuna securely tracks modifications to
the initial VM image via an encrypted diffs file, which is
created when the user starts a private session. To reduce
disk I/O, a small amount of image-modification meta-
data, such as translation tables between sector number
and diffs file offset, is kept in VMM memory and never
written to the diffs file. The rest of the metadata and all
writes to the image are encrypted before they are written
to the diffs file. When a session terminates, the key that
encrypts the diffs file is deleted and memory containing
the VMM address space is zeroed.

In keeping with its threat model, Lacuna does not
persist changes to the VM image. Therefore, software
updates during a private session (e.g., self-updates to a
Web browser) are lost after the session completes.

On teardown, the VMM must erase its image file
from the kernel page cache. We add a flag to the open

Operation Function
init Sets parameters that describe the cryp-

tographic algorithm to be used (e.g., key
size, cipher)

set iv Sets the initialization vector (IV) for a
channel direction

send kex msg Sends a key exchange message and re-
ceives a response

set activation Turns a context on or off—this is
needed when the use of a device that
cannot be multiplexed is toggled be-
tween a VM and the host

destroy Zeroes and frees memory associated
with a context

per backend Answers queries specific to a crypto-
graphic context type (e.g., obtains ids
for kernel cryptographic contexts)

Table 2. Interface for cryptographic contexts.

system call (O PRIVATE) that tracks all virtual disk
images opened by the VMM. On close, all private files
in the page cache are invalidated and zeroed by PaX.

5.2 Encrypted ephemeral channels
To implement encrypted ephemeral channels, the ker-
nel and programmable devices maintain cryptographic
contexts, one for each direction of each device’s logical
communication channel (input from the device or out-
put to the device). Our Lacuna prototype provides kernel
and GPU implementations. For symmetric encryption,
kernel cryptographic contexts use the Linux kernel’s
cryptographic routines, while GPU contexts use our own
implementation of AES. To establish a shared secret key
for each context, Lacuna uses the key exchange por-
tion of TLS 1.1. We ported the relevant parts of the Po-
larSSL [41] cryptographic library (SHA1, MD5, multi-
precision integer support) to run in the kernel.

These contexts are managed from userspace via
our libprivcrypt library; its interface is shown
in Table 2. We modified the QEMU VMM to use
libprivcrypt. On initialization, the VMM creates
cryptographic contexts in the kernel and GPU and es-
tablishes shared parameters (algorithm, IV, secret key),
allowing it to encrypt data destined to these contexts
and decrypt data originating from them. To encrypt and
decrypt, libprivcrypt uses libgcrypt [30] or
ported kernel code and Intel’s AES-NI hardware en-
cryption support.

When a private session terminates, even abnormally
(i.e., from SIGKILL or crash), all cryptographic con-
texts associated with it are zeroed, including those on
the GPU. This, along with zeroing of the VMM’s mem-
ory, ensures that all data that has passed through the
ephemeral channels is cryptographically erased.

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 69

5.3 Ephemeral channels for specific device types
5.3.1 Display
The endpoints of the GPU ephemeral channel are the
VMM’s frame buffer for an emulated graphics card,
which stores the guest’s display image as a bitmap, and
the GPU. The VMM polls the frame buffer, and, upon
each update, encrypts the buffer contents and transfers
the encrypted data to GPU memory. Lacuna then in-
vokes its CUDA routine8 to decrypt the guest’s frame
buffer in the GPU, maps it onto an OpenGL texture, and
renders it on the host’s screen with an OpenGL shader.
The implementation consists of 10 LOC in the QEMU
UI module and SDL library, and an additional QEMU-
linked library for rendering encrypted frame buffers,
with 691 LOC of CPU code for GPU management and
725 lines of GPU decryption and rendering code.

5.3.2 Audio
Lacuna provides output and input audio channels for
each VM and a small (approximately 550 LOC) soft-
ware mixer that directly interacts with the audio hard-
ware’s DMA buffer (§4.2.2). We modified the widely
used Intel HD-audio driver to work with the mixer,
changing fewer than 50 lines of code. This driver works
for both Intel and non-Intel controller chips.9

Lacuna can send sound input to multiple VMs.
For output (playback), the host kernel keeps a sepa-
rate buffer for each VM to write raw encrypted audio.
Linux’s audio drivers provide a callback to update the
pointers indicating where the hardware should fetch the
samples from or where the application (e.g., PulseAu-
dio) should write the samples. Our mixer takes advan-
tage of this mechanism: upon pointer updates, samples
in each encrypted output buffer are decrypted, copied to
the DMA buffer between the old and new application
pointers, and then zeroed in the encrypted output buffer.
The DMA buffer is erased when the VM terminates.

5.3.3 USB
Lacuna’s USB passthrough mode encrypts data in USB
Report Buffers (URBs) as they are passed to system
software from hardware control. Packets destined for the
guest and the host may be interspersed, so Lacuna tracks
which URBs it should encrypt by associating crypto-
graphic contexts with USB device endpoints. An end-
point is one side of a logical channel between a device
and the host controller; communication between a single
device and the controller involves multiple endpoints.

We added 118 lines to the usbcore driver to en-
crypt URBs associated with cryptographic contexts as

8 While our implementation uses CUDA and is compatible only with
NVIDIA GPUs, similar functionality can be also implemented for
AMD GPUs using OpenCL [35].
9 http://www.kernel.org/doc/Documentation/
sound/alsa/HD-Audio.txt

they are returned from hardware-specific host controller
drivers. These URBs are decrypted in the VMM’s vir-
tual USB host controller before they are passed on to the
guest USB subsystem. Our prototype has been tested
only with USB 1.1 and 2.0 devices, but should work
with USB 3.0. It does not support USB mass storage
devices and less common USB device classes (such
as USB audio), but adding this support should require
a reasonably small effort because our mechanism is
largely agnostic to the contents of URBs.

When the user moves her mouse over a private VM’s
display and presses “Left-Control+Left-Alt”, Lacuna
engages a user-level USB driver, devio, to redirect the
keyboard and mouse ports to the VMM.10 The title bar
of the VMM window indicates whether the keyboard
and mouse input are redirected through ephemeral chan-
nels. When they are not redirected, the Lacuna VMM
refuses input to avoid accidental leaks.

The same key combination toggles control of the key-
board and mouse back to the host. The VMM’s virtual
hardware detects the key combination by understanding
the position of modifier key status in data packets com-
mon to USB HID devices. With a hardware ephemeral
USB channel, detecting the combination requires guest
OS modification (119 LOC). With hardware channels,
errors that freeze the guest currently leave no way of
restoring input to the host, but we believe that this lim-
itation is not intrinsic to our architecture (e.g., the host
could run a guest watchdog).

5.3.4 Network
Lacuna VMs are networked in layer 2, enabling encryp-
tion of entire layer-3 packets. Each VM is assigned its
own MAC address controlled by our privnet mod-
ule, which uses cryptographic contexts to do encryption
in Intel’s e1000e driver with 30 lines of glue code.

Outgoing packets are encrypted by the VMM. The
host kernel places them in an sk buff, the Linux net-
work packet data structure. The driver maps each sk -
buff to a DMA address for the NIC to fetch; right
before it tells the NIC to fetch, it queries privnet
whether the packets in the transmit queue come from
a Lacuna VM, and, if so, decrypts them in place.
The driver zeroes sk buffs on receipt of a “trans-
mission complete” interrupt. Because decryption takes
place right before the packets are written into hardware
buffers, packets from a VM cannot be received by the
host (and vice versa) at a local address.

For incoming packets, as soon as the driver receives
the interrupt informing it that packets are transferred
from the NIC to the kernel via DMA, it encrypts the
packets destined for the Lacuna VMs. Encryption is

10 The unmodified QEMU already uses this key combination for ac-
quiring exclusive control of the keyboard, but it takes events from the
X server and does not provide forensic deniability.

9



70 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

done in place and overwrites the original packets. De-
cryption takes place in the VMM.

Although the layer-2 (Ethernet) header is not en-
crypted, its EtherType, an indicator of the layer-3 pro-
tocol it is encapsulating, is modified to prevent a check-
sum failure: a constant is added to it so that the result-
ing value is not recognized by the Linux kernel during
encryption, and subtracted again during decryption. As
a side benefit, this bypasses host IP packet processing,
improving performance (§6.6).

5.4 Encrypted per-process swap
Lacuna adds a new flag, CLONE PRIVATE, to the
clone system call. When this flag is set, the kernel al-
locates a private swap context, generates a random key,
and protects the swap contents for that kernel thread.

When an anonymous page is evicted from memory,
the kernel checks the virtual memory segment metadata
(VMA in Linux) to see whether the page is part of a
private process. If so, the kernel allocates a scratch page
to hold the encrypted data and allocates an entry in a
radix tree to track the private swap context. The tree
is indexed by the kernel’s swap entry so that it can
find the context on swap-in. Our implementation re-uses
much of the existing swap code path. To help distinguish
private pages during normal swap cache clean up, we
add an additional bit in the radix tree to indicate when
a particular entry may be removed and which entries to
purge during process cleanup.

5.5 User-controlled revocation of protection
For usability, Lacuna provides a mechanism that allows
the user to explicitly revoke protection from a file and
save it from a private session to the host, where it may
persist beyond the end of the session. This mechanism
raises a dialog box (“powerbox”) running under the con-
trol and with the privileges of the VMM [45]. This di-
alog enables the user to specify the destination on the
host, thus ensuring that all transfers from a private ses-
sion are explicitly approved by the user.

To implement this mechanism, we made a small
modification (74 lines of code) to the Qt framework11

so that a “Save” dialog box in private VMs presents the
user with an additional option to access a file in the host
file system. When this button is clicked, Qt makes a hy-
percall which causes the VMM to open a “File save”
dialog that lets the user write the file to the host. La-
cuna uses a QEMU virtual serial device to transfer data
between private applications and the host.

For importing data into the private session, Lacuna
provides command-line programs on the guest and host.
The host program writes to a UNIX socket, the VMM
reads it and writes into the same virtual serial device,

11 http://qt.nokia.com/

which is read by the guest program. These import utili-
ties are not currently connected to Qt functionality.

6. Evaluation
We evaluate both the privacy properties and perfor-
mance of Lacuna. We run all benchmarks except switch
latency on a Dell Studio XPS 8100 with a dual-core 3.2
GHz Intel Core i5 CPU, 12 GB of RAM, an NVIDIA
GeForce GTX 470, and an Intel Gigabit CT PCI-E NIC,
running Ubuntu 10.04 desktop edition. The swap parti-
tion is on a 7200 RPM, 250GB hard drive with an 8MB
cache. Switch latency to and from the private environ-
ment is benchmarked on a Lenovo T510 with a dual-
core 2.67 GHz Core i7 CPU and 8GB of RAM, running
Ubuntu 12.04 desktop edition. The Lenovo has a Mi-
crosoft USB keyboard (vendor/device ID 045e:0730)
and mouse (vendor/device ID 045e:00cb), as well as
an IOMMU, which is required for the PCI assignment-
based ephemeral channel. Both machines have AES-NI
and use it for all AES encryption except where indi-
cated. Our Lacuna prototype is based on the Linux 3.0.0
host kernel (with a port of the PaX patch’s CONFIG -
PAX MEMORY SANITIZE option) and QEMU 0.15.1.
The guest VM runs Ubuntu 10.04 desktop edition, with
2 GB RAM and the Linux 3.0.0 kernel to which small
modifications were made to support PCI assignment
(§5.3.3) and the experiments discussed below.

6.1 Validating privacy protection
Following the methodology of [8], we inject 8-byte “to-
kens” into the display, audio, USB, network, and swap
subsystems, then examine physical RAM for these to-
kens afterwards. Without Lacuna (but with QEMU and
PaX), the tokens are present after the applications exit.
With Lacuna, no tokens are found after the private ses-
sion terminates. This experiment is not sufficient to
prove forensic deniability, but it demonstrates that La-
cuna plugs at least the known leaks.

One subtlety occurred with the video driver. We use
the Nouveau open-source driver for the test without the
display ephemeral channel and the NVIDIA proprietary
driver for the test with the channel, because the NVIDIA
driver is required for CUDA execution. To inject to-
kens, we run a program that displays a static bitmap
inside a VM. With the ephemeral channel, no tokens
from the bitmap are found after VM termination. With-
out the channel, we detect the tokens12 after the VM ter-
mination—but not if we use the proprietary driver. This
driver does leak data from other applications, but not
from QEMU. Without the source code, we are unable to
identify the causes for this observed behavior.

12 The tokens are slightly modified due to the display format conver-
sion in QEMU, which adds a zero after every third byte.

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 71

Subsystem LOC
Graphics 0 (725 CUDA)
Sound 200 (out), 108 (in)
USB 414
Network 208

Table 3. Lines of code (LOC) external to QEMU that
handle unencrypted data. Line counts were determined
by manual examination of data paths from interrupt
handler to encryption using SLOCCount [58].

Video Browser LibreOffice
QEMU 32.2± 7.4 25.9± 1.3 8.1± 1.2
Lacuna 49.7± 0.3

(∆17.5)
46.2± 1.5

(∆20.3)
21.1± 0.6

(∆13.0)

Table 4. CPU utilization (%) for benchmarks with en-
crypted network, video, and sound channels. The per-
formance of all benchmarks on Lacuna is identical to
unmodified QEMU. The increase in CPU utilization is
marked with ∆. Averages are calculated over 5 trials
with standard deviations as shown.

6.2 Measuring data exposure
To estimate the potential exposure of private-session
data, Table 3 shows the size of driver code that handles it
unencrypted. The graphics data is not exposed at all be-
cause it is encrypted by the VMM, which then transfers
it directly to the GPU memory and invokes the Lacuna
implementation of the CUDA decryption and GL ren-
dering routines on the GPU (implemented in 725 LOC).

6.3 Full-system benchmarks
We measure the overhead of Lacuna on a number of
full-system tasks: watching a 854 × 480 video with
mplayer across the network, browsing the Alexa top
20 websites, and using LibreOffice, a full-featured of-
fice suite, to create a document with 2,994 characters
and 32 images. We sample CPU utilization at 1 second
intervals. To avoid the effects of VM boot and to capture
application activity, we omit the first 15 samples and re-
port an average of the remaining samples.

The execution times of the video and LibreOffice
benchmarks on Lacuna are within 1% of base QEMU.
The performance of the browser benchmark varies due
to network conditions, but there is no difference in av-
erage execution time. The display—redrawn upon every
contents change at the maximum rate of 63 frames/s—is
not perceptibly sluggish in any of the benchmarks when
using the encrypted GPU channel. Table 4 shows the
CPU utilization of the workloads running on Lacuna and
on unmodified QEMU.

6.4 Clean-up time
The clean-up after a private VM terminates is comprised
of five concurrent tasks:

Clear VM memory. Lacuna uses PaX to zero VM
memory when the VM process exits and frees its address
space. To measure the worst-case window of vulnerabil-
ity, we run a program in the VM that allocates all 2 GB
of available VM memory, then send the VMM a signal
to terminate it and measure the time between signal de-
livery and process exit. Linux does not optimize process
exit, often rescheduling a process during its death. In
10 trials, unmodified Linux required 2.1 ± 0.1 s to ter-
minate a VM. The worst case we measured for Lacuna
(USB passthrough mode with keyboard and mouse) is
2.5± 0.2 s.

Clear buffered disk image. The Lacuna VMM opens
disk image files with a privacy flag so that the kernel
can securely deallocate all buffer cache pages for those
files when the VMM exits without affecting the page
cache contents for concurrent, non-private programs.
Only clean pages need to be deallocated and zeroed be-
cause a private Lacuna session does not persist the mod-
ified disk image. This operation takes 0.111±0.002 s in
our video benchmark.

Clear swap cache memory. Lacuna securely deallo-
cates freed swap cache pages. A benchmark program
allocates 12 GB of memory to force the system to
swap, writing out an average of 677.8 ± 33.4 MB to
the swap partition. However, because the swap cache is
used only for transient pages (those that have not com-
pletely swapped out or swapped in), the average number
of memory pages remaining in the swap cache at pro-
gram termination is only 50 or so (200KB). Clearing
this data takes only 68.9± 44.6 µs.

Clear kernel stacks. Lacuna zeroes the VMM’s kernel
stack, and also notifies and waits for each CPU to zero
their interrupt and exception stacks. In our video bench-
mark, this takes 15.8± 1.15 µs.

Clear GPU memory. Lacuna has a GPU memory
scrubber which uses the CUDA API to allocate all avail-
able GPU memory and overwrites it with zeros. A simi-
lar GPU memory scrubbing technique is used in NCSA
clusters.13 Our scrubber zeroed 1.5GB of GPU memory
in 0.170± 0.005 s.

6.5 Switch time
Table 5 shows how long it takes to switch into a private
session and how the switch time depends on the number
of devices and type of the ephemeral channel(s).

A significant portion of the switch time when using
encrypted USB passthrough results from disabling the

13 http://www.ncsa.illinois.edu/AboutUs/Directorates/ISL/software.html

11



72 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Channel type Switch time (s)
USB passthrough

keyboard only 1.4± 0.2
keyboard + mouse 2.3± 0.2

PCI assignment
keyboard only 2.4± 0.2

keyboard + mouse 3.8± 0.2

Table 5. Switch time for different numbers of peripher-
als and ephemeral channel types (averages over 5 trials).

peripheral USB drivers (0.8± 0.1 s for keyboard alone,
1.0 ± 0.2 s for keyboard and mouse) to allow devio
to take control. This time is affected by the number of
USB devices that must be disconnected. Interestingly,
it is also affected by the complexity of the USB device:
keyboards with media keys often show up as two devices
on the same interface, which necessitates disconnecting
two instances of the peripheral driver.

We noticed an interaction between the guest USB
drivers and QEMU that significantly affects switch time.
Linux’s USB drivers perform two device resets during
device initialization. These resets in the guest are partic-
ularly costly because each results in QEMU performing
an unnecessary (since QEMU has already performed a
reset) unbinding of the devio driver and the reattach-
ment of the device’s initial usbhid driver. Eliminating
QEMU’s action upon these resets cuts this component
of switch time by two thirds.

6.6 Network performance
We benchmark network performance between a private
VM and a gateway connected by a switch: netperf and
ping results are in Table 8, scp and netcat in Table 6.

There are several types of netperf tests. TCP STREAM
uses bulk transfer to measure throughput, the other types
measure latency. TCP RR (Request/Response) tests the
TCP request/respond rate, not including connection es-
tablishment. TCP CC (Connect/Close) measures how
fast the pair of systems can open and close a connec-
tion. TCP CRR (Connect/Request/Response) combines
a connection with a request/response transaction. Ping
measures round-trip time.

File size Transfer time (s)

scp Ephemeral + netcat
AES-NI Software

400MB 8.41 4.28 8.92
800MB 14.96 8.55 17.50

Table 6. netcat and scp test results.

Neither latency, nor throughput is significantly af-
fected when using AES-NI, except for a dip in through-
put for receiving 300 byte packets. For small packets,

No AES-NI PCI
encryption assignment

CPU util (%) 27.7±2.7 36.0±1.6 14.7±4.2

Table 7. CPU utilization for tap networking with-
out encryption, with encryption, and using PCI assign-
ment when transferring an 800MB file via netcat. The
throughput is 794±3 Mbps for all runs.

performance with AES-NI encryption is slightly bet-
ter than without encryption because encrypted packets
bypass some host processing (since they appear to be
of an unknown packet type). To verify this explana-
tion, we did an additional experiment where we changed
the EtherType of each packet without encrypting the
content. We measured over 120Mbps throughput when
sending 30-byte packets, which is about a 40% improve-
ment. Software encryption achieves roughly half the
throughput of AES-NI.

We also compare the file transfer time for netcat
using an encrypted ephemeral channel and scp without
using ephemeral channels (Table 6). File transfer with
AES-NI encryption is twice as fast as software-only scp.
These results also validate that our software encryption
performance is comparable to scp.

Table 7 shows the measurements of CPU utilization
when transferring an 800MB file using no encryption,
AES-NI, and PCI assignment. This benchmark was run
on a quad-core 3.6 GHz Dell OptiPlex 980 with 8 GB of
RAM and an Intel Gigabit ET NIC.

While all methods have nearly identical throughput,
PCI assignment significantly lowers CPU utilization.

6.7 Audio latency
To measure output latency from the VM to the sound
DMA buffer, we sent a known sequence through the
sound channel and measured host timestamps for send
and receive. The results are in Table 9, showing that
the latency of the encrypted ephemeral audio channel
is smaller than that of PulseAudio.

Latency (ms)
Ephemeral channel 23.5± 8.6
PulseAudio 57.5± 11.3

Table 9. Audio latency comparison (averages over 10
trials).

There are counterbalancing effects at play here. The
encrypted channel incurs additional computational over-
head, but bypasses PulseAudio mixing and shortens the
path from the VM to host audio DMA buffer.

6.8 Swap performance
Figure 3 compares the performance of plain Linux, La-
cuna without encrypted swap, Lacuna with encrypted

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 73

Test type Netperf throughput (Mbps) Netperf latency−1 (Trans./s) Ping
TCP STREAM send TCP STREAM recv TCP RR TCP CC TCP CRR round-trip time (ms)

Packet size 1400 300 30 1400 300 30 1 1 1 1400 300 30
QEMU 788 516 86 827 829 226 5452 2530 2260 0.327 0.251 0.237
Lacuna 769 419 89 819 820 231 5312 2487 2180 0.366 0.253 0.219
HW encryption 2% 19% -4% 1% 1% -2% 3% 2% 4% 12% 1% -8%
Lacuna 373 242 54 373 370 168 5206 2264 2029 0.408 0.277 0.244
SW encryption 53% 53% 37% 55% 55% 26% 5% 11% 10% 25% 10% 0.3%

Table 8. Netperf and ping test results for unmodified QEMU and Lacuna with hardware-assisted (HW) AES-NI
encryption and software (SW) encryption. Reductions in performance are shown as percentages, where negative values
indicate better performance than QEMU.

  0

  50

  100

  150

  200

  250

12GB 13GB 14GB

T
im

e 
E

la
p

se
d

 (
S

ec
o

n
d

s)

Allocation Size

1.20x1.20x

2.65x

1.04x
1.13x

1.65x
1.08x

1.16x

1.60x

Linux

Lacuna (no encryption)

Lacuna

dm−crypt

Figure 3. Average elapsed time for swap microbench-
marks (lower is better). This benchmark allocates a
buffer using malloc, touches each page in pseudoran-
dom order, and reads the pages of the buffer in order to
check correctness. The numbers above the bars indicate
relative slowdown relative to Linux.

swap, and dm-crypt-protected swap. In the first three
cases, a non-private process performs similarly to Linux.
Our encrypted swap differs from standard swap in two
ways whose effects are shown in the graph: it allocates
a scratch page and bookkeeping for every private page
swapped and encrypts the swapped-out pages.

dm-crypt has particularly bad performance in this
microbenchmark. We verified that our installation of
dm-crypt on ext4 adds, on average, 5% overhead
when running file-system benchmarks such as IOzone14

6.9 Scalability
Table 10 shows the performance of multiple concurrent
Lacuna VMs, all executing the LibreOffice workload
in a private session. The performance overhead of one
VM is negligible, but increases with eight concurrent
VMs because the CPU is overcommitted. Our attempt
to run more than eight VMs produced an unexplained
CUDA error. Non-private VMs scale to 24 instances
before Linux’s out-of-memory killer starts killing them.

14 http://www.iozone.org/.

Setup Running Time (s)
1 QEMU VM 189.3± 0.1
1 Lacuna VM 190.6± 0.1 (1.01×)
8 QEMU VMs 191.6± 0.1
8 Lacuna VMs 277.3± 1.1 (1.45×)

Table 10. Time to complete the LibreOffice workload
under contention from other VMs (averages over 5 tri-
als).

7. Related work
Lifetime of sensitive data. Copies of sensitive data can
remain in memory buffers, file storage, database sys-
tems, crash reports, etc. long after they are no longer
needed by the application [6, 7, 17, 46, 56], or leak
through accidentally disclosed kernel memory [22, 34].
To reduce the lifetime of sensitive data, Chow et al.
proposed secure deallocation of memory buffers [8]. In
Section 2, we demonstrate that secure deallocation alone
does not achieve forensic deniability. Chow et al. focus
on reducing average data lifetime, whereas forensic de-
niability requires minimizing worst-case data lifetime.
A recent position paper [24] identifies the problem of
worst-case data lifetime and suggests using information
flow and replay to solve it.

CleanOS [52] helps mobile applications protect their
secrets from future compromise by encrypting sensitive
data on the phone when the application is idle. It does
not prevent leaks through the OS and I/O channels.

Red/green systems. Lampson [27] discusses the idea
of two separate systems, only one of which ever sees
sensitive data (that one is red, the other green). Several
systems switch between “secure” and regular modes [5,
32, 47, 55]. They do not provide forensic deniability for
the red system and often require all activity on the green
system to cease when the red one is active. Pausing the
green system can disrupt network connections, e.g., to a
cloud music service. Lacuna supports concurrent, finely
interleaved private and non-private activities.

13



74 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Isolation. Xoar [9] and Qubes [43] break up the Xen
control VM into security domains to minimize its at-
tack surface and enforce the principle of least privi-
lege; Qubes also facilitates partitioning of user applica-
tions. These systems provide an implementation of an
inferior VM [40] (aka disposable VM) that isolates un-
trusted programs in a fast-booting,15 unprivileged, copy-
on-write domain. Although not designed for minimizing
data lifetime per se, these systems could be Lacuna’s
underlying virtualization mechanism instead of QEMU.
Lacuna’s ephemeral channels can support private ses-
sions regardless whether the underlying hypervisor is
monolithic or compartmentalized.

Tahoma [11] and the Illinois Browser OS [51] in-
crease the security of Web applications using a combi-
nation of hypervisors and OS abstractions. They do not
limit data lifetime within the host system.

Systems with multi-level security (MLS) and, in gen-
eral, mandatory access control (MAC) can control in-
formation flow to prevent information from disclosure.
Some MAC systems separate trusted and untrusted key-
board input [25] as Lacuna does. We are not aware of
any MAC, MLS, or more modern (e.g., [24, 31, 59])
system that provides deniability against an attacker who
compromises the system after a private session is over.

Encrypted file systems. Boneh and Lipton observed
that data can be “cryptographically erased” by encrypt-
ing it first and then erasing the key [4]. Many crypto-
graphic file systems use encryption to (1) protect the
data after the computer has been compromised, and/or
(2) delete the data by erasing the key [3, 15, 38, 39, 60].
Recently, encrypted file systems have been proposed for
secure deletion of flash memory [28, 29, 44]. Encrypted
file systems that derive encryption keys from user pass-
words are not coercion-resistant. ZIA relies on a hard-
ware token to provide the decryption key when the token
is in physical proximity to the machine [10].

In contrast to full-disk encryption, filesystem-level
encryption does not provide forensic deniability. For ex-
ample, the current implementation of the encrypted file
system in ChromeOS on a Cr-48 laptop is based on
eCryptfs [14] which reveals sizes of individual objects,
allowing easy identification of many visited websites in
the encrypted browser cache using standard fingerprint-
ing techniques based on HTML object sizes [13, 48].

Provos observed that application data stored in mem-
ory may leak out via OS swap and proposed encrypting
memory pages when they are swapped out [42]. We use
a similar idea in our implementation of encrypted swap.

Steganographic and deniable file systems. Stegano-
graphic and deniable file systems aim to hide the ex-
istence of certain files [18, 33, 36]. This is a stronger

15 4-5 seconds, per http://theinvisiblethings.
blogspot.com/2010/10/qubes-alpha-3.html

privacy property than forensic deniability. Czeskis et al.
showed that the OS and applications can unintention-
ally reveal the existence of hidden files [12]. Deniable
file systems can be used in combination with our system
for stronger privacy protection.

Data remanence. There has been much work on data
remanence in RAM, magnetic, and solid-state mem-
ory [19–21], as well as secure deletion techniques fo-
cusing on flash memory [28, 29, 44, 49, 57]. The latter
are complementary to our approach.

Digital rights management (DRM). The goal of DRM
is to restrict users’ control over digital content. Some
DRM systems encrypt application data which may re-
duce its lifetime, but any resulting deniability is inciden-
tal. For example, high-bandwidth digital content protec-
tion (HDCP) is a cryptographic protocol that prevents
content from being displayed on unauthorized devices,
but the content is still exposed to the X server and GPU
device drivers. DRM is controversial [16], and we be-
lieve that solutions for protecting user privacy should
not be based on proprietary DRM technologies.

8. Conclusion
We presented Lacuna, a system that makes it possible to
erase memories of programs’ execution from the host.
Lacuna runs programs in a special VM and provides
“ephemeral channels” through which they can securely
communicate with display, audio, and USB input de-
vices, with only 20 percentage points of CPU overhead.
Ephemeral channels limit the number of outlets through
which program data can leak into the host, prevent un-
wanted copying of the data, and allow easy erasure. The
abstraction presented to the user is a “private session,”
akin to the “private mode” in modern Web browsers al-
beit with much stronger privacy guarantees.

Acknowledgments. We thank Owen Hofmann for his
clever and witty comments. This research was par-
tially supported by the NSF grants CNS-0746888, CNS-
0905602, CNS-1017785, a Google research award, the
MURI program under AFOSR Grant No. FA9550-08-
1-0352, the Andrew and Erna Fince Viterbi Fellowship,
and grant R01 LM011028-01 from the National Library
of Medicine, National Institutes of Health.

References
[1] G. Aggrawal, E. Bursztein, C. Jackson, and D. Boneh. An

analysis of private browsing modes in modern browsers. In
USENIX Security, 2010.

[2] S. Bauer and N. Priyantha. Secure data deletion for Linux file
systems. In USENIX Security, 2001.

[3] M. Blaze. A cryptographic file system for UNIX. In CCS, 1994.
[4] D. Boneh and R. Lipton. A revocable backup system. In USENIX

Security, 1996.
[5] K. Borders, E. V. Weele, B. Lau, and A. Prakash. Protecting

confidential data on personal computers with storage capsules.
In USENIX Security, 2009.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 75

[6] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for
generating secure crash information. In USENIX Security, 2003.

[7] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding data lifetime via whole system simulation.
In USENIX Security, 2004.

[8] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure dealloca-
tion. In USENIX Security, 2005.

[9] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking up is hard to do: Security
and functionality in a commodity hypervisor. In SOSP, 2011.

[10] M. Corner and B. Noble. Zero-interaction authentication. In
MOBICOM, 2004.

[11] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-
oriented platform for Web applications. In S&P, 2006.

[12] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno,
and B. Schneier. Defeating encrypted and deniable file systems:
TrueCrypt v5.1a and the case of the tattling OS and applications.
In HotSec, 2008.

[13] G. Danezis. Traffic analysis of the HTTP protocol over
TLS. http://research.microsoft.com/en-us/um/
people/gdane/papers/TLSanon.pdf, 2010.

[14] eCryptfs. https://launchpad.net/ecryptfs.
[15] The encrypting file system. http://technet.

microsoft.com/en-us/library/cc700811.aspx.
[16] E. Felten. USACM policy statement on DRM.

https://freedom-to-tinker.com/blog/felten/
usacm-policy-statement-drm/.

[17] T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum. Data lifetime
is a systems problem. In ACM SIGOPS European Workshop,
2004.

[18] P. Gasti, G. Ateniese, and M. Blanton. Deniable cloud storage:
Sharing files via public-key deniability. In WPES, 2010.

[19] P. Gutmann. Secure deletion of data from magnetic and solid-
state memory. In USENIX Security, 1996.

[20] P. Gutmann. Data remanence in semiconductor devices. In
USENIX Security, 2001.

[21] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. Calandrino, A. J. Feldman, J. Appelbaum, and E. W.
Felten. Lest we remember: Cold boot attacks on encryption keys.
In USENIX Security, 2008.

[22] K. Harrison and S. Xu. Protecting cryptographic keys from
memory disclosure attacks. In DSN, 2007.

[23] N. Joukov, H. Papaxenopoulos, and E. Zadok. Secure deletion
myths, issues, and solutions. In ACM Workshop on Storage
Security and Survivability, 2006.

[24] J. Kannan, G. Altekar, P. Maniatis, and B.-G. Chun. Making
programs forget: Enforcing lifetime for sensitive data. In HotOS,
2011.

[25] P. A. Karger, M. E. Zurko, D. W. Benin, A. H. Mason, and C. E.
Kahn. A VMM security kernel for the VAX architecture. In S&P,
1990.

[26] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype: Virtu-
alized cloud infrastructure without the virtualization. In ISCA,
2010.

[27] B. Lampson. Usable security: How to get it. Communications of
the ACM, 52(11), Nov. 2009.

[28] B. Lee, K. Son, D. Won, and S. Kim. Secure data deletion
for USB flash memory. Journal of Information Science and
Engineering, 2011.

[29] J. Lee, S. Yi, J. Heo, H. Park, S. Y. Shin, and Y. Cho. An
efficient secure deletion scheme for flash file systems. Journal
of Information Science and Engineering, 2010.

[30] The libgcrypt reference manual. http://www.gnupg.org/
documentation/manuals/gcrypt/.

[31] P. Maniatis, D. Akhawe, K. Fall, E. Shi, S. McCamant, and
D. Song. Do you know where your data are? Secure data capsules

for deployable data protection. In HotOS, 2011.
[32] M. Mannan, B. H. Kim, A. Ganjali, and D. Lie. Unicorn: Two-

factor attestation for data security. In CCS, 2011.
[33] A. McDonald and M. Kuhn. StegFS: A steganographic file

system for Linux. In IH, 1999.
[34] J. Oberheide and D. Rosenberg. Stackjacking your way to

grsecurity/PaX bypass. http://jon.oberheide.org/
files/stackjacking-hes11.pdf, 2011.

[35] OpenCL - the open standard for parallel programming of hetero-
geneous systems. http://www.khronos.org/opencl/.

[36] H. Pang, K.-L. Tan, and X. Zhou. StegFS: A steganographic file
system. In ICDE, 2003.

[37] Homepage of the PaX team. http://pax.grsecurity.
net.

[38] R. Perlman. The Ephemerizer: Making data disappear.
http://www.filibeto.org/˜aduritz/truetrue/
smli_tr-2005-140.pdf, 2005.

[39] Z. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. Rubin.
Secure deletion for a versioning file system. In FAST, 2005.

[40] M. Piotrowski and A. D. Joseph. Virtics: A system for privilege
separation of legacy desktop applications. Technical Report
UCB/EECS-2010-70, University of California, Berkeley, 2010.

[41] PolarSSL library - Crypto and SSL made easy. http://www.
polarssl.com.

[42] N. Provos. Encrypting virtual memory. In USENIX Security,
2000.

[43] Qubes. http://qubes-os.org/.
[44] J. Reardon, S. Capkun, and D. Basin. Data node encrypted file

system: Efficient secure deletion for flash memory. In USENIX
Security, 2012.

[45] M. Seaborn. Plash: Tools for practical least privilege. http:
//plast.beasts.org, 2008.

[46] P. Stahlberg, G. Miklau, and B. Levine. Threats to privacy in the
forensic analysis of database systems. In SIGMOD, 2007.

[47] K. Sun, J. Wang, F. Zhang, and A. Stavrou. SecureSwitch: BIOS-
assisted isolation and switch between trusted and untrusted com-
modity OSes. In NDSS, 2012.

[48] Q. Sun, D. Simon, Y.-M. Wang, W. Russell, V. Padmanabhan,
and L. Qiu. Statistical identification of encrypted Web browsing
traffic. In S&P, 2002.

[49] S. Swanson and M. Wei. SAFE: Fast, verifiable sanitization for
SSDs. Technical Report cs2011-0963, UCSD, 2010.

[50] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the
hypervisor attack surface for a more secure cloud. In CCS, 2011.

[51] S. Tang, H. Mai, and S. T. King. Trust and protection in the
Illinois browser operating system. In OSDI, 2010.

[52] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda. CleanOS: Limiting mobile data exposure with idle
eviction. In OSDI, 2012.

[53] Tor. http://www.torproject.org.
[54] SwapFaq. https://help.ubuntu.com/community/

SwapFaq. Retrieved on 5/3/12.
[55] A. Vasudevan, B. Parno, N. Qu, and A. Perrig. Lockdown: A safe

and practical environment for security applications. Technical
Report CMU-CyLab-09-011, CMU, 2009.

[56] J. Viega. Protecting sensitive data in memory. http:
//www.ibm.com/developerworks/library/
s-data.html?n-s-311, 2001.

[57] M. Wei, L. Grupp, F. Spada, and S. Swanson. Reliably erasing
data from flash-based solid state drives. In FAST, 2011.

[58] D. A. Wheeler. SLOCCount. http://www.dwheeler.
com/sloccount/, 2001.

[59] A. R. Yumerefendi, B. Mickle, and L. P. Cox. TightLip: Keeping
applications from spilling the beans. In NSDI, 2007.

[60] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stackable
vnode level encryption file system. Technical Report CUCS-021-
98, Columbia University, 1998.

15





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 77

CleanOS: Limiting Mobile Data Exposure with Idle Eviction
Yang Tang, Phillip Ames, Sravan Bhamidipati, Ashish Bijlani, Roxana Geambasu, Nikhil Sarda

Columbia University

Abstract
Mobile-device theft and loss have reached gigantic propor-

tions. Despite these threats, today’s mobile devices are satu-
rated with sensitive information due to operating systems that
never securely erase data and applications that hoard it on the
vulnerable device for performance or convenience. This paper
presents CleanOS, a new Android-based operating system that
manages sensitive data rigorously and maintains a clean envi-
ronment at all times. To do so, CleanOS leverages a key prop-
erty of today’s mobile applications – the use of trusted, cloud-
based services. Specifically, CleanOS identifies and tracks sen-
sitive data in RAM and on stable storage, encrypts it with a
key, and evicts that key to the cloud when the data is not in
active use on the device. We call this process idle eviction of
sensitive data. To implement CleanOS, we used the TaintDroid
mobile taint-tracking system to identify sensitive data locations
and instrumented Android’s Dalvik interpreter to securely evict
that data after a specified period of non-use. Our experimental
results show that CleanOS limits sensitive-data exposure drasti-
cally while incurring acceptable overheads on mobile networks.

1 Introduction
Mobile technology is replacing desktops as the primary
personal computing platform and is being used in in-
creasingly sensitive contexts. For example, today’s users
rely on smartphones and tablets to access their personal
and corporate email, prepare tax returns, and review cus-
tomer documents [32]. Even the US military recently
announced that it will equip soldiers with Android de-
vices for accessing classified documents [28]. The draw
to new mobile technology is justifiable: mobile devices
offer convenient and constant connectivity, increase pro-
ductivity, and provide access to feature-rich, cloud-based
applications (a.k.a. “apps”).

Despite these advantages, the transition to mobile de-
vices raises serious and yet unresolved concerns, partic-
ularly with respect to data security in the event of device
theft and loss. Unlike desktops, generally assumed to be
physically secure, mobile devices are extremely prone to
theft and loss. Statistics here are staggering: 49% of
the New York City population has experienced mobile
phone loss/theft [24], and the FCC recently declared mo-
bile theft an “epidemic” in major US cities [13].

Though alarming, these statistics have yet to prompt
mobile OSes to address the serious data-security threats
posed by device theft or loss. Like their desktop precur-
sors, such as Linux and Mac OS X, mobile OSes let sen-
sitive data accumulate uncontrollably on the device. For
example, the OS accumulates significant amounts of data
in cleartext memory, and the file system retains deleted

files by not purging their contents. Despite being backed
by clouds, applications hoard sensitive data – such as
emails, documents, and banking information – on the vul-
nerable device. Although encrypted file systems [26], en-
crypted RAM [34], and remote-wipeout systems [3, 21]
help protect this data, they are imperfect stopgaps for
OSes that were simply not designed with physical inse-
curity in mind. For example, a recent study shows that
57% of corporate users employ no locking mechanisms
on their smartphones, rendering encryption useless [32].

This paper presents CleanOS, a new Android-based
mobile operating system1 designed to manage sensitive
data rigorously and maintain a clean environment at all
times in anticipation of device theft. The crucial insight
in CleanOS is to leverage the tight integration of today’s
mobile applications with trusted cloud-based services in
order to evict sensitive in-memory and on-disk data to
those services whenever it is not needed on the device.
CleanOS thus ensures that the minimal amount of sensi-
tive data is exposed on the vulnerable device at any time.

CleanOS extends Android in two major ways. First, it
introduces sensitive data objects (SDOs), a new abstrac-
tion that facilitates management of sensitive data on mo-
bile devices. An SDO is a logical collection of Java ob-
jects, files, and database items that applications create and
use to manage their sensitive data, such as emails, finan-
cial data, or documents. SDOs and their data “disappear”
from the device unless they are frequently used by an ap-
plication. For example, if an email app adds an email’s
content to an SDO, any “trace” of that content automati-
cally disappears from RAM and stable storage unless the
user is actively reading that email on an unlocked screen.
Recovering the email requires interaction with the cloud.

Second, to evict idle SDOs, CleanOS modifies An-
droid’s Java interpreter (Dalvik) to introduce a new type
of Java garbage collector (GC), called an evict-idle GC
(eiGC). While a traditional GC deallocates only those ob-
jects guaranteed to never be used in the future (i.e., no
pointers to them exist), eiGC eliminates objects that have
not been used for a period of time even if they might be
used again in the future (i.e., pointers to them still ex-
ist). To do so, eiGC walks through all Java objects in an
idle SDO and encrypts their data-bearing fields, such as
primitives and arrays of primitives, with a key that is es-
crowed in the cloud. Our modified Dalvik interpreter then
faults when a bytecode instruction executes on an evicted

1We view the OS notion broadly in this paper to include both the
traditional OS and the entire Android framework on which apps run.



78 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Component  New or Changed Features

Dalvik (JVM)
 Evict-idle Garbage Collector (eiGC)
 Eviction-aware bytecode interpretation
 Secure deallocation of interpreted stacks

Android SDK
 SDO API
 Default SDO heuristics

TaintDroid
 Support for millions of taints
 SQLite vulnerability fix

SQLite  Taint tracking in database

Webkit  Screen-buffer purging

Bionic (libc)  Secure user-space deallocation

Linux Kernel  Secure page deallocation with grsecurity

Figure 1: CleanOS Modifications to Android, TaintDroid.

object, retrieves the key from the cloud, and decrypts the
object. Thus, data eviction in CleanOS is logical; the data
itself remains on the device in encrypted form, while the
key is shipped to the cloud.

The major security benefit of CleanOS stems from the
value-added services that app clouds can build on top of
it. For example, a cloud could revoke data access fol-
lowing a theft report, provide an audit log of data ex-
posed upon theft, or monitor data access to detect anoma-
lous uses. Building such services on today’s “dirty” de-
vices would be tremendously challenging and likely re-
quire sacrificing semantics or performance. For example,
Gmail allows email access revocation [18], but emails
cached on the device remain exposed. Conversely, not
caching sensitive data on the device degrades perfor-
mance over slow mobile networks. CleanOS provides
device-side OS support for building robust, secure, and
efficient value-added cloud services.

We built CleanOS in Android using the TaintDroid
taint-tracking system [12] and also implemented a
value-added cloud service that provides post-theft data-
exposure auditing. To do so, we modified several core
components in Android and TaintDroid, summarized in
Figure 1. Together, our changes provide: (1) eviction
of idle Java objects, (2) heuristics for identifying sensi-
tive data without requiring app changes, (3) support for
millions of taints in TaintDroid, and (4) multi-layer se-
cure deallocation of freed data in Java, native, and kernel
space. While CleanOS’ design extends in-memory evic-
tion to stable storage, this paper and our current prototype
focus on in-memory data eviction.

Overall, we make the following contributions:
1. We demonstrate the sensitive data exposure problem

by analyzing 14 popular Android apps (§2).
2. We define SDOs, a new abstraction for managing

sensitive data on theft-prone devices (§3).
3. We implement CleanOS, an Android OS extension

that combines known encryption-based data destruc-
tion [4, 16, 30] with a new GC process that evicts
idle sensitive data (§4 and §5).

4. We present a set of valuable add-on services that
clouds could build on top of CleanOS (§6).

2 Case Study: Data Exposure on Android
We selected for analysis 14 Android apps according to
their popularity in five sensitive categories: email, fi-
nance, document editing, password management, and so-
cial networking. We define as exposed any data that per-
sists on the device – either in RAM or on storage – for
a prolonged period of time, such as 10 minutes (§3 de-
scribes our rationale for this threat model). Our goal
in the analysis was to answer three questions: (1) Is
sensitive-data exposure a real problem? (2) If so, what
are its causes? and (3) Is the exposure necessary? We
tackle each question using examples from our analysis.
Is Data Exposure a Real Problem? We installed the
14 apps on a rooted Nexus S phone with Android 2.3.4
and asked the following question: what kinds of sensi-
tive data can one find by dumping RAM and database
contents while apps run in the background? Our acqui-
sition process was vastly simplified by our rooted phone
and the lack of encryption on the default Android config-
uration. Nevertheless, we believe that our findings indi-
cate the level of data exposure on better-protected phones
in face of realistic, albeit sophisticated, attacks, such as
cold boot RAM imaging [19]. We created a stable-state
environment – akin to the one a thief might find on a lost
device – by ensuring that apps had not been used for 10
minutes prior to taking RAM and DB dumps.

The answer to our question is eye-opening: with sim-
ple techniques, we retrieved cleartext copies of sensitive
information from all but one app. Figure 2(a) shows ex-
amples of cleartext sensitive data we extracted from a se-
lect subset of the apps. Figure 2(b), column “Extracted
Cleartext Data,” expands the result set to all 14 apps
and categorizes data in three classes of varied sensitivity:
passwords, contents (e.g., email body, document content,
bank account), and metadata (e.g., email subject, docu-
ment title). Overall, we captured passwords in 5/14 apps,
contents in 11/14 apps, and metadata in 13/14 apps.
What Causes Data Exposure? Given these results, an
obvious question is what leads to so much leakage. There
are several possible answers:
Insecure Deletion: The Android OS, including the kernel,
system libraries, and the Java framework, leaks sensitive
information by not erasing data securely after it is deallo-
cated or by not securely erasing files when an app asks it
to do so. These problems are well known in desktop and
server settings and have been addressed with secure deal-
location [6] and assured deletion [30, 39], respectively.
OS Data Buffering: Recent work shows that OSes and de-
vice drivers retain data in buffers past its intended life. It
also shows how to limit OS-buffered data exposure [10].
App Data Hoarding: Although most of the apps are
cloud-based, our experiments show that they hoard sig-
nificant amounts of cleartext sensitive information on the
device, either in RAM or in the local database. For exam-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 79

  

App Extracted Cleartext Data

Email password, email contents, 
subjects, from/to, contacts

OI Notepad (doc) document and metadata

KeePass 
(password mgr)

app password, all stored 
passwords & descriptions

Pageonce (finance) password, transactions, bank 
account information

Facebook (social) wall posts and messages

(a) Examples of data extracted  from  RAM / DB.

App Description

Extracted Cleartext Data Hoarding

Cleartext Data RAM SQLite DB

Pass-
word

Cont-
ents

Meta-
data

Pass-
word

Cont-
ents

Meta-
data

Pass-
word

Cont-
ents

Meta-
data

Email email (default) Y Y Y Y Y Y Y Y

GMail email Y Y Y Y

Y! Mail email Y Y Y Y Y

GDocs documents Y Y Y Y

OI Notepad documents Y Y Y Y

DropBox documents Y Y Y

KeePass password mgr Y Y Y Y Y Y

Keeper password mgr Y Y Y Y Y

Amazon commerce

Pageonce finance Y Y Y Y Y Y Y

Mint finance Y Y Y Y Y Y

Google+ social Y Y Y Y

Facebook social Y Y Y Y

LinkedIn social Y Y Y Y Y

(b) Exposure of cleartext sensitive data across all 14 apps.

App Data When App Uses Data

Email

password user/automatic refresh

subjects on the email list screen

contents user opens the email

OI 
Notepad

note title on the note list screen

note body user edits the note

KeePass

master password app launches

entry name on the entry list screen

entry password user opens the entry

(c)  Example usage of hoarded data by apps.

Figure 2: Sensitive Data Exposure. (a) Examples of captured sensitive data. (b) A ’Y’ indicates that we obtained cleartext copies
from RAM/DB. A blank cell does not mean that the data is not on the device, but just that we did not find it in cleartext; the data
could exist in some encrypted form. (c) Examples of when hoarded sensitive data is being actually used by the apps.

ple, the default Android email app maintains the email
account password in cleartext RAM at all times, while
KeePass, a popular password manager, loads its entire
password database into RAM at startup and keeps it there.
Column “Cleartext Data Hoarding” in Figure 2(b) shows
the persistent, app-intended cleartext data we found in
RAM or DBs.2 It demonstrates that the hoarding behav-
ior is pervasive: all but one of the 14 apps permanently
maintain at least one type of sensitive data either in RAM
or in the database, while 6/14 apps permanently maintain
their passwords or some sensitive content in RAM.
Memory Leaks: Beyond the scope of our experiments is
the well-known ease of unwittingly introducing memory
leaks into Android applications [2]. If small, these leaks
may go undetected and expose sensitive information.
Is Data Exposure Necessary? Although apps hoard sig-
nificant amounts of sensitive data on mobile devices, they
tend to access this data fairly infrequently, suggesting that
data is often exposed longer than it needs to be. By way
of example, Figure 2(c) identifies situations where three
of our most problematic apps use hoarded sensitive data.
For example, the password in the default Android Email
app, which we know is exposed in RAM at all times, is in
fact used only during inbox refreshes (the default is every
15 minutes). Similarly, each email’s content is exposed in
SQLite at all times but accessed only when the user opens
that particular email. While the frequency of these oper-
ations depends on the workload, intuitively it should be
relatively rare, making prolonged exposure unnecessary.
Implications for Mobile OS Design. Secure deletion for
storage, RAM, and OS buffers has been acknowledged as,
and developed into, a primary OS function [6, 30, 10];

2For RAM, we conservatively assume an object to be persistent if it
always appears in the app’s Java object dump.

however, the management of app-driven data hoarding
or leakage has thus far been considered an app’s own
responsibility. For example, faced with similar data-
hoarding practices in desktop and server applications,
Chow, et al. [6] conclude that “little can be done without
modifying the application” and that “leaks are recognized
as bugs by application programmers, so they are actively
sought after and fixed.” Unfortunately, relying on the app
to manage sensitive data is problematic. Sensitive-data
caching presents tradeoffs between security on one hand
and performance, usability, and energy/bandwidth con-
sumption on the other hand. Without solid abstractions,
calibrating these tradeoffs is challenging. For example,
should a document-editing app cache the documents lo-
cally for good performance over cellular networks (as
recommended in some mobile app guidelines [14]), or
should it not do so for security reasons (as recommended
in other guidelines [40])? Should it cache the user’s pass-
word for convenience, or should it prompt the user for it
whenever it is needed?

We argue that mobile OSes can and should offer ab-
stractions for apps to manage their sensitive data rigor-
ously without sacrificing their performance, usability, or
other properties. This paper introduces one such abstrac-
tion in CleanOS, whose goals we next describe.

3 Goals and Assumptions
Goals. The primary goal of CleanOS is to minimize the
exposure of an app’s allocated sensitive data by evict-
ing it from the device whenever the data is idle (i.e., not
being actively used by the application). The key insight
that makes this possible is the tight integration between
today’s mobile apps and cloud services. CleanOS lever-
ages clouds to create a new abstraction, called a sensitive
data object (SDO). SDOs track sensitive information as



80 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

it flows through RAM and stable storage. As soon as they
become idle, they are automatically evicted to the cloud
and are recovered only when the app needs them again.

Specific design goals of CleanOS include:
1. Eviction: SDOs should “disappear” as soon as they

become idle whether or not they are expected to be
used by an application in the future.

2. Reasonable performance: We seek to provide rea-
sonable performance for popular mobile apps de-
spite data eviction over Wi-Fi or cellular networks.

3. Reasonable defaults: While we admit app changes
for best performance and semantics, we aim to offer
reasonable defaults even for unmodified apps.

4. Leverage technology trends: CleanOS must inte-
grate naturally with existing tech trends, such as the
tight integration of mobile apps with cloud services.

5. Design for mobiles: CleanOS’ design should target
mainstream mobile technologies, such as Android.

Eviction of idle data (Goal 1) is our primary goal and
contribution in CleanOS. We strive to ensure that a thief
cannot get a “free lunch” by capturing a device. Rather,
he should be required to contact the cloud in order to ac-
cess data of interest, at which time the cloud could deny
access, log it, rate-limit it, etc. However, enforcement
of precise timeouts on idle sensitive data is a non-goal.
From a performance perspective (Goal 2), we wish to
ensure that popular apps remain usable despite eviction
across Wi-Fi or cellular networks (e.g., 3G/4G).

A common pitfall when proposing new OS abstrac-
tions is to require application changes to gain any benefit.
To avoid this, CleanOS should include heuristics to con-
struct default SDOs that provide reasonable eviction and
performance properties even for unmodified apps (Goal
3). Finally, we aim to exploit unique properties of popular
mobile technologies in CleanOS’ design (Goals 4 and 5).
First, we leverage the tight integration between most mo-
bile apps and trusted cloud services to evict device data to
those services. For local-only apps, however, the user can
still integrate them with his own CleanOS service. Sec-
ond, while the data eviction concept is applicable to any
mobile OS, we focus our design on Android, which lets
us leverage its technological properties to facilitate data
eviction. For example, since all Android apps are written
in Java, we decided to tap into the garbage collector to
evict idle sensitive Java objects.
Threat Model. Our threat model considers any data on
a mobile device to be vulnerable to data-driven thieves.
While many data protection systems exist – including en-
crypted file systems [26, 38, 11], encrypted RAM [34,
23, 31], and data wipeout systems [3, 21] – they are im-
perfect when confronted with negligent users or (sophis-
ticated) physical attacks. First, users can foil any pro-
tection system by not locking their devices [32], assign-
ing trivial PINs or passwords [20], or writing passwords

down in easily retrievable locations [36]. Second, mobile
devices are prone to physical attacks, which are notori-
ously difficult to protect against. For example, an attacker
could use cold boot attacks [19] to retrieve in-RAM de-
cryption keys or data, break the seal of tamper-resistant
hardware [1, 35], or shield the device from the network
to prevent remote wipeout [3]. Such threats are especially
relevant for corporate, government, and military users,
who interact with particularly sensitive data, such as trade
secrets, customer data, health data, or state secrets.

To maintain post-loss control over data despite such
threats, CleanOS evicts data to a cloud service, which is
assumed to be trusted and non-compromisable. In real-
ity, mobile users are already required to trust the clouds
on which their apps rely, so our assumption is reason-
able. Depending on the deployment model, these clouds
could integrate directly into CleanOS to help cleanse their
apps automatically. For apps without a cloud component,
we assume that users can evict data to a trusted commu-
nity or self-administered CleanOS service. Finally, we
assume that the cloud learns about a monitored device’s
theft, either directly from the user or via an automatic
mobile-theft detection mechanism.

CleanOS explicitly assumes that the mobile device,
along with all software running on it, is trusted until it
is lost. For example, the thief cannot install malware on
a user’s device, tamper with the device physically, or in-
spect it prior to stealing the device. After loss, we trust
neither the hardware nor the software on the device.

We assume that disconnection is the exception rather
than the rule. With pervasive wireless and cellular net-
work coverage, this assumption is becoming increasingly
realistic. Moreover, CleanOS is especially geared toward
cloud-based apps, which typically require connectivity
for full functionality. Nevertheless, we present tech-
niques to allow disconnected operation in certain cases.

CleanOS is most applicable to long-lived daemon-like
apps, whose execution consists of brief computation ses-
sions interspersed with long periods of inactivity. Most of
today’s mobile apps follow this model, including email,
browsers, document editors, and social apps. CleanOS
disables exposure during periods of inactivity.

Finally, we explicitly assume the existence of robust
secure deallocation and OS buffer-cleanup techniques [6,
30, 10] and do not aim to improve the state of the art
in these intensely-researched directions. Rather, we fo-
cus on limiting the exposure of sensitive data that appli-
cations hoard or leak, a problem previously thought in-
tractable from an OS perspective (see §2).

4 The CleanOS Architecture
We now describe our CleanOS design for Android. We
focus initially on in-RAM data eviction, after which we
show how to extend SDOs to stable storage.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 81

  

Linux Kernel

App 1
(active)

eiGCDalvik
(JVM)

Android
SDK

SQLite libc

App 2
(inactive)

SDO3

SDO4
SDO5

Trusted Cloud(s)

SDO
ID

SDO
Description

SDO
Key

App
Name

SDO Database

Available 
SDO

Evicted 
SDO

Available 
Java object

Evicted 
Java object

Mobile Device

SDO1

SDO2

SDO API

App Code

Java Heap

Libs

N
a

ti
v
e

J
a
v
a

FS

SDO API:

class SDO {
  SDO(String description, SDOLevel level)  // new SDO
  void add(Object o)           // adds object to SDO
  void remove(Object o)     // removes object from SDO
}

CleanOS Protocol:

registerSDO(sdoID, appName, description, key)
    // registers SDO with DB
fetchKey(appName, sdoID, bucketID) → key  || null
    // fetches the key for a bucket in the SDO
    // bucketID = 0 returns the SDO's key
sdoEvicted(appName, sdoID)
    // announces an SDO's eviction to the cloud

(b) CleanOS APIs.(a) CleanOS Architecture.
C

le
a

n
O

S
 P

ro
to

c
o
l

Figure 3: The CleanOS Architecture and APIs. (a) The architecture, with key components highlighted in grey. We add or modify
in some way all of the boxed components (except for FS and kernel). (b) The CleanOS SDO API and device-cloud protocol.

4.1 CleanOS Overview
Figure 3(a) shows the CleanOS architecture, which in-
cludes three major components: (1) the sensitive data
object (SDO) abstraction, (2) a modified, eviction-aware
version of the Dalvik interpreter, along with an evict-idle
garbage collector (eiGC), and (3) the SDO cloud store.
Briefly, apps create SDOs and place their sensitive Java
objects in them. The modified Dalvik tracks their prop-
agation across RAM with TaintDroid and monitors their
bytecode-level accesses. The eiGC evicts SDOs to the
cloud if they remain idle for a specified period.

An SDO is a logical collection of Java objects, such as
string objects representing the emails in a thread or ob-
jects pertaining to a bank account in a finance app. Upon
creation, SDOs are assigned app-wide unique IDs and en-
cryption keys (KSDO), and are registered with the cloud.

We implement three functions for SDOs. First, we
track objects in an SDO with a modified TaintDroid sys-
tem, using the ID as a taint. As objects are tainted with
an SDO’s ID, they become part of the SDO. For exam-
ple, SDO1 in Figure 3(a) includes three objects added to it
either explicitly by the app or automatically by our mod-
ified Android framework. Second, we monitor accesses
to SDOs and record their timings. Whenever an app ac-
cesses an object in an SDO (e.g., to compute on it, send
it over the network, or display it on screen), that SDO is
marked as used. Third, we evict SDOs when they are idle
for a time period (e.g., one minute).

To evict idle SDOs, the eiGC eliminates unused Java
objects from RAM even if they are still reachable. It pe-
riodically sweeps through Java objects and evicts them if
they are tainted with an idle SDO’s ID. In Figure 3(a),
the active app (App 1) has one available SDO (SDO1) and
one evicted SDO (SDO2). For example, an SDO associ-
ated with an email thread might be available while the
user reads emails in that thread, but the password SDO
might remain evicted. When the app goes into the back-

ground, all of its SDOs might be evicted, as shown for
App 2. An SDO is evicted when all Java objects in it
have been evicted; however, an available SDO may have
both evicted and available Java objects.

Conceptually, eviction occurs at the level of logical
SDOs. In practice, however, CleanOS must eliminate the
actual data-bearing objects from the vulnerable device.
To do so, eiGC leverages encryption-based data destruc-
tion from assured-delete file systems [30, 16] and applies
it to the memory subsystem. Specifically, eiGC replaces
data-bearing fields in objects, such as primitives and ar-
rays of primitives, with encrypted versions and then se-
curely destroys the encryption key. To encrypt a data field
F , eiGC uses a key KF that is uniquely generated from
the SDO’s key KSDO in the cloud (see §5 for details). We
modified Dalvik to fault when an app attempts to access
the evicted data, at which time it retrieves KSDO from the
cloud, generates KF , and decrypts the data. KSDO is then
cached onto the device and securely removed when the
SDO as a whole is again evicted.

We next provide more detail on the two main contribu-
tions of CleanOS: the SDO abstraction and the eiGC.

4.2 The SDO Abstraction
SDOs fulfill two functions in CleanOS. First, they let
CleanOS identify sensitive data and focus its cleansing
on that data for improved performance. Indeed, evicting
all Java objects indiscriminately would be prohibitively
expensive, while evicting a few at random would dimin-
ish security benefits. Second, SDOs are instrumental in
supporting some of our envisioned add-on cloud services,
such as the auditing service described in §6, as they iden-
tify and classify sensitive data for the auditor.
APIs. Figure 3(b) shows the SDO API. To realize the
data-control benefits of CleanOS, apps create SDOs and
add/remove Java objects to/from them. To create an
SDO, an app specifies a description, which is a short,
human-readable string that describes the sensitive data



82 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

associated with the SDO. For example, our modified
email app, CleanEmail, creates an SDO using “pass-
word” for the description and adds the password object
to it. It also creates one SDO for each email thread, spec-
ifying the thread’s subject as the description, and adds
each email in the thread to it. Section 6 describes two
apps that we trivially ported to CleanOS with minimal
modifications (fewer than 10 LoC).

Figure 3(b) also shows the protocol used to regis-
ter SDOs, retrieve their keys after eviction, and report
their eviction to the cloud. To create an SDO, the
app registers it with the cloud database using the SDO
API, specifying its ID, the app’s package name (such as
com.android.email), the description, and the encryp-
tion key. For example, the description for an SDO as-
sociated with a certain thread might be the subject of
that thread. In the database (whose schema is included
in Figure 3(a)), the tuple 〈app package name, SDO ID〉
is a phone-wide unique identifier. Although not imple-
mented in our current prototype, the database can use the
app user id to restrict access to keys only to the apps that
created them. Finally, to enable auditing services such as
Keypad [15], CleanOS notifies the cloud asynchronously
whenever it evicts an SDO (message sdoEvicted). The
notification is needed because, unlike Keypad, CleanOS
does not forcibly evict keys at an exact time after they
were fetched; rather, it does so when convenient, depend-
ing on load and networking conditions (see §4.5 and §5).
Default SDOs. As mentioned in §3 (Goal 3), we aim not
to rely on app modifications to gain tangible benefit from
CleanOS. To this end, we modified the Android frame-
work to register a set of default SDOs and use simple
heuristics to identify and classify Java objects coarsely
on behalf of the apps. For example, our current prototype
creates several default SDOs by plugging into various
core classes in the SDK: a User Input SDO for all input
a user types into the keypad (class InputConnection),
a Password SDO for any Java objects that capture input
a user types into a password field (based on attributes of
class TextView), a coarse SSL SDO for all objects read
from incoming SSL connections (class SSLSocket), and
SDOs for input from particularly sensitive sensors, such
as the camera. Some of these heuristics (e.g., SSL) were
inspired by prior work on automatic identification of sen-
sitive data [9]. Although default SDOs are coarse and
may potentially include many non-sensitive objects (par-
ticularly SSL), we believe that they offer comprehensive
identification of most sensitive data in unmodified apps.
For example, all the sensitive data we analyzed in §2
would be capturable by a default SDO. For apps will-
ing to adapt, CleanOS allows the overriding of default
assignments of objects to SDOs.
Eviction Granularities and Buckets. Thus far, eviction
granularities have been determined by SDOs, which is

problematic for two reasons. First, it forces app writers
to consider granularities and taint propagation when they
design their SDOs. Second, our default SDOs, such as
SSL, are coarse. In our view, CleanOS should offer evic-
tion benefits even when an app dumps all of its sensitive
objects into one big SDO, e.g., “sensitive.”

To support fine-grained eviction with coarse-grained
SDOs, we introduce buckets. Specifically, an SDO is
“split” into several disjoint buckets, which are evicted in-
dependently. Java objects added to the SDO – either by
the app or by our framework – are placed in random buck-
ets. Eviction occurs at the bucket level: when a bucket
has been idle for a period, all objects in it will be evicted
using a bucket key, which is derived from the SDO’s key
using a key derivation function [22]. For example, in an
unmodified email app, we would place all emails into the
SSL SDO. With buckets, different emails would be placed
into different buckets of the SSL SDO and might therefore
be evicted independently. Also, with bucketing, we cache
bucket keys instead of SDO keys on the device.

4.3 The Evict-Idle Garbage Collector
A simple but important innovation in CleanOS is the
evict-idle GC (eiGC). At its core (and independent of
CleanOS), eiGC implements for a managed language
what swaping implements for OSes: it monitors when
objects are being accessed during bytecode interpretation
and evicts them when they have not been used for a while.
We believe that the eiGC concept has applications beyond
CleanOS, such as limiting the amount of memory used
by Java applications on memory-constrained devices at a
finer grain than OS-level paging would be able to sustain.
In the context of CleanOS, however, eiGC evicts Java ob-
jects in idle SDO buckets.

Using the GC to evict sensitive data is not the only
design worth considering when building a “clean” OS.
We contemplated modifying the kernel’s paging mecha-
nism to swap idle pages to a Keypad-like encrypted file
system [15], which at its core achieves for files a simi-
lar eviction function to the one we achieve for RAM. We
chose the GC approach for two reasons. First, evicting
Java objects provides finer-grained control over sensitive-
data lifetime than full-page eviction. Second, by evicting
at the JVM level we can leverage TaintDroid, the only
taint tracking system for Android. Tracking sensitive data
is vital for constructing the SDO abstraction, which in
turn is the base for building powerful add-on services,
such as auditing. However, our decision has a downside:
coverage. By evicting Java objects, we may miss data
intentionally maintained by native libraries. We discuss
this limitation further in §8.

4.4 SDO Extension to Stable Storage
Like RAM, stable storage requires sanitization. At first
glance, systems such as Keypad [15] could be directly



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 83

leveraged to evict unused files in CleanOS. Unfortu-
nately, we found that eviction at file granularity is unsuit-
able for Android, where apps typically rely on a database
layer to manage their data. For example, 11 of the 14 apps
in Figure 2(b) store their data in SQLite, which maps en-
tire databases as single files in the FS. As a result, if the
DB file were exposed, then all of its items would be ex-
posed, including long-unaccessed emails and documents.

CleanOS tailors storage eviction specifically for An-
droid by extending the in-RAM SDO abstraction to in-
clude files and individual database items. For this, we use
two mechanisms. First, we propagate SDO taints to files
and database items. Unfortunately, TaintDroid supports
only the former, not the latter, an important vulnerability
we discuss in §5. We fixed this in CleanOS by modifying
the SQLite DB. Specifically, we automatically alter the
schema of any table to include for each data column, C,
a new column, Taint C, which stores the taint for each
item in that column (SDO ID and bucket ID). Second,
before storing a tainted data object in a DB, we first evict
that object, i.e., encrypt it with its eviction key. When the
database needs the object, it must decrypt it.

4.5 Disconnected Operation
While we assume that disconnection is the exceptional
case, we present techniques to deal with two types of dis-
connection: (1) short-term disconnection, such as tempo-
rary connectivity glitches, and (2) long-term, predictable
disconnection, such as a disconnection during a flight. To
address short-term disconnection, we can extend eviction
of already available SDOs by a bounded amount of time
(e.g., tens of minutes). This allows an app to continue
executing normally while temporarily disconnected until
it reaches an evicted object. For example, a user might be
able to load recently accessed emails, but not older ones.

To address long-term disconnection, such as during air
travel, we hoard SDO keys before entering into discon-
nection mode. For example, our prototype implements
Dalvik support for hoarding SDO keys upon receipt of a
signal. We plan to wrap this functionality into a privi-
leged app that provides users with a “Prepare for Discon-
nection” button, which they can press before boarding a
flight. To prevent a thief from using this button to retrieve
all SDO keys, the cloud would require the user to en-
ter a password. While we generally shun user-configured
passwords in CleanOS, we believe that long-term discon-
nection is a sufficiently rare case to warrant enforcement
of particularly strong password rules with limited impact
on usability [27]. In contrast, imposing such rules on fre-
quent unlock operations would be impractical.

4.6 Deployment Models
CleanOS presents multiple deployment opportunities.
First, security-conscious apps can use their own, dedi-
cated clouds to host keys and provide add-on services,

such as auditing. In such cases, we expect that the mo-
bile side of apps would define meaningful SDOs. Second,
users who are particularly concerned with apps that have
not yet integrated with CleanOS might use a CleanOS
cloud offered by a third party or that they host themselves.
For example, our prototype hosts all keys for all apps on
a Google App Engine service that we implemented.

5 Prototype Implementation
We built a CleanOS prototype by modifying Android
2.3.4 and TaintDroid in significant ways (see Figure 1).
To date, our prototype fully implements eviction of in-
memory SDOs and propagates taints to SQLite, but it
does not yet encrypt sensitive items in SQLite. Doing
so will require changing the native part of the SQLite li-
brary – a single, massive, over-100K-LoC file – the major
deterrant we encountered thus far. We next describe mod-
ifications we made to components of particular interest.
TaintDroid with Millions of Taints. Most dynamic
taint-tracking systems, including TaintDroid, support
limited numbers of taints, which would prevent CleanOS
from scaling to many SDOs. For example, TaintDroid
supports only 32 taints by representing them as 32-bit
shadow tags, where each taint corresponds to one tag bit.
This limitation allows propagation of multiple taints on
one object for tracking completeness and security against
malicious applications. For CleanOS, which trusts appli-
cations, we modified propagation to allow many taints.

We rely on a simple observation, which we validate
experimentally: in practice, when multi-tainting occurs,
we can usually define a strict, natural ranking for taints in
terms of their sensitivity. As intuitive examples, a Pass-
word SDO should be more sensitive than a generic User
Input SDO, and a KeePass secret’s SDO should be more
sensitive than its description SDO. In these cases, “los-
ing” the less sensitive taint would be admissible, because
it does not weaken the user’s perception of the gravity of
an object’s exposure. Using a 24-hour real-usage trace
for the Email app (see §7.1), we confirmed that 98.8%
of the tainted objects were either assigned a single taint
during their lifetimes or received multiple taints whose
sensitivity could be strictly ordered using a simple, static,
three-level ranking system: HIGH, MEDIUM, and LOW. The
remaining 1.2% of the objects received multiple taints
of undecidable ordering within this ranking system (i.e.,
equal sensitivity levels). Similar traces for Facebook and
Mint indicated even fewer undecidable cases (< 0.01%).

Based on this observation, we introduce the concept of
sensitivity level for taints and use it to propagate a sin-
gle taint per object. Apps specify a sensitivity level for
each SDO upon its creation. If an object were added
to two SDOs during taint propagation, CleanOS retains
the one with the higher sensitivity level. For equal sen-
sitivities (the rare case), CleanOS retains the most recent



84 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

  

 31  30  29 28                                   4  3             0

 E    Level               SDO ID                     Bucket

Figure 4: CleanOS Taint Tag Structure. We impose a struc-
ture on TaintDroid taints to support arbitrary numbers of taints.

taint. Figure 4 illustrates the revised structure for the taint
tag, in which we pack together the sensitivity level, SDO
ID, and bucket ID into 32 bits while supporting up to 225

SDOs. In our experience, assigning sensitivity levels to
SDOs is natural, as demonstrated in §6. The idea of prop-
agating a single taint was used before in hardware-based
taint tracking systems for improved performance [5].
Eviction-Aware Interpretation in Dalvik. We reserved
the most significant bit in the taint tag to denote the evic-
tion state of a field. We modified the Dex bytecode
instructions that access object instance fields and array
members. This includes instructions such as OP AGET,
OP IGET, OP SGET (used to retrieve array members, in-
stance fields, and static fields, respectively). Our new in-
struction implementations first test the value of the evic-
tion bit in the field’s taint tag. When the bit is set, we
request the aforementioned KSDO and decrypt the value
before allowing the instruction to proceed. If a key is not
available, execution is suspended.
The Evict-Idle Garbage Collector. While eiGC walks
the reachable objects, we inspect the taint tag for each
object field and retrieve its idle time. If it exceeds the
configured threshold, then eiGC retrieves the key asso-
ciated with the tag and encrypts the value. Only fields
that represent actual data are evicted (primitives and ar-
rays of primitives); fields implemented as pointers are not
evicted, as a pointer is not in and of itself sensitive.

To evict data, we use AES in counter mode to generate
a keystream, which we use as input to an XOR operation
with each byte of the data to be evicted. The size of the
keystream depends on the data’s type. For primitives, it is
either 4 bytes (for char, int, float, etc.) or 8 bytes (for
double or long). For arrays, many bytes may be neces-
sary. We use the bucket key to generate an appropriately
sized keystream. For primitives, we replace the data with
a pointer to a structure containing metadata necessary for
decryption (e.g., initialization vectors) and the resulting
ciphertext. For arrays, we evict the contents in place and
store the necessary metadata inside the ArrayObject.

Running the eiGC continuously would prevent the
CPU from turning off when the mobile device is idle,
thereby wasting energy. Fortunately, eiGC needs to run
only while sensitive objects are left unevicted. Hence,
in our prototype, eiGC stops executing as soon as it has
evicted all data, which should occur shortly after the app
goes idle. The eiGC resumes execution once the app
faults on an evicted object or assigns a new taint to an
object. Hence, eiGC runs only while the app also runs.
Optimizations: Bulk Eviction and Prefetching. Perfor-
mance and energy are major concerns with CleanOS, for

two reasons. First, garbage collection is expensive; hence
performing it frequently hurts app performance and en-
ergy (e.g., the eiGC’s full-heap scans block interpretation
for 1-2s). Second, our reliance on the network to fetch
decryption keys causes app delays and dissipates energy.

To address the first problem, we developed bulk evic-
tion, in which the eiGC evicts sensitive Java objects all at
once, soon after the app itself becomes idle. More specif-
ically, while the app is executing, we evict nothing and
perform no GC; once the app has remained idle for a pre-
defined time (e.g., one minute), the eiGC performs a full-
heap scan-through and evicts all cleartext tainted objects.
This technique reduces the number of heavyweight GCs
to just one per app execution session, thereby minimizing
the eiGC’s impact on performance and energy.

To address the second problem, we developed bulk key
prefetch, which prefetches all keys that were accessed
during the last eviction period upon the app’s first miss
on a key. For example, if a user opened his inbox sub-
ject list and read two emails during a previous interaction
session with his email app, then the next time the user
brings the app into the foreground, CleanOS will fetch
the decryption keys for the subjects and the two emails’
contents – all in one network request. If the user views
only his subject list but reads no emails in a previous ses-
sion, then the next time around, CleanOS will fetch only
subject keys again, not any email content keys. This tech-
nique improves app launches and the latency of repeated
operations, such as re-reading an email. It can be ex-
tended to prefetch keys used in the last N sessions.

Although these optimizations may improve perfor-
mance and energy, they may also increase sensitive-data
exposure. For example, prefetching previously-used keys
may expose some sensitive data needlessly. We quantify
this performance/exposure tradeoff in §7.2.
Multi-Level Secure Memory Deallocation. Android
goes to great lengths to keep an application running in
the background so it can re-launch quickly. This can
cause an accumulation of sensitive data in areas of mem-
ory that are no longer in use but have not been returned to
the kernel. The object heap in Dalvik is implemented us-
ing dlmalloc mspaces and relies on the implementation of
free() in dlmalloc to return memory to the mspace. To
implement secure deallocation, we changed both free()
and an Android-specific modification to dlmalloc that
merges chunks of adjacent free memory. These functions
now overwrite the space being released with a fixed pat-
tern. We also modified Dalvik to overwrite interpreted
stack frames on method exit, scrubbing them of sensitive
data. Finally, when assigning default taints to Java ob-
jects, we made explicit efforts to taint objects as soon as
they enter Java space from native libraries.
Addressing a TaintDroid Vulnerability. When imple-
menting CleanOS, we uncovered a surprising implication



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 85

of a known limitation in TaintDroid. Specifically, Taint-
Droid does not track changes in native libraries, which,
as acknowledged by its authors, may allow a malicious li-
brary to leak tainted data without triggering an audit log.
To address this problem, TaintDroid prevents untrusted
apps from loading any native libraries other than system
libraries (e.g., SQLite and WebKit), which are included
in Android itself and are therefore trusted. This measure
has thus far been thought sufficient.

Nevertheless, we discovered that even trusted system
libraries can be exploited by a malicious app to expose
tainted data with no alarms. For example, because SQLite
is written in native code, a malicious app could wash
taints off a tracked data item simply by storing it into the
database and reading it back. More generally, any stateful
libraries that provide the ability to put and later retrieve
data are vulnerable to attacks. Since disabling system li-
braries is impractical (e.g., 12/14 apps in §2 depend on
SQLite), we instead suggest identifying and modifying
all stateful system libraries to propagate taints.

To date, we modified two such libraries: SQLite and
WebKit. For SQLite, we implemented taint propagation
by persisting taints along with the data (see §4.4). For
WebKit, we disabled caching of rendered Web pages.
While important for security, we leave identifying and
fixing other libraries for future work and for now sug-
gest notifying the cloud about a potential leak if sensitive
data were handed over to an unchecked native library. We
suggest that TaintDroid proceed similarly. We discuss the
coverage limitation further in §8.

6 Applications
We ported three of our “dirtiest” apps from §2 onto
CleanOS and built a proof-of-concept, add-on service.

6.1 Extending Apps with SDOs
Although unmodified apps can benefit from the coarse
default SDOs that CleanOS offers, they can also define
their own SDOs for fine-grained control of sensitive data.
To demonstrate how apps can be “ported” to our API, we
modified two open-source apps – Email and KeePass – to
define fine-grained SDOs. Changes for both apps were
trivial. For Email, we added these seven lines of code:� �

SDO subjectSDO = new SDO(”Subject”, SDO.LOW);
subjectSDO.add(mSubject);
SDO bodySDO = new SDO(”Content of ” + mSubject, SDO.MED);
bodySDO.add(mTextContent);
bodySDO.add(mHtmlContent);
bodySDO.add(mTextReply);
bodySDO.add(mHtmlReply);� �

We added each email’s subject to a global, low-sensitivity
SDO and created a medium-sensitivity content SDO for
its body, using the subject itself as the description. Pass-
words, already embedded in an SDO by our default
heuristics, needed no changes.

For KeePass, changes were similarly trivial (7 lines):

Figure 5: Screenshot of Audit Service Log in App Engine.� �
SDO masterSDO = new SDO(”Master key”, SDO.MED);
SDO entrySDO = new SDO(”Entry”, SDO.HIGH);
masterSDO.add(mPassword); // In SetPassword.java
masterSDO.add(masterKey); // In PwDatabase.java
entrySDO.add(password); // In PwEntryV3.java
entrySDO.add(pass); // In EntryEditActivity.java
entrySDO.add(conf); // In EntryEditActivity.java� �

6.2 Add-on Cloud Services
CleanOS evicts sensitive data to the cloud to prevent un-
mediated accesses by device thieves. However, by itself,
CleanOS cannot guarantee data security. For example,
a thief could interact with the apps in an unlocked de-
vice or force all SDOs to decrypt. Therefore, CleanOS
provides device-side mechanisms necessary for clouds to
build clean-semantic security add-ons, such as assured re-
mote wipeout or data exposure auditing. Such services al-
ready exist today (e.g., Apple’s iCloud and Gmail’s two-
step verification), but we maintain that their semantics
are unclear given the state of today’s devices. We next
describe an add-on service we trivially built on CleanOS.
Prototype Auditing Service. Inspired by Keypad [15],
we implemented an auditing service on CleanOS. Its goal
is to provide users with audit logs of what was on the de-
vice at the time of theft and what has been accessed since.
The auditing service integrates with the CleanOS service
and both are hosted on App Engine. When a device reg-
isters an SDO or requests a decryption key, the cloud logs
that operation with the app name, SDO, and current time.
In this way, the user can learn from the audit log exactly
what data was leaked. For instance, Figure 5 shows a
sample audit log that contains entries for SDO registra-
tion and key fetching. Were these operations to occur af-
ter the device was stolen, the user will know that the email
password and KeePass entry may have been leaked.

Crucial to any auditing system is precision. In the au-
dit log, data in different buckets of the same SDO are
indistinguishable. Thus, accessing the data in one bucket
may cause false alarms for evicted buckets of the same
SDO. Using a finer SDO granularity helps reduce false
positives. We evaluate audit precision in §7.1.
Further Examples. A cloud could build many other use-
ful services on CleanOS. For example, the cloud could:
allow its mobile users to revoke data access from their
missing devices, disable access to sensitive data while
the phone is outside the corporate network, and perform
theft detection based on access patterns. A variety of en-
tities would find such services useful to host. For ex-
ample, a company might integrate with CleanOS on the



86 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

(a) Sensitive data exposure period. (b) Sensitive data lifetime.

App Password Contents Metadata

Email without CleanOS 100% 95.5% 99.0%

Email with default SDOs 6.5% 5.9% 5.9%

CleanEmail (fine SDOs) 6.5% 0.3% 1.6%

App
Without 
CleanOS

With CleanOS

1
bucket

32
buckets

1024
buckets

Email

Password 22.5h 1h 28m 1h 19m 1h 11m

Contents 20.9h 3 min 1 min 1 min

Metadata 20.9h 18 min 6 min 6 min

Facebook 24h 3h 54m 3h 51m 3h 29m

Mint 24h 1h 10m 1h 2m 55 min

(c) Audit precision.

Figure 6: Data Exposure. (a) Fraction of time in which sensitive data was exposed. (b) Maximum sensitive data retention period.
(c) Average probability over time that tainted data was actually exposed, given that the audit log shows its SDO as exposed.

device for all corporate apps (e.g., corporate email, cus-
tomer database), to access its auditing, revocation, and
geography-constrained services. Similarly, Gmail could
integrate with CleanOS to prevent email exposure after
authentication-token revocation.

7 Evaluation
We next quantify CleanOS’ security, performance, and
energy characteristics. Our goal is to show that CleanOS
significantly reduces sensitive data exposure while pro-
viding reasonable performance and energy consumption,
even over cellular networks. We conducted all exper-
iments on rooted Samsung Nexus S phones running
CleanOS on Android 2.3.4 and TaintDroid 2.3.

7.1 Data Exposure Evaluation
To evaluate the data exposure benefits of CleanOS, we
pose three questions: How much does eviction limit ex-
posure of sensitive data? How much do default SDO
heuristics limit exposure? How effective is the auditing
service? To answer these questions, we recorded a 24-
hour trace of one of the authors’ phone running CleanOS
as it was used to interact with regular apps, including
Email, Facebook, and Mint. For Email, we experimented
with both the unmodified app and our modified version of
it, which we call CleanEmail (see §6.1). The Email app
was configured with the author’s personal account, which
receives about ten new mails daily, and with the default
15-minute refresh period. Facebook and Mint had wid-
gets enabled, which made them continuous services.
Sensitive Data Exposure Period. We measured the ex-
posure period for three types of tainted data (password,
content, and metadata) in the Email app. Figure 6(a)
shows the fraction of time that each type of tainted data
was exposed in RAM. Without CleanOS, the password
was maintained in RAM all the time, and the content and
metadata were exposed over 95% of the time. CleanOS
reduced password exposure to 6.5%. For email content,
the unmodified Email app with default SDOs reduced ex-
posure time from 95.5% to 5.9%, and modifying the app
to support fine-grained SDOs further reduced it to 0.3%.
Similar observations held for metadata. To be clear, these
results depend on workloads. From another, much more
intensive email workload – that registered for many mail-
ing lists and Twitter feeds – we obtained a result of 7.3%
and 12.7% for content and metadata, respectively. Over-

all, results demonstrate a significant reduction in expo-
sure times for tainted data. Moreover, they show that our
default heuristics protect sensitive data reasonably well.
Sensitive Data Lifetime. As SDO lifetime is critical to
system security, we must also examine the maximum pe-
riod that a tainted object could be retained in RAM. Fig-
ure 6(b) shows the retention time for the longest-lived
tainted object in three applications, where we break down
email into three types. Without CleanOS, all observed ap-
plications retained certain tainted objects for more than
20 hours. With CleanOS, the maximum SDO lifetime
was dramatically reduced. For instance, the Email app
kept some metadata objects for as long as 20.9 hours,
which CleanOS reduced to only 6 minutes when using
1024 buckets. For Facebook and Mint, the impact of
bucketing on sensitive data lifetime was more limited be-
cause these apps tend to use most objects in an SDO at
the same time. Overall, these results indicated that the
mobile device was significantly cleaner with CleanOS.
Audit Precision. We next evaluated the effectiveness of
the auditing service we built on CleanOS (see §6.2). We
compared audit precision across four levels of SDO gran-
ularity in Email: (1) mono-SDO, where we marked data
as only “sensitive” or “non-sensitive,” (2) default SDOs,
where we used default heuristics, (3) coarse SDOs, where
the application defined one content SDO and one meta-
data SDO for all emails, and (4) fine SDOs, where each
email had its own content and metadata SDOs. We define
audit precision as the average probability over time that
the tainted data is actually exposed on the device, given
that the audit log shows its SDO has not been evicted.

Figure 6(c) shows audit precision for the Email app’s
password, content, and metadata. Password auditing was
50.0% precise with mono-SDO but increased to 95.1%
with default SDOs. The content and metadata, however,
had poor precision (<3%) without application support:
CleanOS could not differentiate data coming from the
Internet and hence added every incoming object to the
SSL SDO. With coarse, application-specific SDOs, au-
dit precision for email content and metadata was 9.1%
and 61.3%, respectively. When fine application-specific
SDOs were available, audit precision reached 100%.
Thus, our default SDOs were effective in auditing pass-
word exposure, but application adaptation was needed to
provide precise auditing for other types of sensitive data.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 87

Android

2.3.4

TaintDroid

2.3

CleanOS

not 
evicted

evicted, 
cached

evicted, 
Wi-Fi

evicted, 
3G

Untainted Primitive 0.00021 0.00022 0.00026 - - -

Tainted Primitive - 0.00023 0.00056 1.24 22.844 336.07

Untainted Array 0.00027 0.00029 0.00035 - - -

Tainted Array (S) - 0.00030 0.00075 1.4 21.652 308.71

Tainted Array (M) - 0.00030 0.00075 1.331 21.702 316.79

Tainted Array (L) - 0.00030 0.00075 2.355 22.365 317.97

Figure 7: Micro-operation Performance (milliseconds).
CleanOS Java object field access times compared with Android,
TaintDroid. Times for non-sensitive and sensitive fields for var-
ious eviction states. Averages over 1,000 accesses.

7.2 Performance Evaluation
We next evaluate the performance impact of CleanOS un-
der different workloads and networking conditions. Here,
we aim to: (1) quantify raw performance overheads, (2)
demonstrate that CleanOS is practical over Wi-Fi for pop-
ular apps, and (3) show how our optimizations make
CleanOS practical even over slow, cellular networks.
In our experience, obtaining reliable and repeatable re-
sults from the cellular network is tremendously difficult;
hence, our results used emulated Wi-Fi and 3G networks
with RTTs configured at 20ms and 300ms, respectively.
Because our transmission units were tiny (keys were 16-
byte long), we did not enforce bandwidth restrictions.
Micro-operation Performance Overheads. To evalu-
ate raw performance overheads, we measured Java object
field-access times for Android, TaintDroid, and CleanOS.
Figure 7 compares them for four field types: primitives
(int), small arrays (16 bytes), medium arrays (4KB), and
large arrays (16KB). For CleanOS, we show access times
both for non-sensitive fields (the vast majority) and sensi-
tive fields under various eviction states. CleanOS’ access
overhead for non-sensitive fields was small compared
with TaintDroid (16%), which itself was close to raw
Android (6% overhead for TaintDroid). The overhead
for sensitive field access increased to 141% over Taint-
Droid: CleanOS performed last-time-of-use bookkeeping
on every Dalvik field access instruction (e.g., OP AGET,
OP IGET) that involved a tainted field. Further, when
evicted, CleanOS access overhead spiked dramatically,
especially when the evicted field’s key was not cached
on the device but was fetched over Wi-Fi or 3G. More-
over, unlike in Android and TaintDroid, access times for
evicted arrays in CleanOS depended on the array’s size
because decryption times increase with data size. For ex-
ample, the “evicted, cached” column shows that decrypt-
ing a tainted array grew by 68% when the array’s size
increased from 16B to 16KB. Fortunately, in practice,
sensitive fields are extremely rare compared with non-
sensitive fields. For example, our email trace showed an
average of 102,907 fields at any time, of which merely
1,889 were tainted (or 1.83%). Hence, CleanOS should
acceptably affect real app performance, as shown next.
Application Performance. Figure 8(a) shows the time

to launch several popular apps (i.e., bring them into the
foreground) and perform typical actions, such as open-
ing an email, viewing a KeePass entry, or loading a Web
page. We chose three Web pages: a simple one (https:
//iana.org/domains/example) and two popular and
more complex ones (https://news.google.com and
https://cnn.com). For CleanOS, results labeled “not
evicted” correspond to cases where all accessed objects
were decrypted, while results labeled “evicted” corre-
spond to cases where objects were all evicted.

In the “not evicted” case, interaction with the apps in-
curred a limited performance penalty compared with both
TaintDroid and Android. For example, 8/13 operations
incurred less than 100ms penalties over TaintDroid, and
7/13 did so over Android. Such penalties will likely go
unnoticed by users, who are known to perceive delays
coarsely [29]. Hence, when users interact with a recently
used app, they should not feel CleanOS’ presence.

When users interact with a cold app (“evicted”
columns for unoptimized CleanOS), however, perfor-
mance degraded but remained usable for Wi-Fi networks.
Our cheapest app is the browser, for which CleanOS in-
curred 8-23% overheads over Android for all operations.
The reason is two-fold: (1) the browser deals with lit-
tle sensitive data, and (2) during page loads, the browser
fetches large amounts of data over Wi-Fi, which dwarf
CleanOS’ key traffic delays. The most expensive app for
CleanOS is CleanEmail, which incurred a larger penalty
than Email for “evicted” launches due to more granular
tainting. For example, while Email needed to fetch 2 keys
to load an email, CleanEmail needed to fetch 3 keys.

Over 3G, CleanOS penalties after eviction became sig-
nificant. While some operations remained within rea-
sonable bounds (e.g., launching the browser and loading
iana.org or cnn.com), many operations incurred over-
heads in excess of 100%. For example, loading an email
onto the screen jumped from 197ms to 1.1s for Email and
1.4s for CleanEmail. Such delays likely affect usability.
Effect of Optimizations on Application Performance.
Column “Optimized CleanOS” in Figure 8(a) shows the
elapsed time of repeat operations under our bulk prefetch-
ing optimization (see §5). All timed operations were in-
voked in the previous application session; therefore, all
of their relevant keys were prefetched together as part of
one bulk request during the timed session. The results
show dramatic improvements in performance for both
launching and interacting with the apps. For example,
CleanEmail – our most expensive application – launched
in 589ms over 3G compared with 919ms on unoptimized
CleanOS (35.9% improvement) and loaded a previously
read email in 420ms compared with 1.4s (71% improve-
ment). In general, this optimization lets an app re-launch
incur little more than one RTT over non-evicted CleanOS,
while subsequent repeat operations incur no RTT. Natu-



88 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Application Action
Android 

2.3.4
TaintDroid

2.3

CleanOS
Optimized 
CleanOS

not evicted evicted, Wi-Fi evicted, 3G evicted, 3G*

Email
Launch 197 202 241 312 919 589

Read Message 212 254 387 501 1165 379

CleanEmail
Launch - - 291 315 902 598

Read Message - - 452 526 1472 421

KeePass
Launch 173 192 217 221 527 672

Read Entry 125 150 146 155 479 135

Browser

Launch 130 151 160 144 222 138

Load Page 
(iana)

Wi-Fi 488 483 658 605 - -

3G 2067 2114 2125 - 2136 2031

Load Page 
(GNews)

Wi-Fi 1072 1043 1270 1160 - -

3G 1717 2475 2475 - 3536 2942

Load Page 
(CNN)

Wi-Fi 1065 1136 1394 1446 - -

3G 4570 4709 4325 - 4619 4538

* Actions were performed before.

(a) App Performance (milliseconds).

  

A T C A T C A T C
0

20

40

60

80

100

120

140

160

180

Network

CPU

LCD

E
n
e

rg
y
 (

J
o

u
le

s
/h

o
u
r)

A – Android
T – TaintDroid
C – CleanOS

0 6.4 8.4 0 2.9 8.6
0 3.8 8.2

CleanEmail KeePassBrowser

(b) Energy over Wi-Fi.
Figure 8: Application Performance and Energy Consumption. (a) Performance of various popular app activities under Android,
TaintDroid, and CleanOS for various eviction states and configurations. Results are averages over 40 runs. (b) Hourly energy
consumption attributed by PowerTutor to the three apps when running a long-term synthetic workload for at least 3 hours. Numbers
on top of each bar show energy overhead over default Android in percent.

rally, our optimization will not benefit non-repeat opera-
tions, such as loading a brand new or long-unread email.
However, one type of operation that will always benefit is
app launch, a latency-sensitive operation on mobiles.

Despite their performance benefits, our optimizations
may increase data exposure. When applying these opti-
mizations to the workloads in §7.1, we obtained limited,
but non-trivial, exposure impact. The period for each type
of tainted data increased by up to 0.9 percentage points
for the workload in Figure 6(a), and by up to 23.2 percent-
age points for our intensive Email workload. Prefetching
keys from multiple sessions would cause further expo-
sure. Hence, CleanOS should best apply this optimiza-
tion only in specific cases (e.g., over 3G).
Overhead Estimation for SDO Stable Storage Exten-
sion. Thus far, our results show CleanOS’ overheads for
eviction of in-RAM SDOs. While we have not fully im-
plemented the SDO extension to stable storage, we now
offer rough estimates for the extra overheads to expect
from such an extension. We expect the major sources
of overhead to be: (1) the key fetches required to ac-
cess encrypted database items, and (2) the extra encryp-
tion/decryption that occurs when accessing these items.
To account for (1), we ran experiments with our test ap-
plications that instruct CleanOS to fetch the appropri-
ate decryption keys for any tainted database items being
accessed. To account for (2), we added an extra 20%
overhead per query, a number reported by CryptDB [33],
which also does per-item encryption.

With this methodology, we estimate that extending
SDOs to SQLite would result in additional overheads
ranging between 0-65% on 3G over CleanOS with in-
RAM SDOs. We predict that these operations will suffer
the most: KeePass Launch (869ms, or 64.9% additional
overhead), CleanEmail Read (1887ms, or 28.2% addi-
tional overhead), and Browser Load (2542ms, 4086ms,
and 4573ms for iana.org, news.google.com, and cnn.
com, respectively, or 15-19% additional overhead). Most

of these overheads (82-99% across all apps) are due to
extra RTTs incurred by necessary key fetches, which are
optimizable via batch prefetching. Thus, overall, we be-
lieve that our system will be practical from a performance
perspective even when implemented in full.

7.3 Energy and Network Evaluation
CleanOS’ encryption, network traffic, and extra GCs
raise concerns about its impact on energy consumption.
To evaluate this impact, we ran coarse-grained experi-
ments that drove a simple, long-term workload against
each app (CleanEmail, Browser, and KeePass) using
MonkeyRunner [17] and measured consumption using
the PowerTutor online power monitor [42]. The work-
load repeatedly launched an app, performed a set of typ-
ical tasks (such as reading emails, accessing entries in
KeePass, and visiting Web pages in the browser), sent the
app into the background, and then slept for 15 minutes.
Each app interaction lasted for 36-46s, after which we
promptly turned off the LCD. We ran the workload con-
tinuously for at least 3 hours and plotted per-app power
consumption as reported by PowerTutor.

Figure 8(b) shows energy consumption for Android,
TaintDroid, and CleanOS over a real home Wi-Fi net-
work. For each app, we show the energy consumed by
the LCD, CPU, and Wi-Fi. Results show that CleanOS’
total energy overheads over Wi-Fi were small compared
with both Android and TaintDroid: 8.2-8.4% over An-
droid (see labels above bars) and 1.9-5.5% over Taint-
Droid. Drilling down on resource overheads, we observe
that CleanOS increased energy consumption of both the
network (44-45%) and the CPU (32-74%), but those over-
heads were dwarfed by the LCD energy draw. In general,
our overheads were smallest for the browser, which itself
consumed relatively more CPU and network energy, and
largest for KeePass, a lightweight application that per-
formed little computation and had no network traffic.

Over 3G, energy overheads due to network traffic will
likely increase. Our experience shows that experiment-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 89

  

D
at

a 
tra

ns
m

itt
ed

 (K
B

/m
in

)

Figure 9: Network Traffic Patterns of Apps vs. CleanOS.
CleanOS traffic vs. app traffic for a one-hour trace. The Y axis
is in log scale. In our cases, the phone has background traffic,
which is included in both app and CleanOS lines.

ing with 3G networks leads to very unstable and unre-
peatable results; hence, for these networks, we rely on
an analytic evaluation grounded in a study of CleanOS’
network traffic. Figure 9 compares CleanOS’ traffic pat-
terns to those of the three apps using one-hour traces
from our energy experiments. It shows that CleanOS’
network consumption depends on the application’s own
network profile. For networked apps, such as email and
browser, CleanOS’ traffic closely follows the app’s own
traffic distribution over time. For example, for email, of
the 24 minutes during which CleanOS issued some traf-
fic, only 9 of those had no accompanying app traffic; for
the browser, only 1 out of 5 one-minute periods did so.
From an energy perspective, this means that CleanOS
usually piggybacks on the app’s own use of the network
and only rarely needs to hold the interface up for its own
purposes. On the other hand, for local-only apps, such as
KeePass, CleanOS uses the network mostly for its own
purpose; but even in such cases, however, its traffic will
be rare, brief, and small (≤ 10KB/min). Thus, we expect
CleanOS to be practical from an energy perspective.

8 Security Discussion and Limitations
We now discuss CleanOS’ security implications and limi-
tations. There are two types of data that an attacker might
seek: unevicted data and evicted data. CleanOS does not
protect unevicted data on a stolen device; instead, it seeks
to minimize the amount of such data. An audit-enabled
cloud service can provide users with a robust audit trail of
data exposed at the time of loss and data retrieved since.
For evicted data, clouds can do much more. For example,
after theft has been detected, they can revoke the device’s
access to still evicted data. They can also monitor ac-
cesses to keys to detect anomalous behavior.

A thief might also try to retrieve keys for all evicted
SDOs before the cloud disables them. Such aggressive at-
tackers could be identified via anomalous access-pattern

detection. To evade detection, the attacker could retrieve
SDO keys only for objects of interest, such as emails with
tempting subjects. While some attackers may be unwill-
ing to do so for fear of revealing their identities, the cloud
can provide an audit log of such accesses.

Attackers might also attempt to break the disconnec-
tion password to hoard keys for apps of interest without
raising suspicion. CleanOS could enforce sufficient en-
tropy to make the disconnection password, which is ex-
tremely rarely used, much stronger than a regular pass-
word (which a user must type every time he unlocks his
device). However, even if the password were broken, the
cloud could provide evidence of the attacker’s behavior.

Adversaries may perform network attacks to sniff or
disrupt CleanOS device-cloud traffic. To prevent sniff-
ing of keys from network traffic, we encrypt connec-
tions and authenticate the device to the cloud using a pre-
established secret key (akin to the device token in Gmail’s
two-factor verification) and the cloud using public key
cryptography. An attacker could also disrupt CleanOS
device-cloud communication to induce CleanOS into an
accumulation mode, where it defers eviction until cloud
connectivity returns. To defend, CleanOS bounds its
eviction delay for temporary disconnections. Moreover,
a thief could prevent eviction messages from arriving at
the cloud. However, dropping those messages will not
affect confidentiality since data eviction will complete as
planned, but it might raise auditing false positives.

One CleanOS limitation is its limited coverage outside
the Java realm. To be clear, expunging sensitive data
from Java is an important contribution: 9/14 apps in Fig-
ure 2(b) would expose some sensitive data permanently
in RAM if we did not do so. Moreover, we have incor-
porated some basic multi-level secure deallocation tech-
niques and have modified two popular native libraries to
limit exposure (SQLite and WebKit). However, any data
retained in other buffers or caches in the OS or native
libraries remains exposed. To limit this exposure, we rec-
ommend: (1) incorporating additional OS data scrubbing
mechanisms [10], (2) inspecting all remaining system li-
braries for caches as we do for SQLite and WebKit, and
(3) either disabling all third-party libraries (an approach
similar to TaintDroid’s [12]) or informing the cloud about
any data leakages to uninspected third-party libraries.

9 Related Work
CleanOS builds upon prior work that we now describe.
Encrypted File Systems. Encrypted file systems [11]
and full-disk encryption [26, 38] are designed to protect
data stored on a vulnerable device, but they do not pro-
tect data in RAM. Moreover, as discussed in §3 (Threat
Model) and in prior work [15, 41], these systems can fail
in the real world due to human factors (e.g., non-existent
or poor passwords) and physical attacks (e.g., key re-



90 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

trieval from RAM via cold-boot attacks [19]). CleanOS
recognizes these limitations and promptly removes un-
used data from the vulnerable device.
Encrypted RAM Systems. Encrypted RAM systems
– such as XOM [23], CryptKeeper [31], and encrypted
swap [34] – encrypt data while it sits in RAM. Crypt-
Keeper resembles the CleanOS model by encrypting all
memory pages except for a small working set, thereby
achieving a similar encrypted-unless-in-use effect as
CleanOS. However, while the data is encrypted in these
systems, the decryption keys themselves are still avail-
able in RAM and potentially accessible to memory-
harvesting unless extra hardware is deployed. Moreover,
if the device were unlocked or the thief found the user’s
password, encrypted RAM would have no effect.

ZIA [7, 8] encrypts mobile data in RAM and on disk
whenever a device is not near its owner. The user wears a
beaconing token at all times, whose presence is detected
by the mobile. Like ZIA, CleanOS encrypts data after a
period of non-use, but the granularities, method, and us-
age model are different. For example, we disable unused
data at the Java object level as opposed to the device level,
evict data to clouds for increased post-theft control, and
do not require users to carry (and secure!) tokens.
Mobile Wipe-Out Systems. Varied commercial wipe-
out systems exist and help increase users’ post-theft data
control. For example, remote wipe-out systems, such as
iCloud [3], let the users send “kill” messages to lost de-
vices. Unfortunately, these systems require network con-
nectivity to function correctly. If the thief prevents device
connectivity (e.g., by wrapping it into a Faraday cage),
the device will not receive the message and therefore not
complete its wipeout. Moreover, configuring the device
to self-destruct after a number of failed authentication at-
tempts helps prevent access to file system data, but it does
not preclude memory harvesting attacks, such as coldboot
imaging [19]. Such attacks are particularly problematic
on mobile devices, which hardly ever power off.
Cloud-based Mobile Security Services. The value of
the cloud for increased data control is being increasingly
recognized. Examples of cloud-based security services
include: online data access revocation with two-step veri-
fication [18], location-based access control with location-
aware encryption [37], and cloud-based authentication
with capture-resilient cryptography [25]. Generally, these
systems prevent the compromise of data not already ex-
posed on the device, but they do not guarantee security
for mobile-resident data. For example, none of these
systems takes RAM-resident data into account, and the
Google two-step verification does not even consider stor-
age. CleanOS cleanses device RAM and storage in sup-
port of such security services.
Keypad. Particularly relevant is Keypad [15], an audit-
ing file system for old-generation mobile devices, such as

laptops and USB sticks, that achieves file-level, strong-
semantic auditing. CleanOS shares Keypad’s threat
model, and our auditing service was inspired by it. How-
ever, in addition to its support for in-RAM data auditing,
CleanOS also differs from Keypad in its focus on new-
generation mobile technologies, such as Android, which
have distinct auditing granularity requirements. For ex-
ample, file-level auditing in Keypad would be ineffective
for apps using the SQLite database since they all would
be stored within one single file. Instead, CleanOS defines
SDOs, an abstraction that encompasses fine-grained ob-
jects, database items, and sdcard files.
Secure-Deletion Systems. Secure deletion has been rec-
ognized as a key OS primitive. It erases data in mem-
ory [6], OS buffers [10], and stable storage [30, 39, 4]
once the data is not needed by the application. CleanOS
explicitly assumes the existence and robustness of such
systems, but addresses a distinct, important part of the
sensitive data exposure problem for the first time: se-
curing data explictly hoarded by applications for perfor-
mance or convenience. CleanOS SDOs resemble the self-
destructing data abstraction in Vanish [16] in that they
“disappear” over time, but the setting is different: Van-
ish makes Web data disappear after a specified time post-
creation, whereas SDOs make mobile data disappear if
they are unused for a specified time.

10 Conclusions
This paper described CleanOS, a new design for the
Android OS that manages sensitive data rigorously and
keeps mobile devices clean at any point in time. Unlike
Android, which lets sensitive data accumulate in cleartext
RAM and on disk, CleanOS eliminates it from the vulner-
able device by evicting it to the cloud whenever it is not
needed on the device. It provides a clean-semantic foun-
dation for clouds to build add-on services, such as data
access revocation after a device has been lost or post-theft
data exposure auditing. We implemented CleanOS by in-
strumenting Android’s Java virtual machine to securely
evict sensitive data objects after a specified period of non-
use. On top of CleanOS, we built a sample auditing cloud
service. Our experiments demonstrate that CleanOS lim-
its data exposure significantly while imposing acceptable
performance overheads and offering sound semantics for
cloud-based applications.

11 Acknowledgements
We thank our shepherd, Petros Maniatis, and anonymous
reviewers for their valuable comments. We also thank
Steve Gribble, Angelos Keromytis, Hank Levy, Simha
Sethumadhavan, Salvatore Stolfo, and Junfeng Yang for
their feedback. This work was supported by DARPA
through FA8650-11-C-7190 and FA8750-10-2-0253 and
NSF through CNS-0905246.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 91

References

[1] R. Anderson and M. Kuhn. Tamper resistance: A cautionary
note. In Proc. of the USENIX Workshop on Electronics Com-
merce, 1996.

[2] Android Developers Blog. Avoiding memory leaks.
android-developers.blogspot.com/2009/01/avoiding-
memory-leaks.html, 2009.

[3] Apple iCloud. Find my iPhone, iPad, and Mac. www.apple.com/
icloud/features/find-my-iphone.html, 2012.

[4] D. Boneh and R. Lipton. A revocable backup system. In Proc. of
USENIX Security, 1996.

[5] S. Chen, M. Kozuch, T. Strigkos, and et.al. Flexible hardware
acceleration for instruction-grain program monitoring. In Proc. of
the Annual International Symposium on Computer Architecture
(ISCA), 2008.

[6] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure deallocation.
In Proc. of USENIX Security, 2005.

[7] M. D. Corner and B. D. Noble. Zero-interaction authentication.
In Proc. of the ACM Annual International Conference on Mobile
Computing and Networking, 2002.

[8] M. D. Corner and B. D. Noble. Protecting applications with tran-
sient authentication. In Proc. of the International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2003.

[9] L. P. Cox and P. Gilbert. Redflag: Reducing inadvertent leaks by
personal machines. Technical Report TR-2009-02, Duke Univer-
sity, 2009.

[10] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu,
V. Shmatikov, and E. Witchel. Eternal sunshine of the spotless
machine: Protecting privacy with ephemeral channels. In Proc. of
the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2012.

[11] EncFS. www.arg0.net/encfs, 2010.
[12] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. TaintDroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. In Proc. of
the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[13] Federal Communications Commission. Announcement
of new initiatives to combat smartphone and data theft.
www.fcc.gov/document/announcement-new-initiatives-
combat-smartphone-and-data-theft, 2012.

[14] Future of Privacy Forum, Center for Democracy & Tech-
nology. Best practices for mobile applications devel-
opers. www.futureofprivacy.org/wp-content/uploads/
Apps-Best-Practices-v-beta.pdf, 2011.

[15] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M.
Levy. Keypad: An auditing file system for theft-prone devices.
In Proc. of the ACM European Conference on Computer Systems
(EuroSys), 2011.

[16] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish:
Increasing data privacy with self-destructing data. In Proc. of
USENIX Security, 2009.

[17] Google Inc. MonkeyRunner. developer.android.com/tools/
help/monkeyrunner_concepts.html, 2012.

[18] Google Inc. Two-step verification. support.google.com/
accounts/bin/topic.py?hl=en&topic=28786, 2012.

[19] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W.
Felten. Lest we remember: Cold boot attacks on encryption keys.
In Proc. of USENIX Security, 2008.

[20] Imperva. Consumer password practices. www.imperva.com/
docs/WP_Consumer_Password_Worst_Practices.pdf, 2010.

[21] Intel Corporation. Laptop security with Intel Anti-Theft technol-

ogy. www.intel.com/content/www/us/en/architecture-
and-technology/anti-theft/anti-theft-general-
technology.html, 2012.

[22] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand
key derivation function (HKDF). tools.ietf.org/html/
rfc5869, 2010.

[23] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy and
tamper resistant software. In Proc. of the International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

[24] Lookout Mobile Security. Lost and found: The challenges
of finding your lost or stolen phone. blog.mylookout.com/
blog/2011/07/12/lost-and-found-the-challenges-of-
finding-your-lost-or-stolen-phone, 2011.

[25] P. MacKenzie and M. Reiter. Networked cryptographic devices
resilient to capture. In Proc. of USENIX Security, 2001.

[26] Microsoft Corporation. Windows 7 BitLocker executive overview.
technet.microsoft.com/en-us/library/dd548341(WS.10)
.aspx, 2009.

[27] Microsoft Corporation. Create strong passwords. www.
microsoft.com/security/online-privacy/passwords-
create.aspx, 2012.

[28] M. Milian. U.S. government, military to get secure An-
droid phones. www.cnn.com/2012/02/03/tech/mobile/
government-android-phones/index.html, 2012.

[29] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
[30] R. Perlman. File system design with assured delete. In Proc. of

the Annual Network and Distributed System Security Symposium
(NDSS), 2007.

[31] P. A. H. Peterson. Cryptkeeper: Improving security with en-
crypted RAM. In Proc. of the IEEE International Conference on
Technologies for Homeland Security (HST), 2010.

[32] Ponemon Institute. The lost smartphone problem.
www.mcafee.com/us/resources/reports/rp-ponemon-
lost-smartphone-problem.pdf, 2011.

[33] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan. CryptDB: Protecting confidentiality with encrypted query
processing. In Proc. of the ACM Symposium on Operating Sys-
tems Principles (SOSP), 2011.

[34] N. Provos. Encrypting virtual memory. In Proc. of USENIX Se-
curity, 2000.

[35] J. Robertson. Security chip that does encryption in PCs
hacked. www.usatoday.com/tech/news/computersecurity/
2010-02-08-security-chip-pc-hacked_N.htm, 2010.

[36] M. Savage. NHS ‘loses’ thousands of medical records.
www.independent.co.uk/news/uk/politics/nhs-loses-
thousands-of-medical-records-1690398.html, 2009.

[37] A. Studer and A. Perrig. Mobile user location-specific encryption
(MULE): Using your office as your password. In Proc. of the
ACM Conference on Wireless Network Security (WiSec), 2010.

[38] Symantec Corporation. PGP whole disk encryption. www.
symantec.com/whole-disk-encryption, 2012.

[39] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman. FADE: Secure
overlay cloud storage for file assured deletion. In Proc. of the
International ICST Conference on Security and Privacy in Com-
munication Networks (SecureComm), 2010.

[40] W3C. Mobile app best practices. www.w3.org/TR/mwabp, 2010.
[41] A. Whitten and J. Tygar. Why Johnny can’t encrypt: A usability

evaluation of PGP 5.0. In Proc. of USENIX Security, 1999.
[42] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. M. Mao, and

L. Yang. Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones. In
Proc. of the IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, 2000.





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 93

COMET: Code Offload by Migrating Execution Transparently

Mark S. Gordon† D. Anoushe Jamshidi† Scott Mahlke† Z. Morley Mao† Xu Chen�

†EECS Department,
University of Michigan
Ann Arbor, MI, USA

{msgsss,ajamshid,mahlke,zmao}@umich.edu

� AT&T Labs - Research
chenxu@research.att.com

Abstract
In this paper we introduce a runtime system to allow
unmodified multi-threaded applications to use multiple
machines. The system allows threads to migrate freely
between machines depending on the workload. Our pro-
totype, COMET (Code Offload by Migrating Execution
Transparently), is a realization of this design built on top
of the Dalvik Virtual Machine. COMET leverages the
underlying memory model of our runtime to implement
distributed shared memory (DSM) with as few interac-
tions between machines as possible. Making use of a
new VM-synchronization primitive, COMET imposes lit-
tle restriction on when migration can occur. Additionally,
enough information is maintained so one machine may
resume computation after a network failure.

We target our efforts towards augmenting smartphones
or tablets with machines available in the network. We
demonstrate the effectiveness of COMET on several real
applications available on Google Play. These applications
include image editors, turn-based games, a trip planner,
and math tools. Utilizing a server-class machine, COMET
can offer significant speed-ups on these real applications
when run on a modern smartphone. With WiFi and 3G
networks, we observe geometric mean speed-ups of 2.88X
and 1.27X relative to the Dalvik interpreter across the set
of applications with speed-ups as high as 15X on some
applications.

1 Introduction
Distributed Shared Memory (DSM) systems provide a
way for memory to be accessed and modified between
computing elements. It was an active area of research
in the late 1980s. Classically, DSM has been applied to
networks of workstations, special purpose message pass-
ing machines, custom hardware, and heterogeneous sys-
tems [18]. With the onset of relatively low performance
smartphones, a new use case for DSM has presented itself.

In our work, we apply DSM to offloading – the task of
augmenting low performance computing elements with
high performance elements.

Offloading is an idea that has been around as long
as there has been a disparity between the computational
powers of available computing elements. The idea has
grown in popularity with the concept of ubiquitous com-
puting where many low-powered, well-connected com-
puting elements would exist that could benefit from the
computation of nearby server-class machines. The pop-
ular approach to this problem is visible in specialized
systems like Google Translate and Apple iOS’s Siri. For
broad applicability, COMET and other recent work [9, 8]
have aimed to generalize this approach to enable offload-
ing in applications that contain no offloading logic. These
systems when compared to specialized offloading systems
can offer similar benefits that compilers offer over hand-
optimized code. They can save programmer effort and
in some cases outperform many specialized efforts. We
believe our work is unique as it is the first to apply DSM
to offloading. Using DSM instead of remote procedure
calls (RPC) offers many advantages including full multi-
threading support, migration of a thread at any point
during its execution, and in some cases, more efficient
data movement.

However, in applying DSM, we faced many challenges
unique to our use case. First, the latency and bandwidth
characteristics of a smartphone’s network connection to
an external server are much worse than those of a clus-
ter of workstations using a wired connection. Second,
the type of computation is significantly different: while
previous DSM systems focused on scientific computing,
we aim to augment real user-facing applications with
more stringent response requirements. Despite these chal-
lenges, we show in §5 that performance improvements can
be significant for a wide range of applications across both
WiFi and 3G networks.

Our design aims to serve these primary goals:

1



94 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

PhoneOS

Unmodified &
multi-threaded

Memory
states

Distributed memory
synchronization

Memory
states

Mobile
application

in-sync

Offloaded 
threads 

Executes concurrently
with non-offloaded threads

via 
network

Distributed memory
synchronization

RemoteOS

Figure 1: High-level view of COMET’s architecture

• Require only program binary (no manual effort)
• Execute multi-threaded programs correctly
• Improve speed of computation
• Resist network and server failures
• Generalize well with existing applications

Building upon previous work, our work offers sev-
eral new contributions. To the best of our knowledge,
we propose a new approach to lazy release consistency
DSM [20] that operates at the field level granularity to
allow for multiple writers of the same memory unit. This
allows us to minimize the number of times the client and
server need to communicate to points where communica-
tion must occur. Using DSM also allows us to be the first
offloading engine to fully support multi-threaded compu-
tation and allow for threads to move between endpoints
at any interpreted point in their execution rather than
offloading only entire methods. Despite these features,
COMET is designed to allow computation to resume on
the client if the server is lost at any point during the
system’s execution. Finally, we propose a very simple
scheduling algorithm that can give some loose guarantees
on worst case performance. Figure 1 gives an overview of
the design of the system.

We implemented COMET within the Dalvik Virtual
Machine of the Android Gingerbread operating system
and conducted tests using a Samsung Captivate phone and
an eight core server for offloading. Our tests were com-
prised of a suite of nine real-world applications available
on Google Play including trip planners, image editors,
games, and math/science tools. From our tests, we found
that COMET achieved a geometric mean speedup of 2.88X
and average energy savings of 1.51X when offloading
using a WiFi connection. 3G did not perform as well with
a geometric speedup of 1.27X and a modest increase in
energy usage. With lower latency and higher bandwidth,
we expect better offloading performance for 4G LTE net-
works compared to 3G.

The rest of the paper is organized as follows. In §2,
we summarize works in the field of DSM and offloading
and discuss how they relate to COMET. §3 presents the
overall system design of COMET. §4 describes how we
implemented COMET using Android’s Dalvik Virtual Ma-
chine. §5 presents how we evaluated COMET including
the overheads introduced by the offloading system, per-
formance and energy improvements for our benchmark
suite, and two case studies demonstrating some interesting
challenges and how COMET solves them. §6 covers some
limitations of our system, and §7 ends with final remarks.

2 Related Work
A significant amount of work has gone into designing
systems that combine the computation efforts of multiple
machines. The biggest category of such systems are
those that create new programming language constructs
to facilitate offloading. Agent Tcl [14] was one such a
system that allowed a programmer to easily let computa-
tion “jump” from one endpoint to another. Other systems
that fall into this broad category include Emerald [19],
Network Objects [5], Obliq [6], Rover [17], Cuckoo [21],
and MapReduce [11]. Other work instead focuses on spe-
cific kinds of computation like Odessa [26] which targets
perception applications, or SociableSense [27] designed
for harvesting social measurements. COMET takes an
alternative approach by building on top of an existing
runtime and requiring no binary modifications.

Other related offloading systems include OLIE [15],
which applied offloading to Java to overcome resource
constraints automatically. Messer et al. [23] proposed a
system to automatically partition application components
using MINCUT algorithms. Hera-JVM [22] used DSM
to manage memory consistency while doing RPC-style
offloading between cores on a Cell processor. Helios [25]
was an operating system built to utilize heterogeneous
programmable devices available on a device.

Closer to our use case, MAUI [9] enabled automated
offloading and demonstrated that offloading could be an
effective tool for performance and energy gains. In their
system, the developer was not required to write the logic
to ship computation to a remote server; instead he/she
would decide which functions could be offloaded and the
offloading engine would do the work of deciding what
should be offloaded and collecting all necessary state.
Requiring annotation of what could be offloaded limited
the reach of the system leaving room for CloneCloud [8]
to extend this design, filling this usability gap by using
static analysis to automatically decide what could be of-
floaded. Other works, like ECOS [13], attempt to address

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 95

the problem of ensuring data privacy to make offloading
applicable for enterprises.

JESSICA2 implemented DSM in Java for clusters of
workstations. JESSICA2 implemented DSM at the object
level using an object homing technique. This approach is
not suitable for our use case because each synchronization
operation triggers a network operation. Moreover it is not
robust to network failures.

Munin [7] was one of a couple early DSM prototypes
built during the 90s that targeted scientific computation
on workstations. Shasta [29] aimed to broaden the ap-
plicability of software DSM by making a system that
worked with existing applications. These were followed
up by systems like cJVM [4] and JESSICA2 [30] which
brought together DSM and Java. However these systems
are constructed for low latency networks where the cost
communication is relatively low encouraging designs with
more communication events and less data transfer. Ad-
ditionally, as is the case with cJVM and JESSICA2, the
DSM design is not conducive to failure recovery.

Our work can be seen as a combination of the efforts
of these DSM systems with the offloading frameworks
of Maui and CloneCloud. Unlike much of the work on
offloading discussed above, we focus not on what to of-
fload but more on the problem of how to offload. COMET
makes use of a new approach to DSM to minimize the
number of communication events necessary while still
supporting multi-threaded applications. We attempt to
demonstrate COMET’s applicability by evaluating on sev-
eral existing applications on Google Play.

3 Design
This section contains the overall design of COMET to
meet the five goals listed in §1. Although some specific
references to Java are made, the design of COMET aims to
be general enough to be applied to other managed runtime
environments (such as Microsoft’s Common Language
Runtime). Working with a virtualized runtime gives the
additional benefit of allowing the use of heterogeneous
hardware.

To facilitate offloading we use DSM techniques to keep
the heap, stacks, and locking states consistent across
endpoints. These techniques together form the basis of
our distributed virtual machine, allowing the migration
of any number of threads while being consistent with
the Java Memory Model. Our DSM strategy can be
considered both lazy and eager – lazy in the classic sense
that our protocol acts on an acquire, and eager in the
sense that we eagerly transmit all dirtied data when we do
act. This strategy is useful for reducing the frequency of
required communication between endpoints, necessary to

deal with high latency between endpoints that often exists
in wireless networks.

While it appears our design could be extended to more
than two endpoints, we discuss how operations work
specifically for the two endpoint case that our prototype
supports. Our intended endpoints are one client (a phone)
and one server (a high-performance machine). However,
the design rarely needs to identify which endpoint is
which and our work could be used in principle to combine
two similarly powered devices.

3.1 Security
Under our design a malicious server can take arbitrary
action on behalf of the client process being offloaded.
Additionally we have no mechanism to ensure the accu-
racy of the computed data nor the privacy of the inputs
provided. Therefore it seems necessary that the offload
server be trusted by the client.

However there is no need for the server to trust the
client. In this initial design the server only grants access of
its computation resources to the client and it has no private
data to compromise or dependency on the accuracy of
computation.

3.2 Overview of the Java Memory Model
The Java Memory Model plays an important role in our
design dictating what data must be observed by a thread.
In the JMM, memory reads and writes are partially or-
dered by a transitive “happens-before” relationship. A
read must observe a write if the write “happens-before”
the read. The Java specification also supports threads and
locks which directly tie into the JMM.

Within a single thread, all memory operations are to-
tally ordered by which happened first during execution.
Across threads, release consistency is used; when thread
A acquires a lock previously held by thread B, a “happens-
before” relationship is established between all operations
in thread B up to the point the lock was released and for all
future memory operations of thread A, meaning whatever
writes thread B made before releasing the lock should be
visible to thread A. Other miscellaneous operations like
volatile memory accesses or starting a thread, can also
create “happens-before” relationships between accesses
in different threads.

Still there remain cases where there may be several
writes that a read could observe. These situations are
called data races and usually indicate a buggy program.
This situation, however, is occasionally intentional. For
example, let W be the set of writes that “happen-before“
the read. Then the VM may let the read observe any
maximal element of W or any write not ordered with
respect to the read.

3



96 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

An existing method to follow the JMM while offloading
is to offload one thread at a time and block all other local
execution before the offloaded thread returns [9]. This
prevents multiple threads from making progress simul-
taneously, reducing the benefit of offloading. This also
eliminates the possibility of offloading computation (e.g.,
a function) that calls synchronization primitives unless
it can be checked automatically that the code will not
deadlock.

A slight modification is to let local threads continue
executing, until they access shared state across threads [8].
This again limits the usefulness of offloading and, for
example, prevents offloading a thread that may grab a lock
later on. Additionally, this kind of scheme can introduce
deadlocks into the program’s execution if the offloaded
thread tries to wait for data from another thread. COMET
overcomes these limitations by relying on DSM and VM-
synchronization techniques to keep the distributed virtual
machine in a consistent state without limiting what can
execute at any time.

3.3 Field-based DSM
Our key contribution over past DSM systems is the use
of field level granularity to manage memory consistency.
By doing things at this granularity, we can avoid tracking
anything more than a single bit indicating the dirtiness
of each field. Our DSM mechanism allows for multiple
readers and writers to simultaneously access the same
field without communication.

This is possible with DSM for Java, but not for other
less-managed runtimes, because reads and writes can only
happen at non-overlapping memory locations of known
widths. In particular, this means we can always merge
changes between two endpoints, even if they have both
dirtied a field, by just selecting one of the writes to
“happen-before” the other as described in §3.2. If instead
we worked at a coarser granularity, it would be unclear
how to merge two dirty memory regions. Even a copy of
the original memory region does not allow us to merge
writes without a view into the alignment of fields in
memory. This is particularly important in Java where
values must not appear “out of thin air.”

3.4 VM-Synchronization
At the heart of our design is the directed VM-
synchronization primitive between two endpoints; the
pusher and the puller. In full, the primitive synchronizes
the states of the virtual heap, stacks, bytecode sources,
class initialization states, and synthetic classes.

Synchronizing the virtual heap is accomplished by
tracking dirty fields of objects discussed in §3.3. During
a VM-synchronization, the pusher sends over all of the

qux() {
    y=1;
    z=1;
    ....
}

Endpoint 1
bar()

x=1

Endpoint 2
baz() qux()

y=1
z=1

z=2
x=2

migrate bar()
update[
  heap[x=1],
  stack[bar(), baz()]
] bar()

lock(mutex)

update[
  heap[y=1, z=1],
  stack[bar(), qux()]
]
owner(mutex)=ep1

migrate bar()
update[
  heap[z=2],
  stack[bar(), qux()]
]baz() {

    x=1;
    ...
    synchronize(mutex) {
        ...
    }
    ...
    x=2;
}

bar() {
    ...    
    z = 2
    ...
}

Figure 2: At the beginning, baz() and bar() are running in
separate threads on ep1, while qux() is running as a different
thread on ep2. ep2 holds the ownership of mutex at the
beginning, but no thread lock on it.

dirty fields it has in the shared heap. The puller then
reads in the changes and overwrites the fields sent by the
pusher. Both endpoints mark the fields involved as clean.

Stack synchronization then is done by sending over
the stacks of any shared threads that are running locally.
This includes each method called, the program counter
into each method, and any method level registers. This
encodes enough information about the thread’s execu-
tion state that the puller could resume execution. This
makes the act of migrating a thread trivial after a VM-
synchronization.

An example of the primitive’s operation is shown in
Figure 2. In the example, ep1 pushes one VM-update
(indicated by “update[...]” in the diagram) to ep2, and two
VM updates go from ep2 to ep1. The pusher operates by
assembling a heap update from all changes to the heap
since the last heap update and an update to each locally
running stack. The puller then receives the update and
merges the changes into its heap and updates the stacks
of each received thread. Note that the pusher’s heap and
thread stacks do not change as a result of this process.
For example in the third VM-synchronization shown in
Figure 2, only the modification to z needs to be sent
because x and y have not changed since the previous
update from ep2 to ep1.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 97

This primitive is our mechanism for establishing a
“happens-before” relationship that spans operations on
different endpoints. This includes each of the situations
mentioned in §3.2. Any operations that need to establish a
“happens-before” relationship, such as migrating a thread
or acquiring a lock when it was last held elsewhere, will
use this operation.

3.5 Locks
From §3.2 we found that a “happens-before” relationship
needs to be established whenever a lock is acquired that
was last held on another thread. To solve this problem
we assign an owner to each lock, indicating the endpoint
that last held the lock. In Java, any object can be used
as a lock. Thus, each object is annotated with a lock-
ownership flag. When attempting to lock an object that
an endpoint does not own, the requesting thread can
simply be migrated or the endpoint can make a request for
ownership of the lock. Which choice should be followed
is dictated by the scheduler discussed in §3.7.

In the latter case, the other endpoint will usually re-
spond with a VM-update and a flag indicating ownership
has been transferred. Figure 2 demonstrates this behavior
when baz(), running on ep1, attempts to lock on the object
mutex that is originally owned by ep2. This causes a VM-
update to be sent to ep1 as well as ownership of the mutex
object.

Java also supports a form of condition variables that
allow wait and signaling of objects. This comes almost
for free because waiting on an object implies you hold a
lock on the object. When you wait, the lock is released
and execution is suspended until the object is signaled to
continue. Then the lock is re-acquired, which will cause
the appropriate synchronization, if required. COMET only
needs to, in some situations, send a signal to wake up
a waiting remote endpoint. Some additional tracking
of how many threads are waiting on a given condition
variable is maintained to serve this purpose.

Volatiles are handled in a similar fashion to locks.
Only one endpoint can be allowed to perform memory
operations on a volatile field at a time. This is stronger
synchronization than what is required, but it suffices for
our design. Fortunately volatile operations are fairly rare,
especially in situations when offloading is desirable.

3.6 Native Functions
In §3.4 and §3.5, we have described the key parts of
our offloading system. Still, we have to decide what
computation to offload. The obvious question is why
not offload everything? This works fine until a native
function is encountered. These are functions usually
implemented in C with bindings to be accessed from Java.

COMET cannot, in general, offload these functions. These
functions are usually implemented in native code for one
of the following three reasons: (1) reliance on phone
resources (file system, display), (2) performance, and (3)
reliance on readily-available C libraries.

Each of these cases provides its own challenges if you
wish to allow both endpoints to run the corresponding
function. It is very common for these functions to rely
on hidden native state, frequently making this a more
difficult task than it might first appear. So, in general,
we assume that native methods cannot be offloaded unless
we manually mark them otherwise. As applications rarely
include their own native libraries [12], we can do this
once as a manual effort for the standard Android libraries.
Indeed, we have manually evaluated around 200 native
functions as being suitable to run on any endpoint.

Additionally, to support failure recovery we need to be
even more careful about what native methods are allowed
to run on the server. Methods that modify the Java heap
or call back into Java code can be dangerous because if
a VM-synchronization happens while the native method
is executing the client has no way to reconstruct the
state hidden on the native stack of the partially executed
native method. Some native methods warrant a special
exemption (e.g. Java’s reflection library) . For other non-
blocking native methods, we may simply force a pending
VM-synchronization to wait for the method to exit before
continuing.

3.7 τ -Scheduling
The last component of the system is the scheduler. Anal-
ogous to schedulers used by modern operating systems,
the scheduler is charged with the task of moving threads
between endpoints in an attempt to maximize throughput
(alternative goals are possible as well). During a push,
the scheduler decides which local threads should be mi-
grated and which non-essential lock/volatile ownership
flags should be transferred. Additionally, the scheduler
should initiate a push when it wants to migrate a thread or
to avoid requesting ownership of a lock.

For our first iteration of a solution to this problem, we
have used a basic scheduler that relies on past behavior
to move threads from client to server where they remain
as long as possible. This is achieved by tracking how
long a thread has been running on the client without exe-
cuting client-only code (a native method) and migrating
the thread when this time exceeds τ , where τ is some
configurable parameter. For our prototype, we initially
choose τ to be twice the round trip time (RTT). Over the
execution of the application, τ is replaced with twice the
average VM-synchronization time.

This choice of τ has the nice property of limiting

5



98 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

the damage of mistakes to twice the runtime without
offloading. This is because we need to have made forward
progress for a time of at least τ before migrating. If
we immediately had to migrate back, we have selected
τ so that it should take a time of τ before we are running
locally again. Thus the τ parameter lets us tune risk and
potential benefit of the scheduler.

4 Implementation
We built COMET by extending the Dalvik Virtual Ma-
chine (DalvikVM) targeted for the Android mobile op-
erating system. The DalvikVM is an interpreter for the
Dalvik byte-code based on the Java VM specification. Our
code was written on top of the CyanogenMod’s Ginger-
bread release. While the DalvikVM is intended to be run
on Android, it can be compiled for x86 architectures and
run on common Linux distributions. Because the JIT was
not yet available on x86, we were forced to disable the
JIT for our prototype. The additions to the code-base sum
to approximately 5,000 lines of C code with the largest
component, the one managing most DSM operation, at
900 lines of code.

4.1 Threads and Communication
To effectively handle multi-threaded environments,
threads are virtualized across different endpoints. The
DalvikVM uses kernel threads to run each Java thread. In
our system, kernel threads are paired between endpoints
to represent and act on behalf of a single virtualized
thread. Figure 3 shows pairs of parallel threads that
represent a single thread virtualized across endpoints.

To facilitate operations across endpoints, a full-duplex
byte stream connects two parallel threads. This abstrac-
tion is useful because all of the communication can be
expressed easily between parallel threads. Figure 3 shows
the path that data travel to get from a thread to its cor-
responding parallel thread. When a thread has data to
write, it sends a message to the controller. The controller
then multiplexes the data being written by all threads
over a single TCP connection, applying a compression
filter to save bandwidth and time. The remote controller
will demultiplex and decompress the message, sending
the data to the kernel thread parallel to the sender. This
allows for multiple byte-streams while avoiding the need
to establish multiple connections between endpoints.

To allow messages to be demultiplexed, virtual threads
are assigned IDs (this is the same identifier Thread.getId()
will return). When the controller receives a message, it
can use the ID to look up which thread to deliver the
message to or create the thread if it does not already exist.
When assigning IDs we set the high bit of the ID with the

Figure 3: Communication between endpoints

endpoint ID that created the thread to avoid ID collisions.
When a thread exits, it sends a message to the parallel
thread so that the thread may exit on both endpoints (and
joins so the thread can complete) and the IDs may be
released.

4.2 Tracked Set
In §3.4, we mentioned that updates only need to be sent
for objects that can be accessed by both endpoints. To
identify such objects, we introduce the the notion of the
tracked set of objects.

The tracked set contains all class objects and is
occasionally updated to include other local objects,
for example objects present on a stack during a VM-
synchronization. Global fields are considered to be
part of the class object they are defined in, and thus
are included in the tracked set. Additionally during a
push operation, the tracked set is closed, meaning that
all objects reachable from objects in the tracked set are
added to the tracked set as well. See §4.5 for how tracked
objects can eventually be garbage collected.

To support our DSM design, every tracked object is
annotated with a bitset indicating which fields are dirty.
Figure 4 illustrates how this data is stored and accessed.
Each write to a field of a tracked object causes that field
to be marked as dirty. Additionally, to be able to quickly
find only the objects with dirty fields, a dirty object list is
maintained, to which an object is added the first time one
of its fields is made dirty. As a result, it becomes easy for a
push operation to find all updated fields and add untracked
objects that appear in those modified fields to the tracked
set. After a push, all of the dirty bits are cleared and the
dirty object list is emptied.

Similar to existing systems [9, 8], COMET assigns IDs
to objects in the tracked set. This allows each endpoint
to talk about shared objects in a coherent way, as pointers
are meaningless across endpoints. For efficiency reasons,
objects are assigned incremental IDs when added to the
tracked set, so an object lookup turns into an array lookup
into the tracked set table as shown in Figure 4. Similar

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 99

ID
0
1
2
3
4
5
6
7

Address
xxxx0080
xxxx0020
xxxx0100
xxxx0038
xxxx0118
xxxx0008
xxxx0090
null

Lock
owned

X
X
X

X
X

Volatile
owned

X

X
X

X
X

Object
Dirty

X

X
X
X

X

Field 0
dirty

X

X

X

Field 1
dirty

X

X
X

X

Tracked Set Table

xxxx0020
ID: 1 Fields

xxxx0008
ID: 5 Fields
xxxx0038

ID: 3 Fields
xxxx0060

Fields

xxxx0080
ID: 0 Fields

xxxx0090
ID: 6 Fields

xxxx0100
ID: 2 Fields

xxxx0118
ID: 4 Fields

Java Heap

N/A

ID: 3
ID: 2
ID: 4

ID: 6
ID: 0

Dirty Object List

Figure 4: Tracked Set Table

to thread ID assignment, the high order bit of object IDs
is filled with the endpoint ID to avoid conflict so both
endpoints can add objects to the tracked set. The overhead
associated with tracking field writes and maintaining the
tracked set structures is examined in §5.2.

4.3 VM-Synchronization
Now we are ready to explain the core of our design, the
VM-synchronization operation. VM updates are always
performed between parallel threads with one endpoint
sending updates, the pusher, and the other endpoint re-
ceiving the updates, the puller. There are three major steps
to each synchronization operation.

First, the pusher and puller enter into an executable
exchange protocol where any new bytecode sources that
have been loaded on the pusher are sent over to the
puller. Usually, this step is just as simple as the pusher
sending over a message indicating that there are no new
binaries. Otherwise, the pusher sends over a unique binary
identifier, so the puller can try to look up the binary in its
cache. If it is not found, the puller can request the entire
binary which will be stored it in its cache for future use.

Second, the pusher sends over information about each
thread. To simplify this operation, all locally running
threads are temporarily suspended. We can track what
portion of the stack needs to be resent since the last update
and send each frame higher up on the call stack. Each
interpreted frame contains a method, a program counter,
and the registers used by that method. Using register maps

produced by the DalvikVM, we can detect which registers
are objects and add them to the tracked set. In addition
to the stack information, we also transmit information
about which locks are held by each thread. This enables
the thread on the puller to acquire any activated locks in
addition to allowing functions like Thread.holdsLock() to
execute properly without any communication.

Finally, the pusher sends over an update of the shared
heap. It goes through the dirty object list, finds which
fields have changed, and sends the actual modifications to
those fields. If we attempt to transmit an object field, the
referenced object is added to the tracked set and the ID
of that object is transmitted. Otherwise an endian neutral
encoding of the field is transmitted. Lastly, it clears all
of the dirty flags and the dirty object list and resumes all
other threads. Performance data on how long this takes
and how much data needs to be sent is available in §5.3.2.

After the executable exchange, the puller first buffers
the rest of the VM-synchronization. Then it temporarily
suspends each of the local threads as done during the push.
It then merges in the update to the heap first. This often
involves creating new objects that have not yet been seen
or could involve writing a locally dirty field. In the latter
case the JMM gives us liberty to use either value in the
field but we choose to overwrite with the new data so the
dirty bit can be cleared. After this, the puller reads in
the changes to the stack, again using the register maps
from the DalvikVM to convert any object registers from
their IDs to their corresponding object pointers. After this
completes, the puller can again resume threads locally.
Additionally, heap updates are annotated with a revision
ID, so that they can be pulled in the same order they were
pushed.

As an example, take Figure 4 as the initial state of
the pusher. The heap update will contain five object
definitions corresponding to the five dirty objects. If we
assume that each of these objects only has the two shown
fields, then in total seven field updates will be sent out.
If one of those fields was an object field that pointed
to xxxx0060, it would be assigned ID 7, and instead
we would send out six object definitions and nine field
updates. In either case, after the heap update, the pusher’s
dirty object list will be empty and all of the dirty flags are
cleared.

4.4 Thread Migration
Next we can discuss the operations built on top of the
VM-synchronization. In the core of the offload engine
is the thread loop. At most instances in time, at least one
of a pair of parallel threads is waiting in the thread loop
for a message from its peer. These messages are used
to initiate the actions described below. Additionally, a

7



100 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

special resume message can be sent to tell the thread to
exit the message loop and continue on with its previous
operation.

The primary operation is the migrate operation which
indicates that the requesting thread wishes to migrate
across endpoints. The VM-synchronization handles most
of the challenges involved. In addition, an activate and
deactivate operation is performed on the puller and pusher
respectively. Activate is responsible for grabbing any
locks and setting lock-ownership of objects that are cur-
rently held in the execution of the thread. After that,
the thread either calls directly into an interpreter or falls
back into the interpreter that called into the thread loop
depending on where the thread now is in its execution.
Deactivate is comparatively simpler and just needs to
release any held locks and ownership over them.

Transferring lock ownership is another important op-
eration. As discussed in §3.5 and shown in Figure 4,
each object is annotated with a lock ownership flag so
that a “happen-before” relationship can be established
correctly when needed. Initially each object is owned
by the endpoint that created it. When a thread attempts
to lock an object its endpoint does not own, it needs to
request ownership of the object from the remote endpoint
(or alternatively the scheduler could decide to migrate
the thread). It does so by sending a lock message to the
other endpoint along with the object ID it wishes to gain
ownership of. The parallel thread wakes up and responds
either with a heap update if the endpoint still owns the
object or a failure message if ownership has already been
transferred (i.e., by another virtual thread). In case of
failure, the initial thread will simply repeat the entire
process of trying to lock the object again. Special care
must be taken so that exactly one endpoint always owns
the lock, with the small exception of when ownership is
being transferred and nobody owns the lock.

Volatiles are handled in much the same way as locks. In
addition to the lock ownership flag annotated to objects,
there is also a volatile ownership flag. This flag mirrors
the lock flag so that a “happens-before” relationship is
established when an endpoint that does not hold volatile
ownership of an object needs to access a volatile field of
that object.

4.5 Garbage Collection
The tracked set as described so far will keep growing
indefinitely. Occasionally, some of the shared state will
no longer be needed by either endpoint and it can be re-
moved. To resolve this issue we have a distributed garbage
collection mechanism. This mechanism is triggered after
a normal garbage collection has failed to free enough
memory and the VM is about to signal it is out of memory.

To begin distributed garbage collection, both endpoints
mark every object that is reachable locally. Then a bitvec-
tor indicating whether each tracked object is locally reach-
able is sent to the remote endpoint. Receiving this bitvec-
tor from the all remotely marked objects are marked
locally in addition to any other objects reachable. If any
new objects are marked this way on either endpoint the
bitvectors must be sent again. This process continues until
both endpoints have agreed on which tracked objects are
reachable. In pathological cases this process could take
quite a few round trips to converge. In these cases the
client could just disconnect and initiate failure recovery.

4.6 Failure Recovery
From the design of COMET failure recovery comes almost
for free. To properly implement failure recovery, however,
the client must never enter a state that it could not recover
from if no more data was received from the server. There-
fore each operation that can be performed must either
wait for all remote data to arrive before committing any
permanent changes (e.g. data is buffered in the VM-
synchronization) or the change must be reversible if the
server is lost before the operation completes. To recover
from a failure the client needs only resume all threads
locally and reset the tracked object set.

In the case of resuming execution, the server is required
with each synchronization to send an update of all of the
thread stacks. This way if the server is lost it has the
necessary stack information to resume execution. The
client, however, needs only to send stacks of threads it
is attempting to migrate. Detection of server loss at this
point is simple. If the connection to the server is closed or
if the server has not responded to a heartbeat soon enough.

5 Evaluation
In this section we evaluate the overheads of COMET
(§5.2), and the performance and energy improvements
that COMET enables for a set of applications available
on Google Play as well as one hand-made computation-
intensive benchmark (§5.3). In §5.4 we take a deeper
look at how COMET works in some unique situations as a
series of short case studies.

5.1 Methodology
We tested COMET on a Samsung Captivate smartphone
running the Android 2.3.4 (Gingerbread) operating sys-
tem. Because the phone has some proprietary drivers,
we implemented COMET within a CyanogenMod [10]
build of the Android operating system. Our server is a
3.16GHz, eight core (two quad core Intel Xeon X5460
processors) system with 16GB of RAM, running Ubuntu

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 101

µBenchmark T & S T & !S !T & S !T & !S

write-array 30.9% 30.4% 8.96% 7.58%
write-field 36.7% 35.1% 10.6% 9.17%
read-array 8.17% 6.05% 9.71% 5.75%
func-read 12.2% 9.26% 9.76% 9.58%

Table 2: Overheads of COMET relative to an uninstrumented
client. Results are shown for when heap tracking(T) and
the scheduler(S) are enabled/disabled. An exclamation mark
indicates that the specified function is disabled.

11.10. COMET was tested using 802.11g WiFi in the
Computer Science and Engineering building at the Uni-
versity of Michigan, as well as a real 3G connection
using AT&T’s cellular network. To gather energy data,
we used a Monsoon Power Meter [24], which samples
the battery voltage and current every 200µs to generate a
power waveform. We integrated these power waveforms
over time to collect our energy readings.

We evaluated COMET using nine real applications from
Google Play that are diverse in their functionality, but
all have non-trivial computation that may benefit from
offloading. Table 1 lists the package names and their func-
tionality. Additionally, two purely computational applica-
tions were chosen, Linpack (available from Google Play)
and Factor (hand-coded), to highlight the capabilities of
COMET. Factor features multi-threaded execution to il-
lustrate COMET’s capability to offload multiple threads
simultaneously, which will be discussed in detail in §5.4.

In order to create repeatable tests, we used the
Robotium 3.1 user scenario testing framework [28].
This framework allowed us to script user input events
and reliably gather timing information for all of our
benchmarks. All test data has been gathered from five test
runs of each benchmark for each network configuration.

5.2 Microbenchmarks
We test the overheads of our COMET prototype with four
microbenchmarks: Write-array that writes to an array in
one linear pass, Write-field that writes to one index in an
array, Read-array that reads an entire array in one linear
pass, and Func-read that performs array reads through
many small function calls.

Table 2 displays the results of these microbenchmarks.
All results are relative to a client running an uninstru-
mented Dalvik VM using its portable interpreter. Results
are shown for all combinations of when heap tracking or
the scheduler are enabled or disabled.

When performing heavy writes to an object the write
tracking code is triggered and causes performance degra-
dation, which is shown by the write-array and write-field
tests when tracking is enabled. There is never any tracking
of reads so the overhead in read-array and func-read

gives the overheads from modifications to the interpreter
in those cases.

While these overheads seem significantly high, these
microbenchmarks represent worst case scenarios that are
unlikely to appear when running real applications. The
high costs can be offset by benefits from computation
speed-ups and may be reducible with more work.

5.3 Macrobenchmarks
This section discusses high level tests of the applications
listed in Table 1. We have divided each application’s
computation into “UI” and “Computation” components
based on which portions of the applications we believe are
doing interesting computation. The input events used to
operate our tests do not come from actual user traces and
in some cases include additional delays to ensure synchro-
nization. Therefore the ratio of “UI” to “Computation”
time means very little but we still present the “UI” times
to give some indication of how these applications might be
used and because the “UI” portion of execution is difficult
to discount in our energy measurements.

Moreover our application suite and the functionality
exercised in our tests were not chosen based on any real
user data. Therefore these tests serve only as an indication
that our system can work on some applications in the wild.
A user study is required to get some metric on how well
COMET can do in the wild when the system has matured.

5.3.1 Performance and Energy Benefits

The primary goal of COMET is to improve the speed
of computation. As a side-effect, we also expect to
see improvements in energy-efficiency if computation-
intensive portions of code are executed remotely on a
server. Because there is no standard set of benchmarks
in this area of research and readers may be unfamiliar
with the applications chosen as benchmarks, we present
our performance results as absolute times in seconds and
energies in Joules in Figures 5 and 6. Each figure also
shows the computation speed-ups and energy efficiency
improvements relative to the same benchmarks run with-
out offloading enabled.

Figure 5 shows that COMET achieves significant com-
putation speed-ups for most benchmarks when offloading
using WiFi. The geometric mean of computation speed-
up that is observed for offloading interactive applications
over WiFi is 2.88X. The high latency and poor bandwidth
of 3G made it much less successful than WiFi however.
Most of our benchmarks did not see performance im-
provements with the exception of Fractal, Poker, Linpack,
and Factor. In the other benchmarks the scheduler found
it too costly to offload so only small performance impacts

9



102 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Benchmark Package Name Description
In

te
ra

ct
iv

e
B

en
ch

m
ar

ks
Calculus com.andymc.derivative Math tool, computes discrete integrals using Riemann sums
Chess com.alonsoruibal.chessdroid.lite Chess game, does BFS to find best moves
Edgedetect com.lmorda.DicomStudio Image filter, detects and blurs edges
Fractal com.wimolife.Fractal Math tool, zooms and re-renders Mandelbrot fractals
Metro com.mechsoft.ru.metro Trip planner, Finds route between subway stations using Dijkstra’s Algorithm
Photoshop com.adobe.psmobile Image editor, performs cropping, filtering, and image effects
Poker com.leslie.cjpokeroddscalculator Game aid, uses Monte Carlo simulation to find odds of winning a poker game
Sudoku de.georgwiese.sudokusolver Game aid, solves sudoku puzzles given known values

C
om

pu
ta

tio
n

B
en

ch
m

ar
ks

Linpack com.greenecomputing.linpack Computation benchmark, standard linear algebra benchmark suite testing
floating point computation

Factor Not available on Google Play Computation benchmark, hand written application that uses multiple threads to
factors large numbers

Table 1: Description of benchmarks used in this evaluation.

Interactive
Benchmarks WiFi 3G
Calculus 1.47x 0.89x
Chess 3.06x 0.99x
Edgedetect 1.75x 1.03x
Fractal 15.01x 4.05x
Metro 1.22x 0.72x
Photoshop 1.28x 0.76x
Poker 6.15x 3.87x
Sudoku 4.18x 0.92x
GEOMEAN 2.88x 1.28x
Computation
Benchmarks WiFi 3G
Linpack 21.38x 20.94x
Factor 201.68x 168.34x
GEOMEAN 65.66x 59.37x

Figure 5: Absolute execution times for benchmarks with no offloading, WiFi offloading, and 3G offloading. Times are broken
down to reflect portions of time that the benchmarks are doing something computationally interesting versus navigating the UI.
Whiskers show the standard deviation. Computation speed-up figures relative to not offloading are shown on the right.

were seen. On average, offloading using 3G allowed a
1.28X speed-up for our interactive applications.

As a back-of-the-envelope calculation, we can estimate
how many WiFi clients running applications from our
benchmark an eight core server could handle by comput-
ing the average CPU utilization on the server for each
application. This comes out to 28% percent utilization
which suggests that a COMET server could sustain about
28 active clients.

As a consequence of reducing the absolute runtime
of the application and the amount of heavy computation
done on the client, energy improvements are observed in
all but one case when offloading using WiFi. Figure 6
details the energy costs of each test. The short latency
and high bandwidth of WiFi allows a client to spend less
energy transmitting and receiving data when transferring
state and control over to a server. Thanks to this, COMET
was able to improve energy efficiency on average by

1.51X for interactive applications. Again due to 3G’s
network characteristics and higher energy costs we found
that offloading with 3G usually consumed more energy
than it saved. Fractal was the only interactive benchmark
that saw significant energy improvement when using 3G.

5.3.2 The Amount of Transferred State

We now examine how much data COMET’s VM-
synchronization primitive transfers when our benchmarks
offload execution using WiFi and 3G. Table 3 shows the
amount of state transferred downstream and upstream, in
KB, from the client. This data is averaged over the same
five runs used to gather our performance and energy data.

Because all but one of our benchmarks were not de-
signed by us, the authors of these applications likely did
not intend for their code to ship state between a client and
server. Furthermore, we made no effort or modifications

10

Table 1: Description of benchmarks used in this evaluation



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 103

Download (KB) Upload (KB)
Benchmark Init. (KB) WiFi 3G WiFi 3G

Calculus 765.7 68.7 8.3 361.0 138.3
Chess 849.7 2777.0 0 860.9 0

Edgedetect 774.3 3818.2 0 641.6 0
Fractal 817.9 619.3 518.2 222.8 249.5
Metro 805.7 13.8 0 635.0 0.1

Photoshop 792.8 41757.0 587.0 25939.1 2309.8
Poker 773.5 2.6 1.1 185.6 138.0

Sudoku 876.4 292.7 0 300.0 0.3
Linpack 807.7 1873.6 1872.9 19.0 0.4
Factor 732.6 13.0 11.2 20.6 7.3

GEOMEAN 798.6 294.3 20.0 331.4 13.8

Table 3: Total number of bytes transmitted when offloading.
Init refers to the initial heap synchronization.

to the binaries of these applications to optimize how state
is packaged for offloading. Thus the size of state transfers
may seem large when compared to figures presented in
the literature [9]. Mixed DSM strategies will be used to
reduce this cost in future work.

The first thing that occurs when COMET begins to
offload an application’s execution to a server is an initial
heap synchronization including all of the globally reach-
able state. This first sync includes a great amount of data
that will never change later in the execution and is thus
considerably larger than future updates typically. This
initial heap synchronization is typically between 750–
810KB, regardless of the means of connectivity. This
takes, on average, 1.69s for a WiFi connection and 6.39s
over 3G to complete. As a point of comparison, the
average push and pull operations between two endpoints
are only 5.77ms over WiFi and 111ms over 3G.

COMET is capable of adapting to the available network
conditions. When a low latency connection is available
COMET will more eagerly use this connection to exploit
more offloading opportunities. Figures 5 and 6 show that
for the Photoshop test, even though over 60MB of state
needs to be transferred, there can still be performance
gains and energy savings. Conversely when network la-
tency is high and bandwidth is limited, as is the case when
operating using 3G connectivity, COMET determines that
offloading computation is not advised and scales back its
decisions to offload. Table 3 reflects this observation, as
the KB of data communicated downstream and upstream
when using 3G is significantly less than that of WiFi.

While the state transmissions observed in Table 3 may
seem large, future technologies may make it less costly, in
terms of time, energy, or both, to transmit data and execute
remotely than to perform computation locally. Cellular
carriers are currently adopting 4G LTE, which provides
higher bandwidths and lower latencies than 3G [16]. This
trend in cellular technology promises that in the coming
years it will be practical to transmit the amount of data

Loop : f o r ( ; ; ) {
i n t op = iCode [ f rame . pc + + ] ;
. . .
sw i t ch ( op ) {

. . .
case Token .ADD :
−−s t a c k T o p ;
do add ( s t a c k , sDbl , s tackTop , cx ) ;
c o n t i nu e Loop ;

case Token . CALL : {
. . .

}
}

}

Figure 7: Excerpt from Rhino’s Interpreter.java. Method-
granularity offloading is going to have difficulties offloading
code of this style.

necessary to keep state synchronized when exploiting
more offloading opportunities.

5.4 Case Studies
We now examine specific cases where COMET’s design
allows it to offload where other systems may not. Case
study I focuses on the benefits of offloading at a fine
granularity while case study II looks at the benefits of
being able to offload multiple threads.
Case Study I: Offloading JavaScript

A natural question of this system is if it can work with
derived runtimes. In particular, because of JavaScript’s
prevalence on the web, it would be interesting if
JavaScript could be offloaded as well. Unfortunately,
there are no existing web browsers that use a JavaScript
engine written in Java. The nearest thing appears to be
HtmlUnit [1], a “GUI-Less browser for Java programs”
aimed at allowing automated web testing within Java. The
JavaScript runtime backing HtmlUnit is called Rhino [2].

To test COMET’s ability to offload JavaScript with
Rhino, we ran the SunSpider [3] test suite with and with-
out offloading. For the 18 benchmarks that could run
correctly (some tests exceeded the Dalvik VM’s stack
size), we found that the entire test executed 6.6X faster
with a maximum speed-up for a single test of 8.5X and
a minimum speed-up of 4.7X. This suggests that COMET
can effectively be applied to derived runtimes.

It is important to mention that method-granularity
offloading would fall short in this scenario. Figure 7
gives an excerpt from Rhino’s interpreter. The interpreter
method cannot be offloaded as a whole as any subsequent
client side only calls, such as accesses to the UI, would
need to make an RPC right back to the client which could
be quite expensive if there are even a few such calls.
However, if we do not offload the interpreter loop, there is
likely no other method that has a substantial running time.

11



104 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Interactive
Benchmarks WiFi 3G
Calculus 1.07x 0.51x
Chess 1.36x 1.13x
Edgedetect 1.17x 0.95x
Fractal 4.02x 1.32x
Metro 0.80x 0.76x
Photoshop 1.21x 0.59x
Poker 3.05x 0.99x
Sudoku 1.30x 0.76x
GEOMEAN 1.51x 0.84x
Computation
Benchmarks WiFi 3G
Linpack 10.39x 1.20x
Factor 517.50x 185.24x
GEOMEAN 73.32x 14.93x

Figure 6: Absolute energy consumption for benchmarks with no offloading, WiFi offloading, and 3G offloading. Whiskers show
standard deviation. Energy improvements relative to not offloading are displayed on the right.

C
lie

nt
Se

rv
erUI Thread

App Launch

App Killed

Touch Event

Display
Result

Thread Start

Thread End

wait
for

threads

Thread Start

Thread End

factor

work
queue

work
queue

Figure 8: An illustration of multi-threaded execution being
offloaded to a server for the Factor application. Time progresses
from the top to the bottom of the diagram.

do add for example is typically going to be fairly quick to
execute. Therefore, offloading at a finer granularity than
methods is necessary to offload with Rhino and programs
like it. This feature is something that COMET offers over
past offloading systems.

Case Study II: Multi-threading in Factor
The multi-threaded Factor benchmark shows the best

case performance of COMET. It works by populating a
work queue with some integers to be factored, and starting
eight threads to process items from the queue. This also
demonstrates that COMET can work well even when some
amount of synchronization is required between threads.
Figure 8 illustrates the offloading of the multi-threaded
Factor benchmark.

The speed-up obtained by WiFi and 3G are 202X and

168X respectively. This is the difference between 44
minutes running locally and 13 seconds over WiFi demon-
strating massive speed-ups using multiple cores. Other
works cannot offload more than one thread at a time, espe-
cially when there are shared data accesses occurring [9, 8],
and therefore can only get a speed-up of around 28.9X.

6 Limitations
Broadly, there are two important limitations of our work.
First, COMET may decide to send over data that is not
needed for computation. This is often wasteful of band-
width and can make offloading opportunities more sparse.
Two approaches that may help mitigate this challenge
are using multiple DSM strategies like what is done in
Munin [7] or applying static analysis to detect when data
need not be sent.

The second limitation lies in the kinds of computa-
tion demanded by smartphones. We have not found a
large number of existing applications that rely heavily on
computation. Those that do frequently either implement
offloading logic right into the application or write the
computationally intensive parts of the application in C
making it difficult to test with COMET. However tools like
COMET can allow new kinds of applications to exist.

7 Conclusion and Future Work
In this paper, we have introduced COMET, a distributed
runtime environment aimed at offloading from smart-
phones. We introduced a new DSM technique and VM-
synchronization operation to keep endpoints in a consis-
tent state according to the memory model of our run-
time. This makes all virtualized code offloadable and
allows multiple threads to be offloaded simultaneously.
We demonstrated this system on nine real applications

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 105

and showed an average speed-up of 2.88X. In one hand-
written application, we were able to reach as much as
202X speedup. To broaden the impact of our work,
we plan on making the COMET system available upon
publication.

Moving forward, the most promising line of work is
in improving the scheduling algorithm used by COMET.
The τ -Scheduler described here is the simplest reasonable
scheduler that we could come up with and the focus of this
work lies elsewhere.

8 Acknowledgements
We thank Tim Harris for his time and energy of serving as
the shepherd for this paper and providing numerous con-
structive comments and detailed feedback for improving
the quality of this work. We also thank the anonymous
reviewers for their feedback and helpful suggestions. This
research was supported by the National Science Foun-
dation under grants CNS-1050157, CNS-1039657, CNS-
1059372 and CNS-0964478.

References
[1] A Java GUI-Less Browser. http://htmlunit.

sourceforge.net/.

[2] Rhino : JavaScript for Java. http://www.
mozilla.org/rhino/.

[3] SunSpider JavaScript Benchmark. http://
www2.webkit.org/perf/sunspider-0.
9/sunspider.html.

[4] Y. Aridor, M. Factor, and A. Teperman. cJVM: A
single system image of a JVM on a cluster. In Proc.
Int. Conf. Parallel Processing, 1999.

[5] A. Birrell, G. Nelson, S. Owicki, and E. Wobber.
Network objects. In Proc. ACM Symp. Operating
Systems Principles, 1993.

[6] L. Cardelli. Obliq - A language with distributed
scope. In Proc. of the Symposium on Principles of
Programming Langauges, 1995.

[7] J. B. Carter. Design of the Munin distributed shared
memory system. Journal of Parallel and Distributed
Computation, 1995.

[8] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patt. CloneCloud : Elastic Execution between
Mobile Device and Cloud. In Proceedings of the
European Conference on Computer Systems, 2011.

[9] E. Cuervo, A. Balasubramanian, D. ki Cho,
A. Wolman, S. Saroiu, R. Ch, and P. Bahl. MAUI:
Making smartphones last longer with code offload.
In Proc. MOBISYS, 2010.

[10] CyanogenMod Community. CyanogenMod Android
community rom based on gingerbread. http://
www.cyanogenmod.com/.

[11] J. Dean, S. Ghemawat, and G. Inc. Mapreduce:
simplified data processing on large clusters. In
Proc. Int. Symp. Operating Systems Design and
Implementation. USENIX Association, 2004.

[12] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. TaintDroid:
An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proceedings
of OSDI, 2010.

[13] A. Gember, C. Dragga, and A. Akella. ECOS: Prac-
tical Mobile Application Offloading for Enterprises.
In Proc. Int. Conf. Mobile Systems, Applications And
Services, 2012.

[14] R. S. Gray. Agent Tcl: A flexible and secure
mobile-agent system. In Proceedings of the TCL/TK
workshop, 1996.

[15] X. Gu, K. Nahrstedt, A. Messer, D. Milojicic,
I. Greenberg, I. Greenberg, and HP Laboratories.
Adaptive offloading inference for delivering applica-
tions in pervasive computing environments. In Proc.
of IEEE International Conference on Pervasive
Computing and Communications, 2003.

[16] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A Close Examination of
Performance and Power Characteristics of 4G LTE
Networks. In Proc. Int. Conf. Mobile Systems,
Applications And Services, 2012.

[17] A. D. Joseph, A. E. deLespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A toolkit for
mobile information access. In Proc. ACM Symp.
Operating Systems Principles, 1995.

[18] A. Judge, P. Nixon, V. Cahill, B. Tangney, and
S. Weber. Overview of distributed shared memory.
Technical report, Trinity College Dublin, 1998.

[19] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 1988.

13



106 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[20] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In Proceedings of the international
symposium on Computer architecture, 1992.

[21] R. Kemp, N. Palmer, T. Kielmann, and H. Bal.
Cuckoo: A computation offloading framework for
smartphones. In MOBICASE, 2010.

[22] R. McIlroy and J. Sventek. Hera-JVM: A runtime
system for heterogeneous multi-core architectures.
In Proceedings of the ACM international conference
on object oriented programming systems languages
and applications, OOPSLA, 2010.

[23] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic,
D. Chen, T. Giuli, and X. Gu. Towards a distributed
platform for resource-constrained devices. In
ICDCS, 2002.

[24] Monsoon Solutions Inc. Monsoon power monitor.
http://www.msoon.com/LabEquipment/
PowerMonitor/.

[25] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt. Helios: Heterogeneous
multiprocessing with satellite kernels. In Proc. ACM
Symp. Operating Systems Principles, 2009.

[26] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai,
D. Wetherall, and R. Govindan. Odessa: Enabling
Interactive Perception Applications on Mobile
Devices. In Proceedings of Mobisys, 2011.

[27] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J.
Rentfrow. SociableSense: Exploring the trade-offs
of adaptive sampling and computation offloading for
social sensing. In Proceedings of MobiCom, 2011.

[28] R. Reda et al. Robotium. code.google.com/
p/robotium.

[29] D. J. Scales and K. Gharachorloo. Towards
transparent and efficient software distributed shared
memory. SIGOPS, 1997.

[30] W. Zhu, C.-L. Wang, and F. C. M. Lau. JESSICA2:
A distributed Java virtual machine with transparent
thread migration support. In Proceedings of
the IEEE international conference on cluster
computing, 2002.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 107

AppInsight: Mobile App Performance Monitoring in the Wild

Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, Shahin Shayandeh

Microsoft Research

Abstract— The mobile-app marketplace is highly
competitive. To maintain and improve the quality of their
apps, developers need data about how their app is per-
forming in the wild. The asynchronous, multi-threaded
nature of mobile apps makes tracing difficult. The diffi-
culties are compounded by the resource limitations inher-
ent in the mobile platform. To address this challenge, we
develop AppInsight, a system that instruments mobile-
app binaries to automatically identify the critical path in
user transactions, across asynchronous-call boundaries.
AppInsight is lightweight, it does not require any input
from the developer, and it does not require any changes
to the OS. We used AppInsight to instrument 30 market-
place apps, and carried out a field trial with 30 users for
over 4 months. We report on the characteristics of the
critical paths that AppInsight found in this data. We also
give real-world examples of how AppInsight helped de-
velopers improve the quality of their app.

1 INTRODUCTION

There are over a million mobile apps in various app mar-
ketplaces. Users rely on these apps for a variety of tasks,
from posting mildly amusing comments on Facebook to
online banking.

To improve the quality of their apps, developers must
understand how the apps perform in the wild. Lab testing
is important, but is seldom sufficient. Mobile apps are
highly interactive, and a full range of user interactions
are difficult to simulate in a lab. Also, mobile apps expe-
rience a wide variety of environmental conditions in the
wild. Network connectivity (Wi-Fi or 3G), GPS-signal
quality, and phone hardware all vary widely. Some plat-
form APIs even change their behavior depending on the
battery level. These diverse conditions are difficult to re-
produce in a lab. Thus, collection of diagnostic and per-
formance trace data from the field is essential.

Today, there is little platform support for tracing app
performance in the field. Major mobile platforms, in-
cluding iOS, Android, and Windows Phone, report app-
crash logs to developers, but it is often difficult to identify
the causes of crashes from these logs [1], and this data
does not help diagnose performance problems. Analyt-
ics frameworks such as Flurry [8], and Preemptive [16]
are designed to collect usage analytics (e.g., user demo-
graphics), rather than performance data. Thus, the only
option left is for the developer to include custom trac-

ing code in the app. However, writing such code is no
easy task. Mobile apps are highly interactive. To keep
the UI responsive, developers must use an asynchronous
programming model with multiple threads to handle I/O
and processing. Even a simple user request triggers mul-
tiple asynchronous calls, with complex synchronization
between threads. Identifying performance bottlenecks
in such code requires correctly tracking causality across
asynchronous boundaries. This challenging task is made
even more difficult because tracing overhead must be
minimized to avoid impact on app performance, and also
to limit the consumption of scarce resources such as bat-
tery and network bandwidth.

In this paper, we describe a system called AppInsight
to help the app developers diagnose performance bottle-
necks and failures experienced by their apps in the wild.
AppInsight provides the developers with information on
the critical path through their code for every user trans-
action. This information points the developer to the opti-
mizations needed for improving user experience.

AppInsight instruments mobile apps mainly by inter-
posing on event handlers. The performance data col-
lected in the field is uploaded to a central server for of-
fline analysis. The design of AppInsight was guided by
three principles. (i) Low overhead: We carefully select
which code points to instrument to minimize overhead.
(ii) Zero-effort: We do not require app developers to
write additional code, or add code annotations. Instru-
mentation is done by automatically rewriting app bina-
ries. (iii) Immediately deployable: We do not require
changes to mobile OS or runtime.

We have implemented AppInsight for the Windows
Phone platform. To evaluate AppInsight, we instru-
mented 30 popular apps and recruited 30 users to use
these apps on their personal phones for over 4 months.
This deployment yielded trace data for 6,752 app ses-
sions, totaling over 33,000 minutes of usage time. Our
evaluation shows that AppInsight is lightweight – on av-
erage, it increases the run time by 0.021%, and the worst-
case overhead is less than 0.5%. Despite the low over-
head, the instrumentation is comprehensive enough to al-
low us to make several detailed observations about app
performance in the wild. For example, we can automati-
cally highlight the critical paths for the longest user trans-
actions. We can also group similar user transactions to-
gether and correlate variability in their performance with

1



108 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

void btnFetch_Click(
object obj, RoutedEventArgs e) {

var req = WebRequest.Create(url);
req.BeginGetResponse(reqCallback, null);

}
void reqCallback(IAsyncResult result) {
/* Process */
UIDispatcher.BeginInvoke(updateUI);

}
void updateUI() {
/* Update UI */

}

Figure 1: Example of asynchronous coding pattern

User Manipulation 

UI Update 

Web Request Callback 

Web Request Call 

Download Delay 

UI Event  
Handler Start 

UI Event 
Handler End 

UI Dispatch 

0 

1 

2 

3 

4 

5 

7 

8 

Processing 6 

Background worker thread 

UI Thread 

Figure 2: Execution trace for the code in Figure 1.

variation in the environment. In § 8.2, we will discuss
how this feedback helped developers improve the quality
of their app.

This paper makes two main contributions. First, we
describe several innovative techniques that automatically
instrument mobile apps to monitor user transactions with
minimal overhead. These techniques are embodied in
the current implementation of AppInsight. Second, we
present results from a real-world study of 30 Windows
Phone apps that we instrumented using AppInsight.

2 MOBILE APP MONITORING

We now discuss the typical asynchronous program-
ming pattern used in mobile apps, and the challenge it
presents for monitoring performance and failures.

Mobile apps are UI-centric in nature. In modern UI
programming frameworks [6, 15], the UI is managed by
a single, dedicated thread. All UI updates, and all user in-
teractions with the UI take place on this thread. To main-
tain UI responsiveness, applications avoid blocking the
UI thread as much as possible, and perform most work
asynchronously. Some mobile-programming frameworks
like Silverlight [15], do not even provide synchronous
APIs for time-consuming operations like network I/O and
location queries. Even compute tasks are typically car-
ried out by spawning worker threads. Thus, user requests
are processed in a highly asynchronous manner.

This is illustrated in Figure 2, which shows the exe-
cution trace for a simple code snippet in Figure 1. In
the figure, horizontal line segments indicate time spent
in thread execution, while arrows between line segments
indicate causal relationships between threads.

7 

User Manipulation 

UI Update 0 

UI Thread 

Web callback thread 1 

WebReq1 Callback 5 

WebReq2 Callback 

1 GPS Start 

2 

Start 2 Web Requests 3 

GPS Fix Callback 

Signal Complete 6 

Signal Complete 8 

Wait for 2 signals 4 9 Wakeup 

UI Dispatch 10 

11 

Web callback thread 2 

GPS Callback thread 

Figure 3: Execution trace of a location-based app.

(0) The user starts the transaction by clicking a but-
ton; (1) the OS invokes the event handler (btn-
Fetch Click) in the context of the UI thread; (2) the
handler makes an asynchronous HTTP request, providing
reqCallback as the callback; (3) the handler quits,
freeing the UI thread; (4) time is spent downloading the
HTTP content; (5) when the HTTP request completes,
the OS calls reqCallback in a worker thread; (6) the
worker thread processes the fetched data; (7) when the
processing finishes, the worker thread invokes the UI Dis-
patcher, to queue a UI update; (8) the OS calls the dis-
patched function (updateUI) asynchronously on the
UI thread, which updates the UI.

Real apps, of course, are much more complex. For
example, (i) worker threads may in turn start their own
worker threads, (ii) some user interactions may start a
timer to perform periodic tasks through the lifetime of an
app, (iii) transactions may be triggered by sensors such
as accelerometers and, (iv) a user may interrupt a running
transaction or start another one in parallel.

For example, Figure 3 illustrates a pattern common to
location-based apps. The app displays information about
nearby restaurants and attractions to the user. A typical
user transaction goes as follows. Upon user manipula-
tion, the app asks the system to get a GPS fix, and sup-
plies a callback to invoke when the fix is obtained. The
system obtains the fix, and invokes the app-supplied call-
back in a worker thread at (2). The callback function
reads the GPS coordinates and makes two parallel web
requests to fetch some location-specific data. Then, the
thread waits (4), for two completion signals. The wait is
indicated via a dotted line. As the two web requests com-
plete, the OS invokes their callbacks at (5) and (7). The
first callback signals completion to the blocked thread at
(6), while the second one does it at (8). As a result of the
second signal, the blocked thread wakes up at (9), and
updates the UI via the dispatcher.

Given such complex behavior, it can be difficult for the
developers to ascertain where the bottlenecks in the code
are and what optimizations might improve user-perceived
responsiveness. In Figure 3, the bottleneck path involves
the second web request, which took longer to complete.

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 109

void btnFetch_Click(
object obj, RoutedEventArgs e) {

var req = WebRequest.Create(url);
req.BeginGetResponse(reqCallback, null);

}
void reqCallback(IAsyncResult result) {
/* Process */
UIDispatcher.BeginInvoke(updateUI);

}
void updateUI() {
/* Update UI */

}

Figure 1: Example of asynchronous coding pattern

User Manipulation 

UI Update 

Web Request Callback 

Web Request Call 

Download Delay 

UI Event  
Handler Start 

UI Event 
Handler End 

UI Dispatch 

0 

1 

2 

3 

4 

5 

7 

8 

Processing 6 

Background worker thread 

UI Thread 

Figure 2: Execution trace for the code in Figure 1.

variation in the environment. In § 8.2, we will discuss
how this feedback helped developers improve the quality
of their app.

This paper makes two main contributions. First, we
describe several innovative techniques that automatically
instrument mobile apps to monitor user transactions with
minimal overhead. These techniques are embodied in
the current implementation of AppInsight. Second, we
present results from a real-world study of 30 Windows
Phone apps that we instrumented using AppInsight.

2 MOBILE APP MONITORING

We now discuss the typical asynchronous program-
ming pattern used in mobile apps, and the challenge it
presents for monitoring performance and failures.

Mobile apps are UI-centric in nature. In modern UI
programming frameworks [6, 15], the UI is managed by
a single, dedicated thread. All UI updates, and all user in-
teractions with the UI take place on this thread. To main-
tain UI responsiveness, applications avoid blocking the
UI thread as much as possible, and perform most work
asynchronously. Some mobile-programming frameworks
like Silverlight [15], do not even provide synchronous
APIs for time-consuming operations like network I/O and
location queries. Even compute tasks are typically car-
ried out by spawning worker threads. Thus, user requests
are processed in a highly asynchronous manner.

This is illustrated in Figure 2, which shows the exe-
cution trace for a simple code snippet in Figure 1. In
the figure, horizontal line segments indicate time spent
in thread execution, while arrows between line segments
indicate causal relationships between threads.

7 

User Manipulation 

UI Update 0 

UI Thread 

Web callback thread 1 

WebReq1 Callback 5 

WebReq2 Callback 

1 GPS Start 

2 

Start 2 Web Requests 3 

GPS Fix Callback 

Signal Complete 6 

Signal Complete 8 

Wait for 2 signals 4 9 Wakeup 

UI Dispatch 10 

11 

Web callback thread 2 

GPS Callback thread 

Figure 3: Execution trace of a location-based app.

(0) The user starts the transaction by clicking a but-
ton; (1) the OS invokes the event handler (btn-
Fetch Click) in the context of the UI thread; (2) the
handler makes an asynchronous HTTP request, providing
reqCallback as the callback; (3) the handler quits,
freeing the UI thread; (4) time is spent downloading the
HTTP content; (5) when the HTTP request completes,
the OS calls reqCallback in a worker thread; (6) the
worker thread processes the fetched data; (7) when the
processing finishes, the worker thread invokes the UI Dis-
patcher, to queue a UI update; (8) the OS calls the dis-
patched function (updateUI) asynchronously on the
UI thread, which updates the UI.

Real apps, of course, are much more complex. For
example, (i) worker threads may in turn start their own
worker threads, (ii) some user interactions may start a
timer to perform periodic tasks through the lifetime of an
app, (iii) transactions may be triggered by sensors such
as accelerometers and, (iv) a user may interrupt a running
transaction or start another one in parallel.

For example, Figure 3 illustrates a pattern common to
location-based apps. The app displays information about
nearby restaurants and attractions to the user. A typical
user transaction goes as follows. Upon user manipula-
tion, the app asks the system to get a GPS fix, and sup-
plies a callback to invoke when the fix is obtained. The
system obtains the fix, and invokes the app-supplied call-
back in a worker thread at (2). The callback function
reads the GPS coordinates and makes two parallel web
requests to fetch some location-specific data. Then, the
thread waits (4), for two completion signals. The wait is
indicated via a dotted line. As the two web requests com-
plete, the OS invokes their callbacks at (5) and (7). The
first callback signals completion to the blocked thread at
(6), while the second one does it at (8). As a result of the
second signal, the blocked thread wakes up at (9), and
updates the UI via the dispatcher.

Given such complex behavior, it can be difficult for the
developers to ascertain where the bottlenecks in the code
are and what optimizations might improve user-perceived
responsiveness. In Figure 3, the bottleneck path involves
the second web request, which took longer to complete.

2

UI Thread 

User Manipulation 

0 

Exception 8 

2 Thread Start 

btnSearch () 

searchAsync() 

requestCallback() 

parseXML() 

4 Web Request 

6 Thread Start 

7 

5 

3 

1 

at parseURL() 

Figure 4: Execution trace of an app crash.

Worse, these bottlenecks may be different for different
users, depending on their device, location, network con-
ditions, and usage patterns.

Failure analysis is also complicated by the asyn-
chronous nature of the app. Consider the example
in Figure 4. Suppose the app crashes in the method
parseURL() (8), which is called in a worker thread that
started at parseXML() (7). Since the UI thread function
that started the web request has exited, the OS has no in-
formation about the user context for this crash. Thus, in
the exception log offered by today’s popular mobile plat-
forms, the developer will only see the stack trace of the
crashed thread, from parseURL() to parseXML(). The
developer however, might want more information, such
as the user manipulation that triggered the crash, to speed
up debugging. This underscores the need for a system
that can track user transactions across thread boundaries.
This is one of the goals of AppInsight, as we discuss next.

3 GOALS

Our goal is to help developers understand the perfor-
mance bottlenecks and failures experienced by their apps
in the wild. We do this by providing them with criti-
cal paths for user transactions and exception paths when
apps fail during a transaction. We now define these terms.
User transaction: A user transaction begins with a user
manipulation of the UI, and ends with completion of all
synchronous and asynchronous tasks (threads) in the app
that were triggered by the manipulation. For example, in
Figure 2, the user transaction starts when the user ma-
nipulation occurs and ends when the updateUI method
completes. A user transaction need not always end with
a UI update. For example, a background task may con-
tinue processing past the UI update, without impacting
user-perceived latency. The notion of user-perceived la-
tency is captured in our definition of critical path, which
we turn to next.
Critical path: The critical path is the bottleneck path in
a user transaction, such that changing the length of any
part of the critical path will change the user-perceived la-
tency. Informally, the critical path starts with a user ma-
nipulation event, and ends with a UI update event. In Fig-

App 

App 

Instrumented 

Instrumenter Analysis 

Server 

App Store/Marketplace 

Developer 

Downloads 

Logs 

Instrumentation 
Metadata 

Developer 
Feedback 

Figure 5: AppInsight System Overview

ure 2, the entire path from (0) to (8) constitutes the critical
path of the transaction. The latency can be reduced either
by reducing the download delay (4) or the processing de-
lay (6). In Figure 3, the critical path is shown in bold.
Note that activities related to the download and process-
ing of the first web request are not on the critical path.

The critical path identifies the portions of the code that
directly impacts user-perceived latency. However, the
critical path may not always accurately characterize user
experience. For example, a transaction may make multi-
ple updates to the UI (one after the other), and the user
may care about only one of them, or the user may inter-
rupt a transaction to start a new one. We discuss this in
§ 6.2.

While the critical path is useful for understanding per-
formance bottlenecks, to debug app failures, we provide
the developer with exception paths.
Exception path: The exception path is the path from
the user manipulation to the exception method, spanning
asynchronous boundaries. In Figure 4, (0) to (8) is the ex-
ception path. The exception path points the developer to
the user manipulation that started the asynchronous path
leading to the crash.

We now describe how we collect the trace data needed
to deliver the above information to the developer, while
minimizing the impact on application performance.

4 APPINSIGHT DESIGN OVERVIEW

Figure 5 shows the architecture of AppInsight. The app
binary is instrumented using an instrumentation tool (the
instrumenter) that we provide. The developer only needs
to provide the instrumenter with app binaries; no other
input or source code annotation is needed.

The instrumenter leverages the fact that phone apps
are often written using higher-level frameworks and com-
piled to an intermediate language (byte code). Our cur-
rent implementation is designed for apps written using
the Silverlight framework [15], compiled to MSIL [13]
byte code. MSIL preserves the structure of the program,
including types, methods and inheritance information.

3



110 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Silverlight is used by a vast majority of the apps in the
WP7 marketplace. AppInsight requires no special sup-
port from the Silverlight framework.

When users run the instrumented app, trace data is col-
lected and uploaded to a server. We use the background
transfer service (BTS) [18] to upload the trace data. BTS
uploads the data when no foreground apps are running.
It also provides a reliable transfer service in the face of
network outages and losses. The trace data is analyzed
and the findings are made available to the developer via a
web-based interface (§ 7).

5 INSTRUMENTATION

We now describe our instrumenter in detail. Its goal is
to capture, with minimal overhead, the information nec-
essary to build execution traces of user transactions and
identify their critical paths and exception paths.

A number of factors affect the performance of mobile
applications: user input, environmental conditions, etc.
Even the app-execution trace can be captured in vary-
ing degrees of detail. In deciding what to capture, we
must strike the right balance between the overhead and
our ability to give useful feedback to the developer.

Figures 3 and 4 indicate that, we need to capture six
categories of data: (i) when the user manipulates the UI;
(ii) when the app code executes on various threads (i.e.,
start and end of horizontal line segments); (iii) causal-
ity between asynchronous calls and callbacks; (iv) thread
synchronization points (e.g., through Wait calls) and their
causal relationship; (v) when the UI was updated; (vi)
any unhandled exceptions. Apart from this, we also cap-
ture some additional data, as discussed in § 5.7.

To collect the data, we instrument the app in three
steps. First, we read the app binary and assign a unique
identifier to all methods in the app code and to system
calls. Each call site is considered unique; if X is called
twice, each call site gets its own identifier. This mapping
is stored in a metadata file and uploaded to the analysis
server for later use.

Second, we link two libraries to the app – a Detour
library and a Logger library (see Figure 6). The De-
tour library is dynamically generated during instrumenta-
tion. It exports a series of detouring functions [11], which
help attribute callback executions to the asynchronous
calls that triggered them. The Logger library exports
several logging functions and event handlers that insert
trace records into a memory buffer. Each record is tagged
with a timestamp and the id of the thread that called the
logging function. The buffer is flushed to stable storage
to prevent overflow as needed. When the app exits, the
buffer is scheduled for upload using BTS.

Finally, we instrument the app binary with calls to
methods in the Logger and Detour libraries from appro-
priate places to collect the data we need. Below, we de-

Framework 

Instrumented App 

Logger 

Detour 

Original App Code 
+ 

Instrumentation 

System Calls Callbacks App & UI Events 

Callback 

Detour 

Log 

Log 

Memory Buffer 

Write/Upload 

Figure 6: Structure of Instrumented App

scribe this process in detail. We use the code fragment
shown in Figure 1, and the corresponding transaction di-
agram in Figure 2 as a running example.

5.1 Capturing UI Manipulation events
When the user interacts with the UI (touch, flick, etc.)
the Silverlight framework delivers several UI input events
on the UI thread of the app running in the foreground.
The first event in this series is always a Manipulation-
Started event, and the last is always the Manipulatio-
nEnded event. Further, any app-specified handler to han-
dle the UI event is also called on the UI thread in be-
tween these two events. For example, in Figure 1, bt-
nFetch Click handles the click event for a button.
When the user touches the button on the screen, the han-
dler is called in between the two Manipulation events.

The logger library exports handlers for Manipulation-
Started and ManipulationEnded events, which we add to
the app’s code. The handlers log the times of the events,
which allows us to match the UI manipulation to the right
app handler for that UI input.

5.2 Capturing thread execution
The horizontal line segments in Figure 2 indicate when
the app code starts and ends executing on each thread.
This can be determined from a full execution trace that
logs the start and end of every method. However, the
overhead of capturing and uploading a full execution
trace from a mobile phone is prohibitive. We reduce the
overhead substantially by observing that at the beginning
of each horizontal line segment in Figure 2, the top frame
in the thread’s stack corresponds to an app method (as
opposed to a method that is internal to the framework)
and that this method is the only app method on the stack.
These methods are upcalls from the framework into the
app code. For our purpose, it is enough to log the start
and end of only upcalls.

The upcalls are generated when the system invokes an
app-specified handler (also called callback) methods for
various reasons, for example, to handle user input, timer
expiration, sensor triggers, or completion of I/O oper-
ations. Even spawning of worker threads involves up-
calls: the app creates a thread, and specifies a method as
a start method. This method is invoked as a callback of
Thread.Start at some later time.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 111

void btnFetch_Click(
object obj, RoutedEventArgs e) {

+ Logger.LogUpcallStart(5);
var req = WebRequest.Create(url);

* Detour dt = DetourFactory.GetDetour(reqCallback, 7);

* Logger.LogCallStart(7);
req.BeginGetResponse(dt.Cb1, null);

* Logger.LogCallEnd(7);
+ Logger.LogUpcallEnd(5);

}
void reqCallback(IAsyncResult result) {
+ Logger.LogUpcallStart(19);
/* Process */

* Detour dt = DetourFactory.GetDetour(updateUI, 13);

* Logger.LogCallStart(13);
UIDispatcher.BeginInvoke(dt.Cb2);

* Logger.LogCallEnd(13);
+ AppInsight.LogUpcallEnd(19);

}
void updateUI() {
+ Logger.LogUpcallStart(21);
/* Update UI */
+ Logger.LogUpcallEnd(21);

}

Figure 7: Instrumented version of the code in Figure 1.
The actual instrumentation is done on MSIL byte code.
We show decompiled C# code for convenience.

We identify all potential upcall methods using a simple
heuristic. When a method is specified as a callback to a
system call, a reference to it, a function pointer, called
delegate in .NET parlance, is passed to the system call.
For example, in Figure 1, a reference to reqCallback
is passed to the BeginGetResponse system call. The
MSIL code for creating a delegate has a fixed format [13],
in which two special opcodes are used to push a function
pointer onto the stack. Any method that is referenced by
these opcodes may be called as an upcall1.

We capture the start and end times of all potential up-
calls, along with the ids assigned to them, as shown in
Figure 7. The instrumentation added for tracking poten-
tial upcalls is prepended by ’+’. All three methods in the
example are potential upcalls and thus instrumented2.

While this technique is guaranteed to capture all up-
calls, it may instrument more methods than necessary,
imposing unnecessary overhead. This overhead is neg-
ligible, compared to the savings achieved (§ 8.3).

5.3 Matching async calls to their callbacks
We described how we instrument all methods that may
be used as upcalls. We now describe how we match
asynchronous calls to the resulting upcalls (i.e., their call-
backs). For example, in Figure 2, we need to match labels
2 and 5. To do so, we need to solve three problems.

First, we need to identify all call sites where an asyn-
chronous system call was made, e.g., in Figure 1, the
BeginGetResponse call is an asynchronous system
call. Second, we need to log when the callback started
executing as an upcall. We have already described how

1Certain UI handlers are passed to the system differently. We iden-
tify them as well – we omit details due to lack of space.

2The method btn FetchClick is a UI handler, and a pointer to it is
passed to the system elsewhere.

public class DetourFactory {
...
public static Detour GetDetour(

Delegate d, int callId) {
int matchId = getUniqueId();
Logger.LogAsyncStart(callId, matchId);
return new Detour(d, matchId);

}
}
public class Detour {
int matchId; Delegate originalCb;
public Detour(Delegate d, int matchId) {
this.originalCb = d; this.matchId = matchId;

}
public void Cb1(IAsyncResult result) {
Logger.LogCallbackStart(this.matchId);
Invoke(this.originalCb);

}
public void Cb2() {
...

}
}

Figure 8: Detour library

we track the start of upcall execution. Third, we need to
connect the beginning of callback execution to the right
asynchronous call.

We solve the first problem by assuming that any system
call that accepts a delegate as an argument, is an asyn-
chronous call. This simple heuristic needs some refine-
ments in practice, which we will discuss in § 5.3.1.

The third problem of connecting the callback to the
right asynchronous call is a challenging one. This is be-
cause a single callback function (e.g., a completion han-
dler for a web request) may be specified as a callback for
several asynchronous system calls. One possibility is to
rewrite the app code to clone the callback function sev-
eral times, and assign them unique ids. However, this is
not sufficient, since the asynchronous call may be called
in a loop (e.g., for each URL in a list, start download) and
specify the same function as a callback. To handle such
scenarios, we rewrite the callback methods to detour them
through the Detour library, as described below.

Figure 7 shows instrumented code for the example in
Figure 1. Instrumentation used for detour is tagged with
’*’. Figure 8 shows relevant code inside the Detour li-
brary. We add instrumentation as follows.
(i) We identify the system call BeginGetResponse

as an asynchronous call. The instrumenter has assigned a
call id of 7 to this call site. We log the call site id, and the
start and end time of the call3.

(ii) We generate a new method called cb1 that
matches the signature of the supplied callback function,
i.e., reqCallback, and add it to the Detour class in
the Detour library. This method is responsible for invok-
ing the original callback (see Figure 8).
(iii) We instrument the call site to call GetDetour to

generate a new instance of the Detour object. This ob-

3Async calls typically return almost immediately. We log both start
and end of these calls not to collect timing data, but because such brack-
eting makes certain bookkeeping tasks easier.

5



112 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Thread t = new Thread(foo);
...
...
t.Start();

Figure 9: Delayed callback

ject stores the original callback, and is assigned a unique
id (called matchId) at runtime. This matchId helps
match the asynchronous call to the callback.
(iv) We then rewrite the app code to replace the orig-

inal callback argument with the newly generated detour
method, Detour.cb1.

Notice from Figure 8 that the GetDetour method
logs the beginning of an asynchronous call using the Lo-
gAsyncStart function of the Logger library. Sim-
ilarly, the beginning of the callback is logged by the
LogCallbackStart, which is called from cb1, just
before the original callback is invoked. These records,
and the UpcallStart record of the original callback
method are linked by the matchId, the call site id, and
their thread ids, allowing us to attribute the callback to the
right asynchronous call. We show an example in § 5.8.

Figure 7 also shows another example of detouring. The
UpdateUI method is a callback for the BeginInvoke
method of the UIDispatcher, and hence is detoured.

5.3.1 Refining async-call identification heuristic
The simple heuristic used to determine which system
calls are asynchronous calls, needs two refinements in
practice. First, some system calls may invoke the sup-
plied callback synchronously. This can be easily detected
using thread ids in the trace. The second problem is more
complex. Consider Figure 9. The callback delegate foo
was specified when the constructor was called, but it is in-
voked only when Thread.Start is called, which may
be much later. The simple heuristic would incorrectly
match the callback to the call site of the constructor, in-
stead of Thread.Start. We use domain knowledge
about Silverlight system libraries to solve the problem.
We know that the callback function is always invoked
from Thread.Start. We log the id of the thread ob-
ject at the constructor, and also at Thread.Start. The
object ids, and the detour log described above allow us
to match the callback to the Thread.Start call. We
handle event subscriptions in a similar manner.

5.4 Capturing Thread Synchronization
Silverlight provides a set of methods for thread syn-
chronization. The thread waits on a semaphore (e.g.,
Monitor.Wait(obj)), and is woken up by signaling that
semaphore (e.g., Monitor.Pulse(obj)). We log calls to
these functions and the identities of semaphore objects
they use. These object ids can be used to determine the
causal relationship between synchronization calls. Wait-
ing on multiple objects, and thread join calls are han-
dled similarly. Threads can also synchronize using shared
variables. We will address this in § 9.

RecordId Records ThreadId
1 UIManipulationStarted 0
2 MethodStart(5) 0
3 CallStart(7) 0
4 AsyncStart(7, 1) 0
5 CallEnd(7) 0
6 MethodEnd(5) 0
7 UIManipulationEnded 0
8 CallbackStart(1) 1
9 MethodStart(19) 1

10 CallStart(13) 1
11 AsyncStart(13, 2) 1
12 CallEnd(13) 1
13 MethodEnd(19) 1
14 CallbackStart(2) 0
15 MethodStart(21) 0
16 MethodEnd(21) 0
17 LayoutUpdated 0

Table 1: Trace of code in Fig. 7. The UI thread id is 0.

5.5 Capturing UI updates
The Silverlight framework generates a special LayoutUp-
dated event whenever the app finishes updating the UI.
Specifically, if an upcall runs on the UI thread (either
event handlers, or app methods called via the UIDis-
patcher), and updates one or more elements of the UI as
part of its execution, then a single LayoutUpdated event
is raised when the upcall ends. The Logger library ex-
ports a handler for this event, which we add to the app
code. The handler logs the time this event was raised.

5.6 Capturing unhandled exceptions
When an unhandled exception occurs in the app code, the
system terminates the app. Before terminating, the sys-
tem delivers a special event to the app. The data associ-
ated with this event contains the exception type and the
stack trace of the thread in which the exception occurred.
To log this data, the logger library exports a handler for
this event, which we add to the app code.

5.7 Additional Information
For certain asynchronous calls such as web requests and
GPS calls, we collect additional information both at the
call and at the callback. For example, for web request
calls, we log the URL and the network state. For GPS
calls, we log the state of the GPS. The choice of the in-
formation we log is guided by our experience, and the in-
evitable tradeoff between completness and overhead. Our
data shows that critical paths in a user transaction often
involve either network or GPS accesses. By logging a
small amount of additional information at certain points,
we can give more meaningful feedback to the developer.

5.8 Example trace
Table 1 shows the trace generated by the instrumented
code in Figure 7. Records 1 and 7 show a UI Manipula-
tion event. They encompass an upcall (records 2-6) to the
method btnFetch Click. As described in § 5.1, we
attribute this upcall to UI manipulation.

This method makes the asynchronous system call Be-
ginGetResponse (record 4), the callback of which is

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 113

M 

S 

A 

E 

S 

E S 

E 
A 

L 

2 

4 

9 
13 

15 16 

1 
17 

6 

11 

Figure 10: Transaction Graph for the trace in Table 1.
.

M 
S A 

E 

S 

A A 
B 

S 

S 

F 
E 

F 
E 

W 

E S 

E 
A 

L 

Figure 11: Transaction Graph for transaction in Figure 3.
Record labels are omitted for simplicity.

.
detoured, and assigned a match id of 1. Record 8 marks
the begining of the execution of the detoured callback. It
calls the actual callback method, reqCallback, which
has a method id of 19. This method executes between
records 9 and 13. We can link records 8 and 9 because
they have the same thread id, and will always follow each
other (§ 5.3). When reqCallback executes, it makes
another asynchronous call. This is the call to the UI dis-
patcher. We detour the callback, and assign it a match id
of 2. The actual callback method, of course, is Upda-
teUI, which has the method id of 21.

The completion of this method is indicated by record
16. We note that this method ran on the UI thread. Record
17 indicates that a LayoutUpdated event was triggered
immediately after the execution of this method, which
means that this method must have updated the UI.

6 ANALYSIS METHODOLOGY

We analyze the traces to delineate individual user trans-
actions, and identify critical paths and exception paths.
Transactions can also be analyzed in aggregate, to high-
light broader trends.

6.1 User transactions
We represent user transactions by directed acyclic graphs.
The graph is generated from the trace data. Consider the
trace in Table 1. It is converted to the graph in Figure 10.

The graph contains five types of nodes, namely: (M)
User Manipulation, (S) Upcall start, (E) Upcall end, (A)
Async call start, and (L) Layout updated. Each node rep-
resents one trace record 4 and is identified by the type and
the record id. The mapping between node types M,S,E,A
and L and the record types can be gleaned from Table 1.

4CallStart, CallEnd and CallBackStart records are used for book-
keeping purposes only, and are not mapped to nodes.

The edges between nodes represent causal relation-
ships. For example, the UIManipulationStarted event M1
triggers the start of the handler S2. Similarly, the start of
callback execution S9 was caused by the asynchronous
call A4. We also say that an upcall start node “causes”
any subsequent activity on that upcall. Hence we draw
S2 → A4, as the async call was made during execution
of the upcall, and S2 → E6, to represent the fact that the
upcall end is triggered by upcall start.

The above graph does not show any thread syn-
chronization events. These are represented by three
types of nodes, namely: (B) Thread blocked node, (F)
Semaphore fired node, and (W ) Thread wakeup node.
We’ll describe these nodes later.

When the app trace contains overlapping user transac-
tions, this approach correctly separates them, and gener-
ates a graph for each.

We now discuss how we use this graphical representa-
tion to discover the critical path in a user transaction.

6.2 Critical Path
The critical path is the bottleneck path in the user trans-
action (§ 3). The basic algorithm for finding the critical
path is simple. Consider Figure 10. We traverse the graph
backwards, going from the last UI update (L17), to the
user manipulation event that signals the start of the trans-
action (M1), traversing each directed edge in the opposite
direction. This path 5, when reversed, yields the critical
path: M1, S2, A4, S9, A11, S15, E16, L17. Even this
simple example shows that we correctly account for time
spent inside upcalls: for example, the edge (S9,E13) is
not on the critical path, which means that any activity
in the reqCallback method (See Figure 7), after call-
ing the dispatcher, does not affect user-perceived latency.
This basic algorithm requires several refinements, as dis-
cussed below.
Multiple UI Updates: As discussed in § 3, the transac-
tion may update the UI multiple times. This results in
multiple L nodes in the transaction graph. Only the de-
veloper can accurately determine which of these updates
is important. In such cases, AppInsight, by default, re-
ports the critical path to the last L node. However, using
the feedback interface (§ 7), the developer can ask AppIn-
sight to generate the critical path to any of the L nodes.
Thread synchronization via signaling: The basic algo-
rithm implicitly assumes that each node will have only
one edge incident upon it. This is not the case for the
graph shown in Figure 11, which represents the trans-
action shown in Figure 3: Node W , which is a thread
wakeup node, has two edges incident upon it, since the
thread was waiting for two semaphores to fire (the two

5This algorithm always terminates because the transaction graph is
always acyclic. Also, we are guaranteed to reach an M node from an L
node, with backward traversal. We omit proofs.

7



114 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

F nodes). In such cases, we compare the timestamps of
the semaphore-fire records, and pick the later event. This
yields the critical path shown in the figure.
Periodic timers: An app may start a periodic timer,
which fires at regular intervals and performs various
tasks, including UI updates. In some cases, periodic
timers can also be used for thread synchronization (§ 9).
We detect this pattern, and then assume each timer firing
to be the start of a separate transaction. We call these
transactions timer transactions, to distinguish them from
user transactions. These transactions need to be pro-
cessed differently, since they may not end with UI up-
dates. We omit details due to lack of space. We handle
sensor-driven transactions in a similar manner.

6.3 Exception path
When the app crashes, we log the exception information
including the stack trace of the thread that crashed (§ 5.6).
We also have the AppInsight-generated trace until that
point. We walk the stack frames until we find a frame that
contains the method name of the last UpcallStart record
in the AppInsight trace. The path from the start of the
transaction to the Upcall start node, combined with the
stack trace represents the exception path.

6.4 Aggregate Analysis
AppInsight helps the developer see the “big picture” by
analyzing the transactions in aggregate. There are a num-
ber of ways to look at the aggregate data. Our experience
shows that the developer benefits the most by using the
aggregate data to uncover the root causes of performance
variability, and to discover “outliers” – i.e. transactions
that took abnormally long to complete compared to simi-
lar transactions.

To perform this analysis, we group together transac-
tions with identical graphs; i.e. they have the same nodes
and the same connectivity. These transactions represent
the same user interaction with the app. This is a conserva-
tive grouping; the same user interaction may occasionally
generate different transaction graphs, but if two transac-
tions have the same graph, with a high probability they
correspond to the same interaction.
Understanding performance variance: While the
transactions in a group have the same transaction graph,
their critical paths and durations can differ. To iden-
tify the major sources behind this variability, we use a
standard statistical technique called Analysis of Variance
(ANOVA). ANOVA quantifies the amount of variance in
a measure that can be attributed to individual factors that
contribute to the measure. Factors include network trans-
fer, local processing and GPS queries which in turn can
vary because of network type, device type, GPS state,
user state, etc. We will discuss ANOVA analysis in more
detail in § 8.1.3.

Outliers: AppInsight also flags outlier transactions to
help developers identify performance bottlenecks. Trans-
actions with duration greater than (mean + (k * standard
deviation)) in the group are marked as outliers. We use k
= 3 for our analysis.

7 DEVELOPER FEEDBACK

The AppInsight server analyzes the collected traces using
the methods described in § 6. The developers use a web
UI to access the results. Figure 12 shows a collage of
some of the views in the UI.

For ease of navigation, the UI groups together identi-
cal transactions (§ 6.4) ((a) in Figure 12). To allow easy
mapping to the source code, groups are named by their
entry event handler method. Within each group, transac-
tions are sorted by duration and outliers are highlighted
(b). Developers can select individual transactions to view
their transaction graph which are shown as interactive
plots (c). The plot also highlights the critical path (d).
Within a critical path, we show the time spent on each
component (e). The developer can thus easily identify
the parts of the code that need to be optimized. Addi-
tional information, such as URLs and network type (3G
or Wi-Fi) for web calls and the state of the GPS is also
shown (e). We also provide variability analysis for each
transaction group (f).

The UI also shows where each transaction fits within
the particular app session. This view provides develop-
ers with the context in which a particular transaction oc-
curred (e.g, at the start of a session).

The tool also reports certain common patterns within a
group and across all transactions for an app. For example,
it reports the most common critical paths in a transaction
group, the most frequent transactions, common sequence
of transactions, frequently interrupted transactions, etc.
Using this information, the developer can focus her ef-
forts on optimizing the common case.

Developers can also browse through crash reports.
Crashes are grouped by their exception path. For each
exception, the tool reports the exception type, shows the
stack trace attached to the execution graph and highlights
the exception path.

8 RESULTS

We first present results from the live deployment of
AppInsight, and some case studies of how AppInsight
helped developers improve their app. Then, we present
micro-benchmarks to quantify AppInsight’s overhead
and coverage.

8.1 Deployment
To select the apps to evaluate AppInsight with, we asked
50 of our colleagues to list 15 apps they regularly use
on their Windows Phone. From these, we picked 29
most popular free apps. We also included an app that

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 115

(d) Critical path  
highlighted 

(a) Transaction groups 

(b) Outliers highlighted (e) Critical path information 

(f) Variability 
analysis 

(c) Interactive transaction plot 

Figure 12: Collage of some of the views in the developer feedback UI.

total num of apps 30
total participants 30
unique hardware models 6
unique hardware+firmware 14
start date 03 April 2012
end date 15 August 2012
total num of app launches (sessions) 6752
total minutes in apps 33,060
total user transactions 167,286
total timer transactions 392,768
total sensor transactions 3587

Table 2: Summary statistics from our deployment

was developed by an author of this paper. The app was
published several months before we started the AppIn-
sight project, as an independent effort. We instrumented
these 30 apps using AppInsight. Thirty users volunteered
to run some of the instrumented apps on their personal
phones. Often, they were already using many of the apps,
so we simply replaced the original version with the instru-
mented version. All participants had their own unlimited
3G data plans.

Table 2 shows summary deployment statistics. Our
data comes from 6 different hardware models. Over the
course of deployment, we collected trace data from 6752
app sessions. There are a total of 563,641 transactions in
this data. Over 69% of these are timer transactions, trig-
gered by periodic timers (see § 6.2). Almost all of them
are due to a one-second timer used in one of the gam-
ing apps. In the rest of the section, we focus only on the
167,286 user transactions that we discovered in this data.

Table 3 shows basic usage statistics for some of the
apps. Note the diversity in how often users ran each app,
for how long, and how many user transactions were in
each session. Over 40% of the user transactions were
generated by a multiplayer game app. Figure 13 shows
the CDF of the length of user transactions (i.e., the length
of their critical path). Only 15% of the transactions last

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30
C

D
F

Transaction Length (s)

Figure 13: CDF of user-transaction duration.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

Number of edges

In a Transaction
In a Critical Path

Figure 14: CDF of number of edges in user transactions
and in critical paths. The X-axis has been clipped at 100.
The top line ends at 347, and the bottom ends at 8,273.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

 o
f 
ti
m

e
 i
n
 t
h
e

 c
ri
ti
c
a
l 
p
a
th

Edges sorted by fraction of time in the critical path

Figure 15: Cumulative fraction of time in the critical path
as a function of number of edges.

more than 5 seconds. The app developer would likely
want to focus his debugging and optimization efforts on
these long-running transactions.

8.1.1 User Transactions and Critical Paths
In Table 3, we see that the average number of asyn-
chronous calls per user transaction varies from 1.2 to 18.6

9



116 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Avg #User Avg #trans Perf Perf Network Extra
App # # session trans- #Async #parallel inter- overhead overhead overhead data

description Users Sessions length (s) -actions calls threads -rupted ms/trans ms/s b/trans transfer
News aggregator 22 604 88 11738 42826 5.50 1732 3.02 0.69 311 3.2%

Weather 25 533 31 4692 8106 1.92 541 0.31 0.09 162 2.9%
Stock information 17 460 32 4533 5620 1.00 486 0.20 0.06 91 8.6%
Social networking 22 1380 622 48441 900802 7.60 6782 3.48 0.21 487 8.0%
Multiplayer game 21 1762 376 68757 359006 2.28 719 0.18 0.26 27 79.0%

Transit info 7 310 37 1945 40448 4.88 182 2.96 0.85 355 0.9%
Group discounts 9 67 306 1197 3040 6.62 109 0.99 0.06 212 2.3%
Movie reviews 7 48 394 1083 7305 6.56 80 0.51 0.08 97 2.7%

Gas station prices 8 110 48 1434 2085 2.11 72 0.14 0.04 91 1.9%
Online shopping 14 43 512 1705 25701 2.74 349 0.18 0.06 24 4.7%
Microblogging 3 333 60 3913 19853 2.02 386 0.89 0.28 181 2.2%

Newspaper 10 524 142 13281 24571 4.85 662 0.33 0.06 92 1.2%
Ticket service 7 64 530 171 9593 3.70 38 0.05 0.57 9 2.9%

Table 3: Summary statistics for 13 of the 30 apps. For conciseness, we highlight a single app out of each of the major
app categories. The name of the app is anonymized. Overhead data is explained in § 8.3.1.

depending on the app. The average number of parallel
threads per user transaction varies from 1 to 7.6. This
high degree of concurrency in mobile apps is one of the
key reasons why a system such as AppInsight is needed
to identify the critical path in the complex graph that rep-
resents each user transaction.

Figure 14 offers another perspective on the complex-
ity of user transactions and the value of AppInsight. It
shows the CDF of the number of edges in a user trans-
action. While we have clipped the horizontal axis of this
graph for clarity, there are user transactions with thou-
sands of edges. Amidst this complexity, AppInsight helps
the developers by identifying the critical path that limits
the user-perceived performance. As the figure shows, the
number of edges in critical paths are much fewer.

We also observe that not all edges in a critical path con-
sume the same amount of time. Rather a few edges are
responsible for most of the time taken by a transaction,
as shown in Figure 15. This graph plots the cumulative
fraction of transaction time as a function of the number of
edges. We see that two edges are responsible for 82% of
the transaction time. Application developers can focus on
these edges to understand and alleviate the performance
bottlenecks in their applications.

Investigating these time-hogging edges in critical
paths, we find, expectedly, that network transfers are of-
ten to blame. In transactions that involve at least one
network transfer (14.6% of total), 93% had at least one
network transfer in the critical path and 35% had at least
two. On an average, apps spend between 34-85% of the
time in the critical path doing network transfer.

In contrast, location queries are not a major factor. In
transactions that had a location query (0.03% of total),
the query was in the critical path in only 19% of the cases.
This occurs because most apps request for coarse location
using WiFi or cell towers, without initializing the GPS
device. Coarse location queries tend to be fast.

8.1.2 Exception paths
AppInsight also helps in failure diagnosis. In our deploy-
ment, we collected 111 crash logs (from 16 apps), 43

 0

 5

 10

 15

 20

 0  5  10  15  20

R
a
n
g
e
 (

s
)

Average Transaction Length (s)

Involves network or GPS
Does not involve network or GPS

Figure 16: Variation in transaction length for each group.
Both axes are clipped at 20.

of which involved asynchronous transactions where the
standard stack trace that the mobile platform gives the
app developer would not have identified the full path that
led up to the crash.

8.1.3 Aggregate Analysis
We analyzed the trace data from our deployment using
techniques described in § 6.4. For the data in Table 2, we
have 6,606 transaction groups across all apps.
Understanding performance variance: We first quan-
tify the variance in transaction groups and then analyze
the sources of the variance.

We find that 29% of the transaction groups contain
multiple distinct critical paths. Further, even where there
is a unique critical path, the dominant edge (the one that
consumes most time) varies in 40% of the cases. This im-
plies that the performance bottlenecks differ for different
transactions even when the transactions correspond to the
same activity.

Figure 16 shows the extent of performance variabil-
ity we observe across transactions in a group. For each
group, it plots the range (maximum - minimum) of trans-
action duration observed as a function of the average
transaction duration. We see many activity groups with
highly variable transaction duration. To show that this
variability is not limited to cases with network transfers
or location queries, we separately show activities that do
not involve these two functions. While such activities
have lower transaction duration on average, they too have
highly variable performance. This variability can stem
from the user’s device, system load, user state, etc.

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 117

We identify the major sources behind the variability in
transaction duration using ANOVA (§ 6.4). At the highest
level, there are three factors that impact transaction dura-
tion: (i) network transfer, (ii) location queries, and (iii)
local processing. Each of these factors can itself vary be-
cause of network type, device type, GPS state, user state,
etc. For each transaction, we split the transaction dura-
tion into these three factors depending on where time is
spent on the critical path and then find the contribution of
each component to the variability of the transaction du-
ration. For this analysis, we only use activity groups that
have at least 10 transactions.

We focus first on activities that do not involve location
queries. We find that the average contribution of network
and local processing to the variability in the transaction
duration was 66% and 34%. Much of the variability in
transaction duration stems from the variability in network
transfer time. Though, in 10% of the groups, local pro-
cessing contributed to over 90% of the variability.

We further analyze those groups where network trans-
fers were responsible for over 90% of the variability.
We find that network type (3G or WiFi) plays an impor-
tant role. On average, 3G-based transactions took 78%
longer and had 155% more standard deviation compared
to WiFi-based transactions. However, we also found
groups with high variability in network-transfer time ir-
respective of the network type. This variation might be
due to factors such as dynamic content and server delay
that we do not capture.

We also analyze groups in which local processing was
responsible for over 90% of the variability. We find
groups where the variability can be entirely explained by
the device type. For instance, in one group, transactions
from Nokia Lumia 900 phones had 38% lower transac-
tion times than those from Samsung Focus phones. One
of the key differences between the two phones is that the
Nokia has a 1.4 GHz processor compared to the Samsung
with a 1 GHz processor. We also find transactions where
the variability could be completely explained by the user
herself. The duration of these transactions likely depend
on user state that we do not capture.

Next, we analyze groups that have location queries in
the critical path. We find that such queries contribute
to the transaction duration variability in only one group.
This is because, as noted above, most apps query for
coarse location which is quick. In the group that queried
for fine-grained location, the transaction time was highly
correlated with the state of the GPS device. If it was
not initialized, the query took 3–20 seconds; otherwise,
it took roughly 1 ms.
Outliers: AppInsight flags transactions that take signifi-
cantly longer than other transactions in the same group
(§ 6.4). Overall, we find 831 outlier transactions and
287 groups with at least one outlier. These outliers span

across 11 apps. 19% of the outliers are due to large
network delays (with the transaction’s network time be-
ing greater than the mean network time in the group by
more than three orders of standard deviation), 76% are
due to local processing and 5% are due to both. 70% of
the transaction with large network delay was on 3G. The
mean transaction duration of outliers with network de-
lay was 16.6 seconds (14.1s median), and those because
of local processing delay was 10 seconds (7.4s median).
From the data, we can see that, local processing also plays
a major role in long transactions.

Interestingly, the factors that explain most of the vari-
ability in a transaction group can be different from those
that lead to outliers. We find groups in our data where the
variability was primarily due to network transfers but the
outlier was due to local processing.

8.2 Case Studies
We now describe how AppInsight helped app developers
improve their applications.

8.2.1 App 1
One of the apps in our deployment was developed by an
author of this paper (see § 8.1). AppInsight feedback
helped the author improve the app in many ways. The
following observations are based on 34 session traces rep-
resenting 244 user transactions and 4 exception logs.
Exceptions: Before being instrumented with AppIn-
sight, the app had been on the marketplace for 1.5 years.
The developer had occasionally received crash logs from
the Windows Phone developer portal, but logs contained
only the stack trace of the thread that crashed. While the
developer knew that a routine that split a line into words
was crashing, there was not enough information for the
developer to diagnose the failure. When the app was in-
strumented with AppInsight, the developer received the
entire exception path. This included the web call and the
URL from where the line was fetched. The developer
replayed the URL in his app in a controlled setting, and
discovered that his text-parsing routines did not correctly
handle certain patterns of blank lines.
UI sluggishness: The aggregate analysis in AppInsight
identified a user transaction with high variability in du-
ration. The variability was attributed to local processing
(time spent on thread execution). The developer spotted
that only the user transactions at the start of user sessions
experienced these abnormal latencies. He identified that
certain system calls early in the app execution caused sys-
tem DLLs to be loaded into memory. The time to load the
DLLs was high and highly variable. Later transactions
that used the same APIs did not experience high latency,
as the DLLs were cached. This problem was not spotted
in lab testing, since the DLLs are almost always in mem-
ory, due to continuous test runs. He redesigned his code
to force-load the DLLs earlier.

11



118 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Wasted computation: The feedback UI pointed the de-
veloper to frequently interrupted transactions. The devel-
oper noticed that in some cases, the background threads
initiated by the interrupted transaction were not being
terminated, thereby wasting the battery. The developer
modified the code to fix the problem.
Serial network operations: The developer noticed that
a common critical path consisted of web requests that
were issued in a serial manner. The developer improved
the user response time by issuing them in parallel.

8.2.2 App 2
AppInsight can help the developers optimize a “mature”
app, that rarely experiences performance problems. For
example, a popular app in our deployment has been in
the marketplace for over 2 years and had gone through
multiple rounds of updates. Our deployment traces had
over 300 user sessions for this app, representing 1954
user transactions.

Aggregate analysis showed that 3G data latency sig-
nificantly impacted certain common transactions in their
app. In this case, the app developers were already aware
of this problem and had considered adding caching to
their app. However, they did not have good quantitative
data to back up their decision. They were also impressed
by the ease with which AppInsight highlighted the prob-
lem, for it had taken them a long time to pinpoint the
fix. The developers are considering using AppInsight for
their next release, especially to evaluate changes to the
data caching policies.

8.2.3 App 3
We also instrumented an app that is under active devel-
opment. This app was not part of our deployment – the
developers tested the instrumented app in a small pilot of
their own. Surprisingly, AppInsight revealed that custom
instrumentation code that the developers had added was
a major contributor to the poor performance of their app.

Analysis of trace data from other apps in our deploy-
ment has also shown many cases of wasteful computa-
tion, UI sluggishness, and serial network transactions in
the critical path.

8.3 Micro-benchmarks
We now present micro-benchmarks to quantify AppIn-
sight’s overheads, and verify that AppInsight does not
miss any user transactions.

8.3.1 Overheads
App run time: The impact of AppInsight on run time of
the app is negligible. Individual logging operations sim-
ply write a small amount of data to a memory buffer, and
hence are quite lightweight, as seen from Table 4. The
buffer is flushed to disk when full6 or when the app exits.

6We use a two-stage buffer to prevent data loss during flushing.

Log Method Overhead (µs)
LogUpcallStart 6
LogUpcallEnd 6
LogCallStart 6
LogCallEnd 6
LogCallbackStart 6
LogAsyncStart 12
LogObject 12
LogParameters 60

Table 4: Overhead of AppInsight Logger. Averaged over
1 million runs, on a commonly used phone model.

In most cases, the buffer never gets full, so flushing hap-
pens only when the app exits. The disk write happens on
a background thread, and takes only a few milliseconds.

To estimate the cumulative impact of logging opera-
tions on the apps that our users ran, we multiply the num-
ber of log calls in each user transaction by overheads re-
ported in Table 4. The maximum overhead per user trans-
action is 30ms (average 0.57ms). Since most transactions
are several seconds long (see Figure 13), we also calcu-
lated the approximate overhead per second. The maxi-
mum overhead is 5ms (average 0.21ms) per second. We
believe that this is negligible. Table 3 shows the aver-
age overhead per transaction and per second for different
apps. The overhead is quite low. We also note that our
users reported no cases of performance degradation.
Memory: AppInsight uses a 1MB memory buffer. Typi-
cal apps consume around 50MB of memory, so the mem-
ory overhead is just 2%.
Network: AppInsight writes log records in a concise
format to minimize the amount of data that must be up-
loaded. The median amount of trace data we upload is
3.8KB per app launch. We believe that this overhead is
acceptable. We use two more metrics to further charac-
terize the network overhead: (i) bytes per transaction and
(ii) percentage of extra data transferred because of Ap-
pInsight compared to data consumed by the app. The last
two columns of Table 3 shows these metrics for different
apps. We see that the extra network overhead introduced
by AppInsight is minimal for most apps. Recall that we
use BTS (§ 4) to upload the data, which ensures that the
upload does not interfere with the app’s own communi-
cation. BTS also provides a “Wi-Fi Only” option, which
defers data upload till the phone is connected to Wi-Fi.
Size: On average, the added instrumentation increased
the size of the app binaries by just 1.2%.
Battery: The impact of AppInsight on battery life is
negligible. We measured the overhead using a hardware
power meter. We ran an instrumented app and the cor-
responding original app 10 times each. In each run, we
manually performed the same UI actions. For the original
app, the average time we spent in the app was 18.7 sec-
onds across the 10 runs, and the average power consump-
tion was 1193 mW, with a standard deviation of 34.8. For
the instrumented version, the average time spent was also

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 119

18.7 seconds, and the average power consumption was
1205 mW. This 1% increase in power consumption is
well within experimental noise (the standard deviation).

8.3.2 Coverage
AppInsight uses several heuristics (see § 5) to reduce the
amount of trace data it collects. To verify that we did not
miss any user transactions because of these heuristics, we
carried out a controlled experiment. First, we added extra
instrumentation to the 30 apps that logs every method call
as the app runs. Then, we ran these “fully instrumented”
apps in a virtualized Windows Phone environment, driven
by an automated UI framework, which simulates random
user actions – tap screen at random places, random swip-
ing, etc. We ran each app a 100 times, simulating between
10 and 30 user transactions each time7. Upon analyzing
the logs, we found that the “extra” instrumentation did
not discover any new user transaction. Thus we believe
that AppInsight captures necessary data to reconstruct all
user transactions. We also note that the full instrumen-
tation overhead was as much as 7,000 times higher than
AppInsight instrumentation. Thus, the savings achieved
by AppInsight are significant.

9 DISCUSSION

We now discuss some of the overarching issues related to
AppInsight design.
Causal relationships between threads: AppInsight
can miss certain casual relationship between threads.
First, it does not track data dependencies. For exam-
ple, two threads may use a shared variable to synchro-
nize, wherein one thread would periodically poll for data
written by another thread. Currently, AppInsight uses
several heuristics to identify these programming patterns,
and warns the developer that the inferred critical path
may be incorrect. Tracking all data dependencies re-
quires platform support [7], which we do not have. Sec-
ond, AppInsight will miss implicit causal relationships,
introduced by resource contention. For example, disk
I/O requests made by two threads will get serviced one
after the other, introducing an implicit dependency be-
tween the two threads. Monitoring such dependencies
also requires platform support. Third, AppInsight can-
not untangle complex dependencies introduced by count-
ing semaphores. The Silverlight framework for Win-
dows Phone [15] does not currently support counting
semaphores. Finally, AppInsight does not track any state
that a user transaction may leave behind. Thus, we miss
dependencies resulting from such saved state.
Definition of user transaction and critical path: The
definition of user transaction and critical path in § 3 does
not address all scenarios. For example, some user in-
teractions may involve multiple user inputs. Our current

7Some apps require non-random input at the beginning.

definition will break such interactions into multiple trans-
actions. This may be incompatible with the developer’s
intuition of what constitutes a transaction. In case of mul-
tiple updates to the UI, our analysis produces one critical
path for each update (§ 6.2). It is up to the developer to
determine which of these paths are important to investi-
gate. Despite these limitations, results in § 8 show that
we can give useful feedback to the developer.
Privacy: Any system that collects trace data from user
devices risks violating the user’s privacy. To mitigate this
risk, AppInsight does not store user or phone ids. Instead,
we tag trace records with an anonymous hash value that is
unique to that phone and that app. Since two apps running
on the same phone are guaranteed to generate a different
hash, it is difficult to correlate the trace data generated by
different apps. This mechanism is by no means foolproof,
especially since AppInsight collects data such as URLs
accessed by the app. We continue to investigate this area
further.
Applicability to other platforms: The current imple-
mentation of AppInsight works for the Windows Phone
platform. However, the core ideas behind AppInsight can
be applied to any platform that has certain basic charac-
teristics. First, the applications need to have a single, ded-
icated UI thread. Second, we need the ability to rewrite
byte code. Third, we need the ability to correctly identify
all possible upcalls (i.e., calls into the user code by the
system) and thread start events triggered by the UI itself.
Fourth, the system needs to have a set of well-defined
thread synchronization primitives. These requirements
are not onerous. Thus we believe that AppInsight can
be ported to other mobile platforms as well, although we
have not done so.

10 RELATED WORK

While we are not aware of a system with similar focus,
AppInsight touches upon several active research areas.
Correlating event traces: AppInsight automatically in-
fers causality between asynchronous events in the app ex-
ecution trace. A number of systems for inferring causality
between system events have been proposed, particularly
in the context of distributed systems.

LagHunter [12] collects data about user-perceived de-
lays in interactive applications. Unlike AppInsight,
LagHunter is focused on synchronous delays such as ren-
dering time. LagHunter requires the developer to supply
a list of “landmark” methods, while AppInsight requires
no input from the developer. LagHunter also occasionally
collects full stack traces, which AppInsight does not do.

Magpie [4] is a system for monitoring and model-
ing server workload. Magpie coalesces Windows system
event logs into transactions using detailed knowledge of
application semantics supplied by the developer. On a
Windows phone, system-event logs are not accessible to

13



120 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

an ordinary app, so AppInsight does not use them. Ap-
pInsight also does not require any input from the app de-
veloper. Magpie’s goal is to build a model of the system
by characterizing the normal behavior. Our goal is to help
the developer to detect anomalies.

XTrace [9] and Pinpoint [5] both trace the path of a re-
quest through a system using a special identifier attached
to each individual request. This identifier is then used to
stitch various system events together. AppInsight does
not use a special identifier, and AppInsight does not track
the request across process/app boundaries. Aguilera et.
al. [2] use timing analysis to correlate trace logs collected
from a system of “black boxes”. While AppInsight can
also use some of these log-analysis techniques, we do not
treat the app as a black box, and hence are able to perform
a finer grained analysis.
Finding critical path of a transaction: The goal of Ap-
pInsight is to detect the critical path in a user transaction.
Yang and Miller did early work [19] on finding the critical
path in the execution history of parallel and distributed
programs. More recently, Barford and Crovella [3] stud-
ied critical paths in TCP transactions. While some of our
techniques (e.g., building a graph of dependent events)
are similar to these earlier works, our focus on mobile
apps leads to a very different system design.
Mobile application monitoring: AppInsight is de-
signed to monitor mobile-application performance in the
wild. Several commercial products like Flurry [8] and
PreEmptive [16] are available to monitor mobile-app us-
age in the wild. The developer typically includes a li-
brary to collect usage information such as number of app
launches, session lengths and geographic spread of users.
Through developer annotations, these platforms also al-
low for some simple timing information to be collected.
But obtaining detailed timing behavior and critical-path
analysis is not feasible with these platforms. To aid with
diagnosing crashes, many mobile platforms report crash
logs to developers when their application fails. While col-
lecting such data over long term is important [10], it does
not necessarily help with performance analysis [1]. Sev-
eral researchers [17, 14] have studied energy consump-
tion of mobile apps and have collected execution traces
for that purpose. Our focus, on the other hand is on per-
formance analysis in the wild.

11 CONCLUSION

AppInsight helps developers of mobile apps monitor and
diagnose the performance of their apps in the wild. Ap-
pInsight instruments app binaries to collect trace data,
which is analyzed offline to uncover critical paths and
exception paths in user transactions. AppInsight is
lightweight, it does not require any OS modifications,
or any input from the developer. Data from a live de-
ployment of AppInsight shows that mobile apps have

a tremendous amount of concurrency, with many asyn-
chronous calls and several parallel threads in a typical
user transaction. AppInsight is able to correctly stitch
together these asynchronous components into a cohesive
transaction graph, and identify the critical path that deter-
mines the duration of the transaction. By examining such
transactions from multiple users, AppInsight automati-
cally identifies outliers, and sources of variability. Ap-
pInsight uncovered several bugs in one of our own app,
and provided useful feedback to other developers.

ACKNOWLEDGMENTS

We thank Ronnie Chaiken and Gleb Kirosheev for discus-
sions and support during AppInsight development. We
also thank Petros Maniatis and the anonymous reviewers
for their comments on earlier drafts of this paper.

REFERENCES
[1] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl. There’s an app

for that, but it doesn’t work. Diagnosing Mobile Applications in
the Wild. In HotNets, 2010.

[2] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performane Debugging for Distributed System of
Black Boxes. In SOSP, 2003.

[3] P. Barford and M. Crovella. Critical Path Analysis of TCP Trans-
actions. In ACM SIGCOMM, 2000.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie
for Request Extraction and Workload Modelling. In OSDI, 2004.

[5] M. Chen, A. Accardi, E. Kıcıman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer. Path-Based Failure and Evolution Mangement. In
NSDI, 2004.

[6] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole. Java Swing,
Second Edition. O’Reilly, 2003.

[7] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Seth. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In OSDI, 2010.

[8] Flurry. http://www.flurry.com/.
[9] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-

Trace: A Pervasive Network Tracing Framework. In NSDI, 2007.
[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,

G. Nichols, D. Grant, G. Loihle, and G. Hunt. Debugging in the
(Very) Large: Ten Years of Implementation and Experience. In
SOSP, 2009.

[11] G. Hunt and D. Brubacher. Detours: Binary Interception of Win32
Functions. In Usenix Windows NT Symposium, 1999.

[12] M. Jovic, A. Adamoli, and M. Hauswirth. Catch Me if you can:
Performance Bug Detection in the Wild. In OOPSLA, 2011.

[13] S. Lidin. Inside Microsoft .NET IL Assembler . Microsoft Press,
2002.

[14] A. Pathak, Y. C. Hu, and M. Zhang. Where Is The Energy Spent
Inside My App? Fine Grained Energy Accounting on Smart-
phones with Eprof. In EuroSys, 2012.

[15] C. Perzold. Microsoft Silverlight Edition: Programming Windows
Phone 7. Microsoft Press, 2010.

[16] Preemptive. http://www.preemptive.com/.
[17] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck.

Profiling Resource Usage for Mobile Applications: A Cross-
Layer Approach. In MobiSys, 2011.

[18] A. Whitechapel. Windows Phone 7 Development Internals. Mi-
crosoft Press, 2012.

[19] C.-Q. Yang and B. P. Miller. Critical Path Analysis for the Execu-
tion of Parallel and Distributed Programs. In IEEE DCS, 1988.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 121

Spotting Code Optimizations in Data-Parallel Pipelines through PeriSCOPE
Zhenyu Guo† Xuepeng Fan†£ Rishan Chen†‡ Jiaxing Zhang† Hucheng Zhou†

Sean McDirmid† Chang Liu †§ Wei Lin∗ Jingren Zhou∗ Lidong Zhou†

†Microsoft Research Asia ∗Microsoft Bing ‡Peking University
£Huazhong University of Science and Technology §Shanghai Jiao Tong University

ABSTRACT

To minimize the amount of data-shuffling I/O that oc-
curs between the pipeline stages of a distributed data-
parallel program, its procedural code must be optimized
with full awareness of the pipeline that it executes in.
Unfortunately, neither pipeline optimizers nor traditional
compilers examine both the pipeline and procedural code
of a data-parallel program so programmers must either
hand-optimize their program across pipeline stages or
live with poor performance. To resolve this tension be-
tween performance and programmability, this paper de-
scribes PeriSCOPE, which automatically optimizes a
data-parallel program’s procedural code in the context
of data flow that is reconstructed from the program’s
pipeline topology. Such optimizations eliminate unnec-
essary code and data, perform early data filtering, and
calculate small derived values (e.g., predicates) earlier
in the pipeline, so that less data—sometimes much less
data—is transferred between pipeline stages. We de-
scribe how PeriSCOPE is implemented and evaluate its
effectiveness on real production jobs.

1 INTRODUCTION

The performance of big data computations improves
dramatically when they are parallelized and distributed
on a large number of machines to operate on parti-
tioned data [5, 14]. Such data-parallel programs involve
pipelines of computation stages where I/O intensive data
shuffling between these stages can dominate program
performance. Unfortunately, data-shuffling I/O is diffi-
cult to optimize automatically because computations at
each pipeline stage are encoded as flexible procedural
code; current pipeline optimizers treat this code as a
black box while compilers treat pipelines as black boxes
and so are unaware of the data flow between the proce-
dural code at different computation stages. The program-
mer must manually perform optimizations that require
examining both the program’s pipeline and procedural
code; e.g., to not propagate unused data or to move the
computation of smaller derived values to an earlier stage
so less data is transmitted during data shuffling. Perform-
ing these optimizations by hand is not only tedious, it
also limits code reuse from generic libraries.

So that programmers can write data-parallel pro-
grams with reasonable performance without sacrificing
programmability, automatic optimizations must exam-
ine both the pipeline and procedural code of a data-
parallel program. Common logical optimizations [8, 28,
34, 40, 43] for data-parallel programs focus on a high-
level pipeline topology that is subject to relational query-
optimization techniques. Unfortunately, at best relational
components are extracted from procedural code into a
relational optimization framework [20], which is lim-
ited by the inability of the relational framework to
match the expressiveness of procedural code. We in-
stead observe that projecting well-understood declarative
pipeline properties into more flexible procedural code is
intrinsically simpler than extracting declarative proper-
ties from procedural code. Such projection can then be
used to reconstruct program data flow, enabling auto-
matic optimizations of procedural code across pipeline
stages that can improve I/O performance.

This paper presents PeriSCOPE, which automati-
cally optimizes the procedural code of programs that run
on SCOPE [8, 42], a production data-parallel compu-
tation system. PeriSCOPE connects the data flow of a
SCOPE program’s procedural code together by examin-
ing a high-level declarative encoding of the program’s
pipeline topology. PeriSCOPE then applies three core
compiler-like optimizations to the program. Column re-
duction suppresses unused data in the pipeline based
on the program’s reconstructed data flow. Early filtering
moves filtering code earlier in the pipeline to reduce how
much data is transmitted downstream. Finally, smart cut
finds a better boundary between pipeline stages in the
data flow graph to minimize cross-stage I/O; e.g., the
code that computes a predicate from two string values
could be moved to an earlier stage, so that only a boolean
value, rather than two string values, needs to be transmit-
ted. The result is faster program execution because less
data needs to be transferred between pipeline stages.

We have implemented PeriSCOPE and evaluated its
effectiveness on 28,838 real SCOPE jobs from a large
production cluster. We also evaluate end-to-end perfor-
mance comparisons on eight real jobs.

The rest of the paper is organized as follows. Sec-
tion 2 presents a sample SCOPE program to show the po-



122 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1 t1 = EXTRACT query:string,clicks:long,market:int,...
2 FROM "/users/foo/click_0342342"
3 USING DefaultTextExtractor("-s")
4 HAVING IsValidUrl(url) AND clicks != 0;
5 t2 = REDUCE t1 ON query
6 PRODUCE query, score, mvalue, cvalue
7 USING PScoreReducer("clicks")
8 HAVING GetLength(query) > 4;
9 t3 = PROCESS t2 PRODUCE query, cscore

10 USING SigReportProcessor("cvalue")
11 OUTPUT t3 TO "/users/foo/click/0342342";

Figure 1: Declarative code that defines the pipeline of a sam-
ple SCOPE program. Rows of typed columns (line 1) are first
extracted from a log file (line 2) using a default text extrac-
tor (line 3) and filtered based on certain conditions (line 4).
Next, the input rows are reduced with a user-defined func-
tion PScoreReducer (line 7) to produce a table with four
columns (line 6) after being filtered (line 8). Finally, the user-
defined function SigReportProcessor (line 10) is applied
to the result as it is emitted (line 11).

Stage 2

Stage 1

Filter$GenDefaultTextExtractor

SigReportProcessor

Data Shuffling

PScoreReducer

OUTPUT

INPUT

Figure 2: An illustration of the pipeline defined by the declar-
ative code in Figure 1. The Filter$Gen operator is gener-
ated from the HAVING clauses on line 4 and 8 of Figure 1;
other operators refer to user-defined functions. Each directed
edge represents the data flow between operators.

tential benefits of PeriSCOPE’s optimizations. The I/O-
reduction optimizations in PeriSCOPE are described in
Sections 3 and 4, with Section 3 covering column reduc-
tion and Section 4 discussing early filtering and smart
cut, which are both forms of code motion. PeriSCOPE’s
implementation is covered in Section 5, followed by an
evaluation in Section 6. We survey related work in Sec-
tion 7 and conclude in Section 8.

2 A MOTIVATING EXAMPLE

We motivate PeriSCOPE by describing the pipeline-
aware optimization opportunities that are found in a sam-
ple data-parallel program, which is adapted from a real
SCOPE job. SCOPE is a distributed data-parallel compu-
tation system that employs a hybrid programming model
where declarative SQL-like code describes a program’s
high-level pipeline structure, like other similar systems
such as Hive [33], Pig [15], and DryadLINQ [40]. Fig-

ure 1 shows the declarative code of our sample job that is
compiled into an execution pipeline, which we illustrate
in Figure 2.

The operators of a SCOPE pipeline manipulate a data
model of rows and columns and can be encoded as user-
defined functions of procedural code that are either de-
fined by the user or reused from generic libraries. A com-
putation stage consists of one or more chained operators,
and runs on a group of machines independently with par-
titioned data stored locally; data-shuffling phases then
connect computation stages together by transmitting req-
uisite data between machines. The pipeline in Figure 2
contains two computation stages that are separated by
one data-shuffling phase according to the reduce call on
line 5 in Figure 1. SCOPE applies logical optimizations,
such as early selection, to programs according to the
declarative structure of their pipeline. For example, the
filtering clause on line 8 of Figure 1 can be applied be-
fore data shuffling; and so the Filter$Gen operator in
the first stage of Figure 2 therefore includes the condi-
tions from line 8 as well as line 4. Such logical opti-
mizations apply only to the declarative code defined in
Figure 1, treating the procedural code of the Default-
TextExtractor, PScoreReducer, and SigReport-
Processor as black boxes.

The SCOPE program of Figure 1 is easily writ-
ten by reusing two functions (DefaultTextExtrac-
tor and SigReportProcessor) from generic libraries
while the encoding of the custom PScoreReducer func-
tion, shown in Figure 3, is straightforward. However,
the program contains three serious I/O inefficiencies that
need to be eliminated before it is “fast enough.” First, the
if statement on line 7 of Figure 3 is actually a proce-
dural filter that discards rows. Such rows can be filtered
out early so that they are not transmitted during the data-
shuffling phase, which can be accomplished by splitting
PScoreReducer into two parts as encoded in Figure 5:
a PScoreReducerPre function that executes the com-
putations of lines 5–7 in Figure 3 before data-shuffling;
and a PScoreReducerPost that executes the rest of the
computations from the original PScoreReducer func-
tion after data-shuffling. Our sample program’s declara-
tive SCOPE code is updated in Figure 4 to reflect this
split, whose pipeline is illustrated in Figure 6.

Next, the alteredQuery column is transmitted only
for computing a simple predicate on line 9 of Figure 3;
the predicate computation can be done before the shuf-
fling phase so that smaller boolean values are transmit-
ted instead of strings. This is accomplished by com-
puting the predicate in PScoreReducerPre on line 16
of Figure 5 and propagating its result as a column to

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 123

1 public class PScoreReducer : Reducer {
2 List<Row> Reduce(List<Row> input, string[] args){
3 maxImpr = 0; score = 0; mvalue = 0; cvalue = 0;
4 foreach (Row row in input) {
5 int impr = SmoothImpr(row[args[0]].Long());
6 bool incl = row["ctrls"].Contains(args[0]);
7 if (!incl && impr < 0) continue;
8 string[] keys = row["query"].Split(’,’);
9 bool p = row["alteredQuery"].ContainsAny(keys);

10 if (p)
11 score += ...;
12 if (impr > maxImpr)
13 maxImpr = impr;
14 if (impr * IMPR RATIO > maxImpr) continue;
15 ... cvalue += ...
16 ... mvalue += ... row["market"] ...
17 }
18 outRow[1] = Normalize(score, ...);
19 outRow["mvalue"] = mvalue;
20 outRow["cvalue"] = cvalue;
21 ...
22 yield return outRow;
23 }}

Figure 3: The procedural code of the PScoreReducer
user-defined function. Because PScoreReducer is a reduce
operator, the preceding data shuffling ensures that rows having
the same shuffling key are grouped together. For each group
(input) of rows sharing the same shuffling key (line 2), this
reduce operator iterates on each row in that group using a loop
(lines 4-17) and outputs a single row as outRow for that group
(line 22). The impr variable of line 5 represents an “improve-
ment” that regulates accumulation of mvalue and cvalue.

PScoreReducerPost where it is used on line 29. An
analogous transformation can be applied to clicks,
which is used for computing impr, converting it from
a long to an int.

Finally, the SigReportProcessor function called
on line 10 of Figure 1 uses only the cvalue column,
bound to its input parameter, that is computed by the
PScoreReducer function; in contrast the mvalue col-
umn computed on lines 16 and 19 of Figure 3 is unused
and therefore does not need to be computed and propa-
gated in the PScoreReducerPost function of Figure 5.
More importantly, if mvalue is eliminated, the mar-
ket column does not need to be extracted in Figure 1
by DefaultTextExtractor and transmitted during the
data-shuffling that is illustrated in Figure 2. Instead, the
programmer can define their own specialized MyText-
Extractor function (top of Figure 5) that does not ex-
tract and propagate the market column. The market col-
umn is also eliminated from Figure 4’s declarative code.

The PeriSCOPE approach

The optimized sample program in Figures 4 and 5 exe-
cutes more efficiently at the expense of programmabil-
ity: it can no longer reuse the DefaultTextExtractor

1 t1 = EXTRACT query:string,clicks:long,market:int,...
2 FROM "/users/foo/click_0342342"
3 USING MyTextExtractor
4 HAVING IsValidUrl(url) AND clicks != 0
5 AND GetLength(query) > 4;
6 t2 = PROCESS t1 PRODUCE query, impr, ...
7 USING PScoreReducerPre;
8 t3 = REDUCE t2 ON query
9 PRODUCE query, score, mvalue, cvalue

10 USING PScoreReducerPost
11 t4 = PROCESS t3 PRODUCE query, cscore
12 USING SigReportProcessor("cvalue")
13 OUTPUT t4 TO "/users/foo/click/0342342";

Figure 4: Optimized declarative code of our sample program;
strike-through text is original code that is eliminated.

1 public class MyTextExtractor : Extractor {
2 List<Row> Extract(StreamReader reader, string[] args){
3 ...
4 string[] columns = line.Split(’,’);
5 int market = int.Parse(columns[2]);
6 outRow[2].Set(market);
7 ...
8 }}
9 public class PScoreReducerPre : Processor {

10 List<Row> Process(List<Row> input, string[] args){
11 foreach (Row row in input) {
12 int impr = SmoothImpr(row["clicks"].Long());
13 bool incl = row["ctrls"].Contains("clicks");
14 if (!incl && impr < 0) continue;
15 string[] keys = row["query"].Split(’,’);
16 outRow["p"] =
17 row["alteredQuery"].ContainsAny(keys);
18 outRow["impr"] = impr;
19 ...
20 yield return outRow;
21 }}
22 public class PScoreReducerPost : Reducer {
23 List<Row> Reduce(List<Row> input, string[] args){
24 maxImpr = 0; score = 0; mvalue = 0; cvalue = 0;
25 foreach (Row row in input) {
26 int impr = row["impr"].Int();
27 bool incl = row["ctrls"].Contains("clicks");
28 if (!incl && impr < 0) continue;
29 if (row["p"].Boolean()) score += ...;
30 if (impr > maxImpr) maxImpr = impr;
31 if (impr * IMPR RATIO > maxImpr) continue;
32 ... cvalue += ...
33 ... mvalue += ... row["market"] ...
34 }
35 outRow["score"] = Normalize(score, ...);
36 outRow["mvalue"] = mvalue;
37 outRow["cvalue"] = cvalue;
38 ...
39 yield return outRow;
40 }}

Figure 5: Optimized procedural code of our sample program.

function, the logic for the PScoreReducer function is
now distributed into two sections that execute in different
pipeline stages, while the optimizations are tedious as the
programmer must carefully move code across pipeline
stages. These optimizations should be automated but
cannot be performed by either logical pipeline optimiz-
ers that treat user-defined functions as black boxes or by

3



124 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Stage 2

Stage 1
Filter$GenMyTextExtractor

SigReportProcessor

Data Shuffling

PScoreReducerPost

OUTPUT

INPUT

PScoreReducerPre

Figure 6: Resulting pipeline for the optimized job.

compilers that are unaware of pipelines.
PeriSCOPE automates such optimizations by consid-

ering both user-defined functions and the pipeline of a
data-parallel program. In particular, PeriSCOPE recon-
structs the data flow across the user-defined functions ac-
cording to the pipeline topology and applies column re-
duction to remove unused columns along with the com-
putations to compute them from user-defined functions;
e.g., PeriSCOPE can eliminate the unused mvalue and
market columns of our sample program. PeriSCOPE
next identifies filtering conditions in a user-defined func-
tion and moves them earlier in the pipeline through
early filtering; e.g., the if condition on line 7 of Fig-
ure 3 is moved earlier to reduce row propagation in the
pipeline. Finally, PeriSCOPE applies smart cut that finds
better boundaries between two stages to minimize data-
shuffling I/O by moving size-reducing transformation
upstream and size-enlarging transformation downstream
in the pipeline. We describe how PeriSCOPE automates
these optimizations in Sections 3 and 4.

3 COLUMN REDUCTION

A user-defined function might not use a particular input
column that is available to it in a calling pipeline. For
example, the SigReportProcessor function of Sec-
tion 2’s sample program does not use the mvalue col-
umn of the pipeline encoded in Figure 1. In distributed
data-parallel programs, transferring unused columns dur-
ing data-shuffling can consume a significant amount of
network I/O. As we discuss in Section 6, this problem
commonly arises from the reuse of user-defined func-
tions that we observe in production SCOPE jobs.

Column reduction is an optimization in PeriSCOPE
that leverages information about how operators are con-
nected together in a pipeline to eliminate unused columns
from the program, removing their associated computa-
tion and I/O costs. The optimization analyzes the depen-
dency information between the input and output columns

...

...

query clicksmarket url

DefaultTextExtractor

Filter$Gen
query clicksmarket url

PScoreReducer
query scoremvalue cvalue

SigReportProcessor
query cscore

...

...

All Input Columns

Figure 7: A simplified column-dependency graph for column
reduction. Columns and computation in the shaded areas are
removed by the column reduction optimization.

of all operators in the pipeline; Figure 7 shows part of the
column dependency graph for the example in Figure 1.
An input or output column of an operator is represented
as a vertex while an edge from a source column s to a
destination column d indicates that d has either a data
or control dependency on s. Only data dependency edges
are shown in Figure 7 as control dependency edges are
too numerous to illustrate clearly. Because SCOPE al-
lows a column to be accessed by name (e.g., line 6 in
Figure 3) or index (e.g., line 18), a column read or write
operation may be unresolved during compilation, where
PeriSCOPE considers that this column could be any col-
umn that is visible to the user-defined function, leaving
no opportunity for column reduction. Fortunately, as we
discuss in Section 5, column accesses that cannot be re-
solved through simple optimization techniques are rela-
tively rare—at only a 1.9% occurrence in our survey of
real SCOPE jobs.

PeriSCOPE applies column reduction by computing
a set of “used” output columns for each operator that are
used as the input columns of succeeding operators in the
pipeline topology. If the operator immediately precedes a
data-shuffling phase, the shuffling-key columns are also
required as used output columns. Any unused output
columns of an operator are removed and, if the opera-
tor is a user-defined function, PeriSCOPE also rewrites
it to remove all code that only contributes to computing
the removed output columns. If any columns were re-
moved, PeriSCOPE removes any input columns that are
no longer used because of removed code and repeats col-
umn reduction again.

For example, thecolumn mvalue is removed from
the PScoreReducer function because it is not used by
the SigReportProcessor function listed in Figure 3.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 125

This causes the code that computes mvalue to be re-
moved (lines 36 and 33 in Figure 5), which further
causes the output column market to be removed from
the DefaultTextExtractor function. Finally, Peri-
SCOPE creates, through specialization that eliminates
code, function whose code is semantically similar to the
MyTextExtractor function of Figure 5.

4 CODE MOTION

Code motion moves code from user-defined functions
across pipeline stages using two techniques: early filter-
ing and smart cut that respectively reduce the number of
rows and the size of each row transmitted during data
shuffling. Because such code motion can be done only
if safe, i.e., the result of the program is unchanged, we
describe the correctness conditions of code motion using
the example in Figure 3, with a focus on identifying the
domain knowledge that is needed to define correctness.

Moving a statement across a data-shuffling phase is
not always safe. For the statements on lines 12–14 in Fig-
ure 3, the value of maxImpr depends on the processing
order of the input rows. Because data shuffling re-orders
rows based on a shuffling key, computing maxImpr be-
fore and after data shuffling would yield different results.
PeriSCOPE makes the following two observations on
data shuffling, each leading to a safety rule for code mo-
tion. First, the data-shuffling phase reads the shuffling-
key columns of each row, leaving other columns un-
touched; i.e.,

RULE 1. PeriSCOPE must not move a statement after
data shuffling if it generates shuffling-key columns.

Second, the data-shuffling phase can change transpar-
ently the number and order of the rows processed on each
machine through re-partitioning and grouping. Any com-
putation that relies on the number or order of the rows,
which we say is stateful, cannot be moved across the
data-shuffling phase; i.e.,

RULE 2. PeriSCOPE must not move a stateful state-
ment across the data shuffling phase.

PeriSCOPE applies loop dependency analysis [4] to the
body of the main loop for each user-defined function
to identify stateful statements as those that have loop-
carried dependencies. A loop-carried dependency indi-
cates that the destination statement relies on the execu-
tion of the source statement from an earlier iteration. For
example, the statement on line 12 of Figure 3 relies on
its reassignment on line 13 from previous iterations and
is therefore stateful; by similar reasoning, the statements
on lines 11, and 13–15 are also stateful.

entry

5. impr=SmoothImpr(...)
6. incl = ctrls.Contains(…)
7. if (!incl && impr < 0) continue;

  8. keys = qurery.Split (…)
  9. p = alteredQuery.ContainsAny(…)
10. if (p)

11. score += …;

12. if (impr > maxImpr)

13. maxImpr = impr;

14. if (impr … > maxImpr) continue;

...G

F
T

T

T

T

F
F

F

F

Figure 8: Control flow graph for the loop body in PScore-
Reducer in Figure 3. Edges marked T and F are branches
that are taken when the last predicate in the source basic block
evaluates to true and false, respectively. The vertices in gray are
the basic blocks that contain filtering statements.

Care must be taken in identifying stateful statements.
A statement might be stateful if it calls a routine that
transparently accesses data; such as by reading and writ-
ing a global variable. Also, statefulness is only deter-
mined by dependencies on rows that are iterated by the
main loop of a user-defined function; PeriSCOPE treats
inner loops as single statements.

Early Filtering
Early filtering is applied to the first user-defined function
in a computation stage that executes after a data shuffling
phase. PeriSCOPE first identifies filtering statements in
the user-defined function’s main loop, which are state-
ments that branch back to the beginning of the main loop.
Figure 8 shows the control flow graph for the loop body
of PScoreReducer in Figure 3; statements 7, 14 and the
end of basic block G are identified as filtering statements.
Because earlier filtering will reduce the number of rows
that are iterated on later, PeriSCOPE must ensure that
moving a filtering statement does not change the cumu-
lative effect of any downstream stateful statements; i.e.,

RULE 3. PeriSCOPE must not move a filtering state-
ment before a data shuffling phase if the statement is, or
is reachable from, a stateful statement.

5



126 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

This rule excludes statement 14 in Figure 8 because it
is stateful, and excludes the last statement in basic block
G because it is reachable from statement 14. PeriSCOPE
next identifies code that computes the filtering condition
by applying backward slicing [35], which starts from the
identified filtering statement and collects, as its backward
slice, the statements that can affect it. The backward slice
of statement 7 in Figure 8 includes statements 5–7. Peri-
SCOPE then copies the entire backward slice upward
causing rows to be filtered out before data shuffling oc-
curs. Given rule 3, the slice cannot contain any stateful
statements and so this copy is always safe. Finally, the
conditions of the moved filter can now be assumed in
the original user-defined function, enabling the removal
of code through dead code elimination. For the code in
Figure 8, statement 7 is removed because (!incl &&

impr < 0) is always false; no row otherwise is permit-
ted past the data-shuffling phase due to early filtering.
Statement 6 is then removed because incl is not used
anymore, causing ctrls to become unused in the user-
defined function. As a result, early filtering not only re-
duces the number of rows that are transferred across a
data shuffling phase, but can also trigger column reduc-
tion (e.g., on ctrls).

Smart Cut

The cross-stage flow of data across the network in a data-
parallel program is significantly more expensive than a
traditional program whose data flows only through mem-
ory. PeriSCOPE therefore aims at re-partitioning the
code by finding smart cuts as shuffling I/O boundaries
that minimize cross-stage data flow. Finding smart-cuts
can be formulated as a compiler-like instruction schedul-
ing problem [2, 25]. However, while a compiler usually
rearranges instructions to improve instruction-level par-
allelism on a specific CPU architecture, smart cut re-
orders statements to reduce the amount data transmitted
across the network.

Smart cut is applied to user-defined functions that
are immediately adjacent to data-shuffling phases. Peri-
SCOPE first applies if-conversion [3] to the body of the
main loop for a given user-defined function so that the
loop body becomes a single basic block, which is neces-
sary because instruction scheduling can only be applied
to blocks of non-branching instructions. Figure 9 shows
the simplified result for the code segment on lines 5–15
of Figure 3, after lines 6 and 7 are removed according
to early filtering. Every statement is now guarded with
a predicate that specifies the path condition of its execu-
tion; e.g., the statement on line 13 is guarded with predi-
cate p1 because it is executed only when p1 is true.

5 (T) impr = SmoothImpr(row["clicks"].Long());

8 (T) keys = row["query"].String().Split(’,’);
9 (T) p = row["alteredQuery"].ContainsAny(keys);

11 (p) score += ...;
12 (T) p1 = impr > maxImpr;
13 (p1) maxImpr = impr;
14 (T) p2 = !(impr * IMPR RATIO > maxImpr);
15 (p2) ... cvalue += ...

Figure 9: Simplified if-conversion result for lines 5–15 in Fig-
ure 3. T stands for True which means that the statement al-
ways executes.

keys=query.Split() impr=SmoothImpr(clicks)

p = alteredQuery.ContainAny(keys)

alteredQuery:string:?

clicks: long: 8

keys: string []:?

p: bool: 1

5

9

8

impr: int32: 4

query:string:?

S

T

(p) score += ...11 p1 = impr > maxImpr12

query:string:?

∞ ∞ 

Figure 10: Labeled data dependency graph with a smart cut.
Statements 13–15 are omitted. Statements in gray are stateful.

PeriSCOPE then builds a data dependency graph [2,
25] for this basic block using the SSA [13] format. Ver-
tices in the data dependency graph are instructions, while
directed edges represent read-after-write (RAW) data de-
pendencies where sink instructions use variables defined
in the source instructions. PeriSCOPE labels the edges
with the name and byte size of the dependent variables,
which are either columns or local variables. Figure 10
shows part of the labeled data dependency graph for our
example; PeriSCOPE further adds two vertices S and T
to represent the overall input and output of this code snip-
pet, respectively. PeriSCOPE also adds an edge labeled
query from S to T as query is used as the shuffling key
and should always be transmitted. To ensure that rules
1 and 2 are not violated, PeriSCOPE adds directed edges
from S to any statement that is either stateful or generates
shuffling keys before the data-shuffling phase, and adds
directed edges from any stateful statement after the data-
shuffling phase to T; all of these edges have an infinite
weight to ensure that those statements are never moved
across the data-shuffling phase.

The smart-cut problem is now reduced to one of find-
ing an edge cut between S and T in the data dependency
graph that minimizes the total byte size of all dependent
variables on edges across the cut. The problem appears

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 127

similar to the minimum cut problem [10] of a directed
graph. However, there are two subtle differences between
our problem and the standard minimum cut problem:

• Data flows across the data-shuffling phase in only
one direction, so all edges must have the same di-
rection across the cut.

• When multiple edges on a cut are labeled with the
same variable name, the byte size of that variable is
only counted once as it only needs to be transferred
once.

Computing an optimal edge cut statically is difficult be-
cause the precise weights of some edges depend on dy-
namic data. For example, it is hard to statically esti-
mate the weights of string-typed columns and variables
as their length is unknown. In practice, PeriSCOPE re-
sorts to a simple heuristic-based technique to identify
opportunities to move code across data-shuffling phases.
Specifically, PeriSCOPE looks for a simple pattern with
a variable computed from one or more input columns.
If the total size of the input columns that are used only
for computing this variable is larger than the size of
this variable, this computation should be moved to an
earlier stage. Similarly, PeriSCOPE also looks for a re-
verse pattern where a variable is used to generate one or
more output columns. In Figure 10, the input columns
alteredQuery and query from Figure 3 are used to
compute variable p in the optimize function of Figure 5.
Although the alteredQuery column is never used else-
where, the query column is used in a later stage. Be-
cause the byte size of a string type (alteredQuery) is
always larger than that of a boolean variable (p), the cut
should cross the edges labeled with p, instead of those la-
beled with alteredQuery. The same reasoning applies
to the computation of impr from clicks. In the end,
edges between statements 9 and 11, and between state-
ments 5 and 12, are selected for the smart cut.

Finally, PeriSCOPE applies instruction scheduling
according to the selected cut. In our example (Figure 9),
statements 5, 8 and 9 are moved before data shuffling.
The recorded schema across the data-shuffling phase is
changed accordingly where two new columns are added:
the boolean-typed p, and the integer-typed impr, and two
old columns (the string-typed alteredQuery and the
long-typed clicks) are deleted. The result is similar to
the code shown in Figures 4 and 5 in Section 2.

5 IMPLEMENTATION

PeriSCOPE examines a SCOPE program’s operators, the
definition of the rows used by the operators, and the

Execution Plan from SCOPE

Specialized Operators + DAG

Optimized Operators + DAG’

Optimized Execution Plan

Constant Propagation
Loop Unrolling
Stateful Checking

Preparation

Optimization
Column Reduction
Early Filtering
Smart Cut

Generation Operator Rewriting
Plan Rewriting

Figure 11: Optimization flow in PeriSCOPE.

program’s pipeline topology represented as a directed
acyclic graph (DAG) in the program’s execution plan.
The operators and row definitions are extracted from
.NET binary executables, while the pipeline topology
is represented as an XML file. PeriSCOPE extends IL-
Spy [32], a de-compiler from .NET byte-code to C#
code, and Cecil [36], a library to generate and inspect
.NET assemblies, to implement PeriSCOPE as two com-
ponents. PeriSCOPE’s optimizer is built on top of ILSpy
to specialize all operators in the input execution plan,
applying all PeriSCOPE’s optimizations to operators (as
user-defined functions) as found at the intermediate rep-
resentation (IR) level. The generator emits new bytecode
for user-defined functions and generates all utility code
for the program, such as new row schemas and their re-
lated serialization routines, as well as the new SCOPE
description file for the execution plan.

The optimizer and generator components are both
implemented in C# with 7,334 and 2,350 lines of code,
respectively. Figure 11 illustrates PeriSCOPE’s opti-
mization flow with three major tasks, each containing
several steps, where the optimizer performs the first two
tasks, while the generator performs the last. Plan rewrit-
ing updates the original DAG XML file that describes
pipeline topology because some original operators are
now split into different computation stages.

SCOPE user-defined functions use a column index or
name to access a column. When such index is a vari-
able, program analysis can only make conservative as-
sumption on what column is being manipulated, signif-
icantly reducing the opportunity for PeriSCOPE’s opti-
mizations. In our survey of SCOPE programs, we found

7



128 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

that 11.4% of the column accesses use variable indices.
Fortunately, our investigation shows that many column
index variables are determined by the input arguments to
the user-defined functions, which is the case on lines 7
and 10 of Figure 1, and constant propagation can be ap-
plied to resolve their concrete value. However, not every
column index can be resolved by constant propagation
only. A user-defined function might enumerate columns
using a variable in a loop, which we addressed by stan-
dard loop unrolling [2, 25] when the schema describing
the data is known. A column index could also be de-
termined by the value of another column, which Peri-
SCOPE cannot deal with very well. Fortunately, we have
found that among the 11.4% of the jobs that use a vari-
able as a column index, PeriSCOPE is able to resolve
83.3% of them, leaving just 1.9% of the jobs containing
unresolved column access.

Instead of directly rewriting operator code, Peri-
SCOPE copies operator code when it needs to be written
because a user-defined function can be reused multiple
times in a job, each reuse requiring different code trans-
formations. Likewise, row type schema definitions and
serialization code are copied and transformed as columns
are eliminated from different points in the pipeline.

6 EVALUATION

We use a real trace of 28,838 jobs from a 10,000 machine
SCOPE production cluster to evaluate PeriSCOPE’s core
I/O reduction optimizations of column reduction, early
filtering, and smart cut. Our evaluation focuses on first
assessing the overall potential for these optimizations
and second evaluating in detail the effectiveness of these
optimizations on the end-to-end performance of several
real production jobs. With an average analysis time of
3.9 seconds for each job, our current implementation
successfully analyzes 19,914 (69%) of the 28,838 jobs.
PeriSCOPE fails on the rest of these jobs given limita-
tions in our implementation primarily relating to incon-
sistent SCOPE versions (18.9%) or outright ILSpy de-
compilation failures (8.5%), but a minority involve code
that cannot be analyzed in general due to unresolved col-
umn indices (1.9%) or for reasons that we have yet been
unable to determine (1.7%). Table 1 shows that 14.05%
of the jobs are eligible for column reduction optimiza-
tion, 10.47% for early filtering, and 5.35% for smart cut.
Some jobs are eligible for multiple types of optimiza-
tions, and so the total percentage (22.18%) of jobs that
are eligible for those optimizations is lower than the sum
of the three.
We next examine the user-defined functions of these
jobs. We found that these jobs used only 2,108 unique

optimization eligible jobs
column reduction 4,052 (14.05%)
early filtering 3,020 (10.47%)
smart cut 1,544 ( 5.35%)
Total 6,397 (22.18%)

Table 1: Optimization coverage statistics which lists the num-
ber and the percentage of the jobs that are eligible for the given
optimization.

user-defined functions, meaning many jobs are encoded
purely in declarative code that leverages pre-existing
user-defined functions. About 16.4% of the user-defined
functions are reused more than ten times, where the most
popular user-defined function is reused 4,076 times. We
suppose that the heavy reuse of user-defined functions
creates more opportunities for PeriSCOPE’s optimiza-
tions. And in fact, about 80.2% of the user-defined func-
tions in jobs eligible for column reduction were reused at
least 13 times, confirming our speculation that generic li-
brary functions contain a lot of redundancies that can be
optimized away. On the other hand, no such correlation is
observed for early filtering or smart cut, whose eligibil-
ity appear to be unrelated to reuse. Finally, 637 (30.2%)
unique user-defined functions used in these jobs have ar-
guments in their function bodies that are used as branch
conditions or column names, while 79.1% of the user-
defined function invocations in the job scripts contain
constant parameters. Specialization of such user-defined
functions is a necessary pre-processing step to resolve
columns and apply PeriSCOPE’s optimizations.

Case Study

To understand the overall effectiveness of PeriSCOPE’s
optimizations, we compare the performance of the jobs
before and after our optimization in terms of both exe-
cution time and the amount of I/O used during the data-
shuffling phase. Ideally, we would carry out this exper-
iment with representative benchmarks, which unfortu-
nately do not exist. We therefore select eight real and
typical SCOPE jobs that are eligible for at least one of
PeriSCOPE’s optimizations and whose input data is still
available on the cluster. The selected jobs are mostly re-
lated to web-search scenarios that process crawler traces,
search query histories, search clicks, user information,
and product bidding logs. Our experiment executes these
real production jobs (cases 1–8 in Figure 12) on various
number of machines. Specifically, cases 1, 2, and 4 use
1,000 machines, case 3 uses 10 machines, cases 5–7 use
192 machines, while case 8 uses 100 machines.

Figure 12 shows the performance-gain breakdown for

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 129

Figure 12: Performance gains with PeriSCOPE’s column reduction, early filtering, and smart cut optimizations; chart (a) labels
unoptimized job time in seconds while chart (b) labels total unoptimized job shuffling I/O size in GB; the bars in each case represent
the effectiveness of each optimization relative to unoptimized execution time (a) or shuffling I/O (b); shorter bars indicate more
reduction; the “All” bar is only shown for cases that are eligible for more than one PeriSCOPE’s optimization; final case reduction
of time or I/O is presented as a percentage next to an I-bar; both the execution time and the shuffling I/O are average values with a
relative standard deviation (RSD) ranging from 7.3% to 23.0% due to the nature of our shared computing environment.

our chosen 8 production jobs in terms of a reduction
in both execution time and data-shuffling I/O. The un-
optimized and optimized versions of each job are exe-
cuted three times; we report the average. Due to the na-
ture of our shared computing environment we are us-
ing, we see high relative standard deviations (7.3% to
23.0%) in our latency experiments, while the reduction
numbers in data-shuffling I/O is a more reliable indica-
tor. In particular, highest standard deviations are seen for
cases 5 (23.0% and 22.6%) and 6 (18.0% and 14.9%), in-
dicating that the reductions are insignificant statistically
in those cases. The execution time reduction for case 8
(10%) is also statistically insignificant with standard de-
viations of 13.4% and 7.3%. Case 1 benefits from all
three of PeriSCOPE’s optimizations, cases 2–3 are eli-
gible for two, while cases 4–8 are only eligible for one
each. PeriSCOPE reduces data-shuffling I/O in all cases
but the last by between 9% and 99%; the last case in-
curs no benefit for reasons discussed below. Execution
time is reduced by between 7% to 74%, which, beyond
data-shuffling I/O, includes other tasks such as execut-
ing data-processing code, and reading and writing data
to and from storage. Case 4 is particularly sensitive to
storage overhead as this job extracts data from a 2.26TB
log file.

Column reduction can be applied six of the eight jobs,
yielding I/O reductions ranging from 4.8% up to 96%
that depend on how many columns are removed com-
pared to the total byte size of all columns. Column reduc-

tion on case 4 removes 18 columns out of 22; the reducer
that executes immediately after an extractor uses only 4
of the columns extracted. For case 7, only 2 out of 31
columns are used by its reducer; other columns are con-
sumed by other operators and are not transmitted across
the data-shuffling phase.

The effectiveness of early filtering depends highly on
the goal of filtering. We have found that filtering condi-
tions simply exclude rows whose columns have invalid
values. While such case is rare, early filtering leads only
to a negligible I/O reduction; case 8 is exactly this case.
The execution time of case 8 is still reduced because
PeriSCOPE moved the filtering computation to before
the data-shuffling phase, improving the parallelism be-
cause more resource (136 CPU cores) are allocated to the
stage before shuffling than after (42). When the filtering
does not check for invalid values, they usually exclude
a large number of rows and early filtering is quite effec-
tive. As an extreme case, data-shuffling I/O is reduced
by 99% in case 1 because the vast majority of the rows
in this job are filtered out and so do not need to be trans-
mitted in the pipeline. The opportunity for early filtering
discovered by PeriSCOPE was not obvious: 7 if condi-
tions, some of them deeply nested, select desired rows
for various computations, and manually writing a single
filtering condition to replicate these if conditions is not
trivial for a developer.

In contrast to early filtering, smart cut will always
deliver I/O reductions when it can be applied. Compu-

9



130 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

tations that trigger smart cut typically involve one col-
umn that is mapped to a column of a smaller size, usually
via the conversion from string to some arithmetic types,
or size-reduction operations such as Trim and Substring.
Binary operations (e.g., +,∗,==,>) between two input
columns can also trigger smart cut. For example, case 5
contains two string-typed columns as start and end event
timestamps; the job parses the two as integer timestamps
and computes their delta for the elapsed time of the event,
where smart cut causes the delta to be precomputed.

Discussion
Overall, we found that column reduction and smart cut
are always effective in reducing data-shuffling I/O while
the effectiveness of early filtering highly depends on
the purpose of the filtering. Our experiments have also
demonstrated that programmers often write inefficient
data-parallel programs; we speculate that they are either
unaware of how to optimize these programs or are valu-
ing programmability over performance. In this context,
PeriSCOPE’s optimizations are valuable as the program-
mer can be less concerned about I/O performance.

Even experienced programmers who value perfor-
mance could eventually rely on PeriSCOPE’s optimiza-
tions to avoid hand-optimizing their code and allow them
to reuse more existing code in their programs. In this
case, the reliability and predictability of PeriSCOPE’s
optimizations are as important as the optimizations’ ef-
fectiveness; we leave an exploration of this topic to future
work.

7 RELATED WORK

PeriSCOPE is closely related to a large body of re-
search in the areas of data-parallel computation, dis-
tributed database systems [16] and query optimizations,
and compiler optimizations [2, 4, 25]. Instead of attempt-
ing to cover those areas thoroughly, we focus on the most
related research that lies in the intersection of those three
areas.

Distributed data-parallel systems
MapReduce [14] has inspired a lot of follow-up research
on large-scale distributed data-parallel computation, in-
cluding Hadoop [5] and Dryad [18]. The MapReduce
model has been extended [38] with Merge to support
joins and adapted [11] to support pipelining. High-level
languages for data-parallel computation have also been
proposed for ease of programming. Examples include
Sawzall [31], Pig Latin [29, 15], SCOPE [8], Hive [33,
34], and DryadLINQ [40]. In addition, FlumeJava [9] is a
Java library for programming and managing MapReduce

pipelines that proposes new parallel-collection abstrac-
tions, does deferred evaluation, and optimizes the data
flow graph of an execution plan internally before execut-
ing. Nova [27] is a work-flow manager with support for
stateful incremental processing which pushes continually
arriving data through graphs of Pig programs executing
on Hadoop clusters. Cascading [7] is a Java library built
on top of Hadoop for defining and executing complex,
scale-free, and fault tolerant data processing work-flows.
Bu et al. [6] shows how recursive SQL queries may be
translated into iterative Hadoop jobs. Programs in those
systems go through a compilation and optimization pro-
cess to generate code for a low-level execution engine,
such as MapReduce and Dryad. All of them support user-
defined functions that are treated as black boxes during
optimization of the program’s pipeline.

PeriSCOPE’s optimizations work at the level of byte-
code operators and pipeline descriptions, which are typ-
ically the result of the existing compilation and opti-
mization process. Conceptually, the approaches taken by
the PeriSCOPE’s optimizations can be applied to data-
parallel systems other than SCOPE, because almost all
systems produce a pipeline with operators that call user-
defined functions. The coverage and the effectiveness of
the concrete optimizations, however, vary due to their
different programming models and language runtime im-
plementation. We show two cases where the differences
in those systems matter. First, the data models differ,
ranging from a relational data model (e.g., SCOPE) or
its variations (e.g., Hive, Pig), to the object model (e.g.,
FlumeJava and DryadLINQ), which introduces differ-
ent opportunities and difficulties for PeriSCOPE’s op-
timizations. For example, with an object model, Peri-
SCOPE does not need to resolve the column access in-
dex any more, because all fields are accessed explic-
itly. Also, in an object model, declaring a new schema
requires explicit class/object definitions. The resulting
inconvenience often cause developers to reuse existing
object definitions that contains unneeded fields, offer-
ing more opportunities for column reduction. Develop-
ers sometimes write custom (de-)serialization functions
for an object to achieve better performance, which would
pose challenges to PeriSCOPE’s optimizations that cause
schema changes: those functions must be modified ac-
cordingly.

Second, different systems might define different in-
terfaces to their user-defined functions; those interfaces
represent different trade offs between expressiveness and
ease of analysis. For example, SCOPE exposes a collec-
tion of records to a mapper while others usually take
a single record as the input to a mapper (e.g., in the

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 131

MapReduce framework in Hadoop). Other examples in-
clude the reducer interface in SCOPE versus the UDAF
(user-defined aggregation function) interface in Hive,
where the former exposes the record collection and the
latter only receives a single value, and is usually applied
to a single column. The more restricted the interface and
the less expressive the language, the easier it is to ana-
lyze. The interface definition also influences where the
optimization opportunities lie. For example, if a user-
defined function is defined to take a single column as
its input, cross-column relationships are now explicitly
expressed, reducing the need for program analysis and
optimizations.

Database optimizations

Most of the data-parallel systems adopt a hybrid pro-
gramming model that combines declarative relational op-
erators with procedural user-defined functions, and are
heavily influenced by database systems. The support
of relational operators in those systems allows jobs to
be specified easily, while at the same time facilitates
database optimizations based on relational algebra.

There are interesting similarities between some of the
PeriSCOPE’s optimizations and the classic database op-
timizations. Early filtering in PeriSCOPE corresponds
naturally to early selection in database optimizations.
The counterpart to column reduction in database opti-
mization is early projection that drops unused columns
as early as possible. Such logical optimizations [28] have
already been proposed for data-parallel programs, but
they cannot be readily applied when user-defined func-
tions are involved because they rely on relational opera-
tors.

A line of related research focuses on extracting re-
lational queries from user-defined functions. Hadoop-
ToSQL [19] transforms MapReduce queries to use the
indexing, aggregation, and grouping features provided
by SQL databases, taking advantage of advanced stor-
age engines by employing symbolic execution to extract
selection and projection conditions. Manimal [20] simi-
larly extracts relational operations such as selection, pro-
jection, and data compression from user-defined func-
tions through static data flow analysis. Early filtering
and column reduction are possible in Manimal because
those optimizations have clear relational interpretations.
But PeriSCOPE can also remove unnecessary code from
the user-defined functions, while Manimal never rewrites
user-defined functions as it can only optimize the rela-
tional layer. For example, lines 27, 28, 33, 36 in Figure 5,
which are eliminated by PeriSCOPE, would not be re-
moved by Manimal. As a result, PeriSCOPE further re-

moves columns ctrls and market, as well as the code
on lines 5 and 6 in Figure 5 through column reduction,
which Manimal cannot do.

Neither Manimal nor HadoopToSQL support smart
cut because neither system rewrites any user-defined
functions in its optimizations. For smart cut, the clos-
est concept in database optimization that we are aware
of is the notion of “virtual columns” from Oracle [30],
where a computed column is lazily evaluated when it is
used, similar in spirit to moving a computation to a later
place in the code. Such lazy evaluation is limited to spe-
cial cases and cannot be performed on user-defined func-
tions in general.

Program analysis and optimizations

The need to analyze user-defined functions, by means of
techniques such as data flow analysis [2, 4, 25], abstract
interpretation [12], and symbolic execution [17], has al-
ready been recognized. Ke et al. [21] focuses on data
statistics and computational complexity of user-defined
functions to cope with data skew. Sameer et al. [1] con-
cludes that certain data and code properties can improve
performance of data-parallel jobs, and presents the RoPE
system that adaptively re-optimizes jobs by collecting
statistics on such code and data properties in a distributed
context. Scooby [37] analyzes the data flow relation-
ships of SCOPE’s user-defined functions between input
and output tables, such as column independence and col-
umn equality, by extending the Clousot analysis infras-
tructure [22]. Yuan et al. [39] define the associative-
decomposable property of a reducer function to enable
partial aggregation automatically after analysis on the
reducer functions. Sudo [41] identifies a set of interest-
ing user-defined functions, such as pass-through, one-to-
one, and monotonicity, and develops a framework to rea-
son about data-partition properties, functional properties,
and data shuffling in order to eliminate unnecessary data
shuffling. Sudo analyzes user-defined functions to infer
their properties, but never rewrites any user-defined func-
tions.

Compilation of declarative language has huge im-
pact on the efficiency of a high-performance and high-
throughput environment. Steno [26] can translate code
for declarative LINQ [24, 23] queries both in serial C#
programs and DryadLINQ programs to type-specialized,
inlined, and loop-based procedural code that is as effi-
cient as hand-optimized code. PeriSCOPE similarly ap-
plies those optimizations in program specialization as a
preparation step, although differences in the language de-
signs between SCOPE and LINQ lead to different chal-
lenges and approaches. Steno can automatically generate

11



132 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

code for operators expressed in LINQ, but has to treat
external functions called inside operators as black boxes.
PeriSCOPE instead works with compiled user-defined
functions, which include such external functions.

8 CONCLUDING REMARKS

Optimizing distributed data-parallel computation ben-
efits from an inter-disciplinary approach that involves
database systems, distributed systems, and program lan-
guages. In particular, PeriSCOPE has demonstrated per-
formance gains on real production jobs by applying pro-
gram analysis and compiler optimizations in the con-
text of the pipelines that these jobs execute in. Much
more can be done. We can explore how to enhance the
reliability and predictability of PeriSCOPE’s optimiza-
tions so programmers can reuse existing code as well as
write straightforward code without much guilt that per-
formance is being sacrificed. Going further, we can ex-
plore how the programming model itself can be enhanced
with more guarantees about program behavior, allowing
for even more aggressive optimizations that further im-
prove performance.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable
comments. We are particularly grateful to our shepherd,
John Wilkes, for his insightful feedback.

REFERENCES
[1] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica,

and J. Zhou. Reoptimizing data parallel computing. In
Proceedings of the 7th Symposium on Networked
Systems Design and Implementation (NSDI), San Jose,
CA, USA, 2012. USENIX Association.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.
Conversion of control dependence to data dependence.
In Proceedings of the 10th SIGACT-SIGPLAN
symposium on Principles of programming languages
(POPL), pages 177–189, Austin, Texas, 1983. ACM.

[4] R. Allen and K. Kennedy. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann, 2001.

[5] Apache. Hadoop: Open-source implementation of
MapReduce. http://hadoop.apache.org,
March 2012.

[6] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. The Proceedings of the VLDB Endowment
(PVLDB), 3:285–296, 2010.

[7] Cascading. http://www.cascading.org/, March
2012.

[8] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: easy and
efficient parallel processing of massive data sets. The
Proceedings of the VLDB Endowment (PVLDB),
1:1265–1276, 2008.

[9] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumeJava:
easy, efficient data-parallel pipelines. In Proceedings of
the SIGPLAN conference on Programming Language
Design and Implementation (PLDI), pages 363–375,
Toronto, Canada, 2010. ACM.

[10] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S.
Levine, and C. Stein. Experimental study of minimum
cut algorithms. In Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 324–333. SIAM, 1997.

[11] T. Condie, N. Conway, P. Alvaro, and J. M. Hellerstein.
MapReduce online. In Proceedings of the 7th
Symposium on Networked Systems Design and
Implementation (NSDI), San Jose, CA, USA, 2010.
USENIX Association.

[12] P. Cousot. Abstract interpretation. ACM Computing
Surveys, 28, June 1996.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently computing static single
assignment form and the control dependence graph.
Transactions on Programming Languages and Systems
(TOPLAS), 13:451–490, 1991. ACM.

[14] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th
Symposium on Operating Systems Design and
Implementation (OSDI), pages 107–113, San Fancisco,
CA, USA, 2004. USENIX Association.

[15] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of MapReduce: The Pig experience. The Proceedings
of the VLDB Endowment (PVLDB), 2:1414–1425, 2009.

[16] G. Graefe. The cascades framework for query
optimization. IEEE Data Engineering Bulletin, 18(3),
1995.

[17] R. H. Halstead. Multilisp: A language for concurrent
symbolic computation. Transactions on Programming
Languages and Systems (TOPLAS), pages 501–538,
1985. ACM.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2nd
European conference on Computer systems (EuroSys),
pages 59–72, Lisbon, Portugal, 2007. ACM.

[19] M.-Y. Iu and W. Zwaenepoel. HadoopToSQL: a
mapReduce query optimizer. In Proceedings of the 5th
European conference on Computer systems (EuroSys),
pages 251–264, Paris, France, 2010. ACM.

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 133

[20] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
optimization for MapReduce programs. The Proceedings
of the VLDB Endowment (PVLDB), 4:385–396, 2011.

[21] Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang.
Optimizing data partitioning for data-parallel computing.
In Proceedings of the 13th Workshop on Hot Topics in
Operating System (HotOS), Napa, CA, USA, 2011.
USENIX Association.

[22] F. Logozzo and M. Fähndrich. On the relative
completeness of bytecode analysis versus source code
analysis. In Compiler Construction, pages 197–212,
Budapest, Hungary, 2008. Springer-Verlag.

[23] E. Meijer, B. Beckman, and G. Bierman. LINQ:
reconciling object, relations and XML in the .NET
framework. In Proceedings of the SIGMOD
International Conference on Management of Data
(SIGMOD), pages 706–706. ACM, 2006.

[24] Microsoft. LINQ. http://msdn.microsoft.
com/en-us/library/bb308959.aspx, February
2007.

[25] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[26] D. G. Murray, M. Isard, and Y. Yu. Steno: automatic
optimization of declarative queries. In Proceedings of
the SIGPLAN conference on Programming Language
Design and Implementation (PLDI), pages 121–131, San
Jose, CA, USA, 2011. ACM.

[27] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han,
M. Larsson, A. Neumann, V. B. N. Rao,
V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell,
and X. Wang. Nova: continuous Pig/Hadoop workflows.
In Proceedings of the SIGMOD International
Conference on Management of Data (SIGMOD), pages
1081–1090, Athens, Greece, 2011. ACM.

[28] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs.
In Annual Technical Conference (ATC). USENIX
Association, 2008.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: a not-so-foreign language for
data processing. In Proceedings of the SIGMOD
International Conference on Management of Data
(SIGMOD), pages 1099–1110, Vancouver, Canada,
2008. ACM.

[30] Oracle. Virtual column.
http://www.oracle-base.com/articles/
11g/virtual-columns-11gr1.php, March
2011.

[31] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming, 2005.

[32] SharpDevelop. ILSpy. http:
//wiki.sharpdevelop.net/ilspy.ashx, June
2012.

[33] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a
warehousing solution over a MapReduce framework.
The Proceedings of the VLDB Endowment (PVLDB),
2:1626–1629, 2009.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In
Proceedings of the 26th International Conference on
Data Engineering (ICDE), pages 996–1005, Long
Beach, CA, USA, 2010. IEEE.

[35] M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering
(ICSE), pages 439–449, San Diego, CA, USA, 1981.
IEEE Press.

[36] Xamarin. Mono Cecil.
http://www.mono-project.com/Cecil.

[37] S. Xia, M. Fähndrich, and F. Logozzo. Inferring dataflow
properties of user defined table processors. In
Proceedings of the 16th International Static Analysis
Symposium (SAS), pages 19–35, Los Angeles, CA, USA,
2009. Springer-Verlag.

[38] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing
on large clusters. In Proceedings of the SIGMOD
International Conference on Management of Data
(SIGMOD), pages 1029–1040, Beiing, China, 2007.
ACM.

[39] Y. Yu, P. K. Gunda, and M. Isard. Distributed
aggregation for data-parallel computing: interfaces and
implementations. In Proceedings of the SIGOPS 22nd
Symposium on Operating Systems Principles (SOSP),
pages 247–260. ACM, 2009.

[40] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of the 8th
Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, USA, 2008.
USENIX Association.

[41] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin,
J. Y.Li, W. Lin, J. Zhou, and L. Zhou. Optimizing data
shuffling in data-parallel computation by understanding
user-defined functions. In Proceedings of the 7th
Symposium on Networked Systems Design and
Implementation (NSDI), San Jose, CA, USA, 2012.
USENIX Association.

[42] J. Zhou, N. Bruno, M. chuan Wu, P.-Å. Larson,
R. Chaiken, and D. Shakib. SCOPE: parallel databases
meet MapReduce. In The VLDB Journal.
Springer-Verlag, 2012.

[43] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE optimizer.
In Proceedings of the 26th International Conference on
Data Engineering (ICDE), pages 1060–1071. IEEE,
2010.

13





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 135

MegaPipe: A New Programming Interface for Scalable Network I/O

Sangjin Han+, Scott Marshall+, Byung-Gon Chun*, and Sylvia Ratnasamy+

+University of California, Berkeley *Yahoo! Research

Abstract
We present MegaPipe, a new API for efficient, scalable
network I/O for message-oriented workloads. The design
of MegaPipe centers around the abstraction of a channel –
a per-core, bidirectional pipe between the kernel and user
space, used to exchange both I/O requests and event noti-
fications. On top of the channel abstraction, we introduce
three key concepts of MegaPipe: partitioning, lightweight
socket (lwsocket), and batching.

We implement MegaPipe in Linux and adapt mem-
cached and nginx. Our results show that, by embracing a
clean-slate design approach, MegaPipe is able to exploit
new opportunities for improved performance and ease
of programmability. In microbenchmarks on an 8-core
server with 64 B messages, MegaPipe outperforms base-
line Linux between 29% (for long connections) and 582%
(for short connections). MegaPipe improves the perfor-
mance of a modified version of memcached between 15%
and 320%. For a workload based on real-world HTTP
traces, MegaPipe boosts the throughput of nginx by 75%.

1 Introduction
Existing network APIs on multi-core systems have diffi-
culties scaling to high connection rates and are inefficient
for “message-oriented” workloads, by which we mean
workloads with short connections1 and/or small mes-
sages. Such message-oriented workloads include HTTP,
RPC, key-value stores with small objects (e.g., RAM-
Cloud [31]), etc. Several research efforts have addressed
aspects of these performance problems, proposing new
techniques that offer valuable performance improve-
ments. However, they all innovate within the confines
of the traditional socket-based networking APIs, by ei-
ther i) modifying the internal implementation but leav-
ing the APIs untouched [20, 33, 35], or ii) adding new
APIs to complement the existing APIs [1, 8, 10, 16, 29].
While these approaches have the benefit of maintain-
ing backward compatibility for existing applications, the
need to maintain the generality of the existing API –
e.g., its reliance on file descriptors, support for block-

1We use “short connection” to refer to a connection with a small
number of messages exchanged; this is not a reference to the absolute
time duration of the connection.

ing and nonblocking communication, asynchronous I/O,
event polling, and so forth – limits the extent to which
it can be optimized for performance. In contrast, a clean-
slate redesign offers the opportunity to present an API that
is specialized for high performance network I/O.

An ideal network API must offer not only high perfor-
mance but also a simple and intuitive programming ab-
straction. In modern network servers, achieving high per-
formance requires efficient support for concurrent I/O so
as to enable scaling to large numbers of connections per
thread, multiple cores, etc. The original socket API was
not designed to support such concurrency. Consequently,
a number of new programming abstractions (e.g., epoll,
kqueue, etc.) have been introduced to support concurrent
operation without overhauling the socket API. Thus, even
though the basic socket API is simple and easy to use,
programmers face the unavoidable and tedious burden of
layering several abstractions for the sake of concurrency.
Once again, a clean-slate design of network APIs offers
the opportunity to design a network API from the ground
up with support for concurrent I/O.

Given the central role of networking in modern applica-
tions, we posit that it is worthwhile to explore the benefits
of a clean-slate design of network APIs aimed at achiev-
ing both high performance and ease of programming. In
this paper we present MegaPipe, a new API for efficient,
scalable network I/O. The core abstraction MegaPipe in-
troduces is that of a channel – a per-core, bi-directional
pipe between the kernel and user space that is used to ex-
change both asynchronous I/O requests and completion
notifications. Using channels, MegaPipe achieves high
performance through three design contributions under the
roof of a single unified abstraction:

Partitioned listening sockets: Instead of a single listen-
ing socket shared across cores, MegaPipe allows applica-
tions to clone a listening socket and partition its associ-
ated queue across cores. Such partitioning improves per-
formance with multiple cores while giving applications
control over their use of parallelism.

Lightweight sockets: Sockets are represented by file
descriptors and hence inherit some unnecessary file-
related overheads. MegaPipe instead introduces lwsocket,
a lightweight socket abstraction that is not wrapped in file-

1



136 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

related data structures and thus is free from system-wide
synchronization.

System Call Batching: MegaPipe amortizes system call
overheads by batching asynchronous I/O requests and
completion notifications within a channel.

We implemented MegaPipe in Linux and adapted two
popular applications – memcached [3] and the nginx [37]
– to use MegaPipe. In our microbenchmark tests on an 8-
core server with 64 B messages, we show that MegaPipe
outperforms the baseline Linux networking stack between
29% (for long connections) and 582% (for short connec-
tions). MegaPipe improves the performance of a mod-
ified version of memcached between 15% and 320%.
For a workload based on real-world HTTP traffic traces,
MegaPipe improves the performance of nginx by 75%.

The rest of the paper is organized as follows. We ex-
pand on the limitations of existing network stacks in §2,
then present the design and implementation of MegaPipe
in §3 and §4, respectively. We evaluate MegaPipe with mi-
crobenchmarks and macrobenchmarks in §5, and review
related work in §6.

2 Motivation
Bulk transfer network I/O workloads are known to be in-
expensive on modern commodity servers; one can eas-
ily saturate a 10 Gigabit (10G) link utilizing only a sin-
gle CPU core. In contrast, we show that message-oriented
network I/O workloads are very CPU-intensive and may
significantly degrade throughput. In this section, we dis-
cuss limitations of the current BSD socket API (§2.1)
and then quantify the performance with message-oriented
workloads with a series of RPC-like microbenchmark ex-
periments (§2.2).

2.1 Performance Limitations

In what follows, we discuss known sources of inefficiency
in the BSD socket API. Some of these inefficiencies are
general, in that they occur even in the case of a single
core, while others manifest only when scaling to multiple
cores – we highlight this distinction in our discussion.

Contention on Accept Queue (multi-core): As explained
in previous work [20, 33], a single listening socket (with
its accept() backlog queue and exclusive lock) forces
CPU cores to serialize queue access requests; this hotspot
negatively impacts the performance of both producers
(kernel threads) enqueueing new connections and con-
sumers (application threads) accepting new connections.
It also causes CPU cache contention on the shared listen-
ing socket.

Lack of Connection Affinity (multi-core): In Linux, in-
coming packets are distributed across CPU cores on a flow

basis (hash over the 5-tuple), either by hardware (RSS [5])
or software (RPS [24]); all receive-side processing for the
flow is done on a core. On the other hand, the transmit-
side processing happens on the core at which the appli-
cation thread for the flow resides. Because of the serial-
ization in the listening socket, an application thread call-
ing accept() may accept a new connection that came
through a remote core; RX/TX processing for the flow
occurs on two different cores, causing expensive cache
bouncing on the TCP control block (TCB) between those
cores [33]. While the per-flow redirection mechanism [7]
in NICs eventually resolves this core disparity, short con-
nections cannot benefit since the mechanism is based on
packet sampling.

File Descriptors (single/multi-core): The POSIX stan-
dard requires that a newly allocated file descriptor be the
lowest integer not currently used by the process [6]. Find-
ing ‘the first hole’ in a file table is an expensive operation,
particularly when the application maintains many connec-
tions. Even worse, the search process uses an explicit per-
process lock (as files are shared within the process), lim-
iting the scalability of multi-threaded applications. In our
socket() microbenchmark on an 8-core server, the cost
of allocating a single FD is roughly 16% greater when
there are 1,000 existing sockets as compared to when there
are no existing sockets.

VFS (multi-core): In UNIX-like operating systems, net-
work sockets are abstracted in the same way as other file
types in the kernel; the Virtual File System (VFS) [27]
associates each socket with corresponding file instance,
inode, and dentry data structures. For message-oriented
workloads with short connections, where sockets are fre-
quently opened as new connections arrive, servers quickly
become overloaded since those globally visible objects
cause system-wide synchronization cost [20]. In our mi-
crobenchmark, the VFS overhead for socket allocation on
eight cores was 4.2 times higher than the single-core case.

System Calls (single-core): Previous work has shown
that system calls are expensive and negatively impact
performance, both directly (mode switching) and indi-
rectly (cache pollution) [35]. This performance overhead
is exacerbated for message-oriented workloads with small
messages that result in a large number of I/O operations.

In parallel with our work, the Affinity-Accept project
[33] has recently identified and solved the first two is-
sues, both of which are caused by the shared listening
socket (for complete details, please refer to the paper). We
discuss our approach (partitioning) and its differences in
§3.4.1. To address other issues, we introduce the concept
of lwsocket (§3.4.2, for FD and VFS overhead) and batch-
ing (§3.4.3, for system call overhead).

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 137

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1.8 

1 2 4 8 16 32 64 128 

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)
 

# of Transactions per Connection 

Baseline Throughput MegaPipe 

0 

20 

40 

60 

80 

100 

0 

2 

4 

6 

8 

10 

64 128 256 512 1K 2K 4K 8K 16K 

C
PU

 U
sa

ge
 (%

) 

T
hr

ou
gh

pu
t (

G
bp

s)
 

Message Size (B) 

Baseline CPU Usage MegaPipe 

0 

20 

40 

60 

80 

100 

0 

0.3 

0.6 

0.9 

1.2 

1.5 

1 2 3 4 5 6 7 8 

E
ff

ic
ie

nc
y 

(%
) 

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)
 

# of CPU Cores 

Baseline Per-Core Efficiency MegaPipe 

Figure 1: (a) the negative impact of connection lifespan (with 64 B messages on eight cores), (b) message size (with ten transactions
per connection on eight cores), and (c) increasing number of cores (with 64 B messages and ten transactions per connection).

2.2 Performance of Message-Oriented Workloads

While it would be ideal to separate the aforementioned in-
efficiencies and quantify the cost of each, tight coupling in
semantics between those issues and complex dynamics of
synchronization/cache make it challenging to isolate indi-
vidual costs.

Rather, we quantify their compound performance im-
pact with a series of microbenchmarks in this work. As
we noted, the inefficiencies manifest themselves primar-
ily in workloads that involve short connections or small-
sized messages, particularly with increasing numbers of
CPU cores. Our microbenchmark tests thus focus on these
problematic scenarios.

Experimental Setup: For our tests, we wrote a pair
of client and server microbenchmark tools that emulate
RPC-like workloads. The client initiates a TCP connec-
tion, exchanges multiple request and response messages
with the server and then closes the connection.2 We re-
fer to a single request-response exchange as a transac-
tion. Default parameters are 64 B per message and 10
transactions per connection, unless otherwise stated. Each
client maintains 256 concurrent connections, and we con-
firmed that the client is never the bottleneck. The server
creates a single listening socket shared by eight threads,
with each thread pinned to one CPU core. Each event-
driven thread is implemented with epoll [8] and the non-
blocking socket API.

Although synthetic, this workload lets us focus on the
low-level details of network I/O overhead without inter-
ference from application-specific logic. We use a single
server and three client machines, connected through a
dedicated 10G Ethernet switch. All test systems use the
Linux 3.1.3 kernel and ixgbe 3.8.21 10G Ethernet device
driver [2] (with interrupt coalescing turned on). Each ma-
chine has a dual-port Intel 82599 10G NIC, 12 GB of
DRAM, and two Intel Xeon X5560 processors, each of

2In this experiment, we closed connections with RST, to avoid ex-
haustion of client ports caused by lingering TIME_WAIT connections.

which has four 2.80 GHz cores. We enabled the multi-
queue feature of the NICs with RSS [5] and FlowDirec-
tor [7], and assigned each RX/TX queue to one CPU core.

In this section, we discuss the result of the experi-
ments Figure 1 labeled as “Baseline.” For comparison,
we also include the results with our new API, labeled as
“MegaPipe,” from the same experiments.

Performance with Short Connections: TCP connection
establishment involves a series of time-consuming steps:
the 3-way handshake, socket allocation, and interaction
with the user-space application. For workloads with short
connections, the costs of connection establishment are not
amortized by sufficient data transfer and hence this work-
load serves to highlight the overhead due to costly con-
nection establishment.

We show how connection lifespan affects the through-
put by varying the number of transactions per connec-
tion in Figure 1(a), measured with eight CPU cores. Total
throughput is significantly lower with relatively few (1–8)
transactions per connection. The cost of connection estab-
lishment eventually becomes insignificant for 128+ trans-
actions per connection, and we observe that throughput in
single-transaction connections is roughly 19 times lower
than that of long connections!

Performance with Small Messages: Small messages re-
sult in greater relative network I/O overhead in compari-
son to larger messages. In fact, the per-message overhead
remains roughly constant and thus, independent of mes-
sage size; in comparison with a 64 B message, a 1 KiB
message adds only about 2% overhead due to the copying
between user and kernel on our system, despite the large
size difference.

To measure this effect, we perform a second mi-
crobenchmark with response sizes varying from 64 B to
64 KiB (varying the request size in lieu of or in addition to
the response size had almost the same effects). Figure 1(b)
shows the measured throughput (in Gbps) and CPU usage
for various message sizes. It is clear that connections with

3



138 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

small-sized messages adversely affect the throughput. For
small messages (≤ 1 KiB) the server does not even satu-
rate the 10G link. For medium-sized messages (2–4 KiB),
the CPU utilization is extremely high, leaving few CPU
cycles for further application processing.

Performance Scaling with Multiple Cores: Ideally,
throughput for a CPU-intensive system should scale lin-
early with CPU cores. In reality, throughput is limited by
shared hardware (e.g., cache, memory buses) and/or soft-
ware implementation (e.g., cache locality, serialization).
In Figure 1(c), we plot the throughput for increasing num-
bers of CPU cores. To constrain the number of cores, we
adjust the number of server threads and RX/TX queues
of the NIC. The lines labeled “Efficiency” represent the
measured per-core throughput, normalized to the case of
perfect scaling, where N cores yield a speedup of N.

We see that throughput scales relatively well for up to
four cores – the likely reason being that, since each pro-
cessor has four cores, expensive off-chip communication
does not take place up to this point. Beyond four cores,
the marginal performance gain with each additional core
quickly diminishes, and with eight cores, speedup is only
4.6. Furthermore, it is clear from the growth trend that
speedup would not increase much in the presence of ad-
ditional cores. Finally, it is worth noting that the observed
scaling behavior of Linux highly depends on connection
duration, further confirming the results in Figure 1(a).
With only one transaction per connection (instead of the
default 10 used in this experiment), the speedup with eight
cores was only 1.3, while longer connections of 128 trans-
actions yielded a speedup of 6.7.

3 MegaPipe Design
MegaPipe is a new programming interface for high-
performance network I/O that addresses the inefficiencies
highlighted in the previous section and provides an easy
and intuitive approach to programming high concurrency
network servers. In this section, we present the design
goals, approach, and contributions of MegaPipe.

3.1 Scope and Design Goals

MegaPipe aims to accelerate the performance of message-
oriented workloads, where connections are short and/or
message sizes are small. Some possible approaches to this
problem would be to extend the BSD Socket API or to
improve its internal implementation. It is hard to achieve
optimal performance with these approaches, as many op-
timization opportunities can be limited by the legacy ab-
stractions. For instance: i) sockets represented as files in-
herit the overheads of files in the kernel; ii) it is difficult
to aggregate BSD socket operations from concurrent con-
nections to amortize system call overheads. We leave opti-

mizing the message-oriented workloads with those dirty-
slate (minimally disruptive to existing API semantics and
legacy applications) alternatives as an open problem. In-
stead, we take a clean-slate approach in this work by de-
signing a new API from scratch.

We design MegaPipe to be conceptually simple, self-
contained, and applicable to existing event-driven server
applications with moderate efforts. The MegaPipe API
provides a unified interface for various I/O types, such as
TCP connections, UNIX domain sockets, pipes, and disk
files, based on the completion notification model (§3.2)
We particularly focus on the performance of network I/O
in this paper. We introduce three key design concepts of
MegaPipe for high-performance network I/O: partitioning
(§3.4.1), lwsocket (§3.4.2), and batching (§3.4.3), for re-
duced per-message overheads and near-linear multi-core
scalability.

3.2 Completion Notification Model
The current best practice for event-driven server pro-
gramming is based on the readiness model. Applica-
tions poll the readiness of interested sockets with se-

lect/poll/epoll and issue non-blocking I/O commands
on the those sockets. The alternative is the completion no-
tification model. In this model, applications issue asyn-
chronous I/O commands, and the kernel notifies the appli-
cations when the commands are complete. This model has
rarely been used for network servers in practice, though,
mainly because of the lack of socket-specific opera-
tions such as accept/connect/shutdown (e.g., POSIX
AIO [6]) or poor mechanisms for notification delivery
(e.g., SIGIO signals).

MegaPipe adopts the completion notification model
over the readiness model for three reasons. First, it allows
transparent batching of I/O commands and their notifi-
cations. Batching of non-blocking I/O commands in the
readiness model is very difficult without the explicit as-
sistance from applications. Second, it is compatible with
not only sockets but also disk files, allowing a unified in-
terface for any type of I/O. Lastly, it greatly simplifies the
complexity of I/O multiplexing. Since the kernel controls
the rate of I/O with completion events, applications can
blindly issue I/O operations without tracking the readiness
of sockets.

3.3 Architectural Overview
MegaPipe involves both a user-space library and Linux
kernel modifications. Figure 2 illustrates the architecture
and highlights key abstractions of the MegaPipe design.
The left side of the figure shows how a multi-threaded
application interacts with the kernel via MegaPipe chan-
nels. With MegaPipe, an application thread running on
each core opens a separate channel for communication

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 139

Core 1 

Kernel 

User … 

… 

Core N 
Channel instance 

File 
handles 

lwsocket 
handles 

Pending 
completion 

events 

VFS 

TCP/IP 

MegaPipe user-level library 
Application thread 

Batched 
async I/O 
commands 

Batched 
completion 

events 

… 

C
ha

nn
el

 

Figure 2: MegaPipe architecture

between the kernel and user-space. The application thread
registers a handle (socket or other file type) to the chan-
nel, and each channel multiplexes its own set of handles
for their asynchronous I/O requests and completion noti-
fication events.

When a listening socket is registered, MegaPipe inter-
nally spawns an independent accept queue for the chan-
nel, which is responsible for incoming connections to the
core. In this way, the listening socket is not shared by all
threads, but partitioned (§3.4.1) to avoid serialization and
remote cache access.

A handle can be either a regular file descriptor or a
lightweight socket, lwsocket (§3.4.2). lwsocket provides
a direct shortcut to the TCB in the kernel, to avoid the
VFS overhead of traditional sockets; thus lwsockets are
only visible within the associated channel.

Each channel is composed of two message streams: a
request stream and a completion stream. User-level appli-
cations issue asynchronous I/O requests to the kernel via
the request stream. Once the asynchronous I/O request is
done, the completion notification of the request is deliv-
ered to user-space via the completion stream. This process
is done in a batched (§3.4.3) manner, to minimize the con-
text switch between user and kernel. The MegaPipe user-
level library is fully responsible for transparent batching;
MegaPipe does not need to be aware of batching.

3.4 Design Components

3.4.1 Listening Socket Partitioning

As discussed in §2.1, the shared listening socket causes
two issues in the multi-core context: i) contention on the
accept queue and ii) cache bouncing between RX and TX
cores for a flow. Affinity-Accept [33] proposes two key
ideas to solve these issues. First, a listening socket has
per-core accept queues instead of the shared one. Second,
application threads that call accept() prioritize their lo-
cal accept queue. In this way, connection establishment
becomes completely parallelizable and independent, and

all the connection establishment, data transfer, and appli-
cation logic for a flow are contained in the same core.

In MegaPipe, we achieve essentially the same goals
but with a more controlled approach. When an appli-
cation thread associates a listening socket to a channel,
MegaPipe spawns a separate listening socket. The new lis-
tening socket has its own accept queue which is only re-
sponsible for connections established on a particular sub-
set of cores that are explicitly specified by an optional
cpu_mask parameter.3 After a shared listening socket is
registered to MegaPipe channels with disjoint cpu_mask
parameters, all channels (and thus cores) have completely
partitioned backlog queues. Upon receipt of an incom-
ing TCP handshaking packet, which is distributed across
cores either by RSS [5] or RPS [24], the kernel finds a
“local” accept queue among the partitioned set, whose
cpu_mask includes the current core. On the application
side, an application thread accepts pending connections
from its local queue. In this way, cores no longer contend
for the shared accept queue, and connection establishment
is vertically partitioned (from the TCP/IP stack up to the
application layer).

We briefly discuss the main difference between our
technique and that of Affinity-Accept. Our technique
requires user-level applications to partition a listening
socket explicitly, rather than transparently. The downside
is that legacy applications do not benefit. However, ex-
plicit partitioning provides more flexibility for user appli-
cations (e.g., to forgo partitioning for single-thread appli-
cations, to establish one accept queue for each physical
core in SMT systems, etc.) Our approach follows the de-
sign philosophy of the Corey operating system, in a way
that “applications should control sharing” [19].

Partitioning of a listening socket may cause poten-
tial load imbalance between cores [33]. Affinity-Accept
solves two cases of load imbalance. For a short-term load
imbalance, a non-busy core running accept() may steal
a connection from the remote accept queue on a busy
CPU core. For a long-term load imbalance, the flow group
migration mechanism lets the NIC to distribute more
flows to non-busy cores. While the current implementa-
tion of MegaPipe does not support load balancing of in-
coming connections between cores, the techniques made
in Affinity-Accept are complementary to MegaPipe. We
leave the implementation and evaluation of connection
load balancing as future work.

3.4.2 lwsocket: Lightweight Socket

accept()ing an established connection is an expensive
process in the context of the VFS layer. In Unix-like op-

3MegaPipe currently does not support runtime reconfiguration of
cpu_mask after it is initially set, but we believe that this is easy to add.

5



140 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

erating systems, many different types of open files (disk
files, sockets, pipes, devices, etc.) are identified by a file
descriptor. A file descriptor is an integer identifier used
as an indirect reference to an opened file instance, which
maintains the status (e.g., access mode, offset, and flags
such as O_DIRECT and O_SYNC) of the opened file. Multi-
ple file instances may point to the same inode, which rep-
resents a unique, permanent file object. An inode points to
an actual type-specific kernel object, such as TCB.

These layers of abstraction offer clear advantages. The
kernel can seamlessly support various file systems and file
types, while retaining a unified interface (e.g., read() and
write()) to user-level applications. The CPU overhead
that comes with the abstraction is tolerable for regular disk
files, as file I/O is typically bound by low disk bandwidth
or high seek latency. For network sockets, however, we
claim that these layers of abstraction could be overkill for
the following reasons:

(1) Sockets are rarely shared. For disk files, it is com-
mon that multiple processes share the same open file or
independently open the same permanent file. The layer
of indirection that file objects offer between the file ta-
ble and inodes is useful in such cases. In contrast, since
network sockets are rarely shared by multiple processes
(HTTP socket redirected to a CGI process is such an ex-
ception) and not opened multiple times, this indirection is
typically unnecessary.

(2) Sockets are ephemeral. Unlike permanent disk-backed
files, the lifetime of network sockets ends when they are
closed. Every time a new connection is established or torn
down, its FD, file instance, inode, and dentry are newly al-
located and freed. In contrast to disk files whose inode and
dentry objects are cached [27], socket inode and dentry
cannot benefit from caching since sockets are ephemeral.
The cost of frequent (de)allocation of those objects is ex-
acerbated on multi-core systems since the kernel main-
tains the inode and dentry as globally visible data struc-
tures [20].

To address the above issues, we propose lightweight
sockets – lwsocket. Unlike regular files, a lwsocket is iden-
tified by an arbitrary integer within the channel, not the
lowest possible integer within the process. The lwsocket
is a common-case optimization for network connections;
it does not create a corresponding file instance, inode, or
dentry, but provides a straight shortcut to the TCB in the
kernel. A lwsocket is only locally visible within the asso-
ciated MegaPipe channel, which avoids global synchro-
nization between cores.

In MegaPipe, applications can choose whether to fetch
a new connection as a regular socket or as a lwsocket.
Since a lwsocket is associated with a specific channel,

one cannot use it with other channels or for general sys-
tem calls, such as sendmsg(). In cases where applications
need the full generality of file descriptors, MegaPipe pro-
vides a fall-back API function to convert a lwsocket into
a regular file descriptor.

3.4.3 System Call Batching
Recent research efforts report that system calls are expen-
sive not only due to the cost of mode switching, but also
because of the negative effect on cache locality in both
user and kernel space [35]. To amortize system call costs,
MegaPipe batches multiple I/O requests and their comple-
tion notifications into a single system call. The key obser-
vation here is that batching can exploit connection-level
parallelism, extracting multiple independent requests and
notifications from concurrent connections.

Batching is transparently done by the MegaPipe user-
level library for both directions user → kernel and kernel
→ user. Application programmers need not be aware of
batching. Instead, application threads issue one request at
a time, and the user-level library accumulates them. When
i) the number of accumulated requests reaches the batch-
ing threshold, ii) there are not any more pending comple-
tion events from the kernel, or iii) the application explic-
itly asks to flush, then the collected requests are flushed to
the kernel in a batch through the channel. Similarly, appli-
cation threads dispatch a completion notification from the
user-level library one by one. When the user-level library
has no more completion notifications to feed the applica-
tion thread, it fetches multiple pending notifications from
kernel in a batch. We set the default batching threshold
to 32 (adjustable), as we found that the marginal perfor-
mance gain beyond that point is negligible.

3.5 API
The MegaPipe user-level library provides a set of API
functions to hide the complexity of batching and the in-
ternal implementation details. Table 1 presents a partial
list of MegaPipe API functions. Due to lack of space,
we highlight some interesting aspects of some functions
rather than enumerating all of them.

The application associates a handle (either a regular file
descriptor or a lwsocket) with the specified channel with
mp_register(). All further I/O commands and com-
pletion notifications for the registered handle are done
through only the associated channel. A cookie, an opaque
pointer for developer use, is also passed to the kernel with
handle registration. This cookie is attached in the comple-
tion events for the handle, so the application can easily
identify which handle fired each event. The application
calls mp_unregister() to end the membership. Once
unregistered, the application can continue to use the reg-
ular FD with general system calls. In contrast, lwsockets

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 141

Function Parameters Description

mp_create() Create a new MegaPipe channel instance.
mp_register() channel,

fd, cookie,
cpu_mask

Create a MegaPipe handle for the specified file descriptor (either regular or lightweight) in the given
channel. If a given file descriptor is a listening socket, an optional CPU mask parameter can be used
to designate the set of CPU cores which will respond to incoming connections for that handle.

mp_unregister() handle Remove the target handle from the channel. All pending completion notifications for the handle are
canceled.

mp_accept() handle,
count,
is_lwsocket

Accept one or more new connections from a given listening handle asynchronously. The application
specifies whether to accept a connection as a regular socket or a lwsocket. The completion event will
report a new FD/lwsocket and the number of pending connections in the accept queue.

mp_read()

mp_write()

handle, buf,
size

Issue an asynchronous I/O request. The completion event will report the number of bytes actually
read/written.

mp_disconnect() handle Close a connection in a similar way with shutdown(). It does not deallocate or unregister the handle.
mp_dispatch() channel,

timeout
Retrieve a single completion notification for the given channel. If there is no pending notification event,
the call blocks until the specified timer expires.

Table 1: MegaPipe API functions (not exhaustive).

are immediately deallocated from the kernel memory.
When a listening TCP socket is registered with the

cpu_mask parameter, MegaPipe internally spawns an ac-
cept queue for incoming connections on the specified set
of CPU cores. The original listening socket (now respon-
sible for the remaining CPU cores) can be registered to
other MegaPipe channels with a disjoint set of cores – so
each thread can have a completely partitioned view of the
listening socket.
mp_read() and mp_write() issue asynchronous I/O

commands. The application should not use the provided
buffer for any other purpose until the completion event, as
the ownership of the buffer has been delegated to the ker-
nel, like in other asynchronous I/O APIs. The completion
notification is fired when the I/O is actually completed,
i.e., all data has been copied from the receive queue for
read or copied to the send queue for write. In adapting
nginx and memcached, we found that vectored I/O opera-
tions (multiple buffers for a single I/O operation) are help-
ful for optimal performance. For example, the unmodi-
fied version of nginx invokes the writev() system call to
transmit separate buffers for a HTTP header and body at
once. MegaPipe supports the counterpart, mp_writev(),
to avoid issuing multiple mp_write() calls or aggregat-
ing scattered buffers into one contiguous buffer.
mp_dispatch() returns one completion event as a

struct mp_event. This data structure contains: i) a
completed command type (e.g., read/write/accept/etc.), ii)
a cookie, iii) a result field that indicates success or failure
(such as broken pipe or connection reset) with the cor-
responding errno value, and iv) a union of command-
specific return values.

Listing 1 presents simplified pseudocode of a ping-
pong server to illustrate how applications use MegaPipe.
An application thread initially creates a MegaPipe chan-
nel and registers a listening socket (listen_sd in this ex-

ch = mp_crea t e ( )
h a n d l e = m p _ r e g i s t e r ( ch , l i s t e n _ s d , mask=0x01 )
mp_accept ( h a n d l e )

whi le t r u e :
ev = mp_d i spa t ch ( ch )
conn = ev . c o o k i e
i f ev . cmd == ACCEPT :

mp_accept ( conn . h a n d l e )
conn = new C o n n e c t i o n ( )
conn . h a n d l e = m p _ r e g i s t e r ( ch , ev . fd ,

c o o k i e =conn )
mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == READ:
mp_wri te ( conn . hand le , conn . buf , ev . s i z e )

e l i f ev . cmd == WRITE :
mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == DISCONNECT :
m p _ u n r e g i s t e r ( ch , conn . h a n d l e )
d e l e t e conn

Listing 1: Pseudocode for ping-pong server event loop

ample) with cpu_mask 0x01 (first bit is set) which means
that the handle is only interested in new connections es-
tablished on the first core (core 0). The application then
invokes mp_accept() and is ready to accept new connec-
tions. The body of the event loop is fairly simple; given an
event, the server performs any appropriate tasks (barely
anything in this ping-pong example) and then fires new
I/O operations.

3.6 Discussion: Thread-Based Servers

The current MegaPipe design naturally fits event-driven
servers based on callback or event-loop mechanisms [32,
40]. We mostly focus on event-driven servers in this work.
On the other hand, MegaPipe is also applicable to thread-
based servers, by having one channel for each thread,
thus each connection. In this case the application cannot
take advantage of batching (§3.4.3), since batching ex-
ploits the parallelism of independent connections that are

7



142 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

multiplexed through a channel. However, the application
still can benefit from partitioning (§3.4.1) and lwsocket
(§3.4.2) for better scalability on multi-core servers.

There is an interesting spectrum between pure event-
driven servers and pure thread-based servers. Some
frameworks expose thread-like environments to user ap-
plications to retain the advantages of thread-based archi-
tectures, while looking like event-driven servers to the
kernel to avoid the overhead of threading. Such function-
ality is implemented in various ways: lightweight user-
level threading [23, 39], closures or coroutines [4, 18, 28],
and language runtime [14]. Those frameworks intercept
I/O calls issued by user threads to keep the kernel thread
from blocking, and manage the outstanding I/O requests
with polling mechanisms, such as epoll. These frame-
works can leverage MegaPipe for higher network I/O per-
formance without requiring modifications to applications
themselves. We leave the evaluation of effectiveness of
MegaPipe for these frameworks as future work.

4 Implementation
We begin this section with how we implemented
MegaPipe in the Linux kernel and the associated user-
level library. To verify the applicability of MegaPipe, we
show how we adapted two applications (memcached and
nginx) to benefit from MegaPipe.

4.1 MegaPipe API Implementation

As briefly described in §3.3, MegaPipe consists of two
parts: the kernel module and the user-level library. In this
section, we denote them by MP-K and MP-L, respec-
tively, for clear distinction between the two.

Kernel Implementation: MP-K interacts with MP-L
through a special device, /dev/megapipe. MP-L opens
this file to create a channel, and invokes ioctl() system
calls on the file to issue I/O requests and dispatch comple-
tion notifications for that channel.

MP-K maintains a set of handles for both regular FDs
and lwsockets in a red-black tree4 for each channel. Un-
like a per-process file table, each channel is only ac-
cessed by one thread, avoiding data sharing between
threads (thus cores). MP-K identifies a handle by an in-
teger unique to the owning channel. For regular FDs, the
existing integer value is used as an identifier, but for lw-
sockets, an integer of 230 or higher value is issued to dis-
tinguish lwsockets from regular FDs. This range is used
since it is unlikely to conflict with regular FD numbers, as
the POSIX standard allocates the lowest unused integer
for FDs [6].

4It was mainly for ease of implementation, as Linux provides the
template of red-black trees. We have not yet evaluated alternatives, such
as a hash table, which supports O(1) lookup rather than O(logN).

MP-K currently supports the following file types: sock-
ets, pipes, FIFOs, signals (via signalfd), and timers (via
timerfd). MP-K handles asynchronous I/O requests dif-
ferently depending on the file type. For sockets (such as
TCP, UDP, and UNIX domain), MegaPipe utilizes the na-
tive callback interface, which fires upon state changes,
supported by kernel sockets for optimal performance. For
other file types, MP-K internally emulates asynchronous
I/O with epoll and non-blocking VFS operations within
kernel. MP-K currently does not support disk files, since
the Linux file system does not natively support asyn-
chronous or non-blocking disk I/O, unlike other modern
operating systems. To work around this issue, we plan to
adopt a lightweight technique presented in FlexSC [35] to
emulate asynchronous I/O. When a disk I/O operation is
about to block, MP-K can spawn a new thread on demand
while the current thread continues.

Upon receiving batched I/O commands from MP-L
through a channel, MP-K first examines if each request
can be processed immediately (e.g., there is pending data
in the TCP receive queue, or there is free space in the
TCP send queue). If so, MP-K processes the request and
issues a completion notification immediately, without in-
curring the callback registration or epoll overhead. This
idea of opportunistic shortcut is adopted from LAIO [22],
where the authors claim that the 73–86% of I/O opera-
tions are readily available. For I/O commands that are not
readily available, MP-K needs some bookkeeping; it reg-
isters a callback to the socket or declares an epoll interest
for other file types. When MP-K is notified that the I/O
operation has become ready, it processes the operation.

MP-K enqueues I/O completion notifications in the per-
channel event queue. Those notifications are dispatched
in a batch upon the request of MP-L. Each handle main-
tains a linked list to its pending notification events, so that
they can be easily removed when the handle is unregis-
tered (and thus not of interest anymore).

We implemented MP-K in the Linux 3.1.3 kernel with
2,200 lines of code in total. The majority was imple-
mented as a Linux kernel module, such that the mod-
ule can be used for other Linux kernel versions as well.
However, we did have to make three minor modifications
(about 400 lines of code of the 2,200) to the Linux kernel
itself, due to the following issues: i) we modified epoll

to expose its API to not only user space but also to MP-K;
ii) we modified the Linux kernel to allow multiple sock-
ets (partitioned) to listen on the same address/port concur-
rently, which traditionally is not allowed; and iii) we also
enhanced the socket lookup process for incoming TCP
handshake packets to consider cpu_mask when choosing
a destination listening socket among a partitioned set.

User-Level Library: MP-L is essentially a simple wrap-

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 143

Application Total Changed

memcached 9442 602 (6.4%)
nginx 86774 447 (0.5%)

Table 2: Lines of code for application adaptations
per of the kernel module, and it is written in about 400
lines of code. MP-L performs two main roles: i) it trans-
parently provides batching for asynchronous I/O requests
and their completion notifications, ii) it performs commu-
nication with MP-K via the ioctl() system call.

The current implementation uses copying to transfer
commands (24 B for each) and notifications (40 B for
each) between MP-L and MP-K. This copy overhead,
roughly 3–5% of total CPU cycles (depending on work-
loads) in our evaluation, can be eliminated with virtual
memory mapping for the command/notification queues,
as introduced in Mach Port [11]. We leave the implemen-
tation and evaluation of this idea as future work.

4.2 Application Integration

We adapted two popular event-driven servers, memcached
1.4.13 [3] (an in-memory key-value store) and nginx
1.0.15 [37] (a web server), to verify the applicability of
MegaPipe. As quantitatively indicated in Table 2, the code
changes required to use MegaPipe were manageable, on
the order of hundreds of lines of code. However, these two
applications presented different levels of effort during the
adaptation process. We briefly introduce our experiences
here, and show the performance benefits in Section 5.

memcached: memcached uses the libevent [30] frame-
work which is based on the readiness model (e.g., epoll
on Linux). The server consists of a main thread and a col-
lection of worker threads. The main thread accepts new
client connections and distributes them among the worker
threads. The worker threads run event loops which dis-
patch events for client connections.

Modifying memcached to use MegaPipe in place of
libevent involved three steps5:

(1) Decoupling from libevent: We began by removing
libevent-specific data structures from memcached. We
also made the drop-in replacement of mp_dispatch() for
the libevent event dispatch loop.

(2) Parallelizing accept: Rather than having a single
thread that accepts all new connections, we modified
worker threads to accept connections in parallel by par-
titioning the shared listening socket.

(3) State machine adjustment: Finally, we replaced calls

5In addition, we pinned each worker thread to a CPU core for the
MegaPipe adaptation, which is considered a best practice and is neces-
sary for MegaPipe. We made the same modification to stock memcached
for a fair comparison.

1 
2 
4 

8 

16 
32 
64 

128 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 

Pa
ra

lle
l S

pe
ed

up
 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 
Number of CPU cores 

(a) Baseline (b) MegaPipe 

Figure 3: Comparison of parallel speedup for varying numbers
of transactions per connection (labeled) over a range of CPU
cores (x-axis) with 64 B messages.

to read() with mp_read() and calls to sendmsg() with
mp_writev(). Due to the semantic gap between the
readiness model and the completion notification model,
each state of the memcached state machine that invokes a
MegaPipe function was split into two states: actions prior
to a MegaPipe function call, and actions that follow the
MegaPipe function call and depend on its result. We be-
lieve this additional overhead could be eliminated if mem-
cached did not have the strong assumption of the readiness
model.

nginx: Compared to memcached, nginx modifications
were much more straightforward due to three reasons: i)
the custom event-driven I/O of nginx does not use an ex-
ternal I/O framework that has a strong assumption of the
readiness model, such as libevent [30]; ii) nginx was de-
signed to support not only the readiness model (by default
with epoll in Linux), but also the completion notification
model (for POSIX AIO [6] and signal-based AIO), which
nicely fits with MegaPipe; and iii) all worker processes
already accept new connections in parallel, but from the
shared listening socket.

nginx has an extensible event module architecture,
which enables easy replacement for its underlying event-
driven mechanisms. Under this architecture, we im-
plemented a MegaPipe event module and registered
mp_read() and mp_writev() as the actual I/O func-
tions. We also adapted the worker threads to accept new
connections from the partitioned listening socket.

5 Evaluation

We evaluated the performance gains yielded by MegaPipe
both through a collection of microbenchmarks, akin to
those presented in §2.2, and a collection of application-
level macrobenchmarks. Unless otherwise noted, all
benchmarks were completed with the same experimental
setup (same software versions and hardware platforms as
described in §2.2.

9



144 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Number of transactions per connection
1 2 4 8 16 32 64 128

+P 211.6 207.5 181.3 83.5 38.9 29.5 17.2 8.8
P +B 18.8 22.8 72.4 44.6 31.8 30.4 27.3 19.8

PB +L 352.1 230.5 79.3 22.0 9.7 2.9 0.4 0.1
Total 582.4 460.8 333.1 150.1 80.4 62.8 45.0 28.7

Table 3: Accumulation of throughput improvement (%) over
baseline, from three contributions of MegaPipe.

5.1 Microbenchmarks

The purpose of the microbenchmark results is three-fold.
First, utilization of the same benchmark strategy as in §2
allows for direct evaluation of the low-level limitations we
previously highlighted. Figure 1 shows the performance
of MegaPipe measured for the same experiments. Sec-
ond, these microbenchmarks give us the opportunity to
measure an upper-bound on performance, as the mini-
mal benchmark program effectively rules out any com-
plex effects from application-specific behaviors. Third,
microbenchmarks allow us to illuminate the performance
contributions of each of MegaPipe’s individual design
components.

We begin with the impact of MegaPipe on multi-core
scalability. Figure 3 provides a side-by-side comparison
of parallel speedup (compared to the single core case of
each) for a variety of transaction lengths. The baseline
case on the left clearly shows that the scalability highly
depends on the length of connections. For short connec-
tions, the throughput stagnates as core count grows due to
the serialization at the shared accept queue, then suddenly
collapses with more cores. We attribute the performance
collapse to increased cache congestion and non-scalable
locks [21]; note that the connection establishment process
happens more frequently with short flows in our test, in-
creasing the level of contention.

In contrast, the throughput of MegaPipe scales almost
linearly regardless of connection length, showing speedup
of 6.4 (for single-transaction connections) or higher. This
improved scaling behavior of MegaPipe is mostly from
the multi-core related optimizations techniques, namely
partitioning and lwsocket. We observed similar speedup
without batching, which enhances per-core throughput.

In Table 3, we present the incremental improvements
(in percent over baseline) that Partitioning (P), Batching
(B), and lwsocket (L) contribute to overall throughput,
by accumulating each technique in that order. In this ex-
periment, we used all eight cores, with 64 B messages
(1 KiB messages yielded similar results). Both partition-
ing and lwsocket significantly improve the throughput of
short connections, and their performance gain diminishes
for longer connections since the both techniques act only
at the connection establishment stage. For longer connec-

64 B 
256 B 
512 B 

1 KiB 

2 KiB 
4 KiB 

0 

20 

40 

60 

80 

100 

120 

1 2 3 4 5 6 7 8 

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t (
%

) 

# of CPU Cores 

Figure 4: Relative performance improvement for varying mes-
sage sizes over a range of CPU cores.

Improvement 
Improv.-FL 

  MegaPipe   MegaPipe-FL 
  Baseline   Baseline-FL 

0 

50 

100 

150 

200 

250 

300 

350 

0 

150 

300 

450 

600 

750 

900 

1050 

1 2 4 8 16 32 64 128 256 ∞ 

Im
pr

ov
em

en
t (

%
) 

Th
ro

ug
hp

ut
 (1

k 
re

qu
es

ts
/s

) 
Number of Requests per Connection 

Figure 5: memcached throughput comparison with eight cores,
by varying the number of requests per connection. ∞ indicates
persistent connections. Lines with "X" markers (-FL) represent
fine-grained-lock-only versions.

tions (not shown in the table), the gain from batching
converged around 15%. Note that the case with partition-
ing alone (+P in the table) can be seen as sockets with
Affinity-Accept [33], as the both address the shared ac-
cept queue and connection affinity issues. lwsocket further
contributes the performance of short connections, helping
to achieve near-linear scalability as shown in Figure 3(b).

Lastly, we examine how the improvement changes
by varying message sizes. Figure 4 depicts the relative
throughput improvement, measured with 10-transaction
connections. For the single-core case, where the improve-
ment comes mostly from batching, MegaPipe outperforms
the baseline case by 15–33%, showing higher effective-
ness for small (≤ 1 KiB) messages. The improvement
goes higher as we have five or more cores, since the base-
line case experiences more expensive off-chip cache and
remote memory access, while MegaPipe effectively miti-
gates them with partitioning and lwsocket. The degrada-
tion of relative improvement from large messages with
many cores reflects that the server was able to saturate the
10 G link. MegaPipe saturated the link with seven, five,
and three cores for 1, 2, and 4 KiB messages, respectively.
The baseline Linux saturated the link with seven and three
cores for 2 and 4 KiB messages, respectively.

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 145

5.2 Macrobenchmark: memcached
We perform application-level macrobenchmarks of mem-
cached, comparing the baseline performance to that of
memcached adapted for MegaPipe as previously de-
scribed. For baseline measurements, we used a patched6

version of the stock memcached 1.4.13 release.
We used the memaslap [12] tool from libmemcached

1.0.6 to perform the benchmarks. We patched memaslap

to accept a parameter designating the maximum number
of requests to issue for a given TCP connection (upon
which it closes the connection and reconnects to the
server). Note that the typical usage of memcached is to
use persistent connections to servers or UDP sockets, so
the performance result from short connections may not be
representative of memcached; rather, it should be inter-
preted as what-if scenarios for event-driven server appli-
cations with non-persistent connections.

The key-value workload used during our tests is the de-
fault memaslap workload: 64 B keys, 1 KiB values, and a
get/set ratio of 9:1. For these benchmarks, each of three
client machines established 256 concurrent connections
to the server. On the server side, we set the memory size
to 4 GiB. We also set the initial hash table size to 222

(enough for 4 GiB memory with 1 KiB objects), so that
the server would not exhibit performance fluctuations due
to dynamic hash table expansion during the experiments.

Figure 5 compares the throughput between the baseline
and MegaPipe versions of memcached (we discuss the “-
FL” versions below), measured with all eight cores. We
can see that MegaPipe greatly improves the throughput
for short connections, mostly due to partitioning and lw-
socket as we confirmed with the microbenchmark. How-
ever, the improvement quickly diminishes for longer con-
nections, and for persistent connections, MegaPipe does
not improve the throughput at all. Since the MegaPipe
case shows about 16% higher throughput for the single-
core case (not shown in the graph), it is clear that there is
a performance-limiting bottleneck for the multi-core case.
Profiling reveals that spin-lock contention takes roughly
50% of CPU cycles of the eight cores, highly limiting the
scalability.

In memcached, normal get/set operations involve two
locks: item_locks and a global lock cache_lock. The
fine-grained item_locks (the number is dynamic, 8,192
locks on eight cores) keep the consistency of the object
store from concurrent accesses by worker threads. On the
other hand, the global cache_lock ensures that the hash
table expansion process by the maintenance thread does
not interfere with worker threads. While this global lock

6We discovered a performance bug in the stock memcached release
as a consequence of unfairness towards servicing new connections, and
we corrected this fairness bug.

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

0 256 512 768 1024 1280 1536 

La
te

nc
y 

(µ
s)

 

# of Concurrent Client Connections 

Baseline-FL 99% 
MegaPipe-FL 99% 
Baseline-FL 50% 
MegaPipe-FL 50% 

Figure 6: 50th and 99th percentile memcached latency.

is inherently not scalable, it is unnecessary for our experi-
ments since we configured the hash table expansion to not
happen by giving a sufficiently large initial size.

We conducted experiments to see what would happen
if we rule out the global lock, thus relying on the fine-
grained locks (item_locks) only. We provide the re-
sults (with the suffix “-FL”) also in Figure 5. Without
the global lock, the both MegaPipe and baseline cases
perform much better for long or persistent connections.
For the persistent connection case, batching improved the
throughput by 15% (note that only batching among tech-
niques in §3 affects the performance of persistent con-
nections). We can conclude two things from these exper-
iments. First, MegaPipe improves the throughput of ap-
plications with short flows, and the improvement is fairly
insensitive to the scalability of applications themselves.
Second, MegaPipe might not be effective for poorly scal-
able applications, especially with long connections.

Lastly, we discuss how MegaPipe affects the latency
of memcached. One potential concern with latency is that
MegaPipe may add additional delay due to batching of I/O
commands and notification events. To study the impact of
MegaPipe on latency, we measured median and tail (99th
percentile) latency observed by the clients, with varying
numbers of persistent connections, and plotted these re-
sults in Figure 6. The results show that MegaPipe does
not adversely affect the median latency. Interestingly, for
the tail latency, MegaPipe slightly increases it with low
concurrency (between 72–264) but greatly reduces it with
high concurrency (≥ 768). We do not fully understand
these tail behaviors yet. One likely explanation for the
latter is that batching becomes more effective with high
concurrency; since that batching exploits parallelism from
independent connections, high concurrency yields larger
batch sizes.

In this paper, we conduct all experiments with the in-
terrupt coalescing feature of the NIC. We briefly describe
the impact of disabling it, to investigate if MegaPipe fa-
vorably or adversely interfere with interrupt coalescing.
When disabled, the server yielded up to 50μs (median)

11



146 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

0 

20 

40 

60 

80 

100 

0 

0.6 

1.2 

1.8 

2.4 

3 

3.6 

1 2 3 4 5 6 7 8 

Th
ro

ug
hp

ut
 (G

bp
s)

 

# of CPU Cores 

MegaPipe 
Baseline 

0 

20 

40 

60 

80 

100 

0 

4 

8 

12 

16 

20 

1 2 3 4 5 6 7 8 
# of CPU Cores 

0 

20 

40 

60 

80 

100 

0 

4 

8 

12 

16 

20 

1 2 3 4 5 6 7 8 

Im
pr

ov
em

en
t (

%
) 

# of CPU Cores 

Improvement 

Figure 7: Evaluation of nginx throughput for the (a) SpecWeb, (b) Yahoo, and (c) Yahoo/2 workloads.

and 200μs (tail) lower latency with low concurrency (thus
underloaded). On the other hand, beyond near saturation
point, disabling interrupt coalescing incurred significantly
higher latency due to about 30% maximum throughput
degradation, which causes high queueing delay. We ob-
served these behaviors for both MegaPipe and baseline;
we could not find any MegaPipe-specific behavior with
interrupt coalescing in our experiments.

5.3 Macrobenchmark: nginx

Unlike memcached, the architecture of nginx is highly
scalable on multi-core servers. Each worker process has
an independent address space, and nothing is shared by
the workers, so the performance-critical path is com-
pletely lockless. The only potential factor that limits scal-
ability is the interface between the kernel and user, and
we examine how MegaPipe improves the performance of
nginx with such characteristics.

For the nginx HTTP benchmark, we conduct experi-
ments with three workloads with static content, namely
SpecWeb, Yahoo, and Yahoo/2. For all workloads, we
configured nginx to serve files from memory rather
than disks, to avoid disks being a bottleneck. We used
weighttp7 as a workload generator, and we modified it to
support variable number of requests per connection.

SpecWeb: We test the same HTTP workload used in
Affinity-Accept [33]. In this workload, each client con-
nection initiates six HTTP requests. The content size
ranges from 30 to 5,670 B (704 B on average), which is
adopted from the static file set of SpecWeb 2009 Support
Workload [9].

Yahoo: We used the HTTP trace collected from the Ya-
hoo! CDN [13]. In this workload, the number of HTTP
requests per connection ranges between 1 and 1,597. The
distribution is heavily skewed towards short connections
(98% of connections have ten or less requests, 2.3 on av-
erage), following the Zipf-like distribution. Content sizes
range between 1 B and 253 MiB (12.5 KiB on average).
HTTP responses larger than 60 KiB contribute roughly

7http://redmine.lighttpd.net/projects/weighttp/wiki

50% of the total traffic.

Yahoo/2: Due to the large object size of the Yahoo work-
load, MegaPipe with only five cores saturates the two 10G
links we used. For the Yahoo/2 workload, we change the
size of all files by half, to avoid the link bottleneck and
observe the multi-core scalability behavior more clearly.

Web servers can be seen as one of the most promising
applications of MegaPipe, since typical HTTP connec-
tions are short and carry small messages [13]. We present
the measurement result in Figure 7 for each workload.
For all three workloads, MegaPipe significantly improves
the performance of both single-core and multi-core cases.
MegaPipe with the Yahoo/2 workload, for instance, im-
proves the performance by 47% (single core) and 75%
(eight cores), with a better parallel speedup (from 5.4
to 6.5) with eight cores. The small difference of im-
provement between the Yahoo and Yahoo/2 cases, both
of which have the same connection length, shows that
MegaPipe is more beneficial with small message sizes.

6 Related Work
Scaling with Concurrency: Stateless event multiplexing
APIs, such as select() or poll(), scale poorly as the
number of concurrent connections grows since applica-
tions must declare the entire interest set of file descrip-
tors to the kernel repeatedly. Banga et al. address this is-
sue by introducing stateful interest sets with incremental
updates [16], and we follow the same approach in this
work with mp_(un)register(). The idea was realized
with with epoll [8] in Linux (also used as the baseline
in our evaluation) and kqueue [29] in FreeBSD. Note that
this scalability issue in event delivery is orthogonal to the
other scalability issue in the kernel: VFS overhead, which
is addressed by lwsocket in MegaPipe.

Asynchronous I/O: Like MegaPipe, Lazy Asynchronous
I/O (LAIO) [22] provides an interface with completion
notifications, based on “continuation”. LAIO achieves
low overhead by exploiting the fact that most I/O opera-
tions do not block. MegaPipe adopts this idea, by process-
ing non-blocking I/O operations immediately as explained

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 147

in §4.1.
POSIX AIO defines functions for asynchronous I/O in

UNIX [6]. POSIX AIO is not particularly designed for
sockets, but rather, general files. For instance, it does
not have an equivalent of accept() or shutdown().
Interestingly, it also supports a form of I/O batching:
lio_listio() for AIO commands and aio_suspend()

for their completion notifications. This batching must be
explicitly arranged by programmers, while MegaPipe sup-
ports transparent batching.

Event Completion Framework [1] in Solaris and
kqueue [29] in BSD expose similar interfaces (comple-
tion notification through a completion port) to MegaPipe
(through a channel), when they are used in conjunction
with POSIX AIO. These APIs associate individual AIO
operations, not handles, with a channel to be notified. In
contrast, a MegaPipe handle is a member of a particular
channel for explicit partitioning between CPU cores. Win-
dows IOCP [10] also has the concept of completion port
and membership of handles. In IOCP, I/O commands are
not batched, and handles are still shared by all CPU cores,
rather than partitioned as lwsockets.

System Call Batching: While MegaPipe’s batching was
inspired by FlexSC [35, 36], the main focus of MegaPipe
is I/O, not general system calls. FlexSC batches syn-
chronous system call requests via asynchronous channels
(syscall pages), while MegaPipe batches asynchronous
I/O requests via synchronous channels (with traditional
exception-based system calls). Loose coupling between
system call invocation and its execution in FlexSC may
lead poor cache locality on multi-core systems; for exam-
ple, the send() system call invoked from one core may be
executed on another, inducing expensive cache migration
during the copy of the message buffer from user to kernel
space. Compared with FlexSC, MegaPipe explicitly par-
titions cores to make sure that all processing of a flow is
contained within a single core.

netmap [34] extensively use batching to amortize the
cost of system calls, for high-performance, user-level
packet I/O. MegaPipe follows the same approach, but its
focus is generic I/O rather than raw sockets for low-level
packet I/O.

Kernel-Level Network Applications: Some network ap-
plications are partly implemented in the kernel, tightly
coupling performance-critical sections to the TCP/IP
stack [25]. While this improves performance, it comes at a
price of limited security, reliability, programmability, and
portability. MegaPipe gives user applications lightweight
mechanisms to interact with the TCP/IP stack for similar
performance advantages, while retaining the benefits of
user-level programming.

Multi-Core Scalability: Past research has shown that par-
titioning cores is critical for linear scalability of network
I/O on multi-core systems [19,20,33,38]. The main ideas
are to maintain flow affinity and minimize unnecessary
sharing between cores. In §3.4.1, we addressed the simi-
larities and differences between Affinity-Accept [33] and
MegaPipe. In [20], the authors address the scalability is-
sues in VFS, namely inode and dentry, in the general con-
text. We showed in §3.4.2 that the VFS overhead can be
completely bypassed for network sockets in most cases.

The Chronos [26] work explores the case of direct cou-
pling between NIC queues and application threads, in the
context of multi-queue NIC and multi-core CPU envi-
ronments. Unlike MegaPipe, Chronos bypasses the ker-
nel, exposing NIC queues directly to user-space memory.
While this does avoid in-kernel latency/scalability issues,
it also loses the generality of TCP connection handling
which is traditionally provided by the kernel.

Similarities in Abstraction: Common Communication
Interface (CCI) [15] defines a portable interface to sup-
port various transports and network technologies, such as
Infiniband and Cray’s Gemini. While CCI and MegaPipe
have different contexts in mind (user-level message-
passing in HPC vs. general sockets via the kernel net-
work stack), both have very similar interfaces. For ex-
ample, CCI provides the endpoint abstraction as a chan-
nel between a virtual network instance and an applica-
tion. Asynchronous I/O commands and notifications are
passed through the channel with similar API semantics
(e.g., cci_get_event()/cci_send() corresponding to
mp_dispatch()/mp_write()).

The channel abstraction of MegaPipe shares some sim-
ilarities with Mach port [11] and other IPC mechanisms
in microkernel designs, as it forms queues for typed mes-
sages (I/O commands and notifications in MegaPipe) be-
tween subsystems. Especially, Barrelfish [17] leverages
message passing (rather than sharing) based on event-
driven programming model to solve scalability issues,
while its focus is mostly on inter-core communication
rather than strict intra-core communication in MegaPipe.

7 Conclusion
Message-oriented network workloads, where connections
are short and/or message sizes are small, are CPU-
intensive and scale poorly on multi-core systems with the
BSD Socket API. In this paper, we introduced MegaPipe,
a new programming interface for high-performance net-
working I/O. MegaPipe exploits many performance opti-
mization opportunities that were previously hindered by
existing network API semantics, while being still sim-
ple and applicable to existing event-driven servers with
moderate efforts. Evaluation through microbenchmarks,

13



148 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

memcached, and nginx showed significant improvements,
in terms of both single-core performance and parallel
speedup on an eight-core system.

Acknowledgements
We thank Luca Niccolini, members of NetSys Lab at UC
Berkeley, anonymous OSDI reviewers, and our shepherd
Jeffrey Mogul for their help and invaluable feedback. The
early stage of this work was done in collaboration with
Keon Jang, Sue Moon, and KyoungSoo Park, when the
first author was affiliated with KAIST.

References
[1] Event Completion Framework for Solaris. http://developers.

sun.com/solaris/articles/event_completion.html.
[2] Intel 10 Gigabit Ethernet Adapter. http://e1000.

sourceforge.net/.
[3] memcached - a distributed memory object caching system. http:

//memcached.org/.
[4] Node.js: an event-driven I/O server-side JavaScript environment.

http://nodejs.org.
[5] Receive-Side Scaling. http://www.microsoft.com/whdc/

device/network/ndis_rss.mspx, 2008.
[6] The Open Group Base Specifications Issue 7. http://pubs.

opengroup.org/onlinepubs/9699919799/, 2008.
[7] Intel 8259x 10G Ethernet Controller. Intel 82599 10 GbE Con-

troller Datasheet, 2009.
[8] epoll - I/O event notification facility. http://www.kernel.org/

doc/man-pages/online/pages/man4/epoll.4.html, 2010.
[9] SPECweb2009 Release 1.20 Support Workload Design Doc-

ument. http://www.spec.org/web2009/docs/design/

SupportDesign.html, 2010.
[10] Windows I/O Completion Ports. http://msdn.microsoft.

com/en-us/library/windows/desktop/aa365198(v=vs.

85).aspx, 2012.
[11] ACCETTA, M., BARON, R., BOLOSKY, W., GOLUB, D.,

RASHID, R., TEVANIAN, A., AND YOUNG, M. Mach: A New
Kernel Foundation For UNIX Development. In Proc. of USENIX
Summer (1986).

[12] AKER, B. memaslap: Load testing and benchmarking a server.
http://docs.libmemcached.org/memaslap.html, 2012.

[13] AL-FARES, M., ELMELEEGY, K., REED, B., AND GASHINSKY,
I. Overclocking the Yahoo! CDN for Faster Web Page Loads. In
Proc. of ACM IMC (2011).

[14] ARMSTRONG, J., VIRDING, R., WIKSTRÖM, C., AND
WILLIAMS, M. Concurrent Programming in Erlang, second ed.
Prentice Hall, 1996.

[15] ATCHLEY, S., DILLOW, D., SHIPMAN, G., GEOFFRAY, P.,
SQUYRES, J. M., BOSILCA, G., AND MINNICH, R. The Com-
mon Communication Interface (CCI). In Proc. of IEEE HOTI
(2011).

[16] BANGA, G., MOGUL, J. C., AND DRUSCHEL, P. A Scalable
and Explicit Event Delivery Mechanism for UNIX. In Proc. of
USENIX ATC (1999).

[17] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: A new OS architecture for scal-
able multicore systems. In Proc. of ACM SOSP (2009).

[18] BILENKO, D. gevent: A coroutine-based network library for
Python. http://www.gevent.org/.

[19] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,
KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU,
M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An Operating
System for Many Cores. In Proc. of USENIX OSDI (2008).

[20] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV,
A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An
Analysis of Linux Scalability to Many Cores. In Proc. of USENIX
OSDI (2010).

[21] BOYD-WICKIZER, S., KAASHOEK, M. F., MORRIS, R., AND
ZELDOVICH, N. Non-scalable locks are dangerous. In Proc. of
the Linux Symposium (July 2012).

[22] ELMELEEGY, K., CHANDA, A., COX, A. L., AND
ZWAENEPOEL, W. Lazy Asynchronous I/O For Event-Driven
Servers. In Proc. of USENIX ATC (2004).

[23] ENGELSCHALL, R. S. Portable Multithreading - The Signal Stack
Trick for User-Space Thread Creation. In Proc. of USENIX ATC
(2000).

[24] HERBERT, T. RPS: Receive Packet Steering. http://lwn.net/
Articles/361440/, 2009.

[25] JOUBERT, P., KING, R. B., NEVES, R., RUSSINOVICH, M., AND
TRACEY, J. M. High-Performance Memory-Based Web Servers:
Kernel and User-Space Performance. In Proc. of USENIX ATC
(2001).

[26] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M., AND
AMIN, V. Reducing Datacenter Application Latency with Endhost
NIC Support. Tech. Rep. CS2012-0977, UCSD, April 2012.

[27] KLEIMAN, S. Vnodes: An Architecture for Multiple File System
Types in Sun UNIX. In Proc. of USENIX Summer (1986).

[28] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Events Can
Make Sense. In Proc. of USENIX ATC (2007).

[29] LEMON, J. Kqueue: A generic and scalable event notification fa-
cility. In Proc. of USENIX ATC (2001).

[30] MATHEWSON, N., AND PROVOS, N. libevent - an event notifica-
tion library. http://libevent.org.

[31] OUSTERHOUT, J., AGRAWAL, P., ERICKSON, D., KOZYRAKIS,
C., LEVERICH, J., MAZIÈRES, D., MITRA, S., NARAYANAN,
A., PARULKAR, G., ROSENBLUM, M., RUMBLE, S. M., STRAT-
MANN, E., AND RYAN, S. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. ACM SIGOPS Op-
erating Systems Review 43, 4 (2010), 92–105.

[32] PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. Flash: An Ef-
ficient and Portable Web Server. In Proc. of USENIX ATC (1999).

[33] PESTEREV, A., STRAUSS, J., ZELDOVICH, N., AND MORRIS,
R. T. Improving Network Connection Locality on Multicore Sys-
tems. In Proc. of ACM EuroSys (2012).

[34] RIZZO, L. netmap: a novel framework for fast packet I/O. In Proc.
of USENIX ATC (2012).

[35] SOARES, L., AND STUMM, M. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In Proc. of
USENIX OSDI (2010).

[36] SOARES, L., AND STUMM, M. Exception-Less System Calls for
Event-Driven Servers. In Proc. of USENIX ATC (2011).

[37] SYSOEV, I. nginx web server. http://nginx.org/.
[38] VEAL, B., AND FOONG, A. Performance Scalability of a Multi-

Core Web Server. In Proc. of ACM/IEEE ANCS (2007).
[39] VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C., AND

BREWER, E. Capriccio: Scalable Threads for Internet Services. In
Proc. of ACM SOSP (2003).

[40] WELSH, M., CULLER, D., AND BREWER, E. SEDA: An Archi-
tecture for Well-Conditioned, Scalable Internet Services. In Proc.
of ACM SOSP (2001).

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 149

DJoin: Differentially Private Join Queries over Distributed Databases

Arjun Narayan
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Abstract
In this paper, we study the problem of answering queries
about private data that is spread across multiple different
databases. For instance, a medical researcher may want
to study a possible correlation between travel patterns
and certain types of illnesses. The necessary informa-
tion exists today – e.g., in airline reservation systems
and hospital records – but it is maintained by two sepa-
rate companies who are prevented by law from sharing
this information with each other, or with a third party.
This separation prevents the processing of such queries,
even if the final answer, e.g., a correlation coefficient,
would be safe to release.

We present DJoin, a system that can process such dis-
tributed queries and can give strong differential privacy
guarantees on the result. DJoin can support many SQL-
style queries, including joins of databases maintained by
different entities, as long as they can be expressed using
DJoin’s two novel primitives: BN-PSI-CA, a differen-
tially private form of private set intersection cardinal-
ity, and DCR, a multi-party combination operator that
can aggregate noised cardinalities without compounding
the individual noise terms. Our experimental evaluation
shows that DJoin can process realistic queries at prac-
tical timescales: simple queries on three databases with
15,000 rows each take between 1 and 7.5 hours.

1 Introduction

A vast amount of information is constantly accumu-
lating in databases (social networks, hospital records,
airline reservation systems, etc.) all around the world.
There are many good uses to which this data could po-
tentially be put; however, much of this data is sensitive
and cannot safely be released because of privacy con-
cerns. Simple solutions, such as anonymizing or aggre-
gating the data before release, are not reliable; experi-
ence with cases like the Netflix prize [3] or the AOL
search data [2] shows that such data can sometimes be
de-anonymized with auxiliary information [26].

Differential privacy [7] has been proposed as a way to
solve this problem. By disallowing certain queries, and
by adding a carefully chosen amount of noise to the re-

sult of others, it is possible to give a strong upper bound
on how much an adversary could learn about an individ-
ual person’s data, even under worst-case assumptions.
Several differentially private query processors, includ-
ing PINQ [23], Airavat [32], Fuzz [16], and PDDP [6],
have been developed and are available today.

However, existing query processors assume either
that all the data is available in a single database [16, 23,
32] or that distributed queries can be broken into sev-
eral subqueries that can each be answered using only
one of the databases [6, 10, 15, 31]. In practice, this is
not necessarily the case. For instance, suppose a medical
researcher wanted to study how a certain illness is cor-
related with travel to a particular region. This data may
be available, e.g., in a hospital database H and an airline
reservation system R, but to determine the correlation,
it is necessary to join the two databases together – for
instance, we must count the individuals who have been
treated for the illness (according to H) and have traveled
to the region (according to R).

We are not aware of any existing method or query
processor that can efficiently support join queries with
differential privacy guarantees. Joins cannot be bro-
ken into smaller subqueries on individual databases be-
cause, in order to match up the same persons’ data
in the two databases, such queries would have to ask
about individual rows, which is exactly what differen-
tial privacy is designed to prevent. In principle, one
could process joins using secure multi-party computa-
tion (MPC) [38], but MPC is only practical for small
computational tasks, and differential privacy only works
well for large databases. The cost of an entire join under
MPC would be truly spectacular.

DJoin, the system we present in this paper, is a so-
lution to this problem. DJoin can support SQL-style
queries across multiple databases, including common
forms of joins. The key insight behind DJoin is that the
distributed parts of many queries can be expressed as
intersections of sets or multisets. For instance, we can
rewrite the query from above to locally select all patients
with the illness from H and all travelers to the relevant
region from R, then intersect the resulting sets, and fi-
nally count the number of elements in the intersection.
Not all SQL queries can be rewritten in this way, but

1



150 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

many counting queries can: conjunctions and disjunc-
tions of equality tests directly correspond to unions and
intersections of data elements. As we will show, a num-
ber of additional operations, such as inequalities and nu-
meric comparisons, can be expressed in terms of multi-
set operations.

Protocols for private set operations have been stud-
ied by cryptographers for some time [14, 17, 37], but
existing solutions compute exact set elements or exact
cardinalities, which is not compatible with differential
privacy. We present blinded, noised private set inter-
section cardinality (BN-PSI-CA), an extension of the
set-intersection protocol from [17] that supports private
noising, as well as denoise-combine-renoise (DCR), an
operator that can add or subtract multiple noised sub-
set cardinalities without compounding the correspond-
ing noise terms. DCR relies on MPC to remove the noise
terms on its inputs and to re-noise the output, but DCR’s
complexity grows with the number of parties and not
with the number of elements in the sets. For the queries
we tried, this step never took more than 20 seconds.

We have implemented and evaluated a prototype of
DJoin. Our results show that the costs are substantial but
typically feasible. For instance, the elements in a sim-
ple two-way join on databases with 32,000 rows each
can be evaluated in about 1.8 hours, with 83 MB of
traffic, using a single commodity workstation for each
database. This is orders of magnitude faster than gen-
eral MPC. DJoin’s cost is too high for interactive use,
but it seems practical for applications that can tolerate a
certain amount of latency, such as research studies. Our
algorithms are easy to parallelize, so the speed could be
improved by increasing the number of cores.

To summarize, this paper makes the following four
contributions:

• two new primitives, BN-PSI-CA and DCR, for dis-
tributed private query processing (Section 4);

• a query planner that rewrites SQL-style queries to
take advantage of those two primitives (Section 5);

• the design of DJoin, an engine for distributed, dif-
ferentially private queries (Section 6); and

• an experimental evaluation of DJoin, based on a
prototype implementation (Section 7).

2 Related work
DJoin provides differential privacy [7, 8, 9, 11], which
is one of the strongest privacy guarantees that have been
proposed so far. Alternatives include randomization [1],
k-anonymity [34], and l-diversity [21], which are gener-
ally less restrictive but can be vulnerable to certain at-
tacks on privacy [12, 20]. Differential privacy offers a
provable bound on the amount of information that an at-

tacker can learn about any individual, even with access
to auxiliary information.
Differentially private query processors: PINQ [23],
Airavat [32], and Fuzz [16] are query processors that
support differential privacy, but they assume a central-
ized setting in which a single entity has access to the en-
tire data. We are aware of five solutions for distributed
settings [6, 10, 15, 31, 33], but these assume that the data
is horizontally partitioned (i.e., each individual’s data is
completely contained in one of the databases), and that
the query can be factored into subqueries that are each
local to a single database. For instance, [10] computes
queries of the form ∑i f (di), i.e., the sum over all rows i
in the database after applying a function f to each row.
DJoin’s data model is more general: multiple databases
may contain data for a given individual, and queries
can contain joins. We note that some of the other sys-
tems have far more sophisticated query languages, but
we speculate that DJoin’s rewriting and execution en-
gine could be integrated with existing systems, e.g., with
PINQ or Fuzz.
Private set operations: The first protocols for private
two-party set intersection and set intersection cardinal-
ity were proposed by Freedman et al. [14]. Since then,
a number of improvements have been proposed; for in-
stance, Kissner and Song [17] extended the protocols to
multiple parties, and Vaidya and Clifton [37] reduced
the computational overhead. These protocols produce
exact results, and are thus not directly suitable for dif-
ferential privacy. There are specialized protocols for
other private multi-party operations, e.g., for decision-
tree learning [29], and some of these have been adapted
for differential privacy, e.g., [39].
Computational differential privacy: The standard def-
inition of differential privacy is information-theoretic,
i.e., it holds even against a computationally unbounded
adversary. In contrast, DJoin provides computational
differential privacy [25]: it relies on a homomorphic
cryptosystem and thus depends on certain computa-
tional hardness assumptions. Mironov et al. [25] demon-
strated a protocol for this model that privately approxi-
mates the Hamming distance between two vectors in a
two-party setting. This problem is closely related to that
of computing the cardinality of set intersections, which
is solved by BN-PSI-CA.
Untrusted servers: Several existing systems enable
clients to use an untrusted server without exposing
private information to that server. In SUNDR [19],
SPORC [13], and Depot [22], the server provides stor-
age; in CryptDB [30], it implements a database and
SQL-style queries. This approach is complementary to
ours: DJoin’s goal is to reveal some useful information
about the data it stores, but with an upper bound on how
much can be learned about a single individual.

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 151

Query

Bob: Cancer

Quentin

Doris: Abuja Bob: Paris

Charlie Carol Chris

Bob: Cancer
Doris: Malaria
Hank: Malaria
...

Doris: Abuja
Emil: Vegas
Frank: Seattle
...

Bob: Paris
Greg: Tokyo
Hank: Conakry
...

Figure 1: Motivating scenario. Charlie is a physician,
and Carol and Chris are travel agents. Quentin would
like to know the correlation between treatment for
malaria and travel to high-risk areas.

3 Background and overview

3.1 Motivating scenario
Figure 1 shows our motivating scenario. Charlie, Carol,
and Chris each have a database with confidential infor-
mation about individuals; for instance, Charlie could be
a physician, and Carol and Chris could be travel agents.
We will refer to these three as the curators. Quentin
asks a question that combines data from each of the
databases; for instance, he might want to know the cor-
relation between treatment for malaria and travel to ar-
eas with a high risk of malaria infections. We will refer
to Quentin as the querier.

Our goal is to build a system that can give an (at least
approximate) answer to Quentin’s question while offer-
ing strong privacy guarantee to the individuals whose
data is in the databases. In particular, we would like to
establish an upper bound on how much additional in-
formation any participant of the system (queriers or cu-
rators) can learn about any individual in the database.
The word ‘additional’ is crucial here, since the curators
each have full access to their respective databases. For
instance, since Charlie has treated Bob for cancer, our
system cannot prevent him from learning this fact, but it
can prevent him from learning whether or not Bob has
recently traveled to Paris.

3.2 Differential privacy
To formally define the privacy guarantee we want to
provide, we rely on differential privacy [7]. Differen-
tial privacy is a property of randomized queries that take
a database as input and return a result that is typically
some form of aggregate (such as a number representing
a count, a histogram, etc). The database is seen as a col-
lection of rows, and each row contains the data from one
individual.

Informally, a randomized function is differentially
private if arbitrary changes to a single individual’s

row (while keeping the other rows constant) result in
only statistically insignificant changes in the function’s
output distribution. Thus, the presence or absence of
any individual has a statistically negligible effect. For-
mally [11], differential privacy is parametrized by a real
number ε , which corresponds to the strength of the pri-
vacy guarantee; smaller values of ε yield better privacy.
Two databases b and b′ are considered similar, written
b ∼ b′, if they differ in only one row. We then say that
a randomized function f with range R is ε-differentially
private if, for all possible sets of outputs S ⊆ R, and for
all similar databases b,b′, we have

Pr[ f (b) ∈ S]≤ eε ·Pr[ f (b′) ∈ S]

That is, when the input database is changed in one
row, there is at most a small multiplicative difference
(eε ) in the probability of any set of outcomes S. A
slightly weaker variant of this privacy definition is
(ε,δ )-differential privacy [10], where δ is a bound on
the maximum additive (not multiplicative) difference
between the probabilities of a given output with and
without a particular input row.

Practical solutions for achieving differential privacy
typically rely on adding a carefully chosen amount of
noise to the result. The required amount of noise de-
pends on the sensitivity of the query, i.e., how much
the result can change in response to changing the data
in a single row [11]. More formally, if q is a func-
tion that computes the (exact) result of the query and
|q(b)− q(b′)| ≤ s for any pair of similar databases b ∼
b′, the query is s-sensitive, and we can construct an ε-
differentially private function f by adding noise to s
that is drawn from a Laplace distribution with parame-
ter λ = s/ε . This corresponds to the intuition that more
sensitive queries need more noise to conceal the contri-
butions of any given individual.

3.3 Challenge: Distribution
Answering differentially private queries over a single
database is a well-studied problem, and several sys-
tems [16, 23, 32] are already available for this purpose.
In principle, these systems can also be used to answer
queries across multiple databases, but this requires that
all curators turn over their data to a single trusted entity
(e.g., one of the curators), who evaluates the query on
their behalf. However, there may not always be a single
entity that is sufficiently trusted by all the curators, so
it seems useful to have an alternative solution that does
not require a trusted entity.

In some cases, distributed queries can be factored into
several subqueries that can each be executed on an in-
dividual database. For instance, a group of doctors can
count the number of male patients in their respective

3



152 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

databases by counting the number of patients in each
database separately, and then add up the (individually
noised) results. This type of distributed query is sup-
ported by several existing systems [6, 10, 15, 31, 33].
However, not all queries can be factored in this way. For
instance, the above approach will double-count male pa-
tients that have been treated by more than one doctor, but
a union query (which would avoid this problem) cannot
be expressed as a sum of counts. Similarly, any query
that involves joining several databases (such as our mo-
tivating example) cannot be expressed in this way.

Joins could be supported via general-purpose multi-
party computation (MPC) [38], but the required run-
times would be gigantic: state-of-the-art MPC solutions,
such as FairplayMP [4], need about 10 seconds to eval-
uate (very simple) functions that can be expressed with
1,024 logic gates. Since the number of gates needed for
a join would be at least quadratic in the number of input
rows, and since differential privacy only works well for
large databases, this approach does not seem practical.

3.4 Approach
The key insight behind our solution is that joins are
rarely used to compute full cross products of different
databases; rather, they are often used to ‘match up’ ele-
ments from different databases. For instance, in our run-
ning example, we can first select all the individuals in
R who have traveled to the region of interest, then se-
lect all the individuals in H who have been treated for
the illness, and finally count the number of individuals
who appear in both sets. Thus, the problem of privately
answering the overall query is reduced to 1) some local
operations on each database, and 2) privately comput-
ing the cardinality of the intersection of multiple sets.
Not all queries can be decomposed in this way, but, as
we will show in Section 5, there is a substantial class of
queries that can.

Protocols for private multiset operations (such as in-
tersection and union) are available [14, 17, 37], but they
tend to compute exact sets or set cardinalities. If we
naı̈vely used these algorithms, Charlie could compute
the intersection of the set of the malaria patients in his
database with the sets of customers in Carol’s and Chris’
databases who have traveled to high-risk areas, and then
add noise in a collaborative fashion [10]. This would
prevent Quentin from learning anything other than the
(differentially private) output of the query — but Charlie
could learn where his patents have traveled, and Carol
and Chris could learn which of their customers have
been treated for malaria. Hence, our first challenge is to
extend these set-intersection operations to support nois-
ing between the data curators.

A second challenge arises because some queries in-
volve multiple set operations. If Charlie simply added

the two cardinalities together, the noise terms would
compound, and thus (unnecessarily) degrade the qual-
ity of the overall result. To avoid this problem, we need
a way to de-noise, combine, and re-noise intermediate
results without compromising privacy.

4 Building blocks: BN-PSI-CA and DCR

Next, we describe two key building blocks that enable
private processing of distributed queries. Each building
block performs only one, very specific operation. In Sec-
tion 5, we will describe how these building blocks can
be used in a larger query plan to answer a variety of dif-
ferent queries.

4.1 Background: PSI-CA
Our first building block is related to a primitive called
private set-intersection cardinality (PSI-CA), which al-
lows a group of k curators with multisets S1, . . . ,Sk
to privately compute |

⋂

i Si |, i.e., the (exact) number
of elements they have in common, but not the spe-
cific elements in

⋂

i Si. PSI-CA is a well-studied prim-
itive [14, 17, 37], albeit not in the context of differential
privacy. To explain the intuition, we describe one simple
PSI-CA primitive [14] for only two curators with simple
sets in the honest-but-curious (HbC) model. The prim-
itive uses a homomorphic encryption scheme that pre-
serves addition and allows multiplication by a constant.
Paillier’s cryptosystem [28] is an example of a scheme
that has this property.

Suppose the two curators are C1 and C2 and their sets
are S1 :={x1, . . .} and S2 :={y1, . . .}. C1 defines a poly-
nomial P(z) over a finite field whose roots are his set
elements xi:

P(z) := (x1 − z)(x2 − z) · · ·= ∑
u

αuzu

Next, C1 sends homomorphic encryptions of the coef-
ficients αu to C2, along with the public key. For each
element yi ∈ S2, C2 then computes Enc(rP(yi) + 0+),
i.e., she evaluates the polynomial at each of her inputs,
multiplies each result by a fresh random number r, and
finally adds a special string 0+, e.g., a string of zeroes.
Since the cryptosystem is homomorphic, C2 can do this
even though she does not know C1’s private key. Finally,
C2 sends a random permutation of the results back to
C1, who decrypts them and counts the occurrences of
the special string 0+, which is exactly |S1

⋂

S2 |.
At first glance, the cost of this algorithm appears

to be quadratic: C2 must compute Enc(rP(yi) + 0+)
for each of her |S2 | inputs, which involves computing
Enc(P(yi)) along the way. If this is naı̈vely evaluated as
Enc(∑|S1|

u=0 αuyu
i ), C2 must multiply each of the |S1 |+ 1

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 153

encrypted coefficients with an unencrypted constant
(yu

i ), which requires an exponentiation each time, for a
total of O(|S1| · |S2|) exponentiations. However, [14] de-
scribes several optimizations that can reduce this over-
head, including an application of Horner’s rule and the
use of hashing to replace the single high-degree polyno-
mial with several low-degree polynomials. This reduces
the computational overhead to O(|S1|+ |S2| ln ln |S1|)
exponentiations.

4.2 BN-PSI-CA: Two-party case
The basic PSI-CA primitive is not compatible with dif-
ferential privacy because C1 learns the exact, un-noised
size of |S1

⋂

S2 |; moreover, each curator can learn the
size of the other curator’s set by observing the number of
encrypted coefficients, or encrypted return values, that
are received from that curator. However, we can extend
the primitive to avoid both problems.

First, we need to make the number of coefficients and
return values independent of the set sizes. We can do
this by adding some extra elements that cannot appear in
either of the sets. As long as we can ensure that C1 and
C2 are adding different elements (e.g., by setting some
bit to zero on C1 and to one on C2), this will not affect
the size of the intersection. In DJoin, we assume that a
rough upper bound on the size of each curator’s database
is known, and we add enough elements to fill up both
sets to that upper bound.

Second, we need to add some noise n to the result
that is revealed to C1. We observe that C2 can increase
the apparent size of the intersection by n if she adds n
different1 encodings of the special string 0+. However,
to guarantee ε-differential privacy, we would have to
draw n from a Laplace distribution Lap(1/ε), and this
would sometimes yield n < 0 – but C2 cannot remove
encodings of 0+ because she does not have C1’s pri-
vate key, and thus cannot tell them apart from encod-
ings of other values. Instead, we require C2 to draw n
from X2 +Lap(1/ε) and we cut n at 0 and 2 ·X2; thus,
C2 can add n encodings of 0+ and 2 ·X2 − n encodings
of a random value to keep the overall size independent
of n. (Cutting the Laplace distribution can leak a small
amount of information when the extremal values are
drawn, and thus changes the privacy guarantee to (ε,δ )-
differential privacy [10]; however, by increasing X2, we
can make δ arbitrarily small, at the expense of a higher
overhead.) We call the resulting primitive blinded noised
PSI-CA (BN-PSI-CA).

Note that at the end, C2 knows the noise term n and
C1 the noised cardinality |S1

⋂

S2 |+ n. Thus, if the lat-
ter is used in further computations, we have an opportu-

1The Paillier cryptosystem can construct many different cipher-
texts for the same plaintext.

nity to remove the noise again, as long as we can ensure
that neither curator learns both values. This prevents the
noise terms from compounding, and it enables us to use
a very high noise level (and thus a low value of ε) be-
cause the noise will not affect the final result.

4.3 BN-PSI-CA: Multi-party case
Since Freedman’s initial work, cryptographers have con-
siderably extended the range of private multiset op-
erations. For instance, the protocol by Kissner and
Song [17] also supports set unions, as well as set in-
tersections with more than two parties, and it is compo-
sitional: the result of a set union or set intersection can
be unioned or intersected with further sets, without de-
crypting it first. [17] can evaluate any function on mul-
tisets that can be described by the following grammar:

ϒ ::= s |ϒ∩ϒ |s∪ϒ |ϒ∪ s

where s is a multiset that is known to some curator Ci.
The protocol from [17] computes |

⋂

i=1,...,k Si | as fol-
lows. First, the k curators use a homomorphic thresh-
old cryptosystem to share a secret key sk amongst them-
selves, while the corresponding public key pk is known
to all curators. Each curator Ci now encrypts a polyno-
mial Pi whose roots are the elements of its local set Si.
The encrypted polynomials are then essentially added
together, yielding a polynomial P whose roots are the
elements in the intersection. Each curator Ci now eval-
uates P on the elements ei j of his local set Si, yielding
values vi j := P(ei j); however, recall that, because sk is
shared, no individual curator can decrypt the vi j. The
curators then securely re-randomize and shuffle [27] the
vi j, such that each curator learns all the vi j but cannot tell
which curator it came from. Finally, the curators jointly
decrypt the vi j. If there are n elements in the intersection,
this yields n · k zeroes; hence, each curator can compute
the final result by dividing the number of zeroes by k.

We can use the same blinding technique as in Sec-
tion 4.2 to construct a multi-party version of BN-PSI-
CA. After computing the vi j, but before the shuffle, each
curator draws a noise term ni as above and adds 2 ·Xi ex-
tra values, ni of which are 0+. As above, this adds ∑i ni
to the resulting cardinality, but the noise can be removed
again via DCR, which we discuss next.

4.4 DCR: Adding cardinalities
BN-PSI-CA is sufficient to answer queries that require
a single distributed multiset operation. However, in Sec-
tion 5.2 we will see that some queries require multiple
operations, and that the result is then a linear combina-
tion of the different cardinalities. In principle, we could

5



154 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

designate a single curator C that collects all cardinali-
ties and computes the overall result; however, this would
a) compound all the noise terms and thus decrease the
quality of the result, and b) reveal all the intermediate
results to C and thus (unnecessarily) reveal some private
information.

Instead, we can combine the various cardinalities us-
ing secure multi-party computation (MPC) [38]. If we
have a number of players with private inputs xi that are
each known to only one of the players, MPC allows the
players to collectively compute a function f (x1,x2, . . .)
without revealing the inputs to each other. Even after
decades of research, MPC remains impractical for com-
plex functions or large inputs, but modern implementa-
tions, such as [4], can process simple functions in a few
seconds or less. Thus, while MPC may be too expensive
to evaluate the entire query, we can certainly use it to
combine a small number of subquery results.

For instance, suppose the query is for |S1
⋂

S2|+
|S3

⋂

S4|, and that there are four curators involved: C1
and C3 learn the noised results R1 and R2 for the first
and the second term, respectively, and C2 and C4 learn
the corresponding noise terms n1 and n2. Then we can
compute the query result under MPC as

q = R1 +R2 − (n1 +n2)+N

where each of the four curators contributes one of the
private inputs Ri and ni, and N is a new, global noise
term. Next, we describe how N is computed.

4.5 DCR: Cooperative noising

MPC enables us to safely remove the noise that was
added to the individual cardinalities by BN-PSI-CA, but
we must add back a sufficient amount of noise N as part
of the MPC, i.e., before the result is revealed. To prevent
information leakage, the new noise N must be such that
no individual curator can control it or predict its value.

We follow the algorithm in [10] to generate the noise
N, with some implementation modifications. Each cu-
rator chooses a random bitstring vi uniformly at ran-
dom and contributes it as an input to the MPC. The
MPC computes v := v1 ⊕ v2 ⊕ ·· ·. As long as a curator
honestly chooses vi uniformly at random and does not
share this with any other party, she can be certain that
no other curator can know anything else about the com-
puted noise string v, even if every single other curator
colludes. Finally, the MPC uses the fundamental trans-
formation law of probabilities to change the distribution
of v to a Laplace distribution Lap(1/ε). This yields the
noise term N, which is then added to the query result.
We call this primitive denoise-combine-renoise (DCR).

query := SELECT output FROM union
WHERE predicate

output := NOISY COUNT(field)
union := rows | union UNION ALL rows
rows := join | subquery
join := db{,db}∗
subquery := SELECT fields FROM join

WHERE predicate
predicate := term | predicate OR term |

predicate AND term
term := val = val | val != val |

val < val
val := number | string | db.field

Figure 2: DJoin’s query language.

5 Distributed query processing

So far, we have described BN-PSI-CA, which can com-
pute differentially private set intersection cardinalities,
and DCR, which can privately combine multiple cardi-
nalities. Next, we describe how DJoin integrates these
two primitives into larger query plans that can answer
SQL-style queries.

5.1 Query language: SPJU
For ease of presentation, we describe our approach us-
ing the simple query language in Figure 2, which con-
sists of SQL-style operators for selection, projection, a
cross join, and union (SPJU). This query language is
obviously much simpler than SQL itself, but it is rich
enough to capture many interesting distributed opera-
tions. We note that many of the missing features of SQL
can easily be added back, as long as queries do not use
them to access more than one database at a time.

Each query in our language can be translated into re-
lational algebra, specifically, in a combination of selec-
tions (σ ), projections (π), joins (��), unions (

⋃

), and
counts (| · |). For instance, the query

SELECT COUNT(A.id) FROM A,B
WHERE (A.ssn=B.ssn OR A.id=B.id)

AND A.diagnosis=’malaria’

could be written (with abbreviations) as:

|σ(A.ssn=B.ssn∨A.id=B.id)∧A.diag=”malaria”(A �� B) |

Figure 3(a) shows a graphical illustration of this query.

5.2 Query rewriting
Most distributed queries cannot be executed natively by
DJoin because they contain operators (such as �� or <)
that our system cannot support. Therefore, such queries

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 155

From To
R1 Local sel. σP(X)∧Q(X �� Y ) σQ(σP(X) �� Y )
R2 Disjunction σP∨Q(X �� Y ) σP(X �� Y )

⋃

σQ(X �� Y )
R3 Split |σX .a=Y.b∧(P(X)∨Q(Y ))(X ��Y )| |σX .a=Y.b(σP(X) �� Y )|+ |σX .a=Y.b(σ¬P(X) �� σQ(Y ))|
R4 Union |X

⋃

Y | |X |+ |Y |− |X
⋂

Y |
R5 Not equal |σX .a=Y.b∧X .c�=Y.d(X �� Y )| |σX .a=Y.b(X �� Y )|− |σX .a=Y.b∧X .c=Y.d(X �� Y )|
R6 Comparison |σX .a=Y.b∧X .c>Y.d(X �� Y )| ∑i=0..k−1 |πa ||pre(c,i)(σbit(c,i)=1(X))

⋂

πb ||pre(d,i)(σbit(d,i)=0(Y ))|
R7 Equality |σX .a=Y.b∧X .c=Y.d(X �� Y )| |σ(X .a||pad ||X .c)=(Y.b||pad ||Y.d)(X �� Y )|
R8 Join |σX .a=Y.b(X �� Y )| |πa(X)

⋂

πb(Y )|

Table 1: DJoin’s rewrite rules. These rules are used to transform a query (written in the language from Figure 2) into
the intermediate query language from Figure 4, which can be executed natively.

| ⋅ |

σA B σA id B id

∪

σA.diag='malaria'

σA.ssn=B.ssn σA.id=B.id

A B

(a) Original plan

−

DC
R

| ∩ | | ∩ | | ∩ |

+

BN
-

PS
I-

CA
πssn πssn πid πid πssn,id πssn,id

on
s

σdiag='malaria'

ca
l o

pe
ra

ti

A B Lo
c

(b) Rewritten for DJoin

Figure 3: Query example. The original plan (left) cannot
be executed without compromising privacy. The rewrit-
ten plan (right) consists of three tiers: a local tier, a BN-
PSI-CA tier, and a DCR tier.

must be transformed into other queries that are semanti-
cally equivalent but contain only operators that our sys-
tem can support, which are a) any SQL queries on a sin-
gle database that produce a noisy count or a multiset;
b) BN-PSI-CA; and c) DCR. Figure 4 shows the lan-
guage that can be supported natively. DJoin uses a num-
ber of rewrite rules to perform this transformation. The
most interesting rules are shown in Table 1; some triv-
ial rules, e.g., for transforming boolean predicates, have
been omitted.
Local selects: We try to perform as many operations as
possible locally at each database, e.g., via rule R1 for
selects that involve only columns from one database.
Disjunctions: We use basic boolean transformations to
move any disjunctions in the join predicates to the out-
ermost level, where they can be replaced by set unions
using rule R2, or split off using rule R3.
Unions: Rule R4 (which is basically De Morgan’s law)
replaces all the set unions with additions, subtractions,
and set intersections.
Inequalities: Rule R5 replaces the �= operators with an
equality test and a subtraction; rule R6 encodes integer
comparisons as a sum of equalities. Both rules assume
that there is a nearby equality test for matching rows.

query := cardex | cardex + cardex |
cardex - cardex

cardex := |setex ∩ setex {∩ setex}∗|
setex := πfields(sigmaex) | sigmaex
sigmaex := σlocal predicate(db) | db

Figure 4: DJoin’s intermediate language.

Equalities: Once all non-local operations in the join
predicates are conjunctions of equality tests, we can use
rule R7 to reduce these to a single equality test, simply
by concatenating the relevant columns in each database
(with appropriate padding to separate columns).
Joins: Once a join cardinality has only one equality test
left, rule R8 replaces it with an intersection cardinality.

5.3 Result: Three-tier query plan

If the rewriting process has completed successfully, the
rewritten query should now conform to our intermediate
language from Figure 4, which implies a three-tier struc-
ture: the first tier (sigmaex and setex) consists of lo-
cal selections and projections that involve only a single
database; the second tier (cardex) consists of set inter-
section cardinalities, and the third tier (query) consists
of arithmetic operations applied to cardinalities. We re-
fer to the rewritten query as a query plan. Figure 3(b)
shows a query plan for the query from Figure 3(a) as an
illustration.

A query plan with this three-tier structure can be ex-
ecuted in a privacy-preserving way. The first tier can be
evaluated using classical database operations on the in-
dividual databases; the second tier can be evaluated us-
ing BN-PSI-CA (Section 4.2 and 4.3), and the third tier
can be evaluated using DCR (Section 4.4 and 4.5).

5.4 Limitations

DJoin has only two distributed operators: BN-PSI-CA
and DCR. If a query cannot be rewritten into a query

7



156 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

plan that uses only those operators (and some purely lo-
cal ones), it cannot be supported by DJoin. For instance,
DJoin currently cannot process the query

SELECT COUNT(A.id) FROM A,B,C
WHERE ((A.x*B.y)<C.z)

because we know of no efficient way to rewrite the pred-
icate into set intersections. Rewriting is generally dif-
ficult for predicates that involve computations across
fields from multiple databases. The predicates DJoin
can support include 1) predicates that use only fields
from a single database, 2) equality tests between fields
from different databases, and 3) conjunctions and dis-
junctions of such predicates. In addition, DJoin supports
operators for which it has an explicit rewrite rule, such
as inequalities and numeric comparisons (rules R5 and
R6). We do not claim that we have found all possible
rewrite rules; if rules for additional operators are discov-
ered, DJoin could be extended to support them as well.

DJoin is currently limited to counting queries: it does
not support sum queries, or queries with non-numeric
results. Differential privacy can in principle support
such queries, e.g., via the exponential mechanism [24],
but we have not yet found a way to express them in terms
of set intersections.

6 DJoin design

In this section, we present the design of DJoin, our
system for processing distributed differentially-private
queries using the mechanisms explained so far.

6.1 Assumptions
Our design is based on the following assumptions:

1. All queriers know the schema and a rough upper
bound on the total size of each curator’s database.

2. The curators are “honest but curious”, i.e., they will
learn whatever information they can, but they will
not deviate from the protocol.

3. Each curator has a “privacy budget” that represents
to amount of private information he or she is will-
ing to release through queries.

4. The curators can authenticate each querier.

Assumption 1 is necessary to make BN-PSI-CA and
query planning work. Assumption 2 is not inherent (PSI-
CA can work in an adversarial model [17]) but helps
with efficiency and does not seem unreasonable in prac-
tice. Assumption 3 is common for differentially private
query processors [16, 23, 32], and assumption 4 can be
satisfied, e.g., using cryptographic signatures.

6.2 Overview and roadmap
DJoin consists of a number of servers, which run on the
curators’ machines, as well as at least one client, which
runs the querier’s machine and communicates with the
servers to execute queries. Each server has a privacy
budget (Section 6.3) and a local database with a schema
(Section 6.4) that is known to all clients and servers.

Users can interact with DJoin by issuing a query q and
a requested accuracy level ν to their local client. (ν is the
parameter of the Laplace distribution from which DCR
will draw the final noise term.) The user’s client attempts
to rewrite the query according to the rules from Sec-
tion 5.2. If this succeeds, the result is a different query
q′ that is equivalent to q but can be executed entirely
with local queries, BN-PSI-CA, and DCR. The client
then submits the query to the servers, and each server
performs an analysis (Section 6.5) to determine the sen-
sitivity S(q,dbi) of the query q in that server’s local data
dbi. In combination with the accuracy level ν , the sensi-
tivity yields the privacy cost εi that this server will incur
for answering the query.

Next, the client then uses a distributed commit proto-
col (Section 6.6) to assign an identifier to the query and
to ensure that all the servers agree which query is being
executed. Once the query is committed, the servers ex-
ecute the query in three stages (Section 6.7): first, each
server completes any subqueries that involve only its lo-
cal database; next, the servers jointly complete each of
the BN-PSI-CA operations; and finally, the servers ex-
ecute DCR to combine and re-noise their results. The
overall result is then revealed to the client.

6.3 Privacy budget
Each server maintains three pieces of local information:
A local database, a privacy budget, and a table of pend-
ing queries, which is initially empty.

The privacy budget is essentially an upper bound on
the amount of private information about any individ-
ual that the curator owning the server is willing to re-
lease through answering queries. It is well known [7]
that, if q1 and q2 are two queries that are ε1- and ε2-
differentially private, respectively, the sequential com-
position of both is (ε1 + ε2)-differentially private. Be-
cause of this, servers can simply deduct each query’s
“privacy cost” from the budget separately, without hav-
ing to remember previous queries. A similar construc-
tion is used in other differentially private query proces-
sors, including PINQ [23], Airavat [32], and Fuzz [16].
In the appendix, we briefly sketch a possible approach
to choosing the privacy budget.

Recall from Section 4 that DJoin must charge the pri-
vacy budget both for intermediate results from BN-PSI-
CA operations and for the final result that is revealed by

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 157

DCR. To avoid confusion, we use the symbol εp to de-
note the cost of a BN-PSI-CA operation and εr to denote
the cost of the final result. The total cost of a query with
several BN-PSI-CAs is thus εr +∑ j εp, j.

6.4 Schemata and multiplicities
The local database is a relational database that can be
maintained in a classical, non-distributed DBMS, e.g.,
mySQL. For simplicity, we will assume that the data
from each individual user is collected in a single row
of the database; if this is not the case already, a nor-
malization step (e.g., a GROUP BY) must be performed
first. The database schema may assign an arbitrary type
τ(c) to each column c; however, to make our sensitivity
analysis work, we additionally allow each column to be
annotated with a multiplicity m(c) that indicates how of-
ten any individual value can appear in that column (for
instance, m(c) = 1 indicates a column of unique keys).
If no annotation is present, DJoin assumes m(c) = ∞.

Multiplicities are important to determine an upper
bound on sensitivity of a query. Recall from Section 3.2
that the sensitivity S(q,dbi) of a counting query q in a
database dbi is the largest number of rows that a change
to a single row in D can cause to be added or removed
from the result of q. For instance, consider the query

SELECT COUNT(A.x) FROM A,B
WHERE A.x=B.y

If the multiplicities are m(A.x) = 3 and m(B.y) = 5, then
a change to a single row in A can add at most five rows
to the result – hence, whatever the new value of A.x is,
we know that B can contain at most five rows whose
y-column matches that value. (The argument for disap-
pearing rows is analogous.) Conversely, the query’s sen-
sitivity in B is three because at most three rows in A can
have the value B.y in column x. Note that processing
such queries as intersections requires an extra encoding
step; see the appendix for details.

Clearly, the use of a column with unbounded multi-
plicity can cause the sensitivity to become unbounded
as well. However, it is safe to use such columns in con-
junction with others; for instance, the query

SELECT COUNT(A.x) FROM A,B
WHERE A.x=B.y AND A.p=B.q

has sensitivity 5 in A even if m(A.p) = m(B.q) = ∞.
It may seem tempting to let DJoin choose the mul-

tiplicity itself, based on how often elements actually
occur in the database. However, this would create a
side channel: queriers could learn private facts about
the database by observing, e.g., how much is deducted
from the privacy budget after running certain queries.
To avoid this problem, DJoin follows the approach
from [16] and determines the multiplicity statically,
without looking at the data.

6.5 Sensitivity analysis

We now describe how to infer the sensitivity of more
complex queries, and specifically on the question how
much the number of rows output by a query σpred(db1 ��
· · · �� dbk) can change if a single row in one of the dbi
is changed.

To explain the intuition behind our analysis, we begin
with a few simple examples:

1. A �� B ��C
2. σA.x=B.y(A �� B ��C)

3. σA.x=B.y∧ B.y=C.z(A �� B ��C)

4. σA.x=B.y∧ A.p=B.q(A �� B ��C)

5. σA.x=B.y∧ B.y=C.z∧ A.x=C.q(A �� B ��C)

Since query (1) has no predicates, its sensitivity in A is
simply |B| · |C|. The addition of the constraint A.x = B.y
changes the sensitivity to m(B.y) · |C|, since each row
in A can now join with at most m(B.y) rows in B; sim-
ilarly, adding B.y = C.z in query (3) reduces the sensi-
tivity to m(B.y) · m(C.z). When there is a conjunction
of multiple constraints between the same databases, the
most selective one ‘wins’; hence, the sensitivity of query
(4) is min(m(B.y),m(B.q)) · |C|. When there are multiple
‘join paths’, the most restrictive one wins. For instance,
in query (5), the third constraint reduces the sensitivity
in A only if m(C.q) < m(B.y) · m(C.z); otherwise, the
sensitivity is the same as for query (3).

To solve this problem in the general case, we adapt
a classical algorithm from the database literature [18]
that was originally intended for query optimization in
the presence of joins. This algorithm builds a join graph
G that contains a vertex for each database that partic-
ipates in the join, and a directed edge between each
pair (db1,db2) of vertices that is initially annotated with
|db2|, the size of the database db2. We then consider
each of the predicates in turn and update the edges.
Specifically, for each predicate dbi. f1 = db j. f2 with
dbi �= db j, we change the annotation wi, j on the edge
(dbi,db j) to min(wi, j,m(db j. f2)) and, correspondingly,
the annotation w j,i on (db j,dbi) to min(w j,i,m(dbi. f1)).
Then we can obtain an upper bound on the sensitivity
S(q,dbi) of q in some database dbi by finding the min-
cost spanning tree that is rooted at dbi, using the product
of the edge annotations as the cost function.

If the predicate contains disjunctions, we can rewrite
it into DNF and then add up the sensitivity bounds. This
is sound because σp∨q(X) = σp(X)

⋃

σq(X). If a row
is removed from X and the sensitivities of p and q are
sp and sq, this can change the cardinalities of the two
sets by at most sp and sq, and thus the cardinality of the
union by at most sp + sq. The same approach also works
for unions of subqueries.

9



158 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

6.6 Distributed commit
Next, we describe how the client submits the query to
the servers. It is important to ensure that the servers
agree on which query they are executing; without this, a
malicious client could trick a server into believing that
it is executing a low-sensitivity query, and thus cause an
insufficient amount of noise to be added to the result.
Note that there is no need to agree on an ordering be-
cause all queries are read-only.

When the client accepts a query q with requested
noise level ν from the user, it first calculates the sensitiv-
ity of q and the corresponding ε; then it tries to rewrite
q into an equivalent query q′ that uses only the language
from Figure 4. If this succeeds, the client chooses a ran-
dom identifier I and sends a signed PREPARE(I,q,q′,ν)
message to each server. What follows is essentially a
variant of the classical two-phase commit protocol.

Upon receiving the PREPARE message, the server at
each Ci verifies that q can be rewritten into q′, and that
it does not already have a pending query with identifier
I. If either test fails, the server responds with a NAK im-
mediately. Otherwise, Ci’s server calculates its privacy
cost εi := εr,i + ∑ j εp,i j that it would incur by execut-
ing its part of q′. This cost consists of the base cost
εr,i := S(q,dbi)/ν , which depends on the query’s sen-
sitivity in Ci’s local data, and an additional charge εp,i j
for each PSI-CA operation that Ci must participate in to
execute q′. If Ci’s privacy budget can cover εi, its server
deducts εi from the budget, adds (I,q′,ν ,εi) to its pend-
ing table, and sends a signed response ACK(I, q, q′, ν)
back to the client. Otherwise, the server responds with a
NAK. This might occur, for instance, if the sensitivity of
q is too high or the requested noise level ν is too low.

If the client receives at least one NAK, it sends a signed
ABORT(I) message to each server that has responded
with an ACK, which causes the reserved parts of the pri-
vacy budget to be released. Otherwise the client com-
bines the received ACK messages to form a certificate
Γ, and it sends COMMIT(I,Γ) to the servers. The servers
verify that all required ACKs are present; if so, they begin
executing the query.

6.7 Query execution
Each query is executed in three stages. First, upon re-
ceiving the COMMIT message, the server at each Ci com-
putes the parts of the query that require only data from
its local database dbi. For some queries, this will yield
part of the result directly (e.g., in |σx=0(A)

⋃

σx=1(B)|),
but more typically the first stage will produce a number
of sets on each server that will be used as inputs in the
second stage.

The second stage consists of a number of BN-PSI-CA
instances. Since all servers agree on the query q′, each
server can independently determine which BN-PSI-CA

instances it should be involved in, and what role in the
protocol it should play in each instance. Ties are bro-
ken deterministically, and the instances are numbered in
order to distinguish different instances that involve the
same set of servers. At the end of the second stage, each
server has learned a number of noised results and/or
noise terms, which are used as inputs to the third stage.

The third stage consists of an invocation of DCR,
which de-noises the results from the second stage, com-
bines them as required by q′, and then re-noises the com-
bined result using the protocol from Section 4.4. Recall
that the re-noising requires an additional input from each
server that must be chosen uniformly at random. At the
end of the third stage, each server learns the result of
the multi-party computation and forwards it back to the
client, which displays it to the user.

7 Evaluation
In this section, we report results from an experimental
evaluation of DJoin. Our goal is to show that 1) DJoin is
powerful enough to support useful queries; and that 2)
DJoin’s communication and computation overheads are
low enough to be practical.

7.1 Prototype implementation
We have built a prototype implementation of DJoin
for our experiments. Our prototype uses mySQL to
store each curator’s data and to execute the purely lo-
cal parts of each query, and it relies on FairplayMP [4]
to execute the secure multi-party computation. We im-
plemented the two-party BN-PSI-CA primitive from
Section 4.2, based on the thep library [35] for the
Paillier cryptosystem. Our implementation includes the
optimizations from [14] that were already briefly de-
scribed in Section 4.1, including the use of bucket
hashing to replace the single high-degree polynomial P
with a number of lower-degree polynomials. This re-
duces BN-PSI-CA’s O(|S1| · |S2|) time complexity to
O(|S1|+ |S2| ln ln |S1|) and makes it highly paralleliz-
able, with synchronization required only for the few el-
ements that hash to the same bucket. Our prototype also
supports multi-party BN-PSI-CA based on the proto-
col from Kissner and Song [17] and the UTD Paillier
Threshold Encryption Toolbox [36], but we do not in-
clude multi-party results here due to lack of space.

We also built a query planner that implements the
rewrite rules from Section 5.2, as well as a backend for
FairplayMP that outputs code for DCR (Section 4.5). To
our knowledge, DCR is the first implementation of the
shared noise generation algorithm described in [10]. Al-
together, our prototype consists of 3,560 lines of Java
code for the runtime engine, 249 lines of code in Fair-
playMP’s custom language for the DCR primitive, and
6,776 lines of C++ code for the query planner.

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 159

 0

 20

 40

 60

 80

 100

 120

 0  5000  10000  15000  20000  25000  30000

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

in
u

te
s
)

Number of elements in each party’s set

C1 and C2
C1
C2

Figure 5: Computation time for PSI-CA. The time is ap-
proximately linear in the number of set elements.

7.2 Experimental setup
For our experiments, we used five Dell PowerEdge R410
machines, each with a Xeon E5530 2.4 GHz CPU,
12 GB of memory, and four 250 GB SATA disks. The
machines were connected by Gbit Ethernet. Following
the recommendations in [5], we used 1,024-bit keys for
the Paillier cryptosystem. We chose εr = 0.0212 to en-
sure that the noise for a query with sensitivity s = 1 is
within ±100 with probability 95%; we set εp = 1/8 · εr,
and we chose δ = 1/N = 6.67 ·10−5.

Our experiments use synthetic data rather than ‘real’
confidential data because our cryptographic primitives
operate on hashes of the data anyway, so the actual con-
tent has no influence on the overall performance. There-
fore, we generated synthetic databases. Each database
had N = 15,000 rows.

7.3 Microbenchmarks: BN-PSI-CA
First, we quantified the cost of our two main crypto-
graphic primitives. To measure the cost of BN-PSI-CA,
we generated two random sets with N elements each,
and we ran two-party BN-PSI-CA on them, varying N
between 1,000 and 32,000 elements. We measured the
computation time on each party and the amount of traf-
fic that was exchanged between the two parties.

Figure 5 shows the time taken by the servers at C1 and
C2, respectively, to execute BN-PSI-CA using a single
core. The time increases almost linearly with the size
of the sets; recall from Section 7.1 that the optimiza-
tions we applied reduce the computational overhead to
O(|S1|+ |S2| ln ln |S1|). Note that the two servers cannot
run in parallel; the total runtime is the sum of the two
servers’ runtimes. Most of the computation is performed
by C1: 49% of the total time was spent constructing the
polynomials at C1; 29% of the time was spent evaluat-
ing the polynomials at C2; and the remaining 21% were
spent decrypting the resulting evaluations at C1.

Figure 6 shows the total amount of traffic sent by C1
and C2. The traffic is roughly proportional to the set

 0

 20

 40

 60

 80

 100

 120

 0  5000  10000  15000  20000  25000  30000

T
ra

ff
ic

 s
e

n
t 

(M
B

)

Number of elements in each party’s set

C1 and C2
C1
C2

Figure 6: Network traffic sent by the two parties in a
BN-PSI-CA run.

sizes. For large sets, approximately 70% of the traffic
consists of polynomials sent from C1 to C2, and the re-
maining 30% consists of evaluation results sent back to
C1 for decryption.

To quantify BN-PSI-CA’s scalability in the number of
cores, we performed a 15,000-element intersection with
one, two, and four cores. (This was done on a differ-
ent machine with a 2.67 GHz Intel X3450 CPU, since
our E5530s have only two cores.) The additional cores
resulted in speedups of 1.99 and 3.98, respectively. This
is expected because BN-PSI-CA is trivially scalable: en-
cryptions, polynomial construction, evaluations, and de-
cryptions can all proceed in parallel on multiple cores,
or even multiple machines. Thus, DJoin should be able
to handle databases much larger than 32,000 elements,
as long as the computation can be spread over a suffi-
cient number of machines.

7.4 Microbenchmarks: DCR
Next, we quantified the cost of the DCR operator. Re-
call from Section 4.4 that DCR internally consists of two
stages: first, the inputs (cardinalities and inverted noise
terms) from the various servers are added together, and
then a new noise term is drawn from a Laplace distribu-
tion and added to the result. To separate the two stages,
we measured the time to execute DCR twice, with and
without the second stage, and we varied the number of
parties from two to four.

Figure 7 shows our results. The times grow superlin-
early with the number of parties ([4] reports a quadratic
dependency) but are all below 20 seconds. Although
MPC is generally expensive, DJoin performs most of its
work using a specialized primitive (BN-PSI-CA), so the
functionality that remains for DCR to perform is fairly
simple. Note that neither the size nor the number of sets
affect DCR’s runtime because each server inputs just a
single number: the sum of all the cardinalities and noise
terms it has computed.

11



160 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Query #PSI-CA

Q1
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.y

1|(πx(A)
⋂

πy(B)) |

Q2
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.x AND (A.y!=B.y)

2|(πx(A)
⋂

πx(B)) |− |(πx,y(A)
⋂

πx,y(B)) |

Q3
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.y AND (A.z="x" OR B.p="y")

2|(πx(A)
⋂

πy(σp=”y”(B))) |+ |(πx(σz=”x”(A))
⋂

πy(σp�=”y”(B))) |

Q4
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.x OR A.y=B.y

3|(πx(A)
⋂

πx(B)) |+ |(πy(A)
⋂

πy(B)) |− |(πx,y(A)
⋂

πx,y(B)) |

Q5
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x LIKE "%xyz%" AND A.w=B.w

8AND (B.y+B.z>10) AND (A.y>B.y)
∑i=0..7 |(πw,(y>>i+1)(σ(x like ’%xyz%’)∧(y&2i= 1)(A))

⋂

πw,(y>>i+1)(σ((y+z)>10)∧(y&2i=0)(B))) |

Table 2: Example queries and the corresponding query plans. The number of BN-PSI-CA operations, which is a rough
measure for the complexity of the query, is shown on the right.

 0

 5

 10

 15

 20

 25

2 parties 3 parties 4 parties

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Additions only
Entire operator

Figure 7: Computation time for DCR with and without
the renoising step.

7.5 Example queries

To demonstrate that DJoin can execute nontrivial and
potentially useful queries, we chose five example
queries, which are shown in Table 2 along with the query
plan they are rewritten into. Each query illustrates a dif-
ferent aspect of DJoin’s capabilities:

• Q1 is an example of a basic join between two
databases, which is transformed into a PSI-CA us-
ing rule R8.

• Q2 adds an inequality, which is rewritten as a dif-
ference between two intersections via rule R5.

• Q3 contains a disjunction with two local predi-
cates, which can be split using rule R3.

• Q4 contains another disjunction, but with remote
predicates; this is rewritten via rule R2.

• Q5 contains an equality and a numeric comparison
between columns in different databases, which can
be split via rule R6, as well as several other predi-
cates that can be evaluated locally.

 0

 100

 200

 300

 400

 500

Q1 Q2 Q3 Q4 Q5

C
o

m
p

le
ti
o

n
 t

im
e

 (
m

in
u

te
s
)

Figure 8: Total query execution time for each of the ex-
ample queries from Table 2.

For Q5, the y column in both databases contained num-
bers between 0 and 255. The table also shows the num-
ber of BN-PSI-CA operations in each query plan, which
(in conjunction with the set sizes) is a rough measure
of the effort it takes to evaluate it. The more complex
a query is, the more BN-PSI-CAs it requires. Q1 is the
least complex query because it translates straight into a
BN-PSI-CA; Q5 is the most complex one because the
inequality requires one intersection per bit.

7.6 Query execution cost

To quantify the end-to-end cost of DJoin, we ran each
of our five example queries over a synthetic dataset of
15,000 rows per database, and we measured the com-
pletion time and the overall amount of network traffic
that was sent.

Figures 8 and 9 show our results. The simplest query
(Q1) took 58 minutes, and the most complex query (Q5)
took 448 minutes, or slightly less than seven and a half
hours; the traffic was between 42.7 MB and 340 MB.
Both metrics should scale roughly linearly with the size
of the sets and the number of set intersections in the

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 161

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q1 Q2 Q3 Q4 Q5

T
o

ta
l 
tr

a
ff

ic
 s

e
n

t 
(M

B
)

Figure 9: Total network traffic for each of the example
queries from Table 2.

query, and a comparison with our microbenchmarks
from Section 7.3 confirms this.

The completion times are much higher than the
completion times one would expect from a traditional
DBMS, but recall that DJoin is not meant for inter-
active use, but rather for occasional analysis tasks or
research studies. For those purposes, an hour or two
should be acceptable. Also, recall that the best previ-
ously known method for executing such queries is gen-
eral MPC, which is impractical at this scale.

To illustrate how much DJoin improves performance
over straightforward MPC, we implemented our sim-
plest query (Q1) directly in FairplayMP. A version for
two databases of just eight (!) rows had 9,700 gates and
took 40 seconds to run; we were unable to test larger
databases because this produced crashes in FairplayMP.
The runtimes we observed increased quadratically with
the number of rows, which suggests that this approach
is not realistic for the database sizes we consider.

8 Conclusion

In this paper, we have introduced two new primitives,
BN-PSI-CA and DCR, that can be used to answer
queries over distributed databases with differential pri-
vacy guarantees, and we have presented a system called
DJoin that can execute SQL-style queries using these
two primitives. Unlike prior solutions, DJoin is not re-
stricted to horizontally partitioned databases; it supports
queries that join databases from different curators to-
gether. The key insight behind DJoin is that many dis-
tributed join queries can be rewritten in terms of oper-
ations on multisets. Not all SQL queries can be trans-
formed in this way, but many can, including counting
queries with conjunctions and disjunctions of equality
tests, as well as certain inequalities.

DJoin is not fast enough for interactive use, but, to
the best of our knowledge, the only known alternative
for distributed differentially private join queries is se-

cure multi-party computation, which is orders of magni-
tude slower. Also, most of the computational cost is due
to BN-PSI-CA, which is trivially scalable and can thus
benefit from additional cores.

Acknowledgments

We thank our shepherd, Nickolai Zeldovich, and the
anonymous reviewers for their comments and sugges-
tions. We also thank Marco Gaboardi, Benjamin Pierce,
Aaron Roth, and Andre Scedrov for helpful comments
on earlier drafts of this paper. This work was supported
by NSF grants CNS-1065060 and CNS-1054229, ONR
grants N00014-09-1-0770 and N00014-12-1-0757, and
by a gift from Google.

References

[1] R. Agrawal and R. Srikant. Privacy-preserving data mining. In
Proc. SIGMOD, May 2000.

[2] M. Barbaro and T. Zeller. A face is exposed for AOL
searcher No. 4417749. The New York Times, Aug. 2006.
http://nytimes.com/2006/08/09/technology/
09aol.html.

[3] R. M. Bell and Y. Koren. Lessons from the Netflix prize chal-
lenge. SIGKDD Explor. Newsl., 9(2):75–79, Dec. 2007.

[4] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A system
for secure multi-party computation. In Proc. CCS, Oct. 2008.

[5] J. Bethencourt, D. Song, and B. Waters. New constructions and
practical applications for private stream searching (extended ab-
stract). In Proc. IEEE S&P, May 2006.

[6] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards
statistical queries over distributed private user data. In Proc.
NSDI, Apr. 2012.

[7] C. Dwork. Differential privacy. In Proc. ICALP, July 2006.

[8] C. Dwork. Differential privacy: A survey of results. In Proc.
TAMC, Apr. 2008.

[9] C. Dwork. The differential privacy frontier (extended abstract).
In Proc. IACR TCC, Mar. 2009.

[10] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise gen-
eration. In Proc. EUROCRYPT, May 2006.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. TCC, Mar.
2006.

[12] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy
preserving mining of association rules. In Proc. KDD, July 2002.

[13] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group collaboration using untrusted cloud resources.
In Proc. OSDI, Oct. 2010.

[14] M. Freedman, K. Nissim, and B. Pinkas. Efficient private match-
ing and set intersection. In Proc. EUROCRYPT, May 2004.

[15] M. Götz and S. Nath. Privacy-aware personalization for mobile
advertising. Technical Report MSR-TR-2011-92, Microsoft Re-
search, Aug. 2011.

13



162 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[16] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy
under fire. In Proc. USENIX Security, Aug. 2011.

[17] L. Kissner and D. Song. Privacy-preserving set operations. In
Proc. CRYPTO, Aug. 2005.

[18] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
nonrecursive queries. In Proc. VLDB, Aug. 1986.

[19] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure un-
trusted data repository (SUNDR). In Proc. OSDI, Dec. 2004.

[20] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In Proc. ICDE, Apr. 2007.

[21] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasub-
ramaniam. l-diversity: privacy beyond k-anonymity. In Proc.
ICDE, Apr. 2006.

[22] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
Proc. OSDI, Oct. 2010.

[23] F. McSherry. Privacy integrated queries. In Proc. SIGMOD,
June 2009.

[24] F. McSherry and K. Talwar. Mechanism design via differential
privacy. In Proc. FOCS, Oct. 2007.

[25] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan. Compu-
tational differential privacy. In Proc. CRYPTO, Aug. 2009.

[26] A. Narayanan and V. Shmatikov. Robust de-anonymization of
large sparse datasets. In Proc. IEEE S&P, May 2008.

[27] C. A. Neff. A verifiable secret shuffle and its application to e-
voting. In Proc. CCS, Nov. 2001.

[28] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Proc. EUROCRYPT, May 1999.

[29] B. Pinkas. Cryptographic techniques for privacy-preserving data
mining. SIGKDD Explor. Newsl., 4(2):12–19, Dec. 2002.

[30] R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting confidentiality with encrypted query pro-
cessing. In Proc. SOSP, Oct. 2011.

[31] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption. In
Proc. SIGMOD, June 2010.

[32] I. Roy, S. Setty, A. Kilzer, V. Shmatikov, and E. Witchel. Airavat:
Security and privacy for MapReduce. In Proc. NSDI, Apr. 2010.

[33] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In Proc.
NDSS, Feb. 2011.

[34] L. Sweeney. k-anonymity: A model for protecting privacy. Int. J.
Uncert. Fuzzin. Knowl.-Based Syst., 10(5):557–570, Oct. 2002.

[35] The Homomorphic Encryption Project. http://code.
google.com/p/thep/.

[36] UTD Paillier threshold encryption toolbox. Available from
http://utdallas.edu/˜mxk093120/paillier/.

[37] J. Vaidya and C. Clifton. Secure set intersection cardinality with
application to association rule mining. Journal of Computer Se-
curity, 13(4):593–622, Nov. 2005.

[38] A. Yao. Protocols for secure computations (extended abstract).
In Proc. FOCS, Nov. 1982.

[39] N. Zhang, M. Li, and W. Lou. Distributed data mining with
differential privacy. In Proc. ICC, June 2011.

Appendix

Choosing ε: The choice of ε is essentially a social ques-
tion and beyond the scope of this paper; however, we
briefly sketch one possible approach. Suppose Alice is
considering whether or not to allow her data to be in-
cluded in a database that can later be queried via DJoin,
and suppose she is concerned that an adversary might
then be able to learn a certain fact about her – for in-
stance, that she has cancer. From Alice’s perspective,
the worst-case scenario is that the adversary 1) already
knows all the data in the database (!), except Alice’s,
that he 2) manages to get access to DJoin, and that he
3) burns the entire privacy budget on a single query q –
say, “how many people in the database have cancer?”.

Consider the situation from the adversary’s perspec-
tive. Since we have (very conservatively) assumed that
the adversary already knows all the data except Alice’s,
he can construct two “possible worlds”: one database
b1 where Alice has cancer, and another database b2
where she does not. He does not know whether the real
database is b1 or b2, but he can compute the conditional
probability Pi := P(q(db) = r |db = bi) that q will re-
turn r if the real database is bi. Thus, once he observes
the actual result, he can use Bayes’ formula to update
his belief that Alice has cancer.

Now recall that, according to the definition of differ-
ential privacy from Section 3.2, P1/P2 is bounded by eε .
Thus, ε controls how much more confident the adver-
sary can become about Alice’s cancer status. If Alice is
comfortable with P1/P2 ≤ 2, she can accept values of ε
up to ln2≈ 0.69. If a benign querier wants to ask queries
with sensitivity s= 1 and ∑ j εp, j = εr on a database with
100,000 entries and have c = 95% confidence that the
error due to noise is less than E = 1,000 (1%), we have

Nmax =
εmax ·λmax

2 · s
=

εmax ·E
−2 · s · ln(1− c)

≈ 115

In other words, a privacy budget of εmax = 0.69 would
be enough to answer up to 115 queries of this type.

Multiset encodings: In some instances, it is nec-
essary to encode the input sets before they can be
processed as intersections. For instance, if the under-
lying PSI-CA primitive supports sets but not multi-
sets, we can encode an element e that appears n times
as {e||1, . . . ,e||n}, with each element included only
once [17]. Another example are joins with multiplicities
greater than one. Suppose two curators want to evalu-
ate |σx(A) �� σy(B)|, and A.x and B.y contain nA and
nB copies of some element e, respectively. Then A’s
curator can add, ∀1 ≤ k ≤ m(B.y), k · nA encoded ele-
ments e||nA||k, and B’s curator can add, ∀1≤k≤m(A.x),
k ·nB elements e||k||nB. The intersection then consists of
nA ·nB encoded elements e||nA||nB.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 163

Improving Integer Security for Systems with KINT

Xi Wang Haogang Chen Zhihao Jia† Nickolai Zeldovich M. Frans Kaashoek
MIT CSAIL †Tsinghua IIIS

Abstract

Integer errors have emerged as an important threat to sys-
tems security, because they allow exploits such as buffer
overflow and privilege escalation. This paper presents
KINT, a tool that uses scalable static analysis to detect
integer errors in C programs. KINT generates constraints
from source code and user annotations, and feeds them
into a constraint solver for deciding whether an integer
error can occur. KINT introduces a number of techniques
to reduce the number of false error reports. KINT identi-
fied more than 100 integer errors in the Linux kernel, the
lighttpd web server, and OpenSSH, which were confirmed
and fixed by the developers. Based on the experience with
KINT, the paper further proposes a new integer family
with NaN semantics to help developers avoid integer er-
rors in C programs.

1 Introduction

It is well known that integer errors, including arithmetic
overflow, division-by-zero, oversized shift, lossy trun-
cation, and sign misinterpretation, can be exploited by
adversaries. Recently integer errors have emerged as one
of the main threats to systems security. One reason is
that it is difficult for programmers to reason about integer
semantics [15]. A 2007 study of the Common Vulnera-
bilities and Exposures (CVE) [1] suggests that they are
already “number 2 for OS vendor advisories” [12], second
only to buffer overflows. A recent survey [9] reviews the
Linux kernel vulnerabilities in CVE from 2010 to early
2011, and confirms the finding that integer errors account
for more than one third of the vulnerabilities that can be
misused to corrupt the kernel and gain root privilege.

Although integer errors are a known source of prob-
lems, there are no detailed studies of integer errors in
large systems. This paper’s first contribution is a detailed
study of integer errors in the Linux kernel, using a new
static analysis tool called KINT that we will present in
the rest of this paper. We conclude that integer errors
are prevalent in all of the subsystems in Linux. We also
found 105 new errors for which our patches have been ac-
cepted by the Linux kernel community. Finally, we found
that two integer errors previously reported in the CVE
database were fixed incorrectly, highlighting the difficulty
of reasoning about integer semantics.

off_t j, pg_start = /* from user space */;
size_t i, page_count = ...;
int num_entries = ...;
if ((pg_start + page_count > num_entries) ||

(pg_start + page_count < pg_start))
return -EINVAL;

...
for (i = 0, j = pg_start; i < page_count; i++, j++)

/* write to some address with offset j */;

Figure 1: Patched code for the CVE-2011-1745 vulnerability in the
Linux AGP driver. The original code did not have the overflow check
pg_start+ page_count < pg_start. In that case, an adversary could
provide a large pg_start value from user space to bypass the check
pg_start+ page_count > num_entries, since pg_start+ page_count
wraps around. This leads to out-of-bounds memory writes in later code.

In applying the tool to the Linux kernel, we found
that the state-of-the-art in static analysis tools for find-
ing integer errors have trouble achieving high coverage
and avoiding false error reports when applied to large
software systems. For example, both PREfix+Z3 [27]
and SmartFuzz [25] use symbolic execution to explore
possible paths, but large systems have an exponentially
large number of potential paths to explore, making it in-
feasible to achieve high coverage. Moreover, previous
tools (e.g., PREfix+Z3) generate many error reports that
do not correspond to actual integer errors [27].

This paper introduces a scalable static analysis for find-
ing integer errors, along with a number of automated and
programmer-driven techniques to reduce the number of
generated reports, implemented in a tool called KINT.
Similar to previous analysis tools, KINT generates a con-
straint to represent the condition under which an integer
error may occur, and uses an off-the-shelf solver to see if
it is possible to satisfy the constraint and thus trigger the
integer error. Unlike previous tools based on symbolic
execution, KINT statically generates a constraint captur-
ing the path condition leading to an integer error, as in
Saturn [37], which allows KINT to scale to large systems
while maintaining high coverage.

A problem for symbolic execution tools and KINT is
the large number of error reports that can be generated
for a complex system. To illustrate why it is necessary
to reduce the number of error reports, consider the code
snippet shown in Figure 1. This example illustrates a
correct and widely used pattern for guarding against ad-
dition overflow by performing the addition and checking
whether the result overflowed. Such checks are prevalent
in systems code, including most parts of the Linux kernel.



164 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

However, a tool that signaled an error for every integer
operation that goes out of bounds would incorrectly flag
the overflow check itself as an error, because the check’s
addition can overflow. In addition to common overflow
check idioms, there are a number of other sources for false
error reports, such as complex invariants that hold across
the entire program which are difficult for an automated
tool to infer, and external invariants that programmers
assume, such as a number of CPUs not overflowing 232.

This paper provides several contributions to help de-
velopers effectively find and deal with integer errors, as
follows. First, we provide a pragmatic definition of inte-
ger errors that avoids reporting common idioms for over-
flow checking. Second, we introduce a whole-program
analysis for KINT that can capture certain invariants in a
way that scales to large programs and reduces the num-
ber of false errors. Third, because our automated anal-
ysis still produces a large number of error reports for
Linux (125,172), we introduce range annotations that
allow programmers to inform KINT of more complex in-
variants that are difficult to infer automatically, and thus
help reduce false error reports from KINT. Fourth, we
introduce a family of overflow-checked integers for C that
help programmers write correct code. Finally, we con-
tribute a less error-prone API for memory allocation in
the Linux kernel that avoids a common source of integer
errors, inspired by Andrew Morton.

Although we focus on the Linux kernel, we believe
KINT’s ideas are quite general. We also applied KINT to
the lighttpd web server and OpenSSH, and found bugs in
those systems too.

The rest of this paper is organized as follows. §2 dif-
ferentiates KINT from previous work on integer error
detection. §3 presents a case study of integer errors in the
Linux kernel. §4 outlines several approaches to dealing
with integer errors. §5 presents KINT’s design for gen-
erating constraints, including KINT’s integer semantics.
§6 evaluates KINT using the Linux kernel and known
CVE cases. §7 proposes the NaN integer family. §8
summarizes our conclusions.

2 Related work
There are a number of approaches taken by prior work to
address integer errors, and the rest of this section outlines
the relation between this paper and previous work by
considering each of these approaches in turn.

Static analysis. Static analysis tools are appealing to find
integer errors, because they do not require the availability
of test inputs that tickle an integer error, which often
involve subtle corner cases. One general problem with
static analysis is reports of errors that cannot be triggered
in practice, termed false positives.

One class of static analysis tools is symbolic model
checking, which systematically explores code paths for
integer errors by treating input as symbolic values and
pruning infeasible paths via constraint solving. Exam-
ples include PREfix+Z3 [27], KLEE [7], LLBMC [24],
SmartFuzz [25], and IntScope [34]. While these tools
are effective for exploring all code paths through a small
program, they suffer from path explosion when applied to
the entire Linux kernel.

KINT is carefully designed to avoid path explosion on
large systems, by performing costly constraint solving at
the level of individual functions, and by statically gener-
ating a single path constraint for each integer operation.
This approach is inspired by Saturn [37].

PREfix+Z3 [27], a tool from Microsoft Research, com-
bines the PREfix symbolic execution engine [6] with the
Z3 constraint solver to find integer errors in large systems.
PREfix+Z3 proposed checking precise out-of-bounds con-
ditions for integer operations using a solver. PREfix, how-
ever, explores a limited number of paths in practice [6],
and the authors of PREfix+Z3 confirmed to us that their
tool similarly stopped exploring paths after a fixed thresh-
old, possibly missing errors. The authors used some tech-
niques to reduce the number of false positives, such as
ignoring reports involving explicit casts and conversions
between unsigned and signed. Despite these techniques,
when applying their tool to 10 million lines of production
code, the authors found that the tool generated a large
number of false error reports, such as the overflow check
described in the introduction.

Verification tools such as ArC (now eCv) [13] and
Frame-C’s Jessie plugin [26] can catch integer errors,
but they accept only a restrictive subset of C (e.g., no
function pointers) and cannot apply to systems like the
Linux kernel.

Static analysis tools that do not keep track of sanity
checks cannot precisely pinpoint integer errors. For ex-
ample, a simple taint analysis that warns about untrusted
integers used in sensitive sinks (e.g., allocation) [8, 16]
would report false errors on correctly fixed code, such as
the code shown in Figure 1.

The range checker from Stanford’s metacompiler [3]
eliminates cases where a user-controlled value is checked
against some bounds, and reports unchecked integer uses.
A similar heuristic is used in a PREfast-based tool from
Microsoft [30]. This approach will miss integer errors
due to incorrect bounds checking since it does not per-
form reasoning on the actual values of the bounds. KINT
avoids these issues by carefully generating constraints
that include path conditions.

Runtime detection. An advantage of runtime detection
for integer errors is fewer false positives. Runtime inte-
ger error detection tools insert checks when generating



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 165

code; any violation in these checks will cause a trap at
run time. Examples include GCC’s -ftrapv, RICH [4],
Archerr [11], IOC [15], blip [19], IntPatch [38], and PaX’s
overflow GCC plugin [29]. An alternative approach is to
instrument binary executable files, such as IntFinder [10]
and UQBTng [36]. Using such tools to find integer errors,
however, requires carefully chosen inputs to trigger them.
Because integer errors typically involve corner cases, the
dynamic approaches tend to have low coverage. Because
KINT is a static checker, it does not have this limitation.

Library and language support. To avoid integer er-
rors, developers can adopt an integer library with error
checks, such as CERT’s IntegerLib [32, INT03-C] and
SafeInt [22]. For example, developers change their code
by calling a library function addsl(x,y) to add two signed
long integers x and y. The library then performs sanity
checks at run time, and invokes a preset error handler if
an integer error occurs.

These integer libraries are trusted and supposed to
be implemented correctly. Unfortunately, integer errors
have recently been discovered in both IntegerLib and
SafeInt [15].

Ada provides language support to define a ranged sub-
type (e.g., integers from 0 to 9). The runtime will raise
an exception on any attempt to store an out-of-bounds
value to variables of that subtype, and developers are re-
sponsible for handling the exception. There is a similar
proposal that adds ranged integers to the C language [17].
Our NaN integer family is inspired by these designs.

Case studies. Integer overflows are a well-known prob-
lem, and a number of security vulnerabilities have been
discovered due to integer errors. Many of the tools above
find or mitigate integer errors, and have noted the com-
plexity involved in reasoning about integer errors [15].
In particular, PREfix+Z3 was applied to over 10 millions
lines of production code, and the authors of that tool
found 31 errors, but provided few details. We are not
aware of any detailed study of integer errors and their con-
sequences for a complete OS kernel, which we provide in
the next section.

3 Case study
A naïve programmer may expect the result of an n-bit
arithmetic operation to be equal to that of the correspond-
ing mathematical (∞-bit) operation—in other words, the
result should fall within the bounds of the n-bit integer.
Integer errors, therefore, are bugs that arise when the pro-
grammer does not properly handle the cases when n-bit
arithmetic diverges from the mathematically expected re-
sult. However, not every integer overflow is an integer
error, as described in §1 and shown in Figure 1.

In this section, we present a case study of integer errors
in the Linux kernel, which will help motivate the rest of

this paper. Figure 2 summarizes the integer errors we
discovered in the Linux kernel as part of this case study.
Each line represents a patch that fixes one or more integer
errors; the number is shown in the “Error” column if it is
more than one. An operation may have a subscript s or
u to indicate whether it operates on signed or unsigned
integers, respectively. As we will describe in the rest of
this section, this case study shows that integer errors are
a significant problem, and that finding and fixing integer
errors is subtle and difficult.

3.1 Methodology
To find the integer errors shown in Figure 2, we applied
KINT (which we describe later in this paper) to Linux,
analyzed the results, and submitted reports and/or patches
to the kernel developers. KINT generated 125,172 error
reports for the Linux kernel. To determine whether a
report was legitimate required careful analysis of the sur-
rounding code to understand whether it can be exploited
or not. We could not perform this detailed analysis for
each of the reports, but we tried a number of approaches
for finding real errors among these reports, as described in
§5.6, including several ad-hoc ranking techniques. Thus,
our case study is incomplete: there may be many more
integer errors in the Linux kernel. However, we report
only integer errors that were acknowledged and fixed by
kernel developers.

3.2 Distribution
As can be seen in Figure 2, the integer errors found in
this case study span a wide range of kernel subsystems,
including the core kernel, device drivers, file systems, and
network protocols. 78 out of the 114 errors affect both
32-bit and 64-bit architectures; 31 errors are specific to
32-bit architecture, and the other 5 are specific to 64-bit
architecture.

3.3 Incorrect fixes for integer errors
As part of our case study, we discovered that prevent-
ing integer errors is surprisingly tricky. Using the log of
changes in the kernel repository, the “# of prev. checks”
column in Figure 2 reports the number of previous san-
ity checks that were incorrect or insufficient. The fact
that this column is non-zero for many errors shows that
although developers realized the need to validate those
values, it was still non-trivial to write correct checks. One
of the cases, sctp’s autoclose timer, was fixed three times
before we submitted a correct patch. We will now de-
scribe several interesting such cases.

3.3.1 Incorrect bounds
Figure 3 shows an example using a magic number 230 as
the upper bound for count, a value from user space. Un-
fortunately, 230 is insufficient to limit the value of count
on a 32-bit system: sizeof(struct rps_dev_flow) is 8,



166 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Subsystem Module Error Arch Impact Attack vector # of prev. checks

drivers:drm crtc ×u 32 64 OOB write user space –
nouveau cmp 32 64 logic error – 1
vmwgfx ×u 32 OOB read user space –

×u 32 64 OOB write user space 2
i915 ×u (2) 32 OOB write user space 1 (2)
savage ×u (2) 32 OOB read user space –

drivers:input cma3000_d0x cmp 32 64 logic error – 1
drivers:media lgdt330x cmp 32 64 logic error – 1

uvc ×u 32 OOB read user space –
wl128x cmp (36) 32 64 logic error – 1 (36)
v4l2-ctrls ×u (2) 32 OOB write user space 1 (2)
zoran ×u +s 32 64 OOB write user space 1

drivers:mtd pmc551 cmp 32 64 logic error – 1
drivers:scsi iscsi_tcp ×u 32 64 OOB write network –
drivers:usb usbtest ×u 32 64 OOB write user space –

×u 32 logic error user space 1
drivers:platform panasonic-laptop ×u 32 64 OOB write user space –
drivers:staging comedi ×u 32 OOB write user space 1

olpc_dcon cmp 32 64 logic error – 1
vt6655 / vt6656 ×u +u (4) 32 OOB write user space –

drivers:xen gntdev † ×u (5) 32 OOB write user space 1
xenbus +u 64 N/A not exploitable –

block rbd ×u +u 32 OOB write disk –
fs ext4 † cmp 32 64 logic error – 1

<< 32 64 DoS disk 1 (CVE-2009-4307)
×u 32 OOB write disk –

nilfs2 ×u (2) 32 OOB read user space 1
×u 32 64 logic error disk –

xfs ×u 32 64 OOB write disk 1
ceph index (2) 32 64 OOB read network 1 (2)

×u 32 OOB write network 1
+u 32 64 DoS network 1

jffs2 +u 32 64 OOB write disk –
kernel auditsc cmp 32 64 logic error – –

relayfs † ×u (2) 32 64 OOB write user space –
mm vmscan † cmp 32 64 logic error – 1
net ax25 ×u (8) 32 64 timer user space –

×u (4) 64 timer user space 1 (4)
can cmp 32 64 logic error – –
ceph ×u +u (2) 32 OOB write network 1

+u 32 64 OOB write network –
×u,+u 32 OOB write network –

irda ×s 32 64 timer user space –
netfilter −u (2) 32 64 wrong output – 1 (2)
netrom ×u (4) 32 64 timer user space –
rps ×u +u 32 OOB write user space 1
sctp ×u 32 timer user space 3

+u 32 64 N/A – 1 (CVE-2008-3526)
unix +s 32 64 logic error user space –

sound usb ×u 32 OOB write usb –
×u 32 OOB read usb –

Figure 2: Integer errors discovered by our case study in the Linux kernel. Each line is a patch that tries to fix one or more bugs (the number is in the
“Error” column if more than one). For each patch, we list the corresponding subsystem, the error operation with the number of bugs, the affected
architectures (32-bit and/or 64-bit), the security impact, a description of the attack vector and affected values, and the number of previous sanity
checks from the history of the Linux kernel repository that attempt to address the same problem incorrectly or insufficiently. Numbers in parentheses
indicate multiple occurrences represented by a single row in the table. Nine bugs marked with † were concurrently found and patched by others.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 167

unsigned long count = /* from user space */;
if (count > 1<<30)

return -EINVAL;
table = vmalloc(sizeof(struct rps_dev_flow_table) +

count * sizeof(struct rps_dev_flow));
...
for (i = 0; i < count; i++)

table->flow[i] = ...;

Figure 3: Incorrect bounds in the receive flow steering (RPS) imple-
mentation. The magic number 1 << 30 (i.e., 230) cannot prevent integer
overflow in the computation of the argument to vmalloc.

int opt = /* from user space */;
if (opt < 0 || opt > ULONG_MAX / (60 * HZ))

return -EINVAL;
... = opt * 60 * HZ;

Figure 4: A type mismatch between the variable opt, of type int and
the bounds ULONG / (60 * HZ), of type unsigned long. This mismatch
voids the checks intended to prevent integer overflow in the computation
opt * 60 * HZ.

u32 yes = /* from network */;
if (yes > ULONG_MAX / sizeof(struct crush_rule_step))

goto bad;
... = kmalloc(sizeof(*r) +

yes * sizeof(struct crush_rule_step),
GFP_NOFS);

Figure 5: A malformed check in the form x > uintmaxn /b from the
Ceph file system.

if (num > ULONG_MAX / sizeof(u64) - sizeof(*snapc))
goto fail;

... = kzalloc(sizeof(*snapc) + num * sizeof(u64),
GFP_NOFS);

Figure 6: A malformed check in the form x > uintmaxn /b−a from the
Ceph file system.

and multiplying it with a count holding the value 230 over-
flows 32 bits. In that case, the allocation size for vmalloc
wraps around to a small number, leading to buffer over-
flows later in the loop.

Using magic numbers for sanity checks is not only
error-prone, but also makes code hard to maintain: devel-
opers need to check and update all such magic numbers
if they want to add a new field to struct rps_dev_flow,
which increases its size. A better practice is to use ex-
plicit arithmetic bounds. In this case, the allocation size
is in the form of a+count×b; a correct bounds check is
count> (ULONG_MAX−a)/b.

In addition, one needs to ensure that the type of the
bounds check matches that of the variable to be checked,
otherwise a mismatch may void the check. Figure 4 shows
one such example. Since opt is read from user space,
the code checks if the computation of opt * 60 * HZ
overflows, but the check is incorrect. On a 64-bit system,
opt of type int is a 32-bit integer, while ULONG_MAX of
type unsigned long is a 64-bit integer, with value 264 −
1. Therefore, the upper bound ULONG_MAX / (60 * HZ)
fails to prevent a 32-bit multiplication overflow, voiding
the check. A correct fix is to change the type of opt to
unsigned long, to match ULONG_MAX’s type.

struct dcon_platform_data { ...
u8 (*read_status)(void);

};
/* ->read_status() implementation */
static u8 dcon_read_status_xo_1_5(void)
{

if (!dcon_was_irq())
return -1;

...
}
static struct dcon_platform_data *pdata = ...;
irqreturn_t dcon_interrupt(...)
{

int status = pdata->read_status();
if (status == -1)

return IRQ_NONE;
...

}

Figure 7: An integer error in the OLPC secondary display controller
driver of the Linux kernel. Since ->read_status() returns an unsigned
8-bit integer, the value of status is in the range of [0,255], due to zero
extension. Comparing status with −1 will always be false, which
breaks the error handling.

3.3.2 Malformed checks
As discussed in §3.3.1, the correct bounds check to avoid
overflow in the expression a+ x×b is:

x >u (uintmaxn−a)/ub.

where a and b are constants, x is an n-bit unsigned inte-
gers, and uintmaxn denotes the maximum unsigned n-bit
integer 2n −1.

One common mistake is to check for x > uintmaxn /b,
which an adversary can bypass with a large x. As shown
in Figure 5, yes is read from network, and a crafted
value can bypass the broken check and overflow the
addition in the kmalloc allocation size, leading to fur-
ther buffer overflows. Another common broken form is
x > uintmaxn /b−a, as shown in Figure 6.

Both forms also appeared when a developer tried to
fix a similar integer error in the Linux perf tools; the
developer wrote three broken checks before coming up
with a correct version [31]. We will use this fix from perf
as an example to demonstrate how to simplify bounds
checking using NaN integers in §7.

3.3.3 Sign misinterpretation
C provides both signed and unsigned integer types, which
are subject to different type conversion rules. Incon-
sistent choice of signedness often breaks sanity checks.
For example, in Figure 7, the intent of the comparison
status == -1 was to check whether read_status returns
−1 on error. However, since the function returns an un-
signed 8-bit integer, which is zero-extended to int accord-
ing to C’s conversion rules, status is non-negative. Con-
sequently, the comparison always evaluates to false (i.e.,
a tautological comparison), which disables the error han-
dling. Using signed int for error handling fixes the bug.



168 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

u32 len = ...;
if (INT_MAX - len < sizeof(struct sctp_auth_bytes))

return NULL;
... = kmalloc(sizeof(struct sctp_auth_bytes)

+ len, gfp);

Figure 8: An incorrect fix for CVE-2008-3526 from the sctp network
protocol implementation.

sbi->s_log_groups_per_flex = /* from disk */;
groups_per_flex = 1 << sbi->s_log_groups_per_flex;
if (groups_per_flex == 0)

return 1;
flex_group_count = ... / groups_per_flex;

Figure 9: An incorrect fix to CVE-2009-4307 in the ext4 file system [2],
because oversized shifting is undefined behavior in C.

Tautological comparisons are often indicative of signed-
ness errors. Surprisingly, a simple tautological expression
that compares an unsigned integer x with 0 (i.e., x <u 0)
affected several subsystems. The wl128x driver alone
contained 36 such bugs, effectively disabling most of its
error handling paths.

Figure 8 shows another example, the fix for CVE-2008-
3526, where a sanity check tries to reject a large len
and avoid overflowing the allocation size. However, the
check does not work. Consider len= 0xffffffff. Since
INT_MAX is 0x7fffffff, the result of the left-hand side of
the check is then 0x80000000. Note that len is unsigned,
the left-hand side result is also treated as unsigned (i.e.,
231), which bypasses the check. A correct check is len>
INT_MAX−sizeof(struct sctp_auth_bytes).

After discussion with the kernel developers, we came
to the conclusion that len could not become that large.
Therefore, CVE-2008-3526 is not exploitable, and the
fix is unnecessary. Our patch was nonetheless applied to
clarify the code.

3.3.4 Undefined behavior

Figure 9 shows a fix for CVE-2009-4307. A developer dis-
covered a division-by-zero bug, which an adversary could
trigger by mounting a corrupted file system with a large
s_log_groups_per_flex. To reject such illegal input, the
developer added a zero check against groups_per_flex,
the result of a shift operation [2].

However, this check turns out to be incorrect. Shifting
an n-bit integer by n or more bits is undefined behavior
in C, and the actual result varies across architectures and
compilers. For example, when s_log_groups_per_flex
is set to 36, which is an illegal value, 1 << 36 is essen-
tially 1 << 4 = 16 on x86, since x86’s shifting instruction
truncates the amount to 5 bits. This will bypass the check,
leaving the two values s_log_groups_per_flex (36) and
groups_per_flex (16) inconsistent. Some C compilers
even optimize away the check because they conclude that
left-shifting the value 1 never produces zero [35], which
effectively eliminates the fix.

Another kernel developer later revised the zero check
to groups_per_flex < 2, which still suffers from the
same problem. This issue was re-assigned CVE-2012-
2100 after we reported it. A correct fix is to check
s_log_groups_per_flex before the shift, so as to avoid
undefined behavior.

In general, it is unsafe to check the result of an integer
operation that may involve undefined behavior, such as
shifts, divisions, and signed integer operations [35]. One
should instead check the operands before the operation.

3.4 Impact
Integer errors that allow out-of-bounds writes (i.e., buffer
overflow) can break the integrity of the kernel and po-
tentially enable privilege escalation attacks. They can
be exploited via network, local access, or malformed file
systems on disk. Figure 3 shows a typical example of
an integer error that allows out-of-bounds writes. We
found a large number of such errors in ioctl, an infa-
mous error-prone interface. There are also two interesting
vulnerabilities in the sound subsystem; an adversary can
exploit them by plugging in a malicious USB audio de-
vice that responds with bogus sampling rates, leading to a
kernel hang, DoS, or buffer overflow.

Integer errors cause timing bugs in several network
protocol implementations. For example, when a user-
space application provides a large timeout argument, the
internal timer can wrap around to a smaller timeout value.

Most logic related integer errors are due to tautological
comparisons. These bugs would effectively disable error
handling, or make the kernel behave in unanticipated
ways. One example from the CAN network protocol
implementation is as follows:

if (((errc & 0x7f) >> 8) > 127) ...

The intent of the code is to test whether the error counter
errc has reached certain level. However, this comparison
will never be true because the left-hand side of the test,
which extracts 7 bits from errc, is at most 27 −1 = 127.
The fix is to check the right bit according to the specifica-
tion, using errc & 0x80.

4 Problems and approaches
As the previous section illustrated, integer errors are com-
mon, can lead to serious problems, and are difficult to fix
even for experts. Thus, it is important both to find integer
errors and to help developers verify their patches or write
correct code in the first place.

One approach to prevent integer errors is to avoid the
fixed-width arithmetic that leads to integer operations
deviating from the mathematically expected semantics.
Many languages, such as Python and Haskell, take this
approach. However, this is not always feasible because
there is a performance penalty for using infinite-precision



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 169

arithmetic. Moreover, the runtime and libraries of these
languages are often implemented in C, and can have inte-
ger errors as well (e.g., CVE-2011-0188 in Ruby’s integer
implementation). As a result, this paper focuses on help-
ing developers find or avoid integer errors in the presence
of fixed-width arithmetic, such as in C code.

Another approach to dealing with integer errors is to
find them using static analysis. The key challenges in
making this approach work well lie in scaling the analysis
to large systems while achieving good coverage and mini-
mizing the number of false error reports. Minimizing false
errors is particularly important for verifying correctness
of patches. We describe the design of our scalable static
analysis tool for finding integer errors, and techniques for
reducing the number of false positives, in §5.

Based on the case study, we find that many integer
errors occur when computing the number of bytes to allo-
cate for a variable-sized data structure, such as an array of
fixed-sized elements. Better APIs that perform overflow-
checked multiplication for the caller, similar to the calloc
function, can help avoid this class of integer errors. To
help developers avoid this common problem, we con-
tributed kmalloc_array(n, size) for array allocation to
the Linux kernel, which checks overflow for n×u size,
as suggested by Andrew Morton. This function has been
incorporated in the Linux kernel since v3.4-rc1.

Finally, as illustrated by the case study, programmers
can make mistakes in writing overflow checks for integer
operations. One approach taken by prior work is to raise
an exception every time the value of an integer expression
goes out of bounds, such as in Ada or when using GCC’s
-ftrapv flag. However, this can generate too many false
positives for overflows that do not matter. §7 describes
our proposal for a C language extension that helps devel-
opers deal with integer overflows in complex expressions,
without forcing all expressions to avoid integer overflows.

5 Design
This section describes the design of KINT, and introduces
a number of techniques that help KINT reduce the number
of error reports for large systems.

5.1 Overview
Figure 10 summarizes the design of KINT. The first
step in KINT’s analysis is to compile the C source code
to the LLVM intermediate representation (IR), using a
standard C compiler (e.g., Clang). KINT then performs
three different analyses on this IR, as follows.

The first analysis, which we will call function-level
analysis, instruments the IR with checks that capture the
conditions under which an integer error may occur, for
each individual function. KINT infers integer errors in
two ways: first, KINT looks for certain expressions whose
value in C is different from its mathematically expected

C source code Standard C compiler

LLVM IR

Bounds check insertion
(§5.4.1)

Code rewriting
(§5.4.2)

Modified IR

Range analysis
(§5.5)

Range metadata

Taint analysis
(§5.6)

Taint metadata

Constraint generation
(§5.7)

Constraint solver Classification

Error reports

Figure 10: KINT’s workflow. Ellipses represent data, and rectangles
represent phases of KINT’s workflow.

value, and second, KINT looks for values that can violate
certain invariants—for example, array indexes that can be
negative, control flow conditions that are tautologically
true or false, or programmer-supplied invariants.

The second analysis, called range analysis, attempts
to infer range constraints on values shared between func-
tions (e.g., arguments, return values, and shared data struc-
tures). This analysis helps KINT infer global invariants
and thus reduce false error reports.

The third analysis, which we will call taint analysis,
performs taint tracking to determine which values can be
influenced by an untrusted source, and which values may
be used in a sensitive context, such as memory allocation;
some of these sources and sinks are built in, and others
are provided by the programmer. This analysis helps the
programmer focus on the errors that are most likely to be
exploitable.

Based on the output of function-level and range analy-
ses, KINT generates constraints under which an integer
error may occur, and feeds them to a solver to determine
whether that integer error can be triggered, and if so, what
inputs trigger it. Finally, KINT outputs all cases that trig-
ger integer errors, as reported by the solver, along with
annotations from the taint analysis to indicate the potential
seriousness of the error.

5.2 Applying KINT to Linux
To help KINT detect integer errors, the programmer
can define invariants whose violation indicates an inte-
ger error. For the Linux kernel, we annotate 23 func-
tions like memcpy with the invariant that the size param-
eter must be non-negative. Annotations are in the form



170 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Integer operation In-bounds requirement Out-of-bounds consequence

x+s y, x−s y, x×s y x∞ op y∞ ∈ [−2n−1,2n−1 −1] undefined behavior [21, §6.5/5]
x+u y, x−u y, x×u y x∞ op y∞ ∈ [0,2n −1] modulo 2n [21, §6.2.5/9]
x/sy y �= 0∧ (x �=−2n−1 ∨ y �=−1) undefined behavior [21, §6.5.5]
x/uy y �= 0 undefined behavior [21, §6.5.5]
x << y, x >> y y ∈ [0,n−1] undefined behavior [21, §6.5.7]

Figure 11: In-bounds requirements of integer operations. Both x and y are n-bit integers; x∞,y∞ denote their ∞-bit mathematical integers.

(function-name,parameter-index) in a separate input to
KINT. For example, (memcpy,3) means that the third pa-
rameter of memcpy represents a data size, and KINT will
check whether it is always non-negative.

Although KINT’s automated analyses reduce the num-
ber of error reports significantly, applying KINT to the
Linux kernel still produces a large number of false pos-
itives. In order to further reduce the number of error
reports, the programmer can add range annotations on
variables, function arguments, and function return val-
ues, which capture invariants that the programmer may
know about. Range annotations in the Linux kernel help
capture invariants that the programmer knows hold true:
for example, that the tail pointer in an sk_buff is never
greater than the end pointer. As another example, many
sysctl parameters in the Linux kernel have lower and
upper bounds encoded in the initialization code of their
sysctl table entries. §6.3 evaluates such annotations, but
we did not apply them for the case study in §3.

Finally, to help decide which of the reports are likely
to be exploitable, and thus help focus on important errors,
the programmer can annotate certain untrusted sources
and sensitive sinks. For the Linux kernel, we annotated
20 untrusted sources. For example, (copy_from_user,1)
means the first parameter of copy_from_user, a pointer,
is untrusted; KINT will mark all integers read from the
pointer as untrusted. We also annotated 40 sensitive sinks,
such as (kmalloc,1); KINT will highlight errors the result
of which is used as the first parameter of kmalloc (i.e.,
the allocation size).

5.3 Integer semantics

KINT assumes two’s complement [20, §4.2.1], a de facto
standard integer representation on modern architectures.
An n-bit signed integer is in the bounds −2n−1 to 2n−1−1,
with the most significant bit indicating the sign, while an
n-bit unsigned integer is in the bounds 0 to 2n −1.

KINT assumes that programmers expect the result of
an n-bit arithmetic operation to be equal to that of the
corresponding mathematical (∞-bit) operation. In other
words, the result should fall in the n-bit integer bounds.
Any out-of-bounds operation violates the expectation and
suggests an error. Figure 11 lists the requirements of
producing an in-bounds result for each integer operation.

Addition, subtraction, and multiplication. The mathemat-
ical result of an n-bit signed additive or multiplicative
operation should fall in [−2n−1,2n−1 − 1], and that of
an unsigned operation should fall in [0,2n − 1]. For ex-
ample, 231 ×u 16 is not in bounds, because the expected
mathematical product 235 is out of the bounds of 32-bit
unsigned integers.

Division. The divisor should be non-zero. Particularly,
the signed division −2n−1/s−1 is not in bounds, because
the expected mathematical quotient 2n−1 is out of the
bounds of n-bit signed integers (at most 2n−1 −1).

Shift. For n-bit integers, the shifting amount should be
non-negative and at most n− 1. Unlike multiplication,
KINT assumes that programmers are aware of the fact
that a shift operation is lossy since it shifts some bits out.
Therefore, KINT considers that x << 1 is always in bounds,
but x×u 2 is not.

Conversion. KINT does not flag conversions as integer
errors (even if a conversion truncates a value into a nar-
rower type), but does precisely model the effect of the
conversion, so that an integer error may be flagged if the
resulting value violates some invariant (e.g., a negative
array index).

5.4 Function-level analysis
The focus of function-level analysis is to detect candidate
integer errors at the level of individual functions. The
analysis applies to each function in isolation in order to
scale to large code sizes.

5.4.1 Bounds check insertion
KINT treats any integer operation that violates the in-
bounds requirements shown in Figure 11 as a potential
integer error. To avoid false errors, such as when program-
mers explicitly check for overflow using an overflowing
expression, KINT reports an error only if an out-of-bounds
value is observable [14] outside of the function. A value
is observable if it is passed as an argument to another
function, used in a memory load or store (e.g., as an ad-
dress or the value being stored), returned by the function,
or can lead to undefined behavior (e.g., dividing by zero).

At the IR level, KINT flags potential integer errors by
inserting a call to a special function called kint_bug_on
which takes a single boolean argument that can be true



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 171

#define IFNAMSIZ 16
static int ax25_setsockopt(...,

char __user *optval, int optlen)
{

char devname[IFNAMSIZ];
/* consider optlen = 0xffffffff */
/* optlen is treated as unsigned: 232 −1 */
if (optlen < sizeof(int))

return -EINVAL;
/* optlen is treated as signed: −1 */
if (optlen > IFNAMSIZ)

optlen = IFNAMSIZ;
copy_from_user(devname, optval, optlen);
...

}

Figure 12: An integer error in the AX.25 network protocol implemen-
tation of the Linux kernel (CVE-2009-2909). A negative optlen will
bypass both sanity checks due to sign misinterpretation and reach the
copy_from_user call, which interprets optlen as a large positive integer.
Depending on the architecture-specific implementation, the consequence
may be a silent failure, a kernel crash, or a stack overflow.

if an integer error can occur (i.e., the negation of the in-
bounds requirements show in Figure 11). KINT will later
invoke the solver to determine if this argument can ever
be true, in which case an error report will be generated.
For example, for division x/uy, the in-bounds requirement
of which is y �= 0, KINT inserts kint_bug_on(y==0).

KINT also generates calls to kint_bug_on for invariants
hard-coded in KINT or specified by the programmer:
• Array index. For an array index x, KINT generates a

call to kint_bug_on(x <s 0).
• Data size. A common programmer-supplied invari-

ant is that data size arguments to functions like
memcpy be non-negative. For calls to such functions
with data size argument x, KINT generates a call to
kint_bug_on(x <s 0). Figure 12 shows an example of
such an error.

Tautological control flow conditions, such as in Fig-
ure 7, cannot be expressed using calls to the special
kint_bug_on function. KINT separately generates con-
straints to check for these kinds of integer errors.

5.4.2 Code rewriting
In order to reduce false errors and to improve performance,
KINT performs a series of code transformations on the
generated LLVM IR.

Simplifying common idioms. Explicit overflow checks
can lead to complex constraints that are difficult for con-
straint solvers to reason about. For example, given two
n-bit unsigned integers x and y, a popular overflow check-
ing idiom for x×u y is as follows:

(x×u y)/uy �= x.

KINT replaces such idioms in the LLVM IR with equiva-
lent expressions, as shown in Figure 13, by using LLVM

Original expression Simplified expression

x+ y <u x uadd-overflow(x,y)
x− y <s 0 x <u y
(x× y)/uy �= x umul-overflow(x,y)
x >u uintmaxn−y uadd-overflow(x,y)
x >u uintmaxn /uy umul-overflow(x,y)
x >u N/uy x2n ×u y2n > N

Figure 13: Bounds checking idioms that KINT recognizes and simpli-
fies. Here x,y are n-bit unsigned integers, and x2n,y2n denote their
2n-bit zero-extended values, respectively. Both uadd-overflow and
umul-overflow are LLVM intrinsic functions for overflow detection.

intrinsic functions that check for overflow. This helps
KINT produce simpler constraints to improve solver per-
formance.

Simplifying pointer arithmetic. KINT represents each
pointer or memory address as a symbolic expression [33],
and tries to simplify it if possible. KINT considers a
pointer expression that it fails to simplify as an uncon-
strained integer, which can be any value within its range.
Consider the following code snippet:

struct pid_namespace {
int kref;
struct pidmap pidmap[PIDMAP_ENTRIES];
...

};
struct pid_namespace *pid_ns = ...;
unsigned int last = ...;
struct pidmap *map =

&pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
int off = map - pid_ns->pidmap;

Assume that the offset into the structure field pidmap[]
is 4 bytes, and the size of its element is 8 bytes. The
symbolic expression for map and pid_ns->pidmap would
be pid_ns+4+ i×8 and pid_ns+4 respectively, where
the array index i = (last+1)/uBITS_PER_PAGE.

Thus, the value of off, the subtraction of the two point-
ers, can be reduced to (pid_ns+ 4+ i× 8)− (pid_ns+
4) = i×8, which is independent from the value of pointer
pid_ns. Without this rewriting, KINT would have con-
sidered off to be the result of a subtraction between two
unconstrained integers, and would have flagged an error.

Merging memory loads. KINT employs a simple memory
model: a value returned from a load instruction is uncon-
strained (unless the value has a range annotation). KINT
further merges load instructions to reduce false errors.
Consider the example below.

/* arg is a function parameter */
if (arg->count < 1 || arg->count > 128)

return -EINVAL;
int *klist = kmalloc(arg->count * sizeof(int), ...);
if (!klist)

return -ENOMEM;
ret = copy_from_user(klist, user_ptr,

arg->count * sizeof(int));



172 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

The code correctly limits arg->count to prevent a mul-
tiplication overflow in arg->count * sizeof(int). To
avoid reporting false errors, KINT must know that
the value loaded from arg->count that appears in the
copy_from_user call is the same as in the earlier if check.

For this purpose, KINT aggressively merges these loads
of arg->count. It adopts an unsafe assumption that a
pointer passed to a function argument or a global variable
points to a memory location that is distinct from any other
pointers [23]. By assuming that kmalloc cannot hold a
pointer to arg, KINT concludes that the call to kmalloc
does not modify arg->count, and merges the two loads.

Eliminating checks using compiler optimizations. As the
last step in code rewriting, KINT invokes LLVM’s opti-
mizer. For each call to kint_bug_on which KINT inserted
for bounds checking, once the optimizer deduces that the
argument always evaluates to false, KINT removes the call.
Eliminating these calls using LLVM’s optimizer helps
avoid subsequent invocations to the constraint solver.

5.5 Range analysis
One limitation of per-function analysis is that it cannot
capture invariants that hold across functions. Generating
constraints based on an entire large system such as the
Linux kernel could lead to more accurate error reports, but
constraint solvers cannot scale to such large constraints.
To achieve more accurate error reports while still scaling
to large systems such as the Linux kernel, KINT employs
a specialized strategy for capturing certain kinds of cross-
function invariants. In particular, KINT’s range analysis
infers the possible ranges of values that span multiple
functions (i.e., function parameters, return values, global
variables, and structure fields). For example, if the value
of a parameter x ranges from 1 to 10, KINT generates the
range x ∈ [1,10].

KINT keeps a range for each cross-function entity in
a global range table. Initially, KINT sets the ranges of
untrusted entities (i.e., the programmer-annotated sources
described in §5.2) to full sets and the rest to empty. Then
it updates ranges iteratively, until the ranges converge, or
sets the ranges to full after a limited number of rounds.

The iteration works as follows. KINT scans through
every function of the entire code base. When encountering
accesses to a cross-function entity, such as loads from a
structure field or a global variable, KINT retrieves the
entity’s value range from the global range table. Within
a function, KINT propagates value ranges using range
arithmetic [18]. When a value reaches an external sink
through argument passing, function returns, or stores to
structure fields or global variables, the corresponding
range table entry is updated by merging its previous range
with the range of the incoming value.

To propagate ranges across functions, KINT requires a
system-wide call graph. To do so, KINT builds the call

graph iteratively. For each indirect call site (i.e., function
pointers), KINT collects possible target functions from
initialization code and stores to the function pointer.

KINT’s range analysis assumes strict-aliasing rules;
that is, one memory location cannot be accessed as two
different types (e.g., two different structs). Violations of
this assumption can cause the range analysis to generate
incorrect ranges.

After the range table converges or (more likely) a fixed
number of iterations, the range analysis halts and outputs
its range table, which will be used by constraint genera-
tion to generate more precise constraints for the solver.

5.6 Taint analysis
To help programmers focus on the highest-risk reports,
KINT’s taint analysis classifies error reports by indicat-
ing whether each error involves data from an untrusted
input (source), or is used in a sensitive context (sink).
KINT propagates untrusted inputs across functions using
an iterative algorithm similar to the range analysis which
we discussed in the previous subsection.

KINT hardcodes one sensitive context: tautological
comparisons. Other sensitive sinks are specified by the
programmer, as described in §5.2.

5.7 Constraint generation
To detect integer errors, KINT generates error constraints
based on the IR as modified and annotated by the previous
three analyses. For integer errors represented by calls
to kint_bug_on, KINT reports an error if the argument
to kint_bug_on may be true. To detect integer errors
that lead to tautological comparisons, KINT derives an
error constraint from each comparison operation used for
control flow: if the expression is always true or always
false, KINT reports an error.

For every integer error, KINT must also verify that the
error can be triggered in the program’s execution; oth-
erwise, KINT would produce false error reports. To do
this, KINT generates a path constraint for each integer
operation, which encodes the constraints on the variables
that arise from preceding operations in the function’s con-
trol flow, similar to Saturn [37]. These constraints arise
from two sources: assignments to variables by preceding
operations, and conditional branches along the execution
path. Satisfying the path constraint with a set of variable
assignments means that the integer operation is reachable
from the beginning of the function with the given variable
values. The path constraint filters out integer errors that
cannot happen due to previous statements in a function,
such as assignments or explicit overflow checks.

Consider loop-free programs first, using the code in
Figure 12 as an example. The control flow of the code
is shown in Figure 14. There are two sanity checks on
optlen before it reaches the call to copy_from_user. For
clarification purposes, optlen is renumbered every time it



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 173

char devname[IFNAMSIZ];

if (optlen0 < sizeof(int))

if (optlen0 > IFNAMSIZ)

IF-TRUE:
optlen1 = IFNAMSIZ;

IF-FALSE:
optlen1 = optlen0;

copy_from_user(devname,optval,optlen1);
...

EXIT

¬(optlen0 <u 4)

optlen0 >s 16 ¬(optlen0 >s 16)

optlen1 = 16 optlen1 = optlen0

Figure 14: The control flow of the code snippet in Figure 12.

is assigned a new value [28, §8.11]. Our goal is to evaluate
the path constraint for the call to copy_from_user.

The basic algorithm works as follows. Since there is
no loop, the path constraint of the call to copy_from_user
is simply the logical OR of the constraints from each of
its predecessors, namely IF-TRUE and IF-FALSE. For
each of those two blocks, the constraint is a logical AND
of three parts: the branching condition (for the tran-
sition from that block to copy_from_user), the assign-
ment(s) in that block, and the path constraint of that block.
Both IF-TRUE and IF-FALSE unconditionally jump to
copy_from_user, so their branching conditions are simply
true, which can be ignored. Now we have the following
path constraint:

((optlen1 = 16)∧PathConstraint(IF-TRUE))

∨((optlen1 = optlen0)∧PathConstraint(IF-FALSE)).

By recursively applying the same algorithm to IF-TRUE
and IF-FALSE, we obtain the fully expanded result:

((optlen1 = 16)∧ (optlen0 >s 16)∧¬(optlen0 <u 4))
∨((optlen1 = optlen0)∧¬(optlen0 >s 16)

∧¬(optlen0 <u 4)).

After computing the path constraint, KINT feeds the
logical AND of the path constraint and the error con-
straint (i.e., optlen1 <s 0) into the solver to determine
whether the integer operation can have an error. In this
case, the solver will reply with an assignment that triggers
the error: for example, optlen0 =−1.

For programs that contain loops, the path constraint
generation algorithm unrolls each loop once and ignores
branching edges that jump back in the control flow [37].

function PATHCONSTRAINT(blk)
if blk is entry then

return true
g ← false
for all pred ∈ blk’s predecessors do

e ← (pred,blk)
if e is not a back edge then

br ← e’s branching condition
as ←

∧

i(xi = yi) for all assignments along e
g ← g∨ (PATHCONSTRAINT(pred)∧br∧as)

return g

Figure 15: Algorithm for path constraint generation.

This approach limits the growth of complexity of the path
constraint, and thus sacrifices soundness for performance.
The complete algorithm is shown in Figure 15.

To alleviate missing constraints due to loop unrolling,
KINT moves constraints inside a loop to the outer scope
if possible. Consider the following loop:

for (i = 0; i < n; ++i)
a[i] = ...;

KINT generates an error constraint i <s 0 since i is used as
an array index. Simply unrolling the loop once (i.e., i = 0)
may miss a possible integer error (e.g., if the code does
not correctly limit n). KINT will generate a new constraint
n <s 0 outside the loop, by substituting the loop variable
i with its exit value n in the constraint i <s 0.

Finally, the Boolector constraint solver provides an API
for constructing efficient overflow detection constraints [5,
§3.5]. KINT invokes this API to generate constraints for
additive and multiplicative operations, which reduces the
solver’s running time.

5.8 Limitations
KINT will miss the following integer errors. KINT only
understands code written in C; it cannot detect integer
errors written in assembly language. KINT will miss
conversion errors that are not caught by existing invari-
ants (see §5.4.1). KINT merges loads in an unsafe way
and thus may miss errors due to aliasing. KINT analyzes
loops by unrolling them once, so it will miss integer errors
caused by looping, for example, an addition overflow in
an accumulation. Finally, if the solver times out, KINT
may miss errors corresponding to the queried constraints.

6 Evaluation of KINT

The evaluation answers the following questions:

• Is KINT effective in discovering new integer errors in
systems? (§6.1)

• How complete are KINT’s reports? (§6.2)

• What causes KINT to generate false error reports, and
what annotations can a programmer provide to avoid
these reports? (§6.3)



174 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Caught in original? Cleared in patch?

CVE-2011-4097 � page semantics
CVE-2010-3873 � CVE-2010-4164
CVE-2010-3865 accumulation �
CVE-2009-4307 � bad fix (§3.3.4)
CVE-2008-3526 � bad fix (§3.3.3)
All 32 others (�) � �

(�) CVE-2011-4077, CVE-2011-3191, CVE-2011-2497,
CVE-2011-2022, CVE-2011-1770, CVE-2011-1759,
CVE-2011-1746, CVE-2011-1745, CVE-2011-1593,
CVE-2011-1494, CVE-2011-1477, CVE-2011-1013,
CVE-2011-0521, CVE-2010-4649, CVE-2010-4529,
CVE-2010-4175, CVE-2010-4165, CVE-2010-4164,
CVE-2010-4162, CVE-2010-4157, CVE-2010-3442,
CVE-2010-3437, CVE-2010-3310, CVE-2010-3067,
CVE-2010-2959, CVE-2010-2538, CVE-2010-2478,
CVE-2009-3638, CVE-2009-3280, CVE-2009-2909,
CVE-2009-1385, CVE-2009-1265.

Figure 16: The result of applying KINT to integer errors in Linux kernel
from the CVE database. For each case, we show whether KINT catches
the expected bugs in the original code, and whether KINT determines
that the bug is fixed in the patched code.

• How long does it take KINT to analyze a large system
such as the Linux kernel? (§6.4)

• How important are KINT’s techniques to reducing the
number of error reports? (§6.5)

All the experiments were conducted on a 64-bit Ubuntu
Linux machine with an Intel Core i7-980 3.3 GHz CPU
and 24 GB of memory. The processor has 6 cores, and
each core has 2 hardware threads.

6.1 New bugs
We periodically applied KINT to the latest Linux kernel
from November 2011 (v3.1) to April 2012 (v3.4-rc4),
and submitted patches according to KINT’s reports. As
discussed in §3, Linux kernel developers confirmed and
fixed 105 integer errors. We also applied KINT to two
popular user-space applications, lighttpd and OpenSSH;
the developers fixed respectively 1 and 5 integer errors
reported by KINT. The results show that KINT is effec-
tive in finding new integer errors, and the developers are
willing to fix them.

6.2 Completeness
To evaluate KINT’s completeness, we collected 37
known integer errors in the Linux kernel from the CVE
database [1] over the last three years (excluding those
found by KINT). As shown in Figure 16, KINT is able to
catch 36 out of the 37 integer errors.

KINT misses one case, CVE-2010-3865, an addition
overflow that happens in an accumulation loop. KINT
cannot catch the bug since it unrolls the loop only once.

6.3 False errors
To understand what causes KINT to generate false error
reports, we performed three experiments, as follows.

CVE experiment. We first tested KINT on the patched
code of the CVE cases in §6.2, expecting that ideally
KINT would not report any error. The results are also
shown in Figure 16. KINT reports no bugs in 33 of the 37
cases, and reports errors in 4 cases. One case, the patched
code of CVE-2010-3873, contains additional integer er-
rors that are covered by CVE-2010-4164, which KINT
correctly identified; two cases contain incorrect fixes as
we have shown in §3.3.3 and §3.3.4. One case is a false
error in CVE-2011-4097, as detailed below.

long points; /* int points; */
points = get_mm_rss(p->mm) + p->mm->nr_ptes;
points += get_mm_counter(p->mm, MM_SWAPENTS);
points *= 1000;
points /= totalpages;

The code computes a score proportional to process p’s
memory consumption. It sums up the numbers of different
memory pages that p takes, divides the result by the total
number of pages to get a ratio, and scales it by 1000.
When the whole system is running out of memory, the
kernel kills the process with the highest score.

The patch changes the type of points from int to long
because points could be large on 64-bit systems; multi-
plying it by 1000 could overflow and produce an incorrect
score, causing an innocent process to be killed.

There is an implicit rule that the sum of these numbers
of pages (e.g., from get_mm_rss) is at most totalpages,
so the additions never overflow. KINT’s automated anal-
yses are unaware of the rule and reports false errors for
these additions, although a programmer can add an ex-
plicit annotation to specify this invariant.

Whole-kernel report analysis. For the whole Linux ker-
nel, KINT reported 125,172 warnings in total. After fil-
tering for sensitive sinks, 999 are related to memory al-
location sizes, 741 of which are derived from untrusted
inputs.

We conducted two bug review “marathons” to inspect
reports related to allocation sizes in detail. The first in-
spection was in November 2011: one author applied an
early version of KINT to Linux kernel 3.1, spent 12 hours
inspecting 97 bug reports and discovered the first batch
of 6 exploitable bugs. The 97 reports were selected by
manually matching function names that contained “ioctl,”
since range and taint analyses were not yet implemented.

The second inspection was in April 2012: another au-
thor applied KINT to Linux kernel 3.4-rc1, spent 5 hours
inspecting 741 bug reports, and found 11 exploitable bugs.
All these bugs have been confirmed by Linux kernel de-
velopers, and the corresponding patches we submitted
have been accepted into the Linux kernel. This shows that
KINT’s taint-based classification strategy is effective in
helping users focus on high-risk warnings.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 175

Single module analysis. To understand in detail the
sources of false errors that KINT reports, and how many
annotations are required to eliminate all false errors (as-
suming developers were to regularly run KINT against
their source code), we examined every error report for
a single Linux kernel module, the Unix domain sockets
implementation. We chose it because its code is mature
and we expected all the reports to be false errors (although
we ended up finding one real error).

Initially, KINT generated 43 reports for this module.
We found that all but one of the reports were false errors.
To eliminate the false reports, we added 23 annotations;
about half of them apply to common Linux headers, and
thus are reusable by other modules. We describe a few
representative annotations next.

The ranges of five variables are determined by a com-
putation. Consider the following example:

static u32 ordernum = 1 __range(0, 0xFFFFF);
...
ordernum = (ordernum+1)&0xFFFFF;

Since the result is masked with 0xFFFFF, the value
of ordernum is up to the mask value. We specified
this range using the annotation __range(min,max) as
shown. We used this same annotation to specify the
ranges of two structure fields that have ranges de-
fined by existing macros, to specify the lower bound
for struct sock’s sk_sndbuf, and to specify the upper
bound of struct sk_buff’s len. In one case of a ref-
erence counter (struct dentry’s d_count), we are not
certain whether it is possible for an adversary to overflow
its value. Using __range we specified a “workaround”
range to suppress related warnings.

For ranges that cannot be represented by constant in-
tegers on structure fields or variables, we added assump-
tions using a special function kint_assume, similar to
KLEE [7]. An example use is as follows:

int skb_tailroom(const struct sk_buff *skb)
{

kint_assume(skb->end >= skb->tail);
return skb_is_nonlinear(skb)

? 0 : skb->end - skb->tail;
}

Some of these annotations could be inferred by a better
global analysis, such as an extension of our range analysis.
However, many annotations involve complex reasoning
about the total number of objects that may exist at once,
or about relationships between many objects in the sys-
tem. These invariants are likely to require programmer
annotations even with a better tool.

6.4 Performance
To measure the running time of KINT, we ran KINT
against the source code of Linux kernel 3.4-rc1, with
all modules enabled. We set the timeout for each query to

Technique Time (s) Queries Reports

Strawman (§6.5) 834 770,445 231,003
+ Observability (§5.4.1) 801 738,723 201,026
+ Code rewriting (§5.4.2) 584 408,880 168,883
+ Range analysis (§5.5) 1,124 420,742 125,172
+ Taint analysis (§5.6) 2,238 420,742 85,017

Figure 17: Effectiveness of techniques in KINT, enabling each of them
one by one in order. The time is for constraint generation and solving
only. The compilation time is 33 minutes for all techniques. Range and
taint analyses themselves take additional 87 minutes, if enabled.

the constraint solver to 1 second. KINT analyzed 8,916
files within roughly 160 minutes: 33 minutes for compila-
tion using Clang, 87 minutes for range and taint analyses,
and 37 minutes for generating constraints and solving
420,742 queries, of which 3,944 (0.94%) queries timed
out. The running time for other analyses was negligible.
The results show that KINT can analyze a large system in
a reasonable amount of time.

6.5 Technique effectiveness
To evaluate the effectiveness of KINT’s techniques, we
measured the running time, the total number of queries,
and the number of error reports for different configura-
tions of KINT when analyzing the Linux kernel. We
start with a strawman design which generates a constraint
for each integer expression as shown in Figure 11, feeds
this constraint (combined with the path constraint) to the
solver, and reports any satisfiable constraints as errors.
We then evaluate KINT’s techniques by adding them one
at a time to this strawman: observability-based bounds
checking (§5.4.1), code rewriting (§5.4.2), range analy-
sis (§5.5), and taint analysis (§5.6), using the annotations
described in §5.2 and discarding reports with no source
or sink classifications.

Figure 17 shows the results, which suggest that all of
KINT’s techniques are important for analyzing a large
system such as the Linux kernel.

7 NaN integer semantics
§3 shows that writing correct overflow checks is tricky
and error-prone, yet KINT generates many error reports,
which makes it difficult for programmers to examine every
one of them to ensure that no integer overflows remain.
To help programmers nonetheless write correct code, we
propose a new integer family with NaN (not-a-number)
semantics: once an integer goes out of bounds, its value
enters and stays in a special NaN state.

We demonstrate the use of NaN integers using an ex-
ample from the Linux perf tools, which contains the two
verbose overflow checks, as shown in Figure 18. Be-
fore this correct version, the developers proposed three
incorrect checks [31], as we discussed in §3.3.2.



176 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

size_t symsz = /* input */;
size_t nr_events = /* input */;
size_t histsz, totalsz;
if (symsz > (SIZE_MAX - sizeof(struct hist))

/ sizeof(u64))
return -1;

histsz = sizeof(struct hist) + symsz * sizeof(u64);
if (histsz > (SIZE_MAX - sizeof(void *))

/ nr_events)
return -1;

totalsz = sizeof(void *) + nr_events * histsz;
void *p = malloc(totalsz);
if (p == NULL)

return -1;

Figure 18: Preventing integer overflows using manual checks, which
are verbose and error-prone [31].

nan size_t symsz = /* input */;
nan size_t nr_events = /* input */;
nan size_t histsz, totalsz;
histsz = sizeof(struct hist) + symsz * sizeof(u64);
totalsz = sizeof(void *) + nr_events * histsz;
void *p = malloc(totalsz);
if (p == NULL)

return -1;

Figure 19: Preventing integer overflows using NaN integers (see Fig-
ure 18 for a comparison).

With NaN integers, the developers can simplify this
code by declaring the appropriate variables using type
nan size_t and removing the overflow checks, as in Fig-
ure 19. If any computation overflows, totalsz will be in
the NaN state. To catch allocation sizes that are in the
NaN state, we modify malloc as follows:

void *malloc(nan size_t size)
{

if (isnan(size))
return NULL;

return libc_malloc((size_t) size);
}

The modified malloc takes a nan size_t as an argument
and uses the built-in function isnan(x) to test if the argu-
ment is in the NaN state. If so, malloc returns NULL.

To help programmers insert checks for the NaN state,
the type conversion rules for NaN integers are as follows:

• An integer of type T will be automatically promoted
to nan T when used with an integer of type nan T .

• The resulting type of an arithmetic or comparison op-
eration with operands of type nan T is also nan T .

• An integer of type nan T can be converted to T only
with an explicit cast.

We implemented NaN integers by modifying the Clang
compiler. The compiler inserts overflow checks for every
arithmetic, conversion, and comparison operation of type
nan T , and sets the result to NaN if any source operand
is in the NaN state, or if the result went out of bounds;
otherwise the operation follows standard C rules. Cur-
rently we support only unsigned NaN integers. We chose

w/o malloc w/ malloc

No check 3.00±0.01 79.03±0.01
Manual check 24.01±0.01 104.04±0.03
NaN integer check 4.05±0.17 82.03±0.05

Figure 20: Performance overhead of checking for overflow in x×u y
using a manual check (x != 0 && y > SIZE_MAX / x) and using NaN
integers, with and without a malloc call using the result, in cycles per
operation over 106 back-to-back operations, averaged over 1,000 runs.

the maximum value 2n −1 to represent the NaN state for
n-bit unsigned integers; isnan(x) simply compares x with
the maximum value. This choice requires programmers
to not store 2n −1 in a NaN integer.

The runtime overhead of NaN integers is low, since the
compiler generates efficient overflow detection instruc-
tions for these checks. On x86, for example, the compiler
inserts one jno instruction after the multiplication, which
jumps in case of no overflow.

We compare the cost of a single multiplication x×u y, as
well as a multiplication followed by a malloc call, in three
scenarios: with no overflow check, with a manual over-
flow check using (x != 0 && y > SIZE_MAX / x), and
with an overflow check using NaN integers. Figure 20
shows the results. With a single multiplication, overflow
checking using NaN integers adds 1–3 cycles on average,
and manual overflow checking adds 21–25 cycles. Given
the negligible overhead, we believe that it is practical to
replace manual overflow checks with NaN integers.

8 Conclusion
This paper describes the design and implementation of
KINT, a tool that uses scalable static analysis to iden-
tify integer errors. It aided in fixing more than 100 in-
teger errors in the Linux kernel, the lighttpd web server,
and OpenSSH. KINT introduces several automated and
programmer-driven techniques that help reduce the num-
ber of false error reports. The error reports highlight that a
common integer error is unanticipated integer wraparound
caused by values from untrusted inputs, and this paper
also proposes NaN integers to mitigate this problem in
the future. All KINT source code is publicly available at
http://pdos.csail.mit.edu/kint/.

Acknowledgments
We thank Jon Howell, Robert Morris, Yannick Moy, Ar-
mando Solar-Lezama, the anonymous reviewers, and our
shepherd, Tim Harris, for their feedback. Fan Long
helped implement an earlier version of range analysis.
The Linux kernel, lighttpd, and OpenSSH developers re-
viewed our bugs reports and patches. This research was
supported by the DARPA CRASH program (#N66001-
10-2-4089). Zhihao Jia was supported by the National
Basic Research Program of China Grant 2011CBA00300
and NSFC 61033001.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 177

References
[1] Common vulnerabilities and exposures (CVE). http://cve.
mitre.org/.

[2] ext4: fixpoint divide exception at ext4_fill_super. Bug 14287,
Linux kernel, 2009. https://bugzilla.kernel.org/show_
bug.cgi?id=14287.

[3] K. Ashcraft and D. Engler. Using programmer-written compiler
extensions to catch security holes. In Proceedings of the 23rd IEEE
Symposium on Security and Privacy, pages 143–159, Oakland,
CA, May 2002.

[4] D. Brumley, T. Chiueh, and R. Johnson. RICH: Automatically pro-
tecting against integer-based vulnerabilities. In Proceedings of the
14th Annual Network and Distributed System Security Symposium,
San Diego, CA, Feb–Mar 2007.

[5] R. Brummayer. Efficient SMT Solving for Bit-Vectors and the
Extensional Theory of Arrays. PhD thesis, Johannes Kepler Uni-
versity, Linz, Austria, Nov 2009.

[6] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for
finding dynamic programming errors. Software—Practice and
Experience, 30(7):775–802, 2000.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation, San Diego, CA, Dec 2008.

[8] E. N. Ceesay, J. Zhou, M. Gertz, K. Levitt, and M. Bishop. Using
type qualifiers to analyze untrusted integers and detecting security
flaws in C programs. In Proceedings of the 3rd GI/IEEE SIG
SIDAR Conference on Detection of Intrusions & Malware, and
Vulnerability Assessment, pages 1–16, Berlin, Germany, Jul 2006.

[9] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the 2nd Asia-Pacific Work-
shop on Systems, Shanghai, China, Jul 2011.

[10] P. Chen, H. Han, Y. Wang, X. Shen, X. Yin, B. Mao, and L. Xie.
IntFinder: Automatically detecting integer bugs in x86 binary
program. In Proceedings of the 11th International Conference
on Information and Communications Security, pages 336–345,
Beijing, China, Dec 2009.

[11] R. Chinchani, A. Iyer, B. Jayaraman, and S. Upadhyaya.
ARCHERR: Runtime environment driven program safety. In
Proceedings of the 9th European Symposium on Research in Com-
puter Security, pages 385–406, Sophia Antipolis, France, Sep
2004.

[12] S. Christey and R. A. Martin. Vulnerability Type Distribu-
tions in CVE, May 2007. http://cve.mitre.org/docs/
vuln-trends/vuln-trends.pdf.

[13] D. Crocker. Verifying absence of integer overflow, Jun
2010. http://critical.eschertech.com/2010/06/07/
verifying-absence-of-integer-overflow/.

[14] R. B. Dannenberg, W. Dormann, D. Keaton, T. Plum, R. C. Sea-
cord, D. Svoboda, A. Volkovitsky, and T. Wilson. As-if infinitely
ranged integer model. In Proceedings of the 21st IEEE Inter-
national Symposium on Software Reliability Engineering, pages
91–100, San Jose, CA, Nov 2010.

[15] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer
overflow in C/C++. In Proceedings of the 34th International
Conference on Software Engineering, Zurich, Switzerland, Jun
2012.

[16] D. Evans, J. V. Guttag, J. J. Horning, and Y. M. Tan. LCLint:
A tool for using specifications to check code. In Proceedings of
the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 87–96, New Orleans, LA, Dec 1994.

[17] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord.
Ranged integers for the C programming language. Technical Note
CMU/SEI-2007-TN-027, Carnegie Mellon University, 2007.

[18] W. H. Harrison. Compiler analysis of the value ranges for variables.
IEEE Transactions on Software Engineering, SE-3(3):243–250,
May 1977.

[19] O. Horovitz. Big loop integer protection. Phrack, 9(60), 2002.
[20] Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 1: Basic Architecture. Intel, 2011.
[21] ISO/IEC 9899:2011, Programming languages — C. ISO/IEC,

2011.
[22] D. LeBlanc. Integer handling with the C++ SafeInt class. http:

//msdn.microsoft.com/en-us/library/ms972705, 2004.
[23] V. B. Livshits and M. S. Lam. Tracking pointers with path and

context sensitivity for bug detection in C programs. In Proceedings
of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 317–326, Helsinki, Finland, Sep 2003.

[24] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded model checking
of C and C++ programs using a compiler IR. In Proceedings of
the 4th International Conference on Verified Software: Theories,
Tools, and Experiments, Philadelphia, PA, Jan 2012.

[25] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test generation
to find integer bugs in x86 binary Linux programs. In Proceedings
of the 18th USENIX Security Symposium, pages 67–81, Montreal,
Canada, Aug 2009.

[26] Y. Moy. Automatic Modular Static Safety Checking for C Pro-
grams. PhD thesis, Université Paris-Sud, Orsay, France, Jan 2009.

[27] Y. Moy, N. Bjørner, and D. Sielaff. Modular bug-finding for integer
overflows in the large: Sound, efficient, bit-precise static analysis.
Technical Report MSR-TR-2009-57, Microsoft Research, 2009.

[28] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[29] E. Revfy. Inside the size overflow plugin. http://forums.
grsecurity.net/viewtopic.php?f=7&t=3043, Aug 2012.

[30] D. Sarkar, M. Jagannathan, J. Thiagarajan, and R. Venkatapathy.
Flow-insensitive static analysis for detecting integer anomalies
in programs. Technical Report MSR-TR-2006-44, Microsoft Re-
search, 2006.

[31] C. Schafer. [PATCH v3] perf: prevent overflow in size calculation.
https://lkml.org/lkml/2012/7/19/507, Jul 2012.

[32] R. C. Seacord. The CERT C Secure Coding Standard. Addison-
Wesley Professional, 2008.

[33] R. A. van Engelen. Efficient symbolic analysis for optimizing
compilers. In Proceedings of the 10th International Conference
on Compiler Construction, pages 118–132, Genova, Italy, Apr
2001.

[34] T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically
detecting integer overflow vulnerability in x86 binary using sym-
bolic execution. In Proceedings of the 16th Annual Network
and Distributed System Security Symposium, San Diego, CA, Feb
2007.

[35] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Undefined behavior: What happened to my code? In
Proceedings of the 3rd ACM SIGOPS Asia-Pacific Workshop on
Systems, Seoul, South Korea, Jul 2012.

[36] R. Wojtczuk. UQBTng: A tool capable of automatically finding
integer overflows in Win32 binaries. In Proceedings of the 22nd
Chaos Communication Congress, Berlin, Germany, Dec 2005.

[37] Y. Xie and A. Aiken. Scalable error detection using Boolean
satisfiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 351–
363, Long Beach, CA, Jan 2005.

[38] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou. IntPatch: Auto-
matically fix integer-overflow-to-buffer-overflow vulnerability at
compile-time. In Proceedings of the 15th European Symposium
on Research in Computer Security, pages 71–86, Athens, Greece,
Sep 2010.





USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 179

Dissent in Numbers: Making Strong Anonymity Scale

David Isaac Wolinsky, Henry Corrigan-Gibbs, and Bryan Ford

Yale University

Aaron Johnson

U.S. Naval Research Laboratory

Abstract

Current anonymous communication systems make a

trade-off between weak anonymity among many nodes,

via onion routing, and strong anonymity among few

nodes, via DC-nets. We develop novel techniques in Dis-

sent, a practical group anonymity system, to increase by

over two orders of magnitude the scalability of strong,

traffic analysis resistant approaches. Dissent derives its

scalability from a client/server architecture, in which

many unreliable clients depend on a smaller and more

robust, but administratively decentralized, set of servers.

Clients trust only that at least one server in the set is hon-

est, but need not know or choose which server to trust.

Unlike the quadratic costs of prior peer-to-peer DC-nets

schemes, Dissent’s client/server design makes communi-

cation and processing costs linear in the number of clients,

and hence in anonymity set size. Further, Dissent’s servers

can unilaterally ensure progress, even if clients respond

slowly or disconnect at arbitrary times, ensuring robust-

ness against client churn, tail latencies, and DoS attacks.

On DeterLab, Dissent scales to 5,000 online participants

with latencies as low as 600 milliseconds for 600-client

groups. An anonymous Web browsing application also

shows that Dissent’s performance suffices for interactive

communication within smaller local-area groups.

1 Introduction

Anonymous communication is a fundamental component

of democratic culture and critical to freedom of speech [5,

40,56,57,59], as an AAAS conference in 1997 concluded:

“Anonymous Communication Should Be Re-

garded as a Strong Human Right; In the United

States It Is Also a Constitutional Right” [56]

The Arab Spring underscored the importance of this

right, as organizers used pseudonymous Facebook and

Twitter accounts to coordinate protests [46], despite vi-

olating those sites’ Terms of Service and risking ac-

count closure [48]. Authoritarian states routinely monitor

and censor Internet communication [22]: though citizens

may risk “slap-on-the-wrist” punishments like blocking or

throttling if detected to be using anonymity or circumven-

tion tools [24,25,50,62], users discussing the wrong topic

without protecting their identity risk jail or worse.

Even in countries with strong free speech traditions,

anonymity can protect minority groups from discrimina-

tion [53]. Increasingly pervasive, profit-motivated track-

ing practices [51] have made communication linkability

a widespread privacy concern [30]. Finally, anonymity

plays other well-established roles in modern societies,

such as in voting [2, 19, 44] and auctions [52].

Anonymous relay tools such as Tor [26] offer the

strongest practical identity protection currently available,

but exhibit several classes of weaknesses. First, relay sys-

tems are vulnerable to traffic analysis [6,13,37,43,45]. A

state-controlled ISP, for example, who can monitor both

a user’s “first-hop” link to Tor and the “last-hop” link

from Tor to the user’s communication partner, can cor-

relate packets to de-anonymize flows [43]. Second, ac-

tive disruption attacks can not only “deny service” but

de-anonymize flows as well [6, 10]. Third, independent

of the underlying anonymity protocols in use, widely-

deployed tools often fail to isolate anonymous from

non-anonymous communication state adequately, causing

application-layer identity leaks via third-party browser

plug-ins for example [1, 9, 17, 27].

As a step toward stronger anonymity and tracking pro-

tection we offer Dissent, a practical anonymous group

group communication system resistant to traffic analy-

sis. Dissent builds on and derives its strength from dining

cryptographers or DC-nets [14, 36] and verifiable shuf-

fles [11, 32, 44]. Prior systems to adopt these techniques,

such as Herbivore [35, 49] and an earlier version of Dis-

sent [20], demonstrated usability for anonymity sets only

up to 40–50 participants, due to challenges in scaling and

handling network dynamics. This paper improves the scal-

ability of these strong anonymity techniques by at least

two orders of magnitude, substantially narrowing the gap

compared with relaying approaches [18, 21, 26, 38, 42].

Dissent derives scalability from an anytrust architec-

ture [60]. A Dissent group consists of a potentially large

set of client nodes representing users, and a smaller set of

servers, facilitators of anonymous communication. Each

client trusts that at least any one server will behave hon-

1



180 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

estly and not collude with the others against it, but the

client need not know or choose which server to trust.

While anytrust is not a new idea, Dissent rethinks DC-nets

communication [14] around this model by sharing secret

“coins” only between client/server pairs rather than be-

tween all node pairs, yielding a novel, practical and scal-

able system design. This design reduces clients’ computa-

tion and communication burdens, and crucially in practi-

cal networks, decouples a group’s overall communication

performance from long “tail latencies” caused by slow,

abruptly disconnected, or disruptive clients.

A Dissent prototype demonstrates usability on De-

terLab with anonymity sets of over 5,000 members—

over two orders of magnitude larger than anonymity sets

demonstrated in comparable prior systems [20,35,49]. We

expect Dissent to scale further with better optimization.

Although this paper’s primary contribution is to show

that strong anonymity can scale, Dissent also addresses

certain disruption and information leakage vulnerabili-

ties. In Tor and prior DC-nets schemes, an adversary who

controls many nodes can anonymously disrupt partially-

compromised circuits to increase the chance of com-

plete compromise as circuits or groups re-form [10].

Dissent closes this vector with an accusation mecha-

nism adapted to its anytrust network model, enabling a

partially-compromised group to identify and expel disrup-

tors without re-forming from scratch.

In local-area settings with low delay and ample

bandwidth, Dissent can be used for anonymous in-

teractive browsing with performance comparable to

Tor. In this context Dissent can offer a strong local-

area anonymity set complementing Tor’s larger-scale

but weaker anonymity. Dissent addresses an impor-

tant class of anonymous browsing vulnerabilities, due

to application-level information leaks [1, 9, 27], by

confining the complete browser used for anonymous

communication—including plug-ins, cookies, and other

state—in a virtual machine (VM) that has no access to

non-anonymous user state, and which has network access

only via Dissent’s anonymizing protocols.

Dissent has many limitations and does not yet ad-

dress other weaknesses, such as long-term intersection at-

tacks [39]. As a step toward stronger practical anonymity,

however, this paper makes the following contributions:

1. An existence proof that traffic analysis resistant

anonymity is feasible among thousands of participants.

2. A client/server design for DC-nets communication that

tolerates slow or abruptly disconnecting clients.

3. A accusation mechanism offering disruption resistance

in large-scale, low-latency DC-nets designs.

4. A VM-based browsing architecture enforcing a sepa-

ration between anonymous and non-anonymous state.

5. Experiments demonstrating Dissent’s usability in

wide-area messaging applications, local-area interac-

tive anonymity groups, and as a complement to Tor.

Section 2 of this paper describes Dissent’s goals and

how they relate to previous work. Section 3 presents Dis-

sent’s architecture. In Section 4, we overview our pro-

totype, deployment models, and experiences. Section 5

presents the results of our experiments. We conclude with

a summary of the paper’s accomplishments.

2 Background and Related Work

This section outlines the state of the art in both practical

anonymity systems and theoretical protocols, with a focus

on the key security weaknesses that Dissent addresses.

2.1 Practical Anonymity on the Internet

Users can set “Do Not Track” flags [30] asking web sites

not to track them. This advisory mechanisms asks the fox

to guard the henhouse, however, relying on honest behav-

ior from the web site and all network intermediaries. Even

granted the force of law, such requests may be ignored by

web sites in “grey markets” or foreign jurisdictions, just

as today’s anti-spam laws are ignored and circumvented.

For active protection against tracking or identification,

centralized relay services such as Anonymizer [4] offer

convenience but limited security, since one compromised

server—or one subpoena—can break a user’s anonymity.

Users can create accounts under false names on popular

services such as Facebook and Google+, but risk account

loss due to Terms of Service violations—often for dubious

reasons [48]—and may still be traceable by IP address.

For stronger protection without a single point of fail-

ure, decentralized relay networks [18, 21, 26, 38, 42]

have proven practical and scalable. Relaying generally

trades convenience against security, however, with some

caveats [54]. Mixminion [21] forwards E-mail through a

series of relays, delaying and batching messages at each

hop to offer some traffic analysis protection. Tor [26], in

contrast, consciously sacrifices traffic analysis protection

to achieve low latencies for interactive Web browsing.

2.2 Anonymity Sets: Size versus Strength

The convenience that “weaker” systems such as Tor of-

fer users may paradoxically give them a security advan-

tage over “stronger” but less convenient systems such as

Mixminion, because convenience attracts more users and

thus yields much larger effective anonymity sets for their

users to hide in. Tor only offers these large anonymity sets,

however, provided the attacker is not capable of traffic

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 181

analysis—likely a reasonable assumption when Tor was

designed. In today’s more diverse global Internet, how-

ever, the adversary from whom users need identity pro-

tection may often be a national ISP controlled by an au-

thoritarian state. Such an adversary realistically can mon-

itor and “fingerprint” the traffic patterns of users and web

sites en masse, completely de-anonymizing Tor flows that

start and end within the same state. More recent traffic

analysis attacks [6,13,37,45] further accentuate this class

of vulnerabilities. Thus, Tor may informally be viewed as

offering a potentially large but weak anonymity set.

Two other approaches to anonymity theoretically of-

fer security even against traffic analysis: verifiable shuf-

fles [11, 32, 44], and “dining cryptographers” or DC-

nets [14, 36, 58]. Communication and computation costs

have in practice limited these methods to small anonymity

sets, however. Herbivore [35, 49] supports mass partici-

pation by securely dividing large networks into smaller

DC-nets groups, but guarantees each node anonymity only

within its own group, showing scalability only to 40-node

groups. The first version of Dissent [20] focused on ac-

countability rather than scalability, combining verifiable

shuffles with DC-nets to prevent anonymous disruption,

but scaled only to 44-node groups. These techniques thus

have so far offered strong but small anonymity sets.

Today’s anonymity techniques thus present even well-

informed users with a security conundrum: to use a tool

like Tor that under favorable conditions hides them among

tens of thousands of others, but under unfavorable condi-

tions may not hide them at all; or to use a tool that can of-

fer only a small anonymity set but with higher confidence.

Dissent’s goal is to alleviate this conundrum.

3 Dissent Architecture

This section first summarizes DC-nets, then details how

Dissent achieves scalability and resilience to slow or un-

reliable clients. It finally outlines how Dissent traces dis-

ruptors and schedules rounds, and current limitations.

3.1 DC-nets Overview and Challenges

In classic DC-nets [14], one anonymous sender in a group

wishes to share a message with fellow group members. To

exchange a 1-bit message, every member shares a secret

random coin with each of the other N−1 members. Every

pair together first flips their shared coin, agreeing on the

outcome. Then each member individually XORs together

the values of all the coins he shares, while the anonymous

sender additionally XORs in his 1-bit message, to pro-

duce the member’s ciphertext. Finally, all members broad-

cast their ciphertexts to each other. Since each coin is

XORed into exactly two members’ ciphertexts, all shared

coins cancel, revealing the anonymous sender’s message

without revealing who sent it. For longer messages, the

group uses multiple coin flips—in practice, cryptographic

pseudo-random number generators (PRNGs) seeded by

pairwise shared secrets.

Practical implementations of this conceptually simple

design face four key challenges: scheduling, disruption,

scalability, and network churn. First, since DC-nets yield

an Ethernet-like broadcast channel, in which only one

member can transmit anonymously in each bit-time with-

out colliding and yielding garbled output, an arbitration

or scheduling mechanism is needed. Second, any misbe-

having member can anonymously disrupt or “jam” the

channel simply by transmitting random bits all the time.

Dissent builds on and extends several prior approaches to

address these challenges [20, 36, 58].

The third challenge directly limits scalability. Every

member normally shares coins (or keys) with every other

member, so each node must compute and combine O(N)
coins for every bit of shared channel bandwidth. Comput-

ing ciphertexts via modular arithmetic instead of XORed

bits [36] can address this issue asymptotically, but at a

large constant-factor cost. Communication cost can also

limit scalability if every node broadcasts its ciphertext to

every other. In Herbivore [35, 49] a single node collects

and combines ciphertexts for efficiency, but this leader-

centric design offers no reliable way to identify anony-

mous disruptors without re-forming the group, leaving

groups vulnerable to DoS attacks against anonymity [10].

The fourth challenge, network churn, indirectly lim-

its scalability in practice. As each member shares a coin

with every other, a round’s output is indecipherable un-

til all members submit their ciphertexts. Thus, one slow

member delays the entire group’s progress. If any mem-

ber disconnects during a round, all other members must

recompute and rebroadcast their ciphertexts anew. Beyond

“normal-case” churn, an adversary who controls f group

members can take them offline one one at a time to force

a communication round to timeout and restart f times in

succession. Threshold cryptography can address this issue

in non-interactive scenarios [36], but may be too heavy-

weight for interactive communication.

3.2 Design and Deployment Assumptions

Dissent assumes a cloud-like multi-provider deployment

model illustrated in Figure 1, similar to the model as-

sumed in COR [38]. A Dissent group consists of a pos-

sibly large number of client nodes representing individ-

ual users desiring anonymity within the group, supported

by a small number of reliable and well-provisioned cloud

of servers. We assume each server is run by a respected,

technically competent, and administratively independent

3



182 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 1: Dissent’s multi-provider anytrust cloud model

anonymity service provider. We envision several commer-

cial or non-profit organizations each deploying a cluster of

Dissent servers to support groups, as either a for-profit or

donation-funded community service.

For anonymity and other security properties Dissent re-

lies on an anytrust assumption [60]. Clients need not rely

on all or even particular providers or their servers being

honest. Instead, each client trusts only that there exists at

least one provider—any provider—who is honest, tech-

nically competent, and uncompromised. Clients need not

know or guess which provider’s server is the most trust-

worthy. Later sections detail how Dissent’s design relies

on this assumption to achieve scalability.

This paper focuses on the operation of a single group—

which forms an anonymity set from a user’s perspective—

and leaves out of scope most details of how groups are

formed or subsequently administered, how providers de-

ploy their services or scale to support many groups, etc.

As a simple group formation mechanism we have pro-

totyped, an individual creates a file containing a list of

public keys—one for each server (provider) and one for

each client (group member)—then distributes this group

definition file to the clients and servers. A cryptographic

hash of this group definition file thereafter serves as a

self-certifying identifier for the group [31], avoiding mem-

bership consensus and PKI issues at the cost of making

the group’s composition static. The group formation tech-

niques explored in Herbivore [35,49] could offer comple-

mentary methods of forming Dissent groups dynamically.

3.3 Dissent Protocol Outline

To initiate communication, a group’s servers periodically

run a scheduling process described later in Section 3.10.

This process yields a list of pseudonym keypairs, one for

each participating client. All nodes know and agree on the

list of public keys and their order, and each client knows

the private key for its slot in the DC-net defined by the

ordered list of pseudonym keypairs, but neither clients

nor servers know which clients hold which other slots.

This list schedules subsequent DC-nets rounds as shown

in Figure 2, and enables the protocol to offer accountabil-

ity as described later in Section 3.9.

Figure 2: DC-nets scheduling via a verifiable shuffle

After setup, group members commence a continuous

series of rounds. Each round allows the owner of each

slot to transmit one or more bits anonymously, as defined

by the schedule and information from prior rounds. Dur-

ing a round, each client first generates M pseudo-random

strings, each based on a secret key he shares with each

of the M servers, and XORs these strings together. To

send a message, the client additionally XORs his clear-

text message into the bit positions corresponding to his

anonymous transmission slot. The client then transmits

his ciphertexts to one or more servers, then waits.

The servers collect as many client ciphertexts as possi-

ble within a time window. At the end of this window, the

servers exchange with each other the list of clients whose

ciphertexts they have received. Each server then computes

one pseudo-random string for each client that submitted a

ciphertext, using the secret shared with that client. The

server XORs these strings, together with with the client

ciphertexts the server received, to form the server’s ci-

phertext (Figure 3). The servers then distribute their ci-

phertexts among themselves. Upon collecting all server

ciphertexts, each server XORs them to reveal the clients’

cleartexts, and distributes the cleartexts to the clients con-

nected to them, completing one DC-net round. Successive

DC-net rounds ensue.

The rest of this section describes Dissent’s client and

server protocols, summarized in Algorithms 1 and 2, re-

spectively, and in Figure 4. All network messages are

signed to ensure integrity and accountability, but we omit

these signatures to simplify presentation.

3.4 Secret Sharing in the Anytrust Model

The key to Dissent’s scalability and resilience to churn is

its client/server secret-sharing graph. Unlike the “all-to-

all” secret-sharing graph in most DC-nets designs, Dissent

shares secrets only between all client/server pairs.

As formalized by Chaum [14], the anonymity set an

honest node obtains via DC-nets consists of the node’s

connected component in the secret-sharing graph, after

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 183

Figure 3: Dissent round structure. Each client-server pair

shares a secret pseudo-random string si,j . Client D anony-

mously transmits a message in slot 1 and client A anony-

mously transmits a message in slot 3. Servers do not XOR

in the strings for offline client C.

removing dishonest nodes and their incident edges from

the graph. A sparser secret-sharing graph thus reduces a

node’s anonymity, compared with the ideal anonymity set

consisting of all honest nodes, if and only if the dishonest

nodes partition the honest nodes into multiple connected

components. Because each Dissent client shares a secret

with each server, the honest nodes remain connected—

yielding an ideal anonymity set—if and only if there is

at least one honest server. This is precisely what Dis-

sent’s anytrust model assumes. The downside is that if all

servers maliciously collude, clients obtain no anonymity.

A direct benefit of Dissent’s client/server secret-sharing

is that clients enjoy a lighter computational load dur-

ing exchanges. Each client shares secrets with only the

M ≪ N servers, thus clients need only compute M

pseudo-random bits for each effective bit of DC-net chan-

nel bandwidth. Each of the servers must compute N

pseudo-random bits per cleartext bit, as in traditional DC-

nets, but these computations are parallelizable, and Dis-

sent assumes that the servers are provisioned with enough

computing capacity to handle this load. Just as important

in practice, however, are the model’s indirect benefits to

network communication and resiliency, detailed next.

3.5 Optimizing Network Communication

Dissent leverages its client/server architecture to reduce

network communication overhead. In conventional DC-

Algorithm 1 Dissent Client DC-net Protocol

1. Scheduling: Each client i creates a fresh secret

pseudonym key, kπ(i), then encrypts and submits it to

a key-shuffle protocol, which permutes and decrypts

all clients’ keys, giving client i a secret permutation

slot π(i) unknown to all other nodes. A well-known

scheduling function S(r, π(i),H) determines the set

of bit-positions client i owns in each subsequent DC-

nets round r, after a history H of prior round outputs.

2. Submission: Each client i forms a cleartext message

mi containing arbitrary data in the bit-positions i owns

according to S(r, π(i),H), and zero elsewhere. From

secrets Kij that client i shares with each server j, i

computes pseudo-random strings cij = PRNG(Kij).
Client i then XORs these strings with message mi to

produce ciphertext ci = m⊕ ci1 ⊕ · · · ⊕ ciM , which i

signs and transmits to one or more servers.

3. Output: Each client i waits for a message from any

server containing round r’s cleartext output signed by

all servers: (r, �m, �sig). Client i verifies all servers’ sig-

natures, extracts the messages in all slots, then pro-

ceeds to round r + 1 by repeating from step 2.

nets, all nodes broadcast messages to all other nodes. Dis-

sent reduces the number of communication channels by a

factor of N by organizing clients and servers into a two-

level hierarchy. Clients communicate with only a single

server, and servers communicate with all other servers.

This optimization does not make a client’s anonymity

dependent on the particular server it chooses to con-

nect to, because anonymity depends on the secret-sharing

graph described above and not on physical communi-

cation topology. Since each client shares a secret with

all servers, even if a client’s directly upstream server is

malicious, that server cannot decode the client’s anony-

mous transmissions except with the cooperation of all

the servers, including the honest one we assume exists.

A server can DoS-attack an attached client by persis-

tently dropping its submitted ciphertexts, but the client

will recognize such an attack from the absence of its clear-

texts in the group’s output—which all servers must sign—

signaling the client to switch to a different server.

To reduce communication costs further, servers lo-

cally combine their pseudo-random strings with their

clients’ ciphertexts. Servers thus avoid forwarding indi-

vidual client ciphertexts to other servers, reducing total

communication complexity from O(N2) to O(N +M
2)

when M ≪ N . Related optimizations reduce the num-

ber of signature verifications a client performs from O(N)

5



184 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Algorithm 2 Dissent Server DC-net Protocol

1. Submission: In each round r, each server j collects

ciphertexts ci from some clients i, until all of j’s

directly-connected clients have responded or the round

closure deadline has passed.

2. Inventory: Server j forms a list �lj of client identities

from whom j has received ciphertexts by the deadline,

then broadcasts this list to the other servers.

3. Commitment: Given all servers’ vectors lj , the

servers deterministically trim redundant entries for

clients who submitted ciphertexts to multiple servers,

yielding new lists l′j , then form a composite client list

l =
⋃

j l
′

j . If the round r participation count pr = |l|
is below a policy-defined fraction α of the previous

round’s participation count pr−1, the servers return to

step 1 and wait for more clients to submit ciphertexts.

Otherwise each server j computes pseudo-random

strings sij = PRNG(Kij) from the shared secrets Kij

of clients i ∈ l, and XORs these strings with the client

ciphertexts j received directly, forming server cipher-

text sj = (
⊕

i∈l sij)⊕(
⊕

i∈l′
j
cij). Server j computes

a commit Cj = HASH(sj) and sends Cj to all servers.

4. Combining: Upon receiving all other servers’ commit,

server j shares sj with the other servers.

5. Certification: The servers verify Cj = HASH(sj) for

all j, and form cleartext output �m =
⊕

j sj . Each

server j signs �m, and sends its sigj to all servers.

6. Output: Servers collect all signatures sigj into �sig,

then distribute (r, �m, �sig) to directly attached clients.

to O(M) and the number of messages clients must parse

from O(N) to O(1) (see Algorithm 1, steps 2, and 3).

3.6 Tolerating Network Churn

More important than reducing the computational load on

clients, Dissent’s client/server secret-sharing graph en-

ables the servers to collaborate to reduce the group’s vul-

nerability to client disconnection and churn, as well as

deliberate DoS attacks by malicious clients. In conven-

tional online DC-nets, if any member goes offline, all

other members must recompute and resend new cipher-

texts, omitting the PRNG stream they shared with the

failed member. The chance that a given round will have

to be “re-run” in this way increases dramatically as group

size and client churn increase.

Since Dissent clients share secrets only with the servers

and not with other clients, a client’s ciphertext is indepen-

dent of the online status of other clients. The servers can

therefore complete a messaging round even if some clients

Figure 4: Dissent DC-net protocol.

disconnect at arbitrary points during the round, or other-

wise fail to deliver their ciphertexts before a deadline. The

servers first collect those client ciphertexts that arrive in

time, then agree among each other on the complete set of

client ciphertexts available (the union of all servers’ client

ciphertext sets), and finally XOR these client ciphertexts

with the pseudo-random strings each server shares with

those clients to form the servers’ ciphertexts. Thus, client

delays or disconnections never require servers to inter-

act with clients iteratively within the same round, as they

would in standard DC-nets to obtain revised ciphertexts.

3.7 Participation and Anonymity Metrics

To ensure “strength in numbers,” users may wish to send

anonymous messages only when at least some number of

other group members are online and participating. Since

the servers know the set of clients who are online and

successfully deliver ciphertexts each round, the servers

publish a participation count for each round. A user who

judges this count to be too low can continue to participate

passively in the group but send only an empty (“null”)

message in each round until participation increases.

Servers can publish participation counts only for past

rounds, but clients can come and go at any time. A client

thus might decide to send a message on the basis of one

round’s high participation count, and submit a sensitive

message in the next round, only to discover after the round

completes that far fewer clients remained online or deliv-

ered their ciphertexts in time. A powerful adversary might

even start a DoS attack against many honest clients just as

a sensitive anonymous posting is anticipated, in hopes of

isolating and exposing the poster this way.

To address such risks, if the last round’s participation

count was P , the servers will not complete the next round

until at least αP clients submit ciphertexts, where 0 ≤
α ≤ 1 is a policy constant defined at group creation time.

If fewer than αP clients submit ciphertexts by the round’s

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 185

deadline, the servers keep waiting until at least αP clients

show up, or until a much longer hard timeout occurs. On

a hard timeout, the servers discard all clients’ ciphertexts,

report the round as failed, and publish a new participation

count on whose basis the clients make fresh decisions for

the next round. The fraction α thus limits the rate at which

participation may decrease unexpectedly round-to-round.

While Dissent can guarantee users that a sensitive mes-

sage will be posted only when participation is at some

threshold level, participation count unfortunately offers

only an estimate of anonymity set size. If some partici-

pants are dishonestly colluding with the adversary, a client

is anonymous only among the set of honest participants.

A group’s risk of infiltration of course depends on how it

is formed and managed. In our current approach where

a group is defined by a static list of public keys (Sec-

tion 3.2), the dishonest members are those whose pub-

lic keys the adversary manages to persuade the group

creator to include in the list at definition time, plus any

formerly-honest members who the adversary might com-

promise after group formation. Since users cannot ulti-

mately know how many of their peers may be “spies,” es-

timating anonymity necessarily remains subjective.

3.8 Eliminating Empty Slot Overhead

In typical blogging or chat applications we expect many

clients to be silent much of the time, sending null mes-

sages in most rounds and real messages only occasion-

ally. To optimize this common case, Dissent’s scheduling

scheme gives each client two slots: a one-bit request slot

and a variable-length message slot. Initially the message

slot is closed, with length 0. When a client sets its request

bit in round r, its message slot opens to a fixed size in

round r+1. The message slot includes a length field, with

which the client can adjust the slot’s length in subsequent

rounds: to send a larger message efficiently in round r+2,

for example, or to close its message slot back to length 0.

A dishonest member could DoS attack another client by

guessing when the victim will transmit and sending a 1 in

the victim’s request slot, cancelling the victim’s open re-

quest. To address such attacks, a client first sets its request

bit unconditionally, but if its slot fails to open, the client

randomizes its request bit in subsequent rounds, ensuring

success after t+ 1 rounds with probability 1− (12 )
t.

3.9 The Accusation Process

Dishonest members can disrupt DC-nets in general by

XORing non-zero bits into other members’ slots, cor-

rupting the victim’s cleartext. Earlier approaches to this

challenge used complex trap protocols [58], expensive

pairing-based cryptography [36], or required a costly

shuffle before every DC-nets round [20]. Herbivore [35]

mitigates the risk of disruption by limiting clique size and

the rate at which disruptors can join them, at the cost of

small anonymity sets and potentially increased vulnera-

bility when disruptors are common [10].

Dissent introduces a new accusation scheme that adds

little overhead in the absence of disruptors, but enables

the servers to identify and expel a persistent disruptor

quickly with high probability. The overall scheme oper-

ates in three stages. First, the victim of a disruption must

find a witness bit in some round’s DC-net output, which

we define as a bit that was 0 in the victim’s cleartext,

but which the disruptor flipped to a 1. Second, the victim

anonymously broadcasts an accusation, a message signed

with the victim’s pseudonym key identifying the witness

bit. Finally, the servers publish all PRNG outputs that con-

tributed to the client and server ciphertexts at the witness

bit position, using them to trace the client or server that

XORed an unmatched 1 bit into this position. The signed

accusation attests that the traced node must be a disruptor.

The first challenge is ensuring that a disruption victim

can find a witness bit. If a disruptor could predict the vic-

tim’s cleartext output—or discover it from other honest

nodes’ ciphertexts before computing its own ciphertext—

then the disruptor could avoid leaving witness bits by

flipping only 1 bits to 0 in the victim’s slot. To make

all cleartext bits unpredictable, clients apply a crypto-

graphic padding scheme analogous to OAEP [7]. The

client picks a random seed r, generates a one-time pad

s = PRNG{r}, XORs it with the original message m,

and transmits r||m⊕ s in the client’s message slot. Since

clients submit their ciphertexts before the servers compute

theirs, and the commitment phase in Algorithm 2 prevents

dishonest servers from learning honest servers’ cipher-

texts before computing their own, any disruptive bit-flip

has a 1/2 chance of producing a witness bit.

The second challenge is enabling the victim to trans-

mit its accusation: if it did so via DC-nets, the disruptor

could simply corrupt that transmission as well. To avoid

this catch-22, Dissent falls back on the less efficient but

disruption-resistant verifiable shuffle it uses for schedul-

ing. Each client’s DC-net message slot includes a k-bit

shuffle request field, which the client normally sets to 0.

When a disruption victim identifies a witness bit, it sets

its shuffle request field in subsequent rounds to a k-bit

random value. Any nonzero value signals the servers to

start an accusation shuffle, in which the victim transmits

its signed accusation. The disruptor may try to squash the

shuffle request, but succeeds with at most 1−( 12 )
k chance,

and the victim simply retries until it succeeds.

The final challenge is tracing the actual disruptor. An

accusation consists of the round number in which the dis-

7



186 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ruption occurred, a slot index π(i), and the index k of a

bit the disruptor flipped from 0 to 1 in this slot, all signed

by the slot owner’s pseudonym key, k′
π(i). On receiving

an accusation, the servers verify its signature, and check

that the indicated bit was indeed output as 1. The servers

then recompute and exchange all the individual PRNG

bits that the clients and servers should have XORed to-

gether to compute their ciphertexts: cij [k] in Algorithm 1

and sij [k] in Algorithm 2. Each server independently at-

tempts to find a mismatch, where: (a) a server did not

transmit the full set of client ciphertext bits; (b) the accu-

mulation of transmitted bits do not match what the server

sent out earlier: sj [k] �= (
⊕

i∈l sij [k])⊕ (
⊕

i∈l′
j
ci[k]); or

(c) the client’s ciphertext bit does not match the accumu-

lation across servers:
⊕

j sij [k] �= ci[k], for some client

i. The first two cases trivially expose a server as dishon-

est. In the final case, each server requests from client i a

rebuttal on why the set of server bits, sij [k], are incorrect,

namely which server equivocated. An honest client can

respond with the malicious server’s identity, their shared

secret, and proof of this shared secret.

3.10 Scheduling via Verifiable Shuffles

Dissent uses verifiable shuffles [11, 32, 44] both to sched-

ule and distribute pseudonym keys for subsequent DC-

nets rounds, and for transmitting accusations to servers.

Clients submit messages (or keys to be anonymized) to

the shuffle protocol, and the shuffle outputs a random per-

mutation of these messages (or keys), such that no subset

of clients or servers knows the permutation. Dissent de-

pends minimally on the shuffle’s implementation details,

so many shuffle algorithms should be usable.

Dissent uses Neff’s verifiable shuffle [44] to cre-

ate verifiable secret permutations, and Chaum-Pedersen

proofs [15] for verifiable decryptions. To shuffle, each

client submits an ElGamal-encrypted group element. In

a general message shuffle, clients embed their messages

within a group element, encrypt it with a combination of

all server keys, then transmit it to first server, who shuffles

the input and removes a layer of encryption. Each server

shuffles and decrypts in turn, until the last server reveals

the cleartexts and distributes them to all clients.

The design supports both general message shuffles and

more efficient key shuffles. Since Neff’s algorithm shuf-

fles ElGamal ciphertexts, general messages must be em-

bedded within group elements. The entries of a key shuf-

fle are already group elements, however, thus requiring no

message embedding. Key shuffles also permit the use of

more computationally efficient groups that are suitable for

keys but not for message embedding.

3.11 Limitations

This section discusses a few of Dissent’s shortcomings

and possible ways to address them in future work.

Large networks with many groups Our evaluations

(Section 5) demonstrate that a single Dissent network can

accommodate over 5,000 clients. To be broadly usable at

Internet scale, Dissent must scale to much larger network

sizes, of hundreds of thousands of nodes or more. One

way to serve very large networks would be to adopt a tech-

nique introduced by Herbivore [35]: break the overall net-

work into smaller parallel Dissent groups—with tens of

servers and thousands of clients each. A secure join pro-

tocol, as in Herbivore, could protect a single session from

being overrun with Sybil identities.

Intersection attacks Dissent’s traffic analysis resis-

tance does not protect against membership intersection

attacks, where an adversary correlates linkable anony-

mous transmissions to changes in clients’ online status. If

an anonymous blogger posts a series of messages, each

signed by the same pseudonym but posted in different

rounds, and the adversary sees that only Alice was online

in all of those rounds (though many other group members

were present in some rounds), the adversary might pin-

point Alice as the blogger. There is no perfect defense

against intersection attacks when online status changes

over time [39]. Dissent users could gain some protection

against the intersection attack by avoiding linkable anony-

mous transmissions (e.g., the use of pseudonyms). Alter-

natively, users could adopt a “buddy system,” transmitting

linkable cleartexts only when all of a fixed set of “bud-

dies” are also online. With certain caveats, this discipline

ensures that a user’s anonymity set includes at least his

honest buddies, at the availability cost of making the user

unable to transmit (safely) when any buddy is offline.

Handling server failure Dissent addresses network

churn only among clients: if a server goes offline, the pro-

tocol halts completely until all servers are available again

or the group is administratively re-formed to exclude the

failed server (which currently amounts to creating a new

group). We expect that Byzantine fault-tolerance tech-

niques [12] could be adapted to mask benign or malicious

server failures, at a cost of imposing a stronger security

assumption on the servers. In a BFT group designed to tol-

erate f concurrent failures, for example, client anonymity

would likely depend on at least f+1 servers being honest,

rather than just one. A malicious group leader could form

a live “view” deliberately excluding up to f honest and

online servers, replacing them with f dishonest servers

who appear live and well-behaved but privately collude in

attempt to de-anonymize clients.

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 187

Group management and server selection As dis-

cussed in Section 3.2, Dissent groups currently contains

a static list of clients and servers; allowing more dy-

namic group administration while maintaining security re-

mains an important challenge. In a public Dissent deploy-

ment with hundreds of servers and thousands of paral-

lel groups, users would benefit especially from automatic

server selection. Since the user must trust at least one of

the servers, a server selection algorithm might have to

consider which servers user trusts, how close the user is

to which servers, a server’s reliability, and other security

and performance factors. Dissent’s server selection prob-

lem is likely analogous to the path selection problem in

Tor [6, 28], and might build on prior work on this topic.

Mobile devices In the United States, consumers now

use mobile phones more for Internet browsing and non-

voice data transfer than for making phone calls [61]. As

everyday computing shifts to mobile devices, an ongo-

ing challenge is to offer users the same privacy protec-

tions on phones as they would have on desktop comput-

ers [8,33,34]. We have yet to deploy or test Dissent on mo-

bile devices, but expect Dissent’s computation and com-

munication optimizations to be useful in this context.

Formal security analysis While Dissent is based on

techniques with formal security proofs [14, 15, 44], a full

formal analysis of Dissent remains for future work.

4 Implementation

This section describes the current Dissent prototype and

how we have applied it to two anonymous communica-

tion use cases: wide-area group messaging and local-area

anonymous Web browsing.

4.1 Prototype Overview

We have implemented Dissent in C++ with the Qt frame-

work and the CryptoPP cryptography library. The proto-

type implements the complete Dissent anonymity proto-

col along with the accountability sub-protocols described

in Section 3.9. The system assumes the existence of a cer-

tificate authority (or other entity) that manages the long-

term public keys of all servers and clients. The prototype

also assumes that participants have used an outside chan-

nel to agree upon a common set of servers. Source code

may be found at the Dissent project home page.1

User applications interact with a node running our Dis-

sent prototype using HTTP API calls or a SOCKS proxy

interface. The HTTP API allows clients to post raw mes-

sages (byte-strings) directly into the protocol session. The

prototype’s SOCKS v5 proxy allows users to tunnel TCP

1 http://dedis.cs.yale.edu/2010/anon/

and UDP traffic flows transparently through the Dissent

protocol session. One or more nodes in the Dissent net-

work serve as SOCKS entry nodes, which listen for in-

coming SOCKS proxy requests from user applications

(e.g., Skype or Firefox). The entry node accepts SOCKSi-

fied traffic flow from the user application, assigns the flow

a random identifier (to allow a receiving node to distin-

guish between many flows), adds destination IP and port

headers to the flow, and sends it into the active Dissent

protocol round. A single SOCKS exit node (who is a non-

anonymous protocol participant) reads the tunneled traf-

fic from the Dissent protocol round, forwards it over the

public network to the destination server, and sends the re-

sponse back through the Dissent session.

4.2 Anonymous Microblogging Application

Dissent’s decentralized architecture and trust model make

it potentially attractive as a substitute for commercial mi-

croblogs in high-risk anonymous communication scenar-

ios. Since Dissent relies on no single trusted party, we ex-

pect it to be much more challenging even for a power-

ful adversary—such as an authoritarian government or its

state-controlled ISP—to identify an anonymous blogger

without compromising all participating Dissent servers.

In our evaluation section, we present performance re-

sults for a prototype microblogging system running on

PlanetLab with up to 2,000 nodes and DeterLab with

up to 5,000 nodes. A simple chat-like Web interface al-

lows users to post short messages into an Dissent proto-

col session using our HTTP API. Our results suggest Dis-

sent could form a practical platform for Internet-scale mi-

croblogging in situations requiring stronger security prop-

erties than the current commercial platforms offer.

4.3 Local-Area Web Browsing

When deployed in a local-area network, Dissent

can provide interactive communication with local-area

anonymity: requests are anonymous among a local set of

users. To demonstrate this use of Dissent, we have de-

veloped WiNoN, a system that uses virtual machines to

isolate a user’s identifiable OS environment from their

anonymous browsing environment, an important issue

given that browser signatures have a reasonable chance

of uniquely identifying a user [27].

In WiNoN, depicted in Figure 5, the Dissent client soft-

ware runs on the host OS with network traffic from the

WiNoN VM tunneled through the Dissent SOCKS proxy.

Since applications in the WiNoN VM have no access to

the network interface or to the user’s non-anonymous stor-

age, they are unable to learn the user’s long-term identity

(unless the user inadvertently enters some identifiable in-

formation into the WiNoN VM).

9



188 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 5: WiNoN system diagram. Traffic from the anony-

mous VM flows through an Dissent tunnel to an exit node.

The exit node reads traffic from the tunnel and forwards it

onto the Internet on behalf of the WiNoN client.

On simulated WiFi networks with tens of nodes and

typical bandwidth and delay parameters, we find the

WiNoN anonymization network fast enough for browsing

the Internet and streaming videos. Prior work uses virtual

machines to isolate network environments [41] and tunnel

traffic through Tor [55]. No previous system to our knowl-

edge, however, enables a user to run Flash movies, Skype,

and other untrusted applications safely and anonymously.

5 Evaluation

This section first examines Dissent’s ability to handle un-

reliable client nodes. Next we evaluate Dissent’s perfor-

mance and scalability in instant-messaging and data shar-

ing scenarios with varying numbers of clients and servers.

We then explore the costs of different protocol stages: the

initial key shuffle, a DC-net exchange, and finally the ac-

cusation process. Finally, we evaluate the performance of

Dissent applied to the WiNoN Internet browsing applica-

tion described in section 4.3.

In our evaluations, we used the Emulab [29], Deter-

Lab [23], and PlanetLab [16] testbeds, and nodes from

Amazon’s EC2 service. Emulab and DeterLab offer con-

trolled, repeatable conditions on isolated networks, while

Figure 6: A CDF plot demonstrating the time for a mes-

sage exchange to complete when using four message win-

dow policies.

we used PlanetLab nodes on the public Internet to offer

a more realistic test of Dissent’s ability to handle client

delays and churn. For our evaluations on the public In-

ternet, we used eight server machines—one located at our

university and seven at EC2 sites—located at unique loca-

tions on four different continents, and we used the entire

set of available PlanetLab nodes as clients. We indicate

the exact number of PlanetLab clients where applicable.

5.1 Slow and Unreliable Clients

On public networks, distributed systems must cope with

slow and unreliable machines [47]. Dissent’s servers pre-

vent slow nodes from impeding the protocol’s overall

progress by imposing a ciphertext submission window.

Once the client submission time window has closed,

servers continue executing the protocol even if every

client has not submitted a ciphertext. Larger windows po-

tentially allow more clients to participate in each message

exchange, but increase messaging latency. Smaller win-

dows size reduce latency of exchanges but might prevent

slower clients from participating.

To help us select an effective window closure policy for

our evaluations on PlanetLab, we collected a data trace

from a Dissent deployment with over 500 clients running

on PlanetLab nodes and eight servers running on EC2, us-

ing a static window size of 120 seconds. The exact number

of clients varied over the course of the 24-hour evaluation

period. We used the data from this PlanetLab experiment

to test a variety of window closure policies.

To ensure that most clients are able to participate in

each message exchange, we do not close the submission

window until at least 95% have submitted messages. Once

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 189

95% of clients submit messages, we multiply the time

elapsed by a constant factor to determine window time.

The fraction of clients who missed the submission win-

dow decreased as this multiplicative constant increased:

1.1×: 2.3%, 1.2×: 1.5%, and 2×: 0.5%. The data in Fig-

ure 6 demonstrate that the client submission time is not

very sensitive to multiplicative constant used. For the rest

of the evaluation, we chose the 1.1× policy, since there

was not significant variation among the three.

Regardless of the specific window closure policy cho-

sen, Figure 6 demonstrates the importance of insulating

the group’s progress from that of its slowest clients in

an unpredictable environment like PlanetLab. In the base-

line case where the servers wait until all clients submit

or a 120-second hard deadline is reached, 50% of DC-

net rounds are delayed by “stragglers” by an order of

magnitude or more compared with early-cutoff policies,

and 15% of rounds are delayed until the 120-second hard

deadline versus almost none with early cutoff policies.

5.2 Wide-Area Applications

To evaluate Dissent’s usability in wide-area microblog-

ging or data sharing scenarios, as described in Section 4.2,

we evaluated the protocol on both DeterLab [23] and

PlanetLab [16]. On DeterLab, which offered controlled

test conditions and greater hardware resources, we eval-

uated both a microblog and data sharing like behavior; we

evaluated only the microblog scenario on PlanetLab.

To simulate a plausible traffic load in the microblog

scenario, a random 1% of all clients submit 128-byte mes-

sages during any particular round. In the data sharing sce-

nario, one client transmits a 128KB message per round.

Due to time and resource limitations, the DeterLab

evaluation used two system topologies: 32 servers with 10

client machines per server, and 24 servers with 12 client

machines per server, for a total of 320 and 288 client ma-

chines respectively. To simulate a larger number of Dis-

sent client participants than we had physical testbed ma-

chines for, we ran up to 16 Dissent client processes on

each client machine, for up to 5120 client processes.

In the testbed topology, servers shared a common 100

Mbps network with 10 ms latency, while clients shared

a 100 Mbps uplink with 50 ms latency to their common

server. We intended the servers to share a 1000 Mbps net-

work, but the testbed did not support this configuration.

For the PlanetLab tests, we deployed 17 servers: 16 on

EC2 using US East servers and one control server located

at Yale University. The latency between Yale and EC2 was

approximately 14 ms round trip. This clustered setup is in-

tended to represent a deployment scenario in which mul-

tiple organizations offer independently-managed Dissent

servers physically co-located in the same or geograph-

 0.1

 1

 10

 100

 32  100  320  1000  5120

T
im

e
 p

e
r 

ro
u
n
d
 i
n
 s

e
c
o
n
d
s

Number of clients

128K message - Server processing (DeterLab)
128K message - Client submission (DeterLab)
1% submit - Server processing (PlanetLab)
1% submit - Client submission (PlanetLab)
1% submit - Server processing (DeterLab)
1% submit - Client submission (DeterLab)

Figure 7: Time per round in microblog (1% submit) and

data sharing scenarios, for varying number of clients.

ically nearby data centers, facilitating high-bandwidth

and low-latency communication among the servers while

keeping their management decentralized for security.

Figure 7 shows the system’s scalability with client load

by varying the number of clients relying on a static set of

32 servers. Figure 8 in turn varies the number of servers

while maintaining a static set of 640 clients. At smaller

group sizes, additional servers do not benefit performance.

As demands on the servers scale, however, their utility

becomes more apparent, especially in the 128K message

scenario. Performance appears to be dominated by client

delays, namely the time between clients receiving the

previous round’s cleartext and the servers receiving the

current round’s ciphertext message. However, in compar-

ing the PlanetLab evaluation to the DeterLab evaluation

and server size of 1, we can ascertain that latency be-

tween servers tends to dominate delays in that environ-

ment, though computational load is not negligible.

The prototype shows greatest usability for group sizes

up to 1,000; thereafter delays become longer than 1 sec-

ond in the microblogging scenario. At best, delays were

on the order of 500 to 600 ms for 32 to 256 clients. In

the static client network, varying server count, showed

time increases on server-related aspects of the protocol

but reduced time on client-related aspects. We therefore

expect that with greater demand—either in terms of nodes

or bandwidth—client-related costs are likely to dominate.

In comparing the microblogging and 128K message

scenarios, the graphs suggest that bandwidth tends to

dominate for larger messages and latency for smaller

messages. Most importantly, the evaluations suggest that

11



190 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 0.1

 1

 10

 100

 1  2  4  10  24 32

T
im

e
 p

e
r 

ro
u
n
d
 i
n
 s

e
c
o
n
d
s

Number of servers

128K message - Server processing
128K message - Client submission
1% submit - Server processing
1% submit - Client submission

Figure 8: Time per round in microblog (1% submit) and

data sharing scenarios, for varying number of servers sup-

porting 640 clients.

Dissent can support delay-sensitive applications like mi-

croblogs and instant messaging.

5.3 Full System Evaluation

While the previous experiments focused on measuring

DC-nets rounds, the primary focus of this paper, we now

explore time durations in a single full execution of the

entire Dissent protocol: key shuffle, a single DC-net ex-

change, accusation shuffle, and accusation tracing. Our

results shown in Figure 9 used the same DeterLab con-

figuration consisting of 24 servers with 12 clients each

configuration as described in the previous section. In con-

trast to verifiable mix-nets, the Dissent protocol’s DC-nets

round is extremely efficient, accounting for a negligible

portion of total time in large groups.

The time difference between accusation and key shuf-

fles illustrate the performance benefits of the key shuffle

discussed in Section 3.10. In small groups the accusation

shuffle is reasonably fast, but in larger groups its cost in-

creases quickly, to over an hour for 1,000-client groups.

5.4 Web Browsing: Dissent and Tor

To explore the practicality of Dissent for local-area

anonymity as described in section 4.3, we deployed a

smaller-scale Dissent network of 5 servers and 24 clients

on the Emulab [29] network testbed. The testbed’s exper-

imental network topology approximated the characteris-

tics of a small WiFi network: each node was connected

to a central switch via a 24 Mbps link with 10 ms of la-

tency. One of the servers acted as a gateway connecting

the private test network to the public Internet.

In this environment, we ran an automated HTTP

browser on one of the client nodes to download the in-

 10

 100

 1000

 24  100  500  1000

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of clients

Blame evaluation
Blame shuffle
DC-net round
Key shuffle

Figure 9: Time elapsed during a whole protocol run for

varying client sizes, 24 servers, and 128 byte messages.

dex pages from each site on the Alexa “Top 100” Web

sites [3] from the real public Web server. For each in-

dex page, the client requested the HTML page and then

recursively and concurrently requested dependent assets

(images, CSS, JS, etc.). Although we used an automated

HTTP browser for these trials, Dissent supports standard

Web browsers as well.

We used four different network configurations to test

Dissent’s performance under four deployment scenarios.

In the first scenario, no anonymity, the gateway connects

directly to the public Internet. The second scenario, Tor

alone, shows the performance of state-of-the-art wide-

area anonymous Internet access. We emphasize that we

compare with Tor only to provide a general reference

point for gauging Dissent’s usability: this is by no means

an “apples-to-apples” comparison since the functionality,

scale, security properties, and network conditions of the

two systems under test are incomparable in myriad ways.

The third test scenario, a local-area deployment of Dis-

sent, is intended to test whether Dissent is fast enough

for interactive browsing on local-area networks. The

fourth scenario, a serial composition of Dissent and Tor,

considers the performance of a configuration offering

“best of both worlds” security, where we compose a

local-area Dissent network with the public Tor network.

This configuration offers users Tor’s wide-area anonymity

against limited-strength adversaries, combined with Dis-

sent’s local-area security against adversaries who might

use traffic analysis to de-anonymize Tor circuits.

The results in Figure 10 indicate that anonymous web

browsing under the local-area deployment of Dissent we

tested performs comparably to Tor, suggesting that users

are likely to find some Dissent configurations similarly

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 191

Figure 10: Download times for the Alexa “Top 100” home

pages in which nodes access the Internet over an Dissent

network running on an Emulab-simulated wireless LAN,

over the public Tor network, and over a composition of

wLAN Dissent and Tor.

Figure 11: CDF of download times presented in Figure 10.

usable under appropriate network conditions. On average,

downloading 1MB of Web content took 10 seconds with

no anonymization, it took 40 seconds through Tor, 45 sec-

onds with Dissent, and 55 seconds with Dissent and Tor

together. Comparing Dissent+Tor with Tor alone, this data

suggests that a user willing to tolerate a 35% slowdown

could retain Tor’s wide-area benefits while gaining traffic

analysis resistant anonymity in the user’s local area.

Figure 11 shows a CDF of page download times, show-

ing that a client using Tor downloads the first 50% of Web

pages in 15 seconds, while a client using Dissent+Tor

downloads 50% of Web pages in just under 20 seconds.

We expect that many users, especially those with strong

security requirements, might find a few extra seconds per

Web page a reasonable price for local-area security.

6 Conclusion

This paper has made the case that by delegating col-

lective trust to a decentralized group of servers, strong

anonymity techniques offering traffic analysis resistance

may be adapted and scaled to offer anonymity in groups of

thousands of nodes, two orders of magnitude larger than

previous systems offering strong anonymity. Through its

novel client/server DC-nets model, Dissent is able to ac-

commodate anonymity set sizes of up to 5,000 members,

while maintaining end-to-end latency low enough to en-

able wide-area interactive messaging. In local-area set-

tings, Dissent is fast enough to handle interactive Web

browsing while still offering users strong local anonymity

guarantees. Although Dissent represents a step towards

strong anonymous communication at large Internet scales,

many challenges remain for future work, such as further

scalability and robustness improvements and protection

against long-term intersection attacks.

Acknowledgments

We would like to thank Michael F. Nowlan, Vitaly

Shmatikov, Joan Feigenbaum, Ramakrishna Gummadi,

Emin Gün Sirer, Jon Howell, Roger Dingledine, and the

anonymous OSDI reviewers for their extraordinarily help-

ful comments, as well as the Emulab and DeterLab folks

for their time and effort. This material is based upon work

supported by the Defense Advanced Research Agency

(DARPA) and SPAWAR Systems Center Pacific, Contract

No. N66001- 11-C-4018.

References
[1] T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C. Price. Browser-

based attacks on Tor. In PETS, 2007.

[2] B. Adida. Advances in cryptographic voting systems. PhD the-

sis, Massachusetts Institute of Technology, Cambridge, MA, USA,

2006.

[3] Alexa top 500 global sites, April 2012. http://www.alexa.

com/topsites.

[4] Anonymizer, September 2012. http://anonymizer.com/.

[5] J. M. Balkin. Digital speech and democratic culture: A theory of

freedom of expression for the information society. Faculty Schol-

arship Series, 2004. Paper 240.

[6] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker. Low-

resource routing attacks against Tor. In WPES, Oct. 2007.

[7] M. Bellare and P. Rogaway. Optimal asymmetric encryption – how

to encrypt with RSA. In Eurocrypt, May 1994.

[8] A. Beresford and F. Stajano. Location privacy in pervasive com-

puting. IEEE Pervasive Computing, 2003.

[9] S. L. Blond, P. Manils, A. Chaabane, M. A. Kaafar, A. Legout,

C. Castellucia, and W. Dabbous. De-anonymizing BitTorrent users

on Tor, Apr. 2010. http://arxiv.org/abs/1004.1267.

[10] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of service

or denial of security? How attacks on reliability can compromise

anonymity. In ACM CCS, Oct. 2007.

[11] J. Brickell and V. Shmatikov. Efficient anonymity-preserving data

collection. In ACM KDD, Aug. 2006.

13



192 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[12] M. Castro and B. Liskov. Practical byzantine fault tolerance. In

OSDI, Feb. 1999.

[13] S. Chakravarty, A. Stavrou, and A. D. Keromytis. Identifying

proxy nodes in a Tor anonymization circuit. In SITIS, Nov. 2008.

[14] D. Chaum. The dining cryptographers problem: Unconditional

sender and recipient untraceability. Journal of Cryptology, Jan.

1988.

[15] D. Chaum and T. P. Pedersen. Wallet databases with observers.

CRYPTO, 1992.

[16] B. Chun et al. PlanetLab: An overlay testbed for broad-coverage

services. In ACM CCR, July 2003.

[17] J. Clark, P. C. van Oorschot, and C. Adams. Usability of anony-

mous web browsing: an examination of tor interfaces and deploy-

ability. In SOUPS, 2007.

[18] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A

distributed anonymous information storage and retrieval system.

In Workshop on Design Issues in Anonymity and Unobservability,

July 2000.

[19] M. Clarkson, S. Chong, and A. Myers. Civitas: Toward a secure

voting system. In IEEE SP, may 2008.

[20] H. Corrigan-Gibbs and B. Ford. Dissent: accountable anonymous

group messaging. In ACM CCS, Oct. 2010.

[21] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: De-

sign of a Type III anonymous remailer protocol. In IEEE SP, May

2003.

[22] R. Deibert, J. Palfrey, R. Rohozinski, and J. Zittrain. Access De-

nied: The Practice and Policy of Global Internet Filtering. MIT

Press, Jan. 2008.

[23] Deterlab network security testbed, September 2012. http://

isi.deterlab.net/.

[24] R. Dingledine and J. Appelbaum. How governments have tried

to block Tor, 2012. Tor project presentation, https://svn.

torproject.org/svn/projects/presentations/

slides-28c3.pdf.

[25] R. Dingledine and N. Mathewson. Design of a blocking-

resistant anonymity system, Nov. 2006. Tor Project technical re-

port, https://svn.torproject.org/svn/projects/

design-paper/blocking.html.

[26] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the second-

generation onion router. In USENIX Security Symposium, 2004.

[27] P. Eckersley. How unique is your web browser? In PETS, July

2010.

[28] M. Edman and P. Syverson. As-awareness in tor path selection. In

ACM CCS, 2009.

[29] Emulab network emulation testbed, September 2012. http://

emulab.net/.

[30] Federal Trade Commission. Protecting consumer privacy in an era

of rapid change, Dec. 2010. Preliminary FTC Staff Report.

[31] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure dis-

tributed read-only file system. ACM TOCS, Feb. 2002.

[32] J. Furukawa and K. Sako. An efficient scheme for proving a shuf-

fle. In CRYPTO, Aug. 2001.

[33] B. Gedik and L. Liu. Location privacy in mobile systems: A per-

sonalized anonymization model. In IEEE ICDCS, june 2005.

[34] G. Ghinita, P. Kalnis, and S. Skiadopoulos. PRIVE: anonymous

location-based queries in distributed mobile systems. In 16th

WWW, May 2007.

[35] S. Goel, M. Robson, M. Polte, and E. G. Sirer. Herbivore: A Scal-

able and Efficient Protocol for Anonymous Communication. Tech-

nical Report 2003-1890, Cornell University, February 2003.

[36] P. Golle and A. Juels. Dining cryptographers revisited. Eurocrypt,

May 2004.

[37] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How much

anonymity does network latency leak? In ACM CCS, Oct. 2007.

[38] N. Jones, M. Arye, J. Cesareo, and M. J. Freedman. Hiding

amongst the clouds: A proposal for cloud-based onion routing. In

FOCI, Aug. 2011.

[39] D. Kedogan, D. Agrawal, and S. Penz. Limits of anonymity in

open environments. In 5th International Workshop on Information

Hiding, Oct. 2002.

[40] S. F. Kreimer. Technologies of protest: Insurgent social movements

and the First Amendment in the era of the Internet. University of

Pennsylvania Law Review, October 2001.

[41] R. Meushaw and D. Simard. NetTop: Commercial technology in

high assurance applications. Tech Trend Notes, 2000.

[42] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S.

Wallach. AP3: Cooperative, decentralized anonymous communi-

cation. In ACM SIGOPS EW, Sept. 2004.

[43] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In

Security and Privacy, May 2005.

[44] C. A. Neff. A verifiable secret shuffle and its application to e-

voting. In ACM CCS, Nov. 2001.

[45] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fin-

gerprinting in onion routing based anonymization networks. In

WPES, Oct. 2011.

[46] J. Preston. Facebook Officials Keep Quiet in Its Role in Re-

volts, Feb. 2011. http://www.nytimes.com/2011/02/

15/business/media/15facebook.html.

[47] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the

embarrassing slowness of OpenDHT on PlanetLab. In WORLDS,

2005.

[48] S. Sengupta. Rushdie runs afoul of web’s real-name police. New

York Times, Nov. 2011.

[49] E. G. Sirer et al. Eluding carnivores: File sharing with strong

anonymity. In ACM SIGOPS EW, Sept. 2004.

[50] R. Smits et al. BridgeSPA: Improving Tor bridges with single

packet authorization. In WPES, Oct. 2011.

[51] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle.

Flash cookies and privacy, Aug. 2009.

[52] F. Stajano and R. Anderson. The cocaine auction protocol: On the

power of anonymous broadcast. In Information Hiding Workshop,

Sept. 1999.

[53] E. Stein. Queers anonymous: Lesbians, gay men, free speech,

and cyberspace. Harvard Civil Rights-Civil Liberties Law Review,

2003.

[54] P. Syverson. Sleeping dogs lie on a bed of onions but wake when

mixed. In HotPETs, July 2011.

[55] Tails: The amnesic incognito live system, September 2012.

https://tails.boum.org/.

[56] A. Teich, M. S. Frankel, R. Kling, and Y. Lee. Anonymous com-

munication policies for the Internet: Results and recommendations

of the AAAS conference. Information Society, May 1999.

[57] E. Volokh. Freedom of speech and information privacy: The trou-

bling implications of a right to stop people from speaking about

you. Stanford Law Review, May 2000.

[58] M. Waidner and B. Pfitzmann. The dining cryptographers in the

disco: Unconditional sender and recipient untraceability with com-

putationally secure serviceability. In Eurocrypt, Apr. 1989.

[59] J. D. Wallace. Nameless in cyberspace: Anonymity on the internet,

Dec. 1999. Cato Briefing Paper No. 54.

[60] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Scal-

able anonymous group communication in the anytrust model. In

EuroSec, Apr. 2012.

[61] J. Wortham. Cellphones Now Used More for Data Than for

Calls, May 2010. http://www.nytimes.com/2010/05/

14/technology/personaltech/14talk.html.

[62] J. Wright, T. de Souza, and I. Brown. Fine-grained censorship

mapping information sources, legality and ethics. In FOCI, Aug.

2011.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 193

Efficient patch-based auditing for web application vulnerabilities

Taesoo Kim, Ramesh Chandra, and Nickolai Zeldovich
MIT CSAIL

Abstract
POIROT is a system that, given a patch for a newly dis-
covered security vulnerability in a web application, helps
administrators detect past intrusions that exploited the
vulnerability. POIROT records all requests to the server
during normal operation, and given a patch, re-executes
requests using both patched and unpatched software, and
reports to the administrator any request that executes dif-
ferently in the two cases. A key challenge with this ap-
proach is the cost of re-executing all requests, and POIROT
introduces several techniques to reduce the time required
to audit past requests, including filtering requests based
on their control flow and memoization of intermediate
results across different requests.

A prototype of POIROT for PHP accurately detects at-
tacks on older versions of MediaWiki and HotCRP, given
subsequently released patches. POIROT’s techniques al-
low it to audit past requests 12–51× faster than the time it
took to originally execute the same requests, for patches
to code executed by every request, under a realistic Media-
Wiki workload.

1 Introduction
New security vulnerabilities are routinely discovered in
many web applications, and web application developers
frequently release patches for such bugs in their software.
Once an administrator learns about a new vulnerability
and applies a patch to prevent new attacks, the adminis-
trator may want to check whether anyone exploited the
bug before the patch was applied, in order to take any
necessary remedial measures. This check is important to
ensure that no data was leaked or that the attacker did not
leave any back doors for later intrusions, yet today this
check remains a mostly manual process.

As one example, consider the HotCRP conference man-
agement software [21], which recently had a information
disclosure bug that allowed paper authors to view a re-
viewer’s private comments meant only for program com-
mittee members [22]. After applying the patch for this
vulnerability, an administrator of a HotCRP site would
likely want to check if any comments were leaked as a
result of this bug. In order to do so, the administrator
would have to manually examine the patch to understand
what kinds of requests can trigger the vulnerability, and
then attempt to determine suspect requests by manually
poring over logs (such as HotCRP’s application-level log,

or Apache’s access log) or by writing a script to search
the logs for requests that match a specific pattern. This
process is error-prone, as the administrator may miss a
subtle way of triggering the vulnerability, and the logs
may have insufficient information to determine whether
this bug was exploited, making every request potentially
suspicious. For example, there is no single pattern that
an administrator could search for to find exploits of the
HotCRP bug mentioned above.

Manual auditing by the administrator may be an op-
tion for HotCRP sites with a small number of users, but
it is prohibitively expensive for large-scale web appli-
cations. Consider the recent vulnerability in Github—a
popular collaborative software development site—where
any user was able to overwrite any other user’s SSH pub-
lic key [27], and thus modify any software repository
hosted on Github. After Github administrators learned
about and patched the vulnerability, their goal was to de-
termine whether anyone had exploited this vulnerability
and possibly altered user data. Although the patch was
just a one-line change in source code, it was difficult to
determine who may have exploited this vulnerability in
the past. As a result, Github administrators disabled all
SSH public keys as a precaution, and required users to
re-confirm their keys [13]—an intrusive measure, yet one
that was necessary because of the lack of alternatives.

This paper presents POIROT, a system that can audit a
web application’s past requests and identify requests that
potentially exploited a vulnerability, given a patch that
fixes the vulnerability. POIROT focuses on vulnerabilities
in server-side application code, which includes seven of
the top ten web application vulnerabilities [29].

POIROT adopts the record-and-replay approach from
previous systems [9, 33], and records each request to the
web application during the application’s normal execu-
tion. When a patch is released, the administrator invokes
POIROT, which re-runs past requests on two versions of
the application source code—one with and one without
the patch—and compares the results. If the results are
the same (including any side-effects such as modifying
files or issuing SQL queries), POIROT concludes that the
request did not exploit the vulnerability. Conversely, if
the results differ, POIROT reports the request to the ad-
ministrator as a possible attack, along with a diff of the
results with and without the patch.

1



194 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

POIROT’s key contribution lies in performance. The
closest related work is Warp [9], which undoes the effects
of past attacks given a patch by re-executing every request
that touched a patched file. In the worst case, a developer
may patch code that is executed by every request, in which
case auditing several months worth of requests with Warp
would take yet another several months on production
servers. POIROT shows that it is possible to audit 1–2
orders of magnitude faster than simply re-running every
request, even for the challenging patches that modify code
executed by every request. POIROT’s design speeds up
auditing by leveraging three techniques, as follows.

First, POIROT performs control flow filtering to avoid
re-executing requests that did not invoke patched code.
To filter out these requests, POIROT records a control flow
trace of basic blocks executed by each request during
normal execution, and indexes them for efficient lookup.
For a given patch, POIROT computes the set of basic
blocks modified by the patch, and determines the set of
requests that executed those basic blocks. This allows
POIROT to skip many requests for patches that modify
rarely used code.

Second, POIROT optimizes the two re-executions of
each request—one with the patch and one without—by
performing function-level auditing. Each request is ini-
tially re-executed using one process. When a patched
function is invoked, POIROT forks the process into two,
executes the patched code in one process and the un-
patched code in another, and compares the results. If
the results don’t match, POIROT marks the request as
suspect and stops re-executing that request, and if the
results are identical, POIROT kills off one of the forked
processes and continues re-executing in the other pro-
cess. Function-level auditing improves performance since
forking is often cheaper than re-executing long runs of
common application code.

As an extension of function-level auditing, POIROT
terminates re-execution of a request if it can determine,
based on previously recorded control flow traces, that this
request will not invoke any patched functions for the rest
of its re-execution. We call this early termination.

Third, POIROT eliminates redundant computations—
identical instructions processing identical data—that are
the same across different requests, using a technique we
call memoized re-execution. POIROT keeps track of in-
termediate results while re-executing one request, and
reuses these results when re-executing subsequent re-
quests, instead of recomputing them. The remaining code
re-executed for subsequent requests can be thought of as
a dynamic slice for the patched code [3], and is often 1–2
orders of magnitude faster than re-executing the entire
request.

An evaluation of a POIROT prototype for PHP-based
applications with MediaWiki and HotCRP shows that

POIROT can accurately and efficiently detect past intru-
sions given a patch, and that the three techniques men-
tioned above are important to achieve good performance.
Out of 34 real MediaWiki security patches, POIROT takes
1,013 seconds to audit a patch in the worst case (when
the patch affects all requests) for a workload that takes
12,116 seconds to complete during normal execution. For
a realistic workload based on Wikipedia traces, POIROT
imposes 15% CPU overhead during normal execution
and requires 5 KB of storage per request, which amounts
to 3.3 GB per day for one server. Finally, POIROT has
no false negatives, and incurs no false positives for most
patches.

The rest of this paper is organized as follows. §2 starts
off with an overview of POIROT’s design and its workflow.
§3, §4, and §5 describe POIROT’s three key techniques
for minimizing re-execution. §6 discusses our prototype
implementation, and §7 evaluates it. §8 touches on some
of the limitations of POIROT. §9 compares POIROT with
related work, and §10 concludes.

2 Overview
To understand how POIROT helps an administrator au-
tomate the auditing process, suppose that some request
exploited the HotCRP vulnerability mentioned in the pre-
vious section, and saw confidential comments. When that
request is re-executed by POIROT, the HTTP response
with the patch applied will be different from that without
the patch (since the response will not contain the com-
ments), and the request will be flagged as suspect, leaving
the administrator to decide on the appropriate remedy. On
the other hand, requests that did not exploit the vulner-
ability will likely generate the same responses, and will
not be flagged as suspect. Similarly, in the Github sce-
nario mentioned earlier, an attack request that exploited
the vulnerability would issue an SQL query to modify the
victim’s public key. When the attack is re-executed on
patched code, the query will not be issued, and POIROT
will report the discrepancy to the administrator.

More precisely, given a patch fixing a vulnerability in
a web application, POIROT’s goal is to identify a minimal
set of requests that may have exploited the vulnerability.
Conceptually, POIROT re-runs each past request to the
web application twice—once each with the vulnerable and
the patched versions of the application’s source code—
and compares the results of these runs. If the results
are the same, the request is assumed to not exploit the
vulnerability; otherwise, POIROT adds the request to a list
of requests that may have exploited the vulnerability, to
be further audited by the administrator.

A request’s result in POIROT logically includes the
web server’s HTTP response, as well as any side effects
of request execution, such as changes to the file system
or queries issued to an SQL database. This ensures that

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 195

����
��������

��������

�����������

�����������

�

	�������

���������
�������������� �����

������
����

�����

�������� ����������
����

����
����������
����

����������

������������
��������������
������������
��������������

��������

������������������������ ���������
�	���� �����������	���

���������������������

������

Figure 1: Overview of POIROT’s design. Components introduced by POIROT are shaded. Solid lines, dotted lines, and dashed lines indicate
interactions during normal execution, indexing, and auditing stages, respectively.

POIROT will catch both attacks that altered server state
(e.g., modifying rows in a database), as well as attacks
that affect the server’s HTTP response.

POIROT consists of three phases of operation, as il-
lustrated in Figure 1: normal execution, indexing, and
auditing. The rest of this section describes these phases,
and explains the assumptions and limitations of POIROT.

2.1 Logging during normal execution
In order to rerun a past request in a web application,
POIROT needs to record the original inputs to the applica-
tion code that were used to handle the request. Addition-
ally, in order to perform control flow filtering, POIROT
must record the original control flow path of each request.

During the normal execution of a web application,
POIROT records four pieces of information about each
request to a log. First, it records the request’s URL, HTTP
headers, any POST data, and the CGI parameters (e.g.,
the client’s IP address). Second, it records the results of
non-deterministic function calls made during the request’s
execution, such as calls to functions that return the current
date or time, and functions that return a random number.
Third, it records the results of calls to functions that return
external data, such as calls to database functions. Finally,
it records a control flow trace of the application code, at
the level of basic blocks [5].

POIROT implements logging by extending the appli-
cation’s language runtime (e.g., PHP in our prototype
implementation) and by implementing a logging module
in the HTTP server.

It is up to the administrator to decide on how long to
store POIROT’s logs. For an application such as HotCRP,
it may make sense to store all logs from the time when
the conference starts, and audit every request if a vulnera-
bility is discovered. For a larger-scale web site, such as
Wikipedia, it may make sense to discard logs of old re-
quests at some point (e.g., after several months), although
POIROT would be unable to audit discarded requests for
possible attacks.

2.2 Indexing
The second step in POIROT’s auditing process is to build
an index from the logs recorded during normal execution.
The index contains two data structures, as follows.

The first data structure, called the basic block index,
maps each basic block to the set of requests that exe-
cuted that basic block, and is generated from the control
flow traces recorded during normal execution. This data
structure is used by POIROT’s control flow filtering to effi-
ciently locate candidate requests for re-execution given a
set of basic blocks that have been affected by a patch.

The second data structure, called the function call table,
is a count of the number of times each request invoked
each function in the application, and is also generated
based on the control flow traces recorded during normal
execution. This data structure is used to implement the
early termination optimization.

POIROT’s indexing step can be performed on any ma-
chine, and simply requires access to the application source
code as well as the control flow traces. Performing the
indexing step before auditing (described next) both speeds
up the auditing step and avoids having to re-generate these
data structures for multiple audit operations.

2.3 Auditing
When a patch for a newly discovered security vulnera-
bility is released, an administrator can invoke POIROT’s
auditing phase and supply the patch to POIROT. POIROT’s
auditing code requires access to the original log of re-
quests, as well as to the index. POIROT first performs
control flow filtering to filter out requests that did not
invoke the patched code, and then uses function-level au-
diting and memoized re-execution to efficiently re-execute
requests that did invoke the patched code. To ensure re-
quests execute in the same way during auditing as they
did during the original execution, POIROT uses the log
to replay the original inputs (such as the URL and POST
data), as well as the results of any non-deterministic func-
tions and external I/O (e.g., SQL queries) that the applica-
tion invoked. Note that POIROT does not require a past

3



196 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

snapshot of the database for re-executing requests: if the
application issues a different SQL query during request
re-execution—for which POIROT’s log does not contain a
recorded result—POIROT flags the request as a potential
attack and stops re-executing that request. POIROT per-
forms re-execution by modifying the language runtime
(e.g., the PHP interpreter in our prototype), as we will
describe later.

Once re-execution finishes, POIROT provides the ad-
ministrator with a list of suspect requests that executed
differently with the patched code than they did with the
unpatched code, for further examination.

2.4 Limitations and assumptions
POIROT is designed to detect attacks that exploit bugs in a
web application’s code. Consequently, POIROT assumes
that adversaries do not subvert the language interpreter,
the web server, or the OS kernel. An adversary that vi-
olates this assumption would be able to alter POIROT’s
logs to hide the attack.

POIROT assumes that the vulnerability being audited
is correctly fixed by the security patch used for auditing.
Under this assumption, POIROT incurs no false negatives.
However, POIROT can incur false positives because it
treats any change in application output as an indication of
a possible attack. For example, if POIROT failed to record
some non-determinism during a request’s original execu-
tion, re-executing the request could change the request’s
output and cause POIROT to flag it, even if the request did
not exploit the patched vulnerability.

POIROT works best with patches that do not change
program behavior aside from fixing a security vulnera-
bility. Patches that both fix security bugs and introduce
new features, or that significantly modify the application
in order to fix a vulnerability, could generate false posi-
tives. For example, if a patch issues a new database query,
POIROT flags every request executing the patched code
as a possible attack. Extending POIROT to snapshot the
database state during original execution, and restore it
during request re-execution (as in Warp [9]) would likely
prevent these false positives.

POIROT’s design focuses on high performance auditing.
Once POIROT flags a request as suspicious, an adminis-
trator familiar with the application must manually inspect
that request to determine the appropriate course of action.
POIROT can be combined with a system like Warp [9] to
undo the effects of suspicious requests. The problem of
helping administrators understand the impact of a suspi-
cious request is left to future work.

POIROT’s prototype is built for PHP; PHP’s single-
threaded nature and its higher-level primitives (e.g., string
operations) simplified the prototype’s implementation.
We believe it is straightforward to extend POIROT to other
scripting languages such as Python and Ruby; however,

extending POIROT to low-level bytecode such as x86
poses some challenges, which we discuss in §8.

POIROT’s prototype assumes the application is never
upgraded. We discuss this limitation further in §8.

3 Control flow filtering
POIROT’s control flow filtering involves three steps. First,
during normal execution, POIROT logs a control flow trace
of each request to a log file. Second, during indexing,
POIROT computes the set of basic blocks executed by
each request. Third, when presented with a patch to audit,
POIROT computes the set of basic blocks affected by that
patch, and filters out requests that did not execute any
of the affected basic blocks, since they could not have
possibly exploited the vulnerability in the affected basic
blocks. As an optimization, POIROT builds an index that
maps basic blocks to the set of requests that executed that
basic block, which helps speed up the process of locating
all requests affected by a patch.

POIROT performs control flow filtering at the granular-
ity of basic blocks because filtering at a coarser granularity
(e.g., at function granularity) can result in fewer requests
being filtered out, reducing the effectiveness of filtering.
Furthermore, control flow traces at the granularity of basic
blocks are also needed for memoized re-execution (§5).

The rest of this section describes POIROT’s control flow
filtering in more detail.

3.1 Recording control flow
In order to implement control flow filtering, POIROT
needs to know which application code was executed by
each request during original execution. POIROT records
the request’s control flow trace, which is a log of every
bytecode instruction that caused a control flow transfer.
For example, our prototype implements control flow fil-
tering at the level of instructions in the PHP interpreter
(called “oplines”), and our prototype modifies the PHP
runtime to record branch instructions, function calls, and
returns from function calls. For each instruction that
caused a control flow transfer, POIROT records the in-
struction’s opcode, the address of that instruction, and the
address of the jump target.

Recording control flow traces across multiple requests
requires a persistent way of referring to bytecode in-
structions. PHP translates application source code to
bytecode instructions at runtime, and does not provide
a standard way of naming the instructions. In order to
refer to specific instructions in the application, POIROT
names each instruction using a 〈func,count〉 tuple, where
func identifies the function containing the instruction,
and count is the position of the instruction from the start
of the translated function (in terms of the number of
bytecode instructions). Functions, in turn, are named
as 〈filename,classname, funcname〉.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 197

3.2 Determining the executed basic blocks
During the indexing phase, POIROT uses the log recorded
above to reconstruct the set of basic blocks executed by
each request. To reduce overhead during normal execu-
tion, POIROT does not log branches that were not taken.
As a result, two adjacent control flow transfers in the log
may span n basic blocks, where the branches at the end
of the first n−1 basic blocks were not taken.

To compute the set of basic blocks executed by a given
request, POIROT first computes the sequence of basic
blocks within each function, by translating the applica-
tion’s source code into bytecode instructions and analyz-
ing the control flow graph in that function. Then, for
each pair of adjacent control flow transfers A and B in
the request’s log, POIROT adds the sequence of basic
blocks between the jump target of A’s instruction and the
address of B’s instruction to the set of basic blocks exe-
cuted by that request. To consistently name basic blocks
across requests, POIROT refers to basic blocks by the first
instruction of that basic block.

3.3 Determining the patched basic blocks
Once the administrator provides a patch to POIROT in
the auditing phase, POIROT must determine the set of
requests to re-execute. To filter out requests that were not
affected by a given patch, POIROT must determine which
basic blocks are affected by a change to the application’s
source code, and which basic blocks are unchanged. In
general, deciding program equivalence is a hard prob-
lem. POIROT simplifies the problem in two ways. First,
POIROT determines which functions were modified by a
patch. Second, POIROT generates control flow graphs for
the modified functions,1 with and without the patch, and
compares the basic blocks in the control flow graph start-
ing from the function entry point. If the basic blocks differ,
POIROT flags the basic block from the unpatched code
as “affected.” If the basic blocks are the same, POIROT
marks the basic block from the unpatched code as “un-
changed,” and recursively compares any successor basic
blocks, avoiding loops in the control flow graph.

3.4 Indexing
To avoid re-computing the set of basic blocks executed
by each request across multiple audit operations, and to
reduce the user latency for auditing, POIROT caches this
information in an index for efficient lookup. POIROT’s
index contains a mapping from basic blocks (named by
the first bytecode instruction in the basic block) to the
set of requests that executed that basic block. By using
the index, POIROT can perform control flow filtering by
computing just the set of basic blocks affected by a patch,
and looking up these basic blocks in the index.

1PHP has no computed jumps within a function, making it possible
to statically construct control flow graphs for a function.

����������
������� ���� �(a)

����������
������� ���� �(b)

����������
������� ���� �(c)

Figure 2: Three refinements of request re-execution: (a) naïve, (b)
function-level auditing, and (c) early termination. Thick lines indicate
execution of unmodified application code, dotted lines indicate execution
of the original code for patched functions, and dashed lines indicate
execution of new code for patched functions. A question mark indicates
comparison of executions for auditing.

The index is generated asynchronously, after the con-
trol flow trace for a request has been logged, to avoid
increasing request processing latency. The index is shared
by all subsequent audit operations. In principle, the index
(and the recorded control flow traces for past requests)
may need to be updated to reflect new execution paths
taken by patched code, after each patch is applied in turn,
if the administrator wants to audit the cumulative effect
of executing all of the applied patches. Our current pro-
totype does not update the control flow traces for past
requests after auditing.

4 Function-level auditing
After POIROT’s auditing phase uses control flow filtering
to compute the set of requests affected by the patch, it
re-executes each of those requests twice—once with and
once without the patch applied—in order to compare their
outputs. A naïve approach of this technique is shown in
Figure 2(a). However, the only code that differs between
the two executions comes from the patched functions; the
rest of the code invoked by the two executions is the same.
For example, suppose an application developer patched
a bug in an access control function that is invoked by a
particular request. All the code executed by that request
before the access control function will be the same both
with and without the patch applied. Moreover, if the
patched function returns the same result and has the same
side-effects as the unpatched function, then all the code
executed after the function is also going to be the same
both with and without the patch.

To avoid executing the common code twice, POIROT
implements function-level auditing, as illustrated in Fig-
ure 2(b). Function-level auditing starts executing each
request in a single process. Whenever the application
code invokes a function that was modified in the patch,
POIROT forks the process, and invokes the patched func-
tion in one process and the unpatched function in the

5



198 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

other process. Once the functions return in both pro-
cesses, POIROT terminates the child fork, and compares
the results and side-effects of executing the function in
the two forks, as we describe in §4.1. If the results and
side-effects are identical, POIROT continues executing
common application code. Otherwise, POIROT flags the
request as suspect, since the request’s execution may have
been affected by the patch.

Comparing the results of each patched function invo-
cation, as in POIROT’s function-level auditing, can lead
to more false positives than comparing the output of the
entire application. This is because the application may
produce the same output even if a patched function pro-
duces a different return value or has different side-effects
with or without the patch. For example, some request may
have invoked a patched function, and obtained a different
return value from the patched function, but this return
value did not affect the eventual HTTP response. These
extra false positives can be eliminated by doing full re-
execution on the suspect list, and comparing application-
level responses, after the faster forked re-execution filters
out the benign requests. Our PHP prototype does not im-
plement this additional step, as none of our experiments
observed such false positives.

4.1 Comparing results and side-effects
A key challenge for function-level auditing is to compare
the results and side-effects of invoking an individual func-
tion, rather than comparing the final HTTP response of
the entire application. To do this, POIROT tracks three
kinds of results of a function invocation: HTTP output,
calls to external I/O functions (such as invoking an SQL
query), and writes to shared objects, which are objects
not local to the function.

To handle HTTP output, POIROT buffers any output
during function execution. When the function returns,
POIROT compares the outputs of the two executions.

To handle external I/O functions, POIROT logs the ar-
guments and return values for all external I/O function
calls during normal execution. When an external I/O func-
tion is invoked during re-execution (in either of the two
forks), POIROT checks that the arguments are the same
as during the original execution. If so, POIROT supplies
the previously recorded return value in response. Other-
wise, POIROT declares the request suspect and terminates
re-execution.

To handle writes to shared objects, POIROT tracks the
set of shared objects that are potentially accessed by the
patched function. Initially, the shared object set includes
the function’s reference arguments and object arguments.
The function’s eventual return value is also added to the
shared object set, unless POIROT determines that the caller
ignores the function’s return value (by examining the
caller’s bytecode instructions). To catch accesses to global

variables, POIROT intercepts PHP opcodes for accessing
a global variable by name, and adds any such object being
accessed to the shared object set.

When the function returns, POIROT serializes all ob-
jects in the shared object set, and checks that their se-
rialized representations are the same between the two
runs. If not, it flags the request as suspect and terminates
re-execution. POIROT recursively serializes objects that
point to other objects, and records loops between objects,
to ensure that it can compare arbitrary data structures.

4.2 Early termination
If a patch just modifies a function that executes early in
the application, re-executing the rest of the application
code after the patched function has already returned is
not necessary. To avoid re-executing such code, POIROT
implements an early termination optimization, as shown
in Figure 2(c). Early termination stops re-execution after
the last invocation of a patched function returns.

To determine when a request invokes its last patched
function, POIROT uses the request’s recorded control flow
trace to count the number of times each request invoked
each function. As an optimization, the indexing phase
builds a function call table storing these counts.

5 Memoized re-execution
Many requests to a web application execute similar code.
For example, if two requests access the same Wiki page
in Wikipedia, or the same paper in HotCRP, the computa-
tions performed by the two requests are likely to be simi-
lar. To avoid recomputing the same intermediate results
across a group of similar requests, POIROT constructs, at
audit time, a template that memoizes any intermediate
results that are identical across requests in that group. Of
course, no two requests are entirely identical: they may
differ in some small ways from one another, such as hav-
ing a different client IP address or a different timestamp
in the HTTP headers. To capture the small differences
between requests, POIROT’s templates have template vari-
ables which act as template inputs for these differences.
POIROT can use a template to quickly re-execute a re-
quest by plugging in that request’s template variables (i.e.,
unique parameters) and running the template.

Memoizing identical computations across requests re-
quires addressing two challenges. First, locating identical
computations—sequences of identical instructions that
process identical data—across requests is a hard problem.
Even if two requests invoke the same function with the
same arguments, that function may read global variables
or shared objects; if these variables or objects differ be-
tween the two invocations, the function will perform a
different computation, and it would be incorrect to mem-
oize its results. Similarly, a function can have side effects
other than its return value. For instance, a function can

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 199

modify a global variable or modify an object whose refer-
ence was passed as an argument. Memoizing the results
of a function requires also memoizing side effects.

Second, POIROT’s templates must interleave memo-
ized results of identical computations with re-execution
of code that depends on template variables. For example,
consider the patch for a simple PHP program shown in
Figure 3, and suppose the web server received three re-
quests, shown in Figure 4. The value of $s computed on
lines 7, 8, and 9 is the same across all three requests, but
line 10 generates a different value of $s for every request,
and thus must be re-executed for each of the three requests.
This is complicated by the fact that memoized and non-
memoized computations may have control flow depen-
dencies on each other. For instance, what should POIROT
do if it also received a request for /script.php?q=foo,
which does not pass the if check on line 5?

POIROT’s approach to addressing these two challenges
leverages control flow tracing during normal execution.
In particular, POIROT builds up templates from groups
of requests that had identical control flow traces, even if
their inputs differed, such as the three requests shown in
Figure 4. By considering requests with identical control
flow, POIROT avoids having to locate identical computa-
tions in two arbitrary executions. Instead, POIROT’s task
is reduced to finding instructions that processed the same
data in all requests with identical control flow traces, in
which case their results can be memoized in the template.
Moreover, by grouping requests that share control flow,
POIROT simplifies the problem of separating memoized
computations from computations that depend on template
variables, since there can be no control flow dependencies.

More precisely, POIROT’s memoized re-execution first
groups requests that have the same control flow trace into
a control flow group. POIROT then builds up a template
for that group of requests, which consists of two parts:
first, a sequence of bytecode instructions that produces the
same result as the original application, when executing
any request from the control flow group, and second, a
set of memoized intermediate results that are identical
for all requests in the control flow group, used by the
instructions in the template. Due to memoization, the
number of instructions in a template is often 1–2 orders
of magnitude shorter than the entire application (§7).

The rest of this section explains how POIROT gener-
ates a template for a group of requests with identical
control flow, and how that template is used to efficiently
re-execute each request in the group.

5.1 Template generation
To generate a template, POIROT needs to locate instruc-
tions that processed the same data in all requests, and
memoize their results. A naïve approach is to execute
every request, and compare the inputs and outputs of ev-

1 function name($nm) {
2 - return $nm;
2 + return htmlspecialchars($nm);
3 }
4

5 if ($_GET[’q’] == ’test’) {
6 $nm = ucfirst($_GET[’name’]);
7 $s = "Script ";
8 $s .= $_SERVER[’SCRIPT_URL’];
9 $s .= " says hello ";
10 $s .= name($nm);
11 echo $s;
12 }

Figure 3: Patch for an example application, fixing a cross-site
scripting vulnerability that can be exploited by invoking this PHP
script as /script.php?q=test&name=<script>..</script>. The
ucfirst() function makes the first character of its argument uppercase.

1 /script.php?q=test&name=alice
2 /script.php?q=test&name=bob
3 /script.php?q=test&name=<script>..</script>

Figure 4: URLs of three requests that fall into the same control flow
group, based on the code from Figure 3.

Line Op Bytecode instruction

5 1 FETCH_R $0 ← ’_GET’
5 2 FETCH_DIM_R $1 ← $0, ’q’
5 3 IS_EQUAL ∼2 ← $1, ’test’
5 4 JMPZ ∼2 →20
6 5 FETCH_R $3 ← ’_GET’
6 6 � FETCH_DIM_R $4 ← $3, ’name’
6 7 � SEND_VAR $4
6 8 � DO_FCALL $5 ← ’ucfirst’
6 9 � ASSIGN !0 ← $5
7 10 ASSIGN !1 ← ’Script ’
8 11 FETCH_R $8 ← ’_SERVER’
8 12 FETCH_DIM_R $9 ← $8, ’SCRIPT_URL’
8 13 ASSIGN_CONCAT !1 ← !1, $9
9 14 ASSIGN_CONCAT !1 ← !1, ’ says hello ’

10 15 � SEND_VAR !0
10 16 � DO_FCALL $12 ← ’name’
10 17 ASSIGN_CONCAT !1 ← !1, $12
11 18 ECHO !1
12 19 JMP →20
13 20 RETURN 1

Figure 5: PHP bytecode instructions for lines 5–12 in Figure 3. The
line column refers to source lines from Figure 3 and the op column
refers to bytecode op numbers, used in control transfer instructions. A �
indicates instructions that are part of a template for the three requests
shown in Figure 4 when auditing the patch in Figure 3.

7



200 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ery instruction to find ones that are common across all
requests. However, this defeats the point of memoized
re-execution, since it requires re-executing every request.

To efficiently locate common instruction patterns,
POIROT performs a taint-based dependency analysis [25],
building on the observation that the computations per-
formed by an application for a given request are typically
related to the inputs provided by that request. Specifically,
POIROT considers the inputs for all of the requests that
share a particular control flow trace: each GET and POST
parameter, CGI parameters (such as requested URL and
the client’s IP address), and stored sessions. In PHP, these
inputs appear as special variables, called “superglobals”,
such as $_GET and $_SERVER. POIROT then determines
which of these inputs are common across all requests in
the group (and thus computations depending purely on
those inputs can be memoized), and which inputs differ
in at least one request (and thus cannot be memoized).
Inputs in the latter set are called template variables. For
instance, for the three requests shown in Figure 4, the
GET parameter name is a template variable, but the GET
parameter q is not.

To generate the template, POIROT chooses an arbitrary
request from the group, and executes it while performing
dependency analysis at the level of bytecode instructions;
we describe the details of POIROT’s dependency tracking
mechanism in §5.2. POIROT initially marks all template
variable values as “tainted”, to help build up the sequence
of instructions that depend on the template variables and
thus may compute different results for different requests
in the group. Any instructions that read tainted inputs are
added to the template’s instruction sequence, and their
outputs are marked tainted as well. If an instruction is
added to the template but some of its input operands are
not tainted, the current values of those operands are serial-
ized, and the operand in the instruction is replaced with a
reference to the serialized object, such as the $3 operand
of instruction 6 in Figure 5. This implements memoiza-
tion of identical computations. Instructions that have no
tainted inputs, as well as any control flow instructions
(jumps, calls, and returns), are not added to the template.

For example, consider the PHP bytecode instructions
shown in Figure 5. Instructions 1–5 do not read any
tainted inputs, and do not get added to the template. In-
structions 6–9 depend on the tainted $_GET[‘name’]
template variable, and are added to the template. Instruc-
tions 10–14 again do not read any tainted inputs, and do
not get added to the template. Finally, instructions 15 and
16 are tainted, and get added to the template, for a total of
6 template instructions.

When POIROT’s template generation encounters an
invocation of one of the functions being audited, it marks
the start and end of the function invocation in the template,
to help audit these function invocations later on, as we

will describe in §5.3. If the recorded control flow trace
indicates that there will not be any more invocations of
patched functions, template generation stops. Going back
to Figure 5, template generation stops after instruction
16, because there are no subsequent calls to the patched
name() function.

5.2 Dependency tracking
In order to determine the precise set of instructions that de-
pend on template variables, POIROT performs dependency
analysis while generating each template at audit time. In
particular, POIROT keeps track of a fine-grained “taint”
flag for each distinct memory location in the application.
The taint flag indicates whether the current value of that
memory location depends on any of the template variables
(which are the only memory locations initially marked
as tainted). The value of any untainted memory location
can be safely memoized, since its value cannot change if
the template is used to execute a different request with
a different value for one of the template variables. In
the PHP runtime, this corresponds to tracking a “taint”
flag for every zval, including stack locations, temporary
variables, individual elements in an array or object, etc.

POIROT computes the taint status of each bytecode
instruction executed during template generation. If any
of the instruction’s operands is flagged as tainted, the
instruction is said to be tainted, and is added to the tem-
plate. The instruction’s taint status is used to set the taint
flag of all output operands. For example, instruction 6 in
Figure 5 reads a template variable $_GET[‘name’]; as
a result, it is added to the template and its output $4 is
marked tainted. On the other hand, instruction 12 reads
$_SERVER[‘SCRIPT_URL’], which is not tainted; as a
result, its output $9 is marked as non-tainted.

A template contains only the tainted instructions, which
are a subset of the total instructions executed during a
request. The output of executing the template instructions
for a request is a subset of the output of fully re-executing
a request. It is sufficient for POIROT to use the output of
template instructions for auditing because the output of
non-tainted instructions would be the same in both the
patched and unpatched executions.

POIROT’s taint tracking code knows the input and out-
put operands for all PHP bytecode instructions. However,
PHP also includes several C functions (e.g., string manip-
ulation functions), which appear as a single instruction
at the bytecode level (e.g., instruction 8 in Figure 5). To
avoid having to know the behavior of each of those func-
tions, POIROT assumes that such functions do not access
global variables that are not explicitly passed to them
as arguments. Given that assumption, POIROT conserva-
tively estimates that each C function depends on all of its
input arguments, and writes to its return value, reference
arguments, and object arguments. We encountered one

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 201

function that violates our assumption about not affecting
global state: the header() function used to set HTTP
response headers. POIROT special-cases this function.

5.3 Template re-execution
Once a template for a control flow group is generated,
POIROT uses the template to execute every request in that
control flow group. To invoke the template for a particu-
lar request, POIROT assigns the template variables (e.g.,
$_GET[‘name’] in Figure 5) with the values from that re-
quest, and invokes the template bytecode. In the example
of Figure 5, this would involve re-executing instructions
6–9 and 15–16. When the template bytecode comes to
an invocation of a patched function (e.g., instruction 16
in Figure 5), POIROT performs function-level auditing,
as described in §4, to audit the execution of this func-
tion for this particular request. Once the function returns,
POIROT compares the results of the function between the
two versions (with and without the patch), and assuming
no differences appear, POIROT continues executing the
template’s bytecode instructions.

In principle, it should be possible to use memoized re-
execution to reduce the number of bytecode instructions
executed inside the patched function as well. We chose
a simpler approach, where the entire patched function is
re-executed for auditing, mostly to reduce the complexity
of our prototype. Most patched functions are short com-
pared to the number of instructions executed in the entire
application, allowing us to gain the bulk of the benefit by
focusing on instructions outside of the patched functions.

5.4 Collapsing control flow groups
The efficiency of memoized re-execution depends on the
number of requests that can be aggregated into a single
control flow group. Even though the cost of template gen-
eration is higher than the cost of re-executing a single re-
quest, that cost is offset by the much shorter re-execution
time of all other requests in that control flow group.

Building on the early termination optimization from
§4.2, we observe that the only part of the control flow trace
that matters for grouping is the trace up to the return from
the last invocation of a patched function. Instructions
executed after that point are not re-executed due to early
termination. Thus, two requests whose control flow traces
differ only after the last invocation of a patched function
can be grouped together for memoized re-execution.

POIROT uses this observation to implement control flow
group collapsing. Given a patch, POIROT first locates the
last invocation of a patched function in each control flow
group, and then coalesces control flow groups that share
the same control flow prefix up to the last invocation
of a patched function in each trace. This optimization
generates larger control flow groups, and thus amortizes
the cost of template generation over a larger number of
similar requests.

Component Lines of code

PHP runtime logger / replayer 9,400 lines of C
Indexer 300 lines of Python
Audit controller 1,200 lines of Python
Control flow filter tool 4,800 lines of Python

Table 1: Lines of code for components of the POIROT prototype.

6 Implementation
We implemented a prototype of POIROT for PHP. Ta-
ble 1 shows the lines of code for the different components
of our prototype. We modified the PHP language run-
time to implement POIROT’s logging and re-execution.
The rest of the POIROT components are implemented in
Python. The indexer and control flow filter tool use the
PHP Vulcan Logic Dumper [28] to translate PHP source
code into PHP bytecode in an easy-to-process format, and
use that to identify executed and patched basic blocks
during control flow filtering.

In order to perform efficient re-execution, POIROT as-
sumes that all patched code resides in functions. However,
PHP also supports “global code,” which does not reside in
any function and is executed when a script is loaded. This
causes function-level auditing to execute all of the appli-
cation code twice, since the “patched function”, namely,
the global code, returns only at the end of the script. This
can be avoided by refactoring the patched global code
into a new function that’s invoked once from the global
code. We performed this refactoring manually for one
patch when evaluating POIROT.

POIROT’s control flow filtering does not support PHP’s
reflection API. For example, if a patch adds a new func-
tion that was looked up during the original execution of a
request (and did not get executed because it did not exist),
control flow filtering would miss that request, and not
re-execute it. Supporting reflection would require logging
calls to the reflection API, and re-executing requests that
reflected on modified functions or classes. We did not
find this necessary for the applications we evaluated.

7 Evaluation
Our evaluation aims to support the following hypotheses:

• POIROT incurs low runtime overhead (§7.2).

• POIROT detects exploits of real vulnerabilities with
few false positives (§7.3).

• Even for challenging patches that affect every request,
POIROT can audit much faster than either naïve re-
execution or the closest related system, Warp (§7.4).

• POIROT’s techniques are important for performance
(§7.5).

9



202 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Workload # CFG Latency Thruput Per-request overheads
increase reduction Log space Index space Indexing time

Single URL (1k) 5 13.8% 10.3% 4.95 KB 0.06 KB 12.3 msec
Unique URLs (1k) 238 14.9% 20.4% 21.32 KB 1.79 KB 28.9 msec
Wikipedia (10k) 499 14.1% 16.9% 6.72 KB 4.12 KB 3.5 msec
Wikipedia (100k) 834 14.1% 15.3% 5.12 KB 0.23 KB 0.8 msec

Table 2: POIROT’s logging and indexing overhead during normal execution for different workloads. The CFG column shows the number of control
flow groups. Storage overheads measure the size of compressed logs and indexes. For comparison with the last column, the average request execution
time during normal execution is 120 msec.

Using a realistic MediaWiki workload and a synthetic
HotCRP workload, we show that POIROT’s auditing per-
formance is 24–133× that of naïve re-execution, and an
additional factor of ∼ 5× faster than Warp (due to Warp’s
overheads compared to naïve). POIROT catches exploits
of real vulnerabilities, with only one patch out of 34 in
MediaWiki (and none out of four in HotCRP) causing
false positives.

7.1 Experimental setup
The test applications used for these experiments were
MediaWiki [24], a popular Wiki application that also runs
the Wikipedia site, and HotCRP, a popular web-based
conference management system. All experiments ran on a
3.07 GHz Intel Core i7-950 machine with 12 GB of RAM.
Since the POIROT prototype is currently single-threaded
(although in principle the design has lots of parallelism),
we used only one core in all experiments.

To obtain a realistic workload, we derived our Media-
Wiki workload from a real Wikipedia trace [31]. That
trace is a 10% sample of the 25.6 billion requests to
Wikipedia’s ∼20 million unique Wiki pages during a
four-month period in 2007. As we did not have time to
run the entire four-month trace, we downsampled it to
100k requests. To maintain the same distribution of re-
quests in our workload as in the Wikipedia trace, we chose
1k Wikipedia Wiki pages and synthesized a workload of
100k requests to them, with the same Zipf distribution as
in the Wikipedia trace. This new workload has an average
of 100 requests per Wiki page, which is more challenging
for POIROT than the Wikipedia workload (1k requests per
Wiki page), since memoized re-execution works better
when more requests have identical control flow traces.

As the Wikipedia database is several terabytes in size,
we used the database of the smaller Wikimedia Labs
site [1] for our experiments, and mapped the URLs of
Wikipedia Wiki pages in our workload to the URLs of
Wikimedia Labs Wiki pages. Finally, for privacy reasons,
the trace we used did not contain user-specific informa-
tion such as client IP addresses; to simulate requests by
multiple users in the workload, we assigned random val-
ues for the client IP address and the user-agent HTTP
headers.

7.2 Normal execution overheads
To illustrate POIROT’s overhead during normal execution,
we used several workloads; the results are shown in Ta-
ble 2. The single URL workload has 1k requests to the
same URL, the unique URLs workload has one request to
each of the 1k unique URLs in the Wikipedia workload,
and the Wikipedia 10k and 100k workloads contain 10k
and 100k requests respectively, synthesized as above.

The results demonstrate that POIROT’s logging in-
creases average request latency by about 14%, reduces the
throughput of normal execution by 10–20%, and POIROT
logs require 21 KB per request in the worst case, when
all URLs are distinct. POIROT’s storage overhead drops
considerably for workloads with more common requests,
because the log size primarily depends on the number of
unique control flow groups. We expect that log sizes for
the full Wikipedia trace [31] would be even smaller, since
it has an order of magnitude more common requests than
our 100k workload.

Table 2 additionally reports the time taken by POIROT’s
indexing, even though it can be executed at a later time
on a separate machine. The indexer takes 1–29 msec
per request, and the index file size is 0.06–4.12 KB per
request. As with normal execution, indexing time and stor-
age requirements drop for workloads with more common
requests. This is because most of the indexing overhead
lies in indexing control flow traces, and common requests
often have identical control flow traces.

7.3 Detecting attacks
We evaluated how well POIROT detects exploits of
patched vulnerabilities by using previously discovered
vulnerabilities in our two applications, MediaWiki and
HotCRP. Using MediaWiki helps compare POIROT to
Warp, the closest related work, and we used the same
five vulnerabilities evaluated by Warp’s authors. The real
Wikipedia trace [31] did not contain any attack requests
for these vulnerabilities, so we constructed exploits for
all five vulnerabilities, and added these requests to our
100k workload. Table 3 shows the results of auditing this
workload with POIROT. POIROT can detect all the attacks
detected by Warp, and has no false positives for four out
of the five attacks. For the clickjacking vulnerability, the

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 203

CVE Description Detected? False +ves

2009-4589 Stored XSS � 0
2009-0737 Reflected XSS � 0
2010-1150 CSRF � 0
2004-2186 SQL injection � 0
2011-0003 Clickjacking � 100%

Table 3: Detection of exploits and false positives incurred by POIROT
for the five MediaWiki vulnerabilities handled by Warp.

CVE POIROT Naïve Warp
# Req Time (s) # Req Time (s) # Req Time (s)

2011-4360 100k 267 100k 23,900 100k ∼121,000
2011-0537 100k 269 100k 23,700 100k ∼121,000
2011-0003 100k 989 100k 25,100 100k ∼121,000
2007-1055 100k 1,013 100k 24,300 100k ∼121,000
2007-0894 100k 236 100k 31,500 100k ∼121,000

12 cases (�) 0 0.03–0.11 100k ∼25,000 100k ∼121,000

17 cases (†) 0 0.02–0.19 100k ∼25,000 0 ε

� 2011-1766, 2010-1647, 2011-1765, 2011-1587, 2011-1580, 2011-1578,
2008-5688, 2008-5249, 2011-1579, 2011-0047, 2010-1189, 2008-4408.

† 2011-4361, 2010-2789, 2010-2788, 2010-2787, 2010-1648, 2010-1190,
2010-1150, 2009-4589, 2009-0737, 2008-5687, 2008-5252, 2008-5250,
2008-1318, 2008-0460, 2007-4828, 2007-0788, 2004-2186.

Table 4: POIROT’s auditing performance with 34 patches for MediaWiki
vulnerabilities, compared with the performance of the naïve re-execution
scheme and Warp’s estimated performance for the same patches (esti-
mated to be 10× the original execution time, based on results from [9]).
ε for Warp indicates the cost of accessing its index, which was not
reported in the Warp paper. Naïve results are measured only for the top
5 patches; its performance would be similar for the 29 other patches.

patch adds an extra X-Frame-Options HTTP response
header. This modifies the output of every request, caus-
ing POIROT to flag each request as suspect. Extending
POIROT to include the browser (as in Warp) would likely
prevent these false positives. Additionally, POIROT incurs
no false positives for 29 other patches shown in Table 4.

To show that POIROT can detect information disclosure
vulnerabilities in HotCRP, we constructed exploits for
four recent vulnerabilities, including the comment dis-
closure vulnerability mentioned in §1, and interspersed
attack requests among a synthetic 200-user workload con-
sisting of user creation, user login, paper submissions, etc.
Table 5 shows the results. POIROT is able to detect all
four attacks with no false positives.

7.4 Auditing performance
To show POIROT’s auditing performance, we used
POIROT to audit the Wikipedia 100k workload for 34
real MediaWiki security patches, released between 2004
and 2011. We ported each patch to one of three major ver-
sions of MediaWiki released during this time period. We
ran the workload against the three MediaWiki versions,
which took an average of 12,116 seconds (3.4 hours) to

Patch D? F+ Description

f30eb4e5 � 0 Capability token lets users see restricted comments.
638966eb � 0 Chair can view an anonymous reviewer’s identity.
3ff7b049 � 0 Acceptance decisions visible to all PC members.
4fb7ddee � 0 Chair-only comments are exposed through search.

Table 5: POIROT detects information leak vulnerabilities in HotCRP,
found between April 2011 and April 2012. We exploited each vulnera-
bility and audited it with patches from HotCRP’s git repository (commit
hashes for each patch are shown in the “patch” column). “D?” indicates
whether POIROT detects the attack, and “F+” counts false positives.

execute during normal operation. POIROT’s indexing took
on average 79 seconds for this workload. We measured
the time taken by POIROT to audit all requests for these
patches, the time taken by a naïve scheme that simply
re-executes every request twice—with and without the
patch—and compares the outputs, and the time taken by
Warp, based on numbers reported by Chandra et al. [9].

Table 4 shows the results. For the bottom 29 out of 34
patches (85% of the vulnerabilities), POIROT’s control
flow filtering took less than 0.2 seconds to determine
that the patched code was not invoked by the workload
requests, thereby completing the audit within that time.
This is compared to the more than 6.5 hours needed to
audit using the naïve re-execution scheme.

POIROT audits the remaining five challenging patches,
which affect code executed by every request, 24–133×
faster than naïve re-execution (top 5 rows in Table 4).
This means that POIROT can audit 3.4 hours worth of
requests in ∼17 minutes in the worst case.

Our estimate of Warp’s performance, based on that
paper, is shown in the rightmost columns of Table 4.
Warp’s file-level filtering allows it to statically discard
some requests, although it is unable to filter out requests
for 12 patches that POIROT’s basic-block-level filtering
can. Moreover, when Warp re-executes requests, it is an
order of magnitude slower than normal execution, which
is a total of 2–3 orders of magnitude slower than POIROT
for the worst case patches; for our 3.4 hour workload,
Warp could take 1.4 days to audit all of the requests for
one patch.

7.5 Technique effectiveness
Control flow filtering allows POIROT to quickly filter out
unaffected requests (in under 0.2 seconds), as illustrated
by the bottom 29 patches in Table 4. As vulnerabilities
typically occur in rarely exercised code, we expect control
flow filtering to be highly effective in practice.

For the five challenging patches where re-execution
is necessary, function-level re-execution and early termi-
nation speed up re-execution, as shown in Table 6. The
“Func-level re-exec” column shows that it is 1.3–3.4×
faster than naïve re-execution, and the “early term. ops”
column shows that early termination executes a fraction

11



204 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

CVE Naïve Func-level # early # collapsed Collapse Template # template Memoized
re-exec (s) re-exec (s) term. ops CF groups time (s) gen. time (s) ops re-exec (s)

2011-4360 23,900 8,480 6,437 / ∼200k 4 / 844 31.0 2.10 289 234
2011-0537 23,700 18,900 4,801 / ∼200k 1 / 834 30.3 1.17 96 238
2011-0003 25,100 19,600 117,045 / ∼200k 589 / 834 30.5 395.00 5,427 563
2007-1055 24,300 7,150 5,571 / ∼200k 2 / 844 30.1 0.83 177 982
2007-0894 31,500 10,500 24,973 / ∼200k 18 / 844 30.4 9.90 1,085 196

Table 6: Performance of the POIROT replayer in re-executing all the 100k requests of the Wikipedia 100k workload, for the five patches shown
here. The workload has a total of 834 or 844 control flow groups, depending on the MediaWiki version to which the patch was ported. POIROT
incurs no false positives for four out of the five patches; it has 100% false positives for the patch 2011-0003, which fixes a clickjacking vulnerability.
The “naïve re-exec” column shows the time to audit all requests with full re-execution and the “func-level re-exec” column shows the time to audit
all requests with function-level re-execution and early termination. The “early term. ops” column shows the average number of PHP instructions
executed up to the last patched function call with early termination (§4.2) across all the control flow groups. The “collapsed CF groups” and “collapse
time”columns show the number of collapsed control flow groups and the time to perform collapsing of the control flow groups (§5.4), respectively.
The “template gen. time”, “template ops”, and “memoized re-exec” columns show the time taken to generate templates for all the control flow groups
in the workload, the average number of PHP instructions in the generated templates, and the time to re-execute the templates for all the requests,
respectively.

of the ∼200k total instructions. For the CVE-2011-0003
vulnerability, the patched function is invoked towards the
end of the request, making early termination less effective.

Memoized re-execution further reduces re-execution
time, as shown in Table 6. In particular, template collaps-
ing reduces the number of distinct templates from 834–
844 to 1–589 (“collapsed CF groups” column), thereby
reducing the amount of time spent in template genera-
tion (“template gen. time” column). Templates reduce the
number of PHP opcodes that must be re-executed by 22–
50×, compared to early termination, as illustrated by the
“template ops” column. For the CVE-2007-1055 vulnera-
bility, memoized re-execution time is high even though
it uses a single template (for its one control flow group);
this is because the patched function writes to many global
variables, making serialization for comparison expensive.

8 Discussion
Our prototype currently assumes the application source
code is static, but in practice, application source code
is upgraded over time. In order to audit past requests
that were executed on different versions of the soft-
ware, the patch being audited must be back-ported to
each of those software versions; this is already common
practice for large software projects such as MediaWiki.
From POIROT’s point of view, the indexes generated for
each version of the software must be kept separate, and
POIROT’s control flow filter must separately analyze the
basic blocks for each version. Finally, re-execution of a
request must use the source code originally used to run
that request (plus the backported patch for that version).

Although our prototype targets PHP web applications,
POIROT’s techniques should be equally applicable to web
applications in other scripting languages such as Python
and Ruby. However, when used with low-level bytecode,
such as x86 server programs, POIROT’s techniques may
be less effective due to the following reasons. First, for

x86 server applications such as Apache, recording all ba-
sic blocks for control flow filtering can impose ∼60%
overhead during normal execution [26]; it may be possi-
ble to reduce this overhead by profiling the application
and recording branches only along the uncommon paths.
Second, x86 applications can be multi-threaded, and the
non-determinism of thread interleaving can reduce the
effectiveness of generating templates for memoized re-
execution. Since servers such as Apache typically execute
each request in a single thread, independent of other re-
quests, it may be possible to record the execution of each
request’s thread as a separate control flow trace and use
that for memoization. Finally, memoized re-execution in
x86 applications may be less effective at finding many
requests that share the exact same control flow; for exam-
ple, string operations in assembly often iterate over all
characters in a string, whereas the same operations appear
as a single opcode in PHP, Python, and Ruby. One way
to apply memoized re-execution at a low level would be
to treat string operations as primitives.

Our prototype is currently single-threaded and it was
evaluated on a single-core machine. However, the design
of the POIROT replayer has lots of parallelism, and it is
straightforward to extend it to re-execute requests in paral-
lel. This can be used to significantly reduce auditing time,
perhaps taking advantage of cloud computing platforms
such as Amazon EC2.

9 Related work
This paper’s key contribution over prior work lies in the
techniques for achieving high auditing performance, par-
ticularly in efficiently re-executing many requests to audit
them for exploits of a security vulnerability. The rest of
this section explains the relation between POIROT and
prior work in more detail.

POIROT’s approach to auditing a system for intrusions
is based on comparing the execution of past requests us-

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 205

ing two versions of the code: one with a patch applied,
and one without. This approach is similar to delta ex-
ecution [30], Rad [33], Warp’s retroactive patching [9],
and TACHYON [23]. POIROT’s contributions lie in tech-
niques to improve the performance of this approach for
web applications: control flow filtering, function-level
auditing, early termination, and memoized re-execution.
Function-level auditing in particular is similar to delta
execution and Rad.

Past intrusion recovery systems explored several ap-
proaches to identify initial intrusions. Some relied on
the user for identification [7, 11, 14, 16, 19, 20], which
is both tedious for the user and is error-prone. Others
asked developers to specify vulnerability-specific predi-
cates [17] for each discovered vulnerability; this imposes
significant extra effort for developers. Finally, Warp [9]
and Rad [33] used the actual patch fixing a vulnerability
to identify intrusions, relieving the users and developers
of the burden of intrusion detection. Similar to Warp and
Rad, POIROT also uses the patch to identify intrusions.

Warp’s retroactive patching [9] used file-level depen-
dency tracking to determine requests that were affected
by a patch and required re-execution. However, in prac-
tice, file-level dependencies are too coarse-grained for
many patches: for example, Warp re-executes all requests
from our Wikipedia trace for about half of the patches
(§7). POIROT uses finer-grained basic-block-level filter-
ing, which filters out requests for many more patches.
POIROT also requires less intrusive changes than Warp:
it does not require any changes to the browser or the
database, and does not require re-execution to take place
on the production system.

POIROT’s memoized re-execution is similar to dynamic
slicing [3], which computes the set of instructions that
indirectly affected a given variable. Program slicing, and
dynamic slicing in particular, was proposed in the context
of helping developers debug a single program. POIROT
shows that similar techniques can be applied to locate and
memoize identical computations across multiple invoca-
tions of a program.

POIROT’s control flow filtering is similar to the prob-
lem of regression test selection [4, 6]: given a set of
regression tests and a modification to the program, iden-
tifying the regression tests that need to be re-run to test
the modified program. POIROT demonstrates that control
flow filtering works well for patch-based auditing under
a realistic workload, and further introduces additional
techniques (function-level auditing and memoized re-
execution) which significantly speed up the re-execution
of requests beyond static control flow filtering.

Khalek et al. [18] show that eliminating common setup
phases of unit tests in Java can speed up test execution,
similar to POIROT’s function-level auditing. However,
Khalek et al. require the programmer to define undo meth-

ods for all operations in a unit test, which places a signifi-
cant burden on the programmer that POIROT avoids.

Memoization has been used to speed up re-execution
of an application over slightly different inputs [2, 15, 32].
Though POIROT’s techniques can be extended to work for
that scenario as well, memoized re-execution in the cur-
rent design detects identical computations across different
executions of a program, and separates memoized compu-
tations from input-dependent computations, by grouping
requests according to their control flow traces.

POIROT’s dependency analysis is similar to taint track-
ing systems [12, 25]. A key distinction is that taint track-
ing systems are prone to “taint explosion” if taint is prop-
agated on all possible information flow paths, including
through control flow. As a result, taint tracking systems
often trade off precision for fewer false positives (i.e.,
needlessly tainted objects). POIROT addresses the prob-
lem of taint explosion through control flow by fixing the
control flow path for a group of requests, thereby avoiding
the need to consider control flow dependencies.

Dynamic dataflow analysis [10] and symbolic execu-
tion [8] have been used to generate constraints on a pro-
gram’s input that elicit a particular program execution.
These techniques are complementary to control flow filter-
ing and could be extended to apply to POIROT’s auditing.

10 Summary
This paper presented POIROT, a system that can audit
past requests in a web application for exploits of a newly
patched security vulnerability. POIROT incorporates three
techniques—control flow filtering, function-level auditing,
and memoized re-execution—to significantly speed up
auditing compared to previous systems that audit through
re-execution. POIROT is effective at detecting exploits of
real vulnerabilities in MediaWiki and HotCRP. POIROT’s
optimizations allow it to audit challenging patches, which
affect every request, 12–51× faster than the original exe-
cution time of those requests.

Acknowledgments
We thank David Terei for pointing us at prior work on self-
adjusting computation [2]. We also thank Eddie Kohler,
Neha Narula, Alex Pesterev, Jacob Strauss, Keith Win-
stein, Eugene Wu, the anonymous reviewers, and our
shepherd, Mike Dahlin, for helping improve this paper.
This research was partially supported by the DARPA
CRASH program (#N66001-10-2-4089), by NSF award
CNS-1053143, by Quanta, and by Google.

References
[1] Wikimedia labs database dump. http://dumps.wikimedia.
org/en_labswikimedia/20111228/, December 2011.

[2] U. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting
computation. In Proceedings of the 35th ACM Symposium on

13



206 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Principles of Programming Languages, San Francisco, CA, Jan-
uary 2008.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing. In Pro-
ceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, pages 246–256, 1990.

[4] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. A. London. Incre-
mental regression testing. In Proceedings of the IEEE Conference
on Software Maintenance, September 1993.

[5] F. E. Allen. Control flow analysis. In Proceedings of the Sympo-
sium on Compiler Optimization, 1970.

[6] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression
test selection techniques: A survey. Informatica, 35(3):289–321,
October 2011.

[7] A. B. Brown and D. A. Patterson. Undo for operators: Building
an undoable e-mail store. In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 1–14, San Antonio, TX, June
2003.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: Automatically generating inputs of death. In Proceedings
of the 13th ACM Conference on Computer and Communications
Security, 2006.

[9] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich. Intru-
sion recovery for database-backed web applications. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles
(SOSP), pages 101–114, Cascais, Portugal, October 2011.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP), Brighton, UK, October
2005.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 211–224, Boston,
MA, December 2002.

[12] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the
9th Symposium on Operating Systems Design and Implementation
(OSDI), Vancouver, Canada, October 2010.

[13] Github. SSH key audit. https://github.com/settings/ssh/
audit, 2012.

[14] A. Goel, K. Po, K. Farhadi, Z. Li, and E. D. Lara. The Taser
intrusion recovery system. In Proceedings of the 20th ACM Sym-
posium on Operating Systems Principles (SOSP), pages 163–176,
Brighton, UK, October 2005.

[15] P. J. Guo and D. Engler. Using automatic persistent memoization
to facilitate data analysis scripting. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, July
2011.

[16] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to the future:
A framework for automatic malware removal and system repair.
In 22nd Annual Computer Security Applications Conference (AC-
SAC), pages 257–268, December 2006.

[17] A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. In
Proceedings of the 20th ACM Symposium on Operating Systems
Principles (SOSP), pages 91–104, Brighton, UK, October 2005.

[18] S. A. Khalek and S. Khurshid. Efficiently running test suites
using abstract undo operations. IEEE International Symposium
on Software Reliability Engineering, pages 110–119, 2011.

[19] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. Intrusion
recovery using selective re-execution. In Proceedings of the 9th
Symposium on Operating Systems Design and Implementation
(OSDI), pages 89–104, Vancouver, Canada, October 2010.

[20] S. T. King and P. M. Chen. Backtracking intrusions. ACM Trans-
actions on Computer Systems, 23(1):51–76, February 2005.

[21] E. Kohler. Hot crap! In Proceedings of the Workshop on Organiz-
ing Workshops, Conferences, and Symposia for Computer Systems,
San Francisco, CA, April 2008.

[22] E. Kohler. Correct humiliating information
flow exposure of comments. http://www.read.
cs.ucla.edu/gitweb?p=hotcrp;a=commit;h=
f30eb4e52e91ab230944eebe8f31bf61e9783d3a, March
2012.

[23] M. Maurer and D. Brumley. TACHYON: Tandem execution for
efficient live patch testing. In Proceedings of the 21st Usenix
Security Symposium, Bellevue, WA, August 2012.

[24] MediaWiki. MediaWiki. http://www.mediawiki.org, 2012.

[25] J. Newsome and D. X. Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2005.

[26] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessors. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), Big Sky, MT, October
2009.

[27] T. Preston-Werner. Public key security vulnerability and mitiga-
tion. https://github.com/blog/1068, March 2012.

[28] D. Rethans. Vulcan logic dumper. http://derickrethans.nl/
vld.php, 2009.

[29] The Open Web Application Security Project. OWASP top
10. http://owasptop10.googlecode.com/files/OWASP%
20Top%2010%20-%202010.pdf, 2010.

[30] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation
with delta execution. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Washington, DC, March 2009.

[31] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia workload
analysis for decentralized hosting. Computer Networks, 53(11):
1830–1845, 2009.

[32] A. Vahdat and T. Anderson. Transparent result caching. In Pro-
ceedings of the 1998 USENIX Annual Technical Conference, New
Orleans, LA, June 1998.

[33] X. Wang, N. Zeldovich, and M. F. Kaashoek. Retroactive auditing.
In Proceedings of the 2nd Asia-Pacific Workshop on Systems,
Shanghai, China, July 2011. 5 pages.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 207

Experiences from a Decade of TinyOS Development
http://www.tinyos.net

Philip Levis
Stanford University

pal@cs.stanford.edu

Abstract
When first written in 2000, TinyOS’s users were a hand-
ful of academic computer science researchers. A decade
later, TinyOS averages 25,000 downloads a year, is in
many commercial products, and remains a platform used
for a great deal of sensor network, low-power systems,
and wireless research.

We focus on how technical and social decisions influ-
enced this success, sometimes in surprising ways. As
TinyOS matured, it evolved language extensions to help
experts write efficient, robust systems. These extensions
revealed insights and novel programming abstractions
for embedded software. Using these abstractions, ex-
perts could build increasingly complex systems more
easily than with other operating systems, making TinyOS
the dominant choice.

This success, however, came at a long-term cost. Sys-
tem design decisions that seem good at first can have
unforeseen and undesirable implications that play out
over the span of years. Today, TinyOS is a stable, self-
contained ecosystem that is discouraging to new users.
Other systems, such as Arduino and Contiki, by remain-
ing more accessible, have emerged as better solutions
for simpler embedded sensing applications.

1. INTRODUCTION
Wireless sensor network research is just over a decade

old. Starting as a handful of academic institutions study-
ing networks of tiny, low-power wireless sensing de-
vices, it now has numerous academic conferences and
journals that serve a large, worldwide research commu-
nity. Sensor networks have also grown from research
projects to commercial systems. Commercial systems
today include ad-hoc wireless smart meter networks, home
area networks, and industrial monitoring systems. When
Cisco talks about an “Internet of Things,” it means the
coming Internet with millions or billions of tiny net-
worked devices that interact with and sense the physical
environment: sensor networks.

TinyOS is an operating system designed for such em-
bedded devices. It emerged from UC Berkeley in 2000

when sensor network research was beginning, starting
as a set of Perl scripts that auto-generated #define state-
ments [23]. Since then, it has evolved to use a C di-
alect called nesC, has gone through four major revisions,
supports tens of sensor network platforms, and has ap-
proximately 25,000 downloads per year. TinyOS is the
dominant software platform used for sensor network re-
search, enabling hundreds of research results. It is used
in numerous commercial products, such as Zolertia [3],
Cisco’s smart grid systems (formerly Arch Rock), and
People Power Company [2].

This paper examines how TinyOS evolved over the
past decade. TinyOS is interesting for two reasons. First,
like projects such as Xen [11, 44] and OpenFlow [16],
TinyOS started as an academic research project that tran-
sitioned to significant success and impact outside academia.
It managed to make this transition while simultaneously
remaining a linchpin of the research community. Sec-
ond, TinyOS differs from these other examples in that it
is a successful, principled, and novel operating system
for a new class of computing devices.

This paper examines how technical and social deci-
sions encouraged or restricted the growth of TinyOS and
therefore its impact on practice, sometimes in unfore-
seen ways. For example, fine-grained software compo-
nents allow users to easily customize the OS with small,
local changes. As TinyOS was still forming and being
used speculatively in a large number of domains, this
easy customization was beneficial. But once core OS
services solidified, fine grained components became ul-
timately harmful, as reading a core system requires leaf-
ing through many tiny components.

The paper is divided into four parts. Section 2 de-
scribes the two basic principles that have driven TinyOS.
The first principle is resource use minimization. The
costs of scale and low power operation say that TinyOS
code should trade off runtime flexibility or generality
for smaller code and data, in contrast to many modern
“large” software systems. The bug prevention princi-
ple, motivated by the tremendous difficulty of debug-
ging embedded systems, says that TinyOS should be



208 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

atomic,
uniqueCount

generics,
nx_types

safe,
threads

bidirectional interfaces,
parameterized interfaces

Figure 1: Timeline of major events in TinyOS development from 1999-2010.

structured to make it hard to write bugs, sometimes at
the cost of making it generally harder to write code. To
help support these principles, TinyOS developers chose
to design and use nesC [20], a new C dialect. The lan-
guage and OS co-evolved, such that it does not make
sense to talk about one without the other: when we talk
about the evolution of TinyOS, we mean the evolution
of both the OS and its language.

Sections 3-6 walk through how four approaches TinyOS
took had unforeseen long-term implications. The first
two, memory allocation and isolation, relate to the unique
properties of embedded software. The second two, com-
ponents and systems language design, relate to systems
software more generally. Section 3 discusses how new
language features allowed TinyOS to optimally allocate
RAM while simultaneously removing the need for some
run-time memory access checks. Section 4 describes
how a novel software pattern based on this memory allo-
cation, static virtualization, improves software isolation
by making the finite state machine of each virtualized in-
stance completely independent. Section 5 examines how
using nesC was critically important to TinyOS’s early
success, but also how its evolution limited TinyOS from
even broader, long-term use. Section 6 looks at the ben-
efits and drawbacks of fine-grained, reusable software
components, concluding they are a poor fit for operating
systems.

Section 7 examines the TinyOS project from a so-
cial perspective: how did the project grow such a large
developer community? Open source projects live and
die based on their contributors. TinyOS today has a
large community of developers and users from all across
the world. It examines how this community is struc-
tured and how that structure evolved. It presents sev-
eral pitfalls the project encountered, relating to hiring
staff, managing code contributions, and the interactions
between academia and industry. It also discusses the
role of documentation and target audiences and how the
project was able to reduce the barrier to entry caused by
its increasing technical complexity.

Section 8 takes a step back to examine lessons from

Model ROM RAM Sleep Price

F2002 1kB 128B 1.3μA $0.94
F1232 8kB 256B 1.6μA $2.73
F155 16kB 512B 2.0μA $6.54
F168 48kB 2048B 2.0μA $9.11
F1611 48kB 10240B 2.0μA $12.86

(a) TI MSP430 Microcontrollers

Model ROM RAM Sleep Price

LM2S600 32kB 8kB 950μA $2.73
LM3S1608 128kB 32kB 950μA $4.59
LM3S1968 256kB 64kB 950μA $6.27

(b) TI ARM CortexM3 Processors

Table 1: A representative sampling of popular pro-
cessors used in low-power wireless sensors. The price
values are from DigiKey’s catalog on March 3rd,
2010, when purchased in quantities of 1,000 - 10,000.

TinyOS that can apply to embedded software, systems
more generally, and systems projects. One conclusion is
that fine-grained components are good for experimenta-
tion but add unnecessary and painful complexity to sta-
ble software that expects reuse (e.g., a kernel). A sec-
ond conclusion is the natural tendency to support long-
standing, dedicated users and evolve a system to bet-
ter meet their needs undermines system adoption. Re-
search wants to push a frontier, but doing so can alienate
a broader audience and stifle long-term success. We dis-
cuss some ways in which future projects seeking large-
scale adoption might avoid these and other pitfalls.

2. MINIMIZATION AND PREVENTION
TinyOS’s design has two major goals: minimizing

resource use and preventing bugs. Both are driven by
the unique intersection of requirements that sensor net-
works pose.

The minimization principle states that TinyOS soft-
ware should use as few hardware resources as possible.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 209

This means being computationally efficient (minimizing
cycle counts and wake time), requiring little state (min-
imizing RAM) and having very tight code (minimizing
code ROM). Traditional computing systems want to be
efficient, but they typically trade off some efficiency for
flexibility and efficiency in the form of kernel modules,
plugins, or other mechanisms. In contrast, TinyOS fo-
cuses on producing an ultra-optimized binary that can
run unattended for months to years.

Two properties of embedded sensors motivate the min-
imization principle. The first is energy. Within a device
class, parts with more hardware resources draw more
power both when awake and when asleep. Since nodes
sleep almost all of the time, even small sleep power
draws are significant. Table 1 shows a selection of re-
cent microcontrollers. 16-bit MSP430 microcontrollers
dominate platforms today, due to their 1.3-2μA sleep
draw. An “ultra-low” power 32-bit architecture (ARM
Cortex M3), in contrast, has a 950μA sleep current.

As these devices are already designed for ultra-low
power operation, there is no low-hanging fruit which
will show large improvements in the short term. Fur-
thermore, microcontrollers do not follow Moore’s Law
due to market and performance considerations that dif-
fer from processors. While the first TinyOS prototypes
had 8kB of code and 512 bytes of RAM, 48kB of code
and 10kB of RAM has been typical for the past seven
years.

Harsh energy concerns (“every bit transmitted brings
a sensor node one moment closer to death” [36]) cause
nodes to spend almost all of their time asleep. Corre-
spondingly, real-time operating systems, such as FreeR-
TOS [41], eCos [40], and μC/OS-II [32], are a poor fit.
Their primary purpose is to schedule use of a limited re-
source (e.g., a CPU) to meet deadlines, but scheduling is
easy when the resource is almost always idle. The other
benefit of hard real-time is stability in very precise con-
trol systems. This stability breaks down in the presence
of an unreliable wireless network and so is typically not
useful in practice.

Cost is the second motivation for the minimization
principle. While research prototypes use top-end mi-
crocontrollers for flexibility (e.g., the bottom row of Ta-
ble 1(a)), for large scale or commercial use they are
overkill and raise prices unnecessarily. Using 16kB of
code and 512B of RAM instead of the top-end MSP430
could cut unit costs by $6. For 100,000 units, this $600,000
is well worth the cost of a year of software engineer time
to optimize and squeeze overly general code.

Over the first four years of TinyOS development, RAM
was generally the most limiting resource. The mica [22]
and mica2 [4] platforms have 128kB of ROM and 4kB
of RAM, and applications typically hit RAM limits be-
fore ROM. Unlike a computer with virtual memory and

swap, where a slightly-too-big program will run slowly,
there is no margin for error on a microcontroller. A too-
big program either has a compile error or crashes almost
immediately when the stack overruns data memory.

The prevention principle means preventing bugs through
software structure. All software wants to prevent bugs,
but TinyOS took a very extreme position due to how
astonishingly difficult in-the-field debugging of sensor
networks is. Debugging is so difficult that it has prompted
a wide range of research [13, 37, 42]. A sensor net-
work is a highly distributed system, where nodes dy-
namically react to the environment and each other. The
limited resources, as well as possible energy constraints,
on each device preclude extensive logging or other tra-
ditional debugging techniques. Many sensor networks
do not even support the equivalent of a TCP connection
or other per-node access. How does one debug a node’s
response to an unknown input?

The sensor network research literature has many pa-
pers describing application experiences, from volcanoes [43]
to bird burrows [38] to HVAC systems and oil tankers [28]
to industrial steam pipe monitoring [46]. Application
deployments using early versions of TinyOS almost al-
ways report a failure that occurred in bringing the sys-
tem from lab to deployment, yet are unable to pinpoint
the cause of the failure [42]. These experiences by users
led TinyOS developers to follow the prevention princi-
ple more strongly as it matured. Recent deployment pa-
pers that use TinyOS 2.x, such as a hospital application
in SenSys 2010 [14] are in comparison unabashed suc-
cess stories.

To meet these goals, TinyOS and nesC evolved lan-
guage primitives and programming abstractions to push
what are traditionally dynamic, run-time operations into
static, compile-time ones. Doing so allowed it to have
near-optimal RAM overhead while simultaneously en-
abling large, complex, and dependable software systems.
The next sections examine how TinyOS evolved in four
ways: ROM and RAM allocation, code isolation, soft-
ware components, and language features. Figure 1 shows
a timeline of the project between 1999 and 2010 that
highlights important organizational and technical events.

3. RAM AND ROM ALLOCATION
TinyOS programs generally require a 10:1 ratio of

ROM:RAM ratio. There are exceptions, such as large
packet queues or imaging sensors, but a 10:1 rule of
thumb is good for predicting whether RAM or ROM
will be the limiting resource. For example, TinyOS 1.x
was designed predominantly for the mica platform [22],
which had an Atmega atm128 microcontroller with 128kB
of ROM and 4kB of RAM. Applications on the mica
family typically run into RAM limits before ROM. In
contrast, the Telos family [35] uses a Texas Instruments



210 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

MSP430 with 48kB of ROM and 10kB of RAM; appli-
cations on Telos typically run into ROM limits first.

While minimizing CPU cycles is useful, most resource
use minimization efforts focused on RAM and ROM.
The nesC paper discusses the major techniques used to
minimize ROM (inlining and dead code elimination) [20].
RAM reduction, in contrast, was mostly through soft-
ware structure. RAM received more attention because
mica preceded Telos and so applications fought with
RAM limits first.

Some design decisions that traded off increased code
size for reduced RAM then posed problems for Telos
applications. One example of this tradeoff is how a sen-
sor driver configures a chip’s analog-to-digital converter
(ADC). Configuration options include which pin to sam-
ple, the reference voltage, the sample hold time, and the
clock source. Before the driver samples the ADC, it
must reconfigure it appropriately. Since reconfiguration
is very fast (just twiddling a few control bits in regis-
ters), ADC software automatically handles the configu-
ration on every sample. A simple way to set these pa-
rameters would be for a sensor driver to allocate a struc-
ture in RAM with the correct values, which it passes
to the ADC software. But this approach means that
each sensor driver allocates a structure even though the
ADC needs only one of them at any time. This wastes
RAM. Instead, TinyOS sensor drivers implement a func-
tion that returns their configuration structure directly on
the stack (i.e., not a pointer). Rather than maintain the
structure in memory, they regenerate it when needed, re-
ducing RAM needs by 4 bytes per client but increasing
ROM by 50-60 bytes. This approach worked well for
mica, but “ADC bloat” became a common complaint
for Telos applications. RAM-conserving and a ROM-
conserving APIs look quite different; forcing developers
to choose one or the other has the unwanted side effect
of making code less portable.

Minimizing the RAM needed by service APIs, in par-
ticular, became exceptionally critical. Where in a tradi-
tional OS one wants to make system calls fast, in TinyOS
we wanted them to require as little RAM state as possi-
ble. Take, as an example, the timer service. Many com-
ponents and systems need timers. Applications need to
periodically collect data, routing protocols need to peri-
odically send beacons, and link layers need to manage
backoff intervals as well as retransmissions. A complete
application can require anywhere from 3 to 15 timers,
and each 32-bit timer requires 10 bytes of state (when
it started, its interval, and some control bits, such as
whether it’s a repeating timer). In the best case, the sys-
tem will allocate 10 bytes for each timer and no more.

The first version of the timer system (pre-1.0) had
clients allocate their timer state and pass a pointer into
the timer system. On one hand, this meant that ap-

plications allocated precisely the right number of timer
structures. On the other, it required additional state in
each struct: a pointer so the timer implementation could
string them into a linked list. The pointer increased
the timer structure to 12 bytes, a 20% overhead. Fur-
thermore, the dynamic data structure became a common
source of runtime failures due to memory corruption. As
each user of the timer service allocated its own structure,
a local off-by-one error could corrupt the pointer, break-
ing the link list. Recall that there was no debugger. After
collecting 30 nodes to reprogram them due to a simple
memory bug, you don’t ever want to again.

In response to difficult experiences debugging timer
problems, the second version of the timer system (v1.0)
allocated a fixed array of private timer structures. To
distinguish different timers, nesC introduced a special
function, unique. The nesC compiler evaluates unique
at compile time. Each invocation of unique with a given
string s returns a unique integer in the range of 0 to n−1,
where n is the number of times unique is invoked with s.
Because there is no binary loading or linking, the nesC
compiler parses every call to unique and can compute n
correctly. Unique uses the string s as a general way to
manage needed sets of unique values. A component that
needed a timer allocated a key with unique and passed
this key in all calls to the timer system. The second
timer implementation used the key to index into its timer
structure array.

The second version of the timer system was much
more stable, but often wasted even more RAM. Pro-
grams made the timer array safely large so calls to unique
would not reach past the bounds of the array. This prob-
lem was not limited to timers. It existed for ADC sam-
pling, packet queues, and many other components.

The third version of the timer (v1.1) fully minimized
RAM through a new nesC function, uniqueCount. Like
unique, uniqueCount takes a string and returns an inte-
ger. The return value is the number of calls to unique
with that string. In the case of timers, for example, the
timer service can declare an array of timer state:

timer_state_t timers[uniqueCount("Timer")];

The unique values can safely access timer state accord-
ingly. Assuming that all timer clients use the correct
string (something static virtualization, below, ensures)
the timer service can even elide run-time checks that the
index parameter is within the size of the array, reduc-
ing code size. The final result is that TinyOS today al-
locates precisely the minimal amount of RAM needed
for timers and is 988 bytes of code on mica platforms.
If each timer requires 10 bytes of state and there are n
timers, it allocates 10n bytes of RAM, exactly the min-
imum required.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 211

4. ISOLATION
Initially, TinyOS did not support dynamic memory al-

location of any kind. While the need for more flexible
memory allocation became increasingly apparent, so did
the dangers of a malloc-like approach. TinyOS 1.1 has
many cases where multiple components share a single
memory resource. For example, the core OS scheduler
provides the abstraction of a “task,” a form of deferred
procedure call. The scheduler maintains a fixed-size ar-
ray of tasks to execute. If a component posts a task to a
full queue, the post fails. This raises a very difficult fail-
ure condition: how does the component repost the task?
Since TinyOS has a single stack, the component cannot
spin or wait, as the scheduler will not free an entry un-
til the current function returns. Instead, the component
must somehow be re-invoked, e.g., by starting a timer.
But the timer system uses tasks, and it can drop timers
when it cannot post its task.

Packet transmission suffered from a similar problem.
In TinyOS 1.x, a transmission request fails if the send
queue is full. As this queue is shared across many com-
ponents, it is possible for one component to fill the queue
and starve other senders. Some protocols expect peri-
odic transmissions (e.g., routing beacons) and infer their
absence as packet losses. Therefore, the calling seman-
tics in TinyOS 1.x caused several deployments with one
badly behaving component to have entire protocols col-
lapse.

We concluded that global, shared memory pools, even
when hidden and very limited, were too dangerous for
robust software and violated the bug prevention princi-
ple. One bad component can create hard to handle fail-
ures across the entire system. They lead to hard-to-find
or unidentifiable bugs, which are excruciatingly frustrat-
ing in embedded platforms with no easy debugging in-
terface.

Over time, it became apparent that a lack of isolation
in programming interfaces was a major impediment to
writing highly reliable TinyOS 1.x software. By isolat-
ing processes, a traditional OS greatly simplifies appli-
cation implementations. The task queue example shows
how TinyOS 1.x components, in contrast, had poor iso-
lation. There were numerous other examples of this lim-
itation, such as the link layer send queue, sensors, and
generally almost every OS service except timers. Very
robust TinyOS 1.x software therefore had to consider
that any operation might fail and handle the error, in-
creasing RAM and ROM use.

TinyOS 2.x improves prevention through better com-
ponent isolation: it makes each component’s interac-
tions to an underlying shared resource completely in-
dependent. Each client has a perfectly virtualized in-
stance of the underlying service. For example, the return
value of a send packet call is independent of whether

AMSenderC AMQueueC
unique

unique

unique

uniqueCount

Send interface

Figure 2: Static virtualization with AMSenderC.

other packets are in the transmit queue. Memory allo-
cation for this virtualization, however, needs to occur at
compile-time, otherwise it would introduce a source of
run-time failure.

TinyOS 2.x achieves this “static virtualization” be-
havior by combining generic components and the mem-
ory allocation techniques described above in Section 3.
Generic components are instantiable nesC components,
taking types and constant primitive types as parameters
(before 2.x, all nesC components were singletons in a
global namespace). Generic components improve code
reuse just as Java generic, C++ templates and other sim-
ilar language mechanisms do.

The basic idea behind static virtualization is that a
piece of software can declare a logical (virtualized) in-
stance of a service, such as the ability to send a link layer
packet. The behavior of an API is completely indepen-
dent of all other users of the API. A caller can determin-
istically know the result of any call, as all transitions in
the interface’s finite state machine come from that client.
This differs from deterministic parallelism [9] in that it
is concerned with the behavior of only a single API and
avoids shared state.

TinyOS accomplishes static virtualization entirely at
compile-time. It uses an abstraction called parameter-
ized interfaces to distinguish between multiple clients,
the unique and uniqueCount functions to determine ex-
actly how many clients there are, and generic compo-
nents to prevent bugs by hiding all of this machinery
from the user. In TinyOS 2.x, all APIs to core OS ser-
vices use static virtualization. For example, to send a
link layer packet, a program instantiates an AMSenderC
component. AMSenderC has the property that it rejects
a valid transmission request if and only if that client al-
ready has a transmission request outstanding.

Underneath, AMSenderC connects AMSend to a packet
queue, shown in Figure 2. The packet queue has a pa-
rameterized Send interface. Each instance of AMSenderC
connects to it with a call to unique. The queue uses
uniqueCount to allocate the correct number of queue
entries. When a component tries to send a packet, the
queue checks if the corresponding client’s entry in the



212 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

queue is occupied. If not, it accepts the packet for trans-
mission; if so, it tells the caller to retry.

Static virtualization is an example of a novel program-
ming abstraction from TinyOS that emerged from the
unique requirements that wireless sensors face. We be-
lieve it represents a large step forward for highly effi-
cient and dependable embedded software. With static
virtualization, software can use an OS service, safely
isolated from all other users of the service. Because the
behavior of the API is based solely on the calling com-
ponent, one can statically verify that some components
are correct (e.g., with interface contracts [7]). Further-
more, the underlying implementation allocates exactly
the amount of RAM needed and has simple, concise
code.

5. LANGUAGE/OS CO-DESIGN
Early on in TinyOS development we made the de-

cision to design a language to better support its pro-
gramming and concurrency model. The nesC language
allowed TinyOS to achieve near-optimal resource effi-
ciency (minimization) and a surprisingly low bug rate
(prevention). Having a new language also allowed us to
evolve and extend features as new problems arose. For
example, the language features for static virtualization
(parameterized interfaces, unique, uniqueCount, generic
components) emerged over a 4 year period. Being able
to control both the language and operating system gave
the project tremendous flexibility to achieve system de-
sign goals.

On one hand, static virtualization is an excellent pro-
gramming interface. On the other, the software com-
plexity it takes to achieve in nesC turns out to be formidable.
Reaching it took a circuitous path through 4 major re-
leases of TinyOS and five years of development. As
a result, static virtualization involves emergent, rather
than planned, uses of language mechanisms and a hand-
ful of programming idioms which are foreign to a new
user.

Language evolution is a two-edged sword. As TinyOS
became more robust and users began to tackle more chal-
lenging software projects, both the OS and nesC lan-
guage evolved to meet these needs. On one hand, this
evolution made it possible to tackle larger and harder
problems. On the other, each stage of this evolution
added new features, moving TinyOS and nesC further
from C and raising the barrier to entry. Furthermore, the
most effective software patterns, such as static virtual-
ization, used all of these features in complex and novel
ways. By focusing on expert TinyOS users and making
it possible to write larger software, TinyOS 2.x became
less accessible to new users. Making it harder to write
buggy code had the unfortunate result of making it just
plain harder to write code.

In retrospect, the focus on expert users missed a great
opportunity: hobbyists and the “Maker” do-it-yourself
crowd. The past five years have seen a huge growth in
simple, DIY electronic projects, spearheaded by Make
Magazine [1]. This community has latched onto the Ar-
duino platform [8] for its projects. In comparison to
TinyOS, Arduino is feature-poor: programs are single-
threaded C programs for simple sensing and actuation.
But for hobbyists, the resulting simplicity is extremely
desirable. Building a gumball machine that “only dis-
penses treats when you knock the secret rhythm on its
front panel” (an article in a recent issue of Make maga-
zine) doesn’t require static virtualization, network types,
and compile-time data race detection.

This increase in learning difficulty had more to do
with the novel features of nesC and their increased use
than APIs or software implementation. Evolving and
larger APIs do not increase programmer difficulty in the
same way that language features do. A simple program
needs to use a limited number of APIs, and the cognitive
effort required scales with program complexity. You see
this pattern in language communities, but not operating
system ones. For example, consider regular expressions
in Perl 5 versus Perl 6. Perl 5 regular expressions are
similar to those in many other UNIX tools (sed, shells,
etc.), so the learning curve for an experienced UNIX
can start very gradually. In contrast, Perl 6 regular ex-
pressions introduce programming constructions called
grammars and rules that require learning from scratch.
While the earliest TinyOS programs were mostly C with
a bit of nesC to support components, modern code heav-
ily uses many nesC features, making the learning curve
very steep.

The steepness of this learning curve has implications
to staffing. Academic projects tend have graduate stu-
dents as their primary developers. This tension between
research and engineering can sometimes be solved by
hiring staff software engineers. Language evolution, how-
ever, complicated this process considerably for TinyOS.
Different groups tried several times to hire TinyOS staff
programmers, with mixed results. The first staff hire,
made early in TinyOS 1.0, contributed a great deal. But
he departed in 2005 to work at a sensor network startup.
The second was hired in 2004 during the beginning of
TinyOS 2.x development. Intel Research tried hiring a
software engineer for 1.x: the hire, after a year, pro-
duced a single component which had to be thrown away.
The third hire had significant experience in event-driven
systems, the gulf between Internet services and TinyOS
was too wide and he was unable to contribute. In retro-
spect, hiring staff early in the project, so they can learn
the system as it evolves, was much more successful than
doing so late, when it had significant and novel com-
plexity.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 213

�������

�������������� ���������������

������������

����������

���������� 
��	������

������������

��������������

�����������������

Figure 3: Component structure for the TinyOS
2.x timer implementation. Grey boxes with
solid lines are modules (executable code), while
white boxes with dashed lines are configurations,
components which connect other components to-
gether. AlarmCounterP exists to transform its
hardware-independent into specific chip implemen-
tation (Atm128AlarmAsyncC).

One staff member hired late in the project succeeded
in contributing because he was an exceptional and unique
case. Before starting as a staff engineer, he was one of
the largest contributors to TinyOS 2.x, having researched
sensor networks while pursuing a Masters degree. The
fact that only someone well inside the community could
be a significant contributor later on in the project fur-
ther demonstrates the barrier to entry that OS/language
co-design can create.

Other sensor network OSes have emerged to fill the
voids left by TinyOS’s evolution. Contiki [5], for exam-
ple, is written entirely in C and provides a more tradi-
tional operating system model of a core kernel and ap-
plications which compile against it. While TinyOS is
more efficient and cleaner, starting with Contiki is much
easier. Today a significant fraction of sensor network
research builds on top of Contiki rather than TinyOS.

6. COMPONENTS
The concept of a component is key to TinyOS’s pro-

gramming model. Components separate interface and
implementation, provide data privacy, allow code re-use,
and provide sufficient linguistic structure for nesC to
perform many useful optimizations. For all of these
reasons, using components in embedded software is a
tremendous improvement over basic C code.

But while components are generally beneficial, they

can be used badly. Early on, TinyOS was intended as a
research vehicle. We tried to structure software so that it
was easy to extend or modify in a small way. Based on
user feedback (in particular, early MAC research such
as S-MAC [45]), this structure involved many layered
compositions of small, lightweight components. For ex-
ample, if someone wanted to change the MAC timing
behavior of the mica platform (carrier sense, backoff),
this involves changing one component. Changing the
data encoding/decoding involves changing a different
component.

The main goal of this approach was to ease exper-
imentation. But taken to its conclusion, fine-grained
components have significant drawbacks we did not fore-
see. Today, the most heavily used radio driver (for the
ChipCon CC2420 [15]) is ≈2400 lines of code1 and 41
different components. The driver consists of 40 files for
2400 lines of code! In a slightly less extreme example,
the timer service, shown in Figure 3, involves 8 com-
ponents that convert a 32kHz counter with compare and
overflow interrupts into a millisecond granularity timer
component, which becomes the basis for the statically
virtualized timer abstraction (another 3 files). What is
ultimately less than a kilobyte of code is spread across
11 different files. In terms of prevention and minimiza-
tion, this is fine. Each small component is easy to verify
and debug, and the interfaces between components are
designed to avoid the waste of multiple private copies of
the same state.

But as Figure 3 suggests, the drawback of fine-grained
components emerges when trying to understand a sys-
tem for the first time. There are so many tiny pieces
of functionality spread across files, with numerous lev-
els of indirection, that keeping track of it all can be a
headache. The structural complexity is far beyond what
the underlying code complexity requires. In the case of
the CC2420, one literally has to have 41 different files
open at once to see all the code for just one (admittedly
very important) driver. When you are implementing the
system, all of it makes sense; but to a new user, it’s con-
voluted and complex. A user interface researcher might
say this is not a fundamental problem: a good devel-
opment tool could make browsing this code easy and
intuitive. However, we had neither such a tool nor the
expertise to build one. While perhaps not a fundamental
problem, it is a real and practical one.

For application-level systems, such as GUI toolkits or
the Click modular router [27], fine grained components
can make sense. Every application is different, and a
very flexible toolkit can greatly speed development. But
the tradeoffs for an operating system are very differ-
ent. In the end, there are very few microcontrollers with

1We measure lines of code as the number of lines in a file
outside of comments that have a semicolon in them.



214 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

which one builds a timer system for using the TinyOS
timer library, not that many radios which resemble the
CC2420 and not that many variations in its use. These
libraries are intended to be the basic APIs of an OS; ul-
timately, application developers want stability, and so
there is very little innovation.

Designing generalized fine-grained abstractions can
be valuable if you need to integrate multiple, indepen-
dent changes. For example, one might want to incorpo-
rate an alternative MAC protocol (e.g., Funneling MAC [6])
with an alternative packet retransmission scheme (e.g.,
Partial Packet Recovery [24]). In practice, however, op-
erating system changes are rarely simply localized and
rarely compose easily. While implemented as many small
components, those components, for sake of code sim-
plicity, end up being tightly coupled.

Our conclusion is that a well designed and carefully
implemented operating system is more helpful than an
operating system toolkit or operating system software
designed with reuse in mind. Our experience with devel-
oping more traditional operating systems supports this
conclusion. It is easier to take the Linux boot code and
modify it for your needs than to work within a compo-
nent framework for its generalized boot module. We lost
sight of the fact that “code reuse” really means within a
system, not necessarily across completely independent
systems. As both researchers and software engineers,
we want to design generalized abstractions, but an ex-
cellent artifact is often more useful than a general archi-
tecture.

7. COMMUNITY STRUCTURE
TinyOS began as a small research project at UC Berke-

ley and today has a large, global developer community.
Linux’s success over HURD in the early 1990s demon-
strated that the ability for an open source project to build
and maintain an active developer community is as much
a result of social interactions and structure as technical
concerns.

This section describes how the TinyOS community
has evolved socially, focusing on three major consid-
erations: the structure of the community, the relation-
ship between academic and industrial developers, and
the effort needed to manage and support users. The
prior section described how TinyOS’s technical evolu-
tion increased its barrier to entry, and this section ex-
plores how social mechanisms adopted very late in the
project (2007) helped counteract this somewhat.

7.1 Historical Progression
The TinyOS community has gone through two major

structural changes, reflecting its major revisions: pre-
1.0 from 1999-2002, 1.x from 2002-2005 and 2.x from
2005 to present. We present a very brief overview of

these changes as background for later observations and
also to acknowledge major contributors.

7.1.1 Pre-1.0
Before version 1.0, TinyOS was a small research project

at UC Berkeley [23]. All of the major authors were
UC Berkeley students, with some students visiting from
UCLA and USC contributing a few components, such
as for flooding experiments [19]. At this point in time,
there was no real separation between TinyOS develop-
ment and sensor network research. Research meetings
at UC Berkeley discussed major design decisions, and
close proximity made social interactions about code sim-
ilar to most research group codebases.

7.1.2 Building a community: v1.x
When version 1.0 was released, TinyOS had a small

community of research users through the DARPA NEST
project. These users began to contribute code. In addi-
tion to students at UC Berkeley, the TinyOS core sys-
tem2 developers included researchers and a staff pro-
grammer at Intel Labs Berkeley. The Berkeley NEST
project group hired a staff member to organize demon-
strations, who began to contribute code.

The TinyOS 1.x core system had 37 developers who
checked code into the tree. 23 of the developers were
from Berkeley: 16 graduate students, 5 undergraduates
and two staff members. 6 were from Intel Research
Berkeley, 3 were from Technische Universität Berlin, 2
were from Crossbow, Inc., the company that produced
the Berkeley hardware designs, and the last 3 were grad-
uate students from Vanderbilt, UCLA, and Harvard.

Although TinyOS 1.x had many users building sys-
tems they sought the community to use, most of the core
TinyOS development continued to occur at Berkeley.
Code in the main TinyOS tree had to go through regres-
sion tests for each release. For most research projects,
the responsibility of managing formal releases and per-
forming regular tests on someone else’s schedule was
much more effort than it was worth. Instead, the re-
search community put code in a separate “contributions”
directory. While the core TinyOS 1.x tree had 37 con-
tributors, the contrib directory has 110, spread across
over 80 project subdirectories, from Funneling MAC [6]
to the Capsule flash storage system [31].

7.1.3 Expanding globally: v2.x
The tight collaboration between Berkeley and TU Berlin

was the seed for the core TinyOS development commu-
nity to expand beyond UC Berkeley. This step forward
was auspicious: three of the largest TinyOS contribu-
2By “core system” we mean the TinyOS code packaged in
a release (the tos/ directory), not PC-side support tools or
other non-nesC code.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 215

tors left Berkeley in the spring of 2005. Two started to
work full time at their startup company, Moteiv, while
one took a faculty position. Setting up a more formal
structure would allow all of them to continue to con-
tribute.

A group of the core developers agreed that TinyOS
1.x had numerous unsolvable structural flaws, mostly
relating to reliability (e.g., packet transmission queuing
as described in Section 4). They formed the TinyOS
2.x working group in October of 2004. The working
group realized that one of the major challenges for new
users to TinyOS was its lack of any formal design doc-
uments. Because every abstraction in TinyOS was up
for review and redesign, small subgroups formed and
began to define the new interfaces, documenting them
in TinyOS Enhancement Proposals (TEPs), a cross be-
tween a Python Enhancement Proposal (PEP) and an In-
ternet Request for Comments (RFC).

The first full release of TinyOS 2.0 took two years.
When work started, three companies (Moteiv, Arch Rock,
and Crossbow) were all significantly involved in the ef-
fort and contributed code. By the time 2.0 was released,
however, both Crossbow and Moteiv had dropped out
of participation. Arch Rock continued to contribute late
into 2007.

A small number of institutions dominate academic con-
tributions. After Berkeley-based development transitioned
into Arch Rock, Stanford, and Moteiv, Berkeley devel-
opment dropped to zero until late 2008 and early 2009.
The most consistent and significant academic contribu-
tor over time is TU Berlin, which not only wrote many
parts of the core OS in 2005-6 but also continued devel-
opment on extensions (e.g., an 802.15.4 MAC in 2008-
10). In 2008, Johns Hopkins contributed a network pro-
tocol for reprogramming as well as CC2420 security ex-
tensions.

One notable aspect of the commit logs is that they are
very bursty. Commits generally relate to a library or
contribution, and there are very few background com-
mits, e.g., for fixing bugs. The small number of bugs
indicates that TinyOS 2.x has successfully followed the
prevention principle. From when the TinyOS 2.x tree
moved to Google code in July of 2010 until May 2011,
there were 16 bug reports over the approximately 80,000
lines of code of the core system.

7.2 Industry vs. Academia
TinyOS represents a unique point in the design space

of open source projects because it deals with embedded
systems yet sees very heavy use by the research com-
munity. Because debugging embedded code is very dif-
ficult, users have a very strong incentive to use exist-
ing code rather than write their own: writing a new de-
vice driver is a much more daunting task than writing a

Figure 4: Traffic on tinyos-help mailing list.

new protocol. The research community, however, wants
to explore ideas on how to improve important systems
and so modify existing codes. These conflicting desires
between efficient existing codes to use and extensible
codes to conduct research has been a continual tension
in the TinyOS development community.

TinyOS code development has always been primarily
academic. Industrial contributions, however, constitute
some of the most critical components of the system. For
example, the link layer stack for the ChipCon CC2420
radio, the dominant radio used today, has gone through
three iterations. The first was an academic rewrite of
the TinyOS 1.x stack; the second was a clean reimple-
mentation by Arch Rock; the third was from Rincon
Research and included a low-power mode. While the
CC2420 code is only 2,400 lines (3% of the codebase),
it is one of the most heavily used, experimented with,
and important pieces of code.

Initially, developers who left Berkeley for Moteiv and
Arch Rock continued to contribute to TinyOS 2.x, as
the companies had expressed commitment to an open-
source platform. However, the very different timescales
of startups and academia proved to be an irreconcilable
tension. Both Moteiv and Arch Rock wanted to set-
tle on a “good enough” platform quickly so they could
move on to higher-level services they could sell. The
academics, in contrast, saw 2.x as the opportunity to
“do things right” and establish a design which would
minimize future maintenance. The numerous iterations
on the design of very low-level systems, such as power
management and locking [26], led both Moteiv and Arch
Rock to fork the TinyOS tree and use their own private
versions of the codebase.

This forking introduced difficult conflicts of interest.
For example, Moteiv released Boomerang, a hybrid ver-
sion of TinyOS halfway between 1.x and 2.x which sup-
ported features in newer Moteiv hardware. Meanwhile,
members of Moteiv remained involved in TinyOS 2.x
discussions. On one hand, they argued that TinyOS 2.x
was going in directions contrary to the needs of their
customers. On the other, Moteiv had stopped contribut-
ing code towards this end, and changing course to follow
these suggestions would slow TinyOS 2.x development
and cause more people to use Boomerang.

7.3 Managing and Supporting Users



216 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Today, TinyOS averages approximately 50-100 down-
loads/day, or 18,000-36,000 per year (the numbers spike
on a release). This number does not include developer
downloads via CVS, SVN, or git: it is solely downloads
of RPMs, debian packages, and VMWare images. We
obtained this count by examining web logs for down-
loads of these three formats from the TinyOS distribu-
tion server, pruning by agent to remove search bots, and
then counting the number of unique IP addresses. Un-
fortunately the bi-monthly rotation of web logs (as well
as a server replacement in 2010) prevents us from giving
detailed download statistics over time.

Managing a user base so large is difficult, especially
because every developer is a volunteer. Computer sci-
ence graduate students have very little motivation to ac-
tively support users. Support is also especially challeng-
ing due to the fact that TinyOS is used in many uni-
versity courses, whose students represent a huge variety
of technical ability. Developers typically do not mind
answering “interesting” questions or responding to bug
reports, but questions on more mundane issues such as
Java classpath problems, general C programming ques-
tions such as “is there array for TinyOS,” or “where
do I download TinyOS” become wearying after a few
months, let alone a decade.

Tinyos-help, the main help mailing list, started in May
2002. Figure 4 shows the posts per month between then
and now. There are two interesting trends: first is the
annual dip in traffic around the new year, due to the
winter holidays. The second is that messages on the
mailing list peaked in June of 2007 with 947 messages
that month. Since that time, there has been a steady,
downward trend. This downward trend does not corre-
late with a downward trend in downloads.

What happened in 2007 that made mailing list sup-
port easier? In July 2007 the Documentation Working
Group formed to move TinyOS from a set of static doc-
umentation web pages to a documentation wiki that any-
one could modify and improve. Over time, documenta-
tion since then has continually improved. Anecdotally,
our experience with tinyos-help is that the reduction in
traffic since then has not been uniform across types of
questions. Traffic on -help has become bimodal, either
consisting of the most rudimentary questions by posters
who have not bothered to look at the documentation (or
search the web), or detailed technical questions. De-
velopers ignore the former and typically respond to the
latter. The response to a common, recurring question is
typically a pointer to the site-specific Google search for
the web accessible tinyos-help archives.

While the process of writing tutorials, API reference
documents, and programming manuals is neither glam-
orous nor exciting, the presence of these materials re-

duced the long-term effort needed to support a large user
community.

8. LESSONS LEARNED
In the past decade TinyOS has transitioned from C

preprocessor macros maintained by a graduate student
at Berkeley to 80,000 lines of code written in a new C
dialect by a worldwide community of academic and in-
dustrial developers. Arriving at this point involved some
good steps and some mistakes. This section tries to an-
swer the question: if we could do it all over with hind-
sight, what would we do similarly and what would we
do differently? Or more generally, how would we rec-
ommend growing a systems software research project to
be adopted outside academia? We focus on 5 specific
decisions TinyOS made: adopting nesC, its focus on
software components, its reliance on a research commu-
nity as users, its collaboration with industry, and how it
developed documentation. When possible, we draw par-
allels between a few other academic software projects.

8.1 Good: Language Extensions
Ultimately, the decision to go with nesC was the right

one: nesC’s language features allowed developers to write
robust code that used very few hardware resources. Had
we stayed with C, it seems unlikely that TinyOS-based
sensor networks would be as advanced as they are to-
day. Chances are another project, realizing the limi-
tations of C, would have tried an alternative language
approach. Furthermore, nesC gave us the flexibility to
discover novel programming abstractions that are not
possible in C and greatly improve system development,
such as static virtualization.

8.2 Bad: How Language Extensions Evolved
While the decision to use nesC was a good one, how

TinyOS used it should have evolved differently. On one
hand, eating your own proverbial dog food is important:
TinyOS developers built applications and systems, giv-
ing them experience with the strengths and weaknesses
of the system. On the other hand, doing so led to a dis-
torted perception of what was hard or important. Chas-
ing hard, unsolved problems makes sense from a re-
search standpoint. But from a practical standpoint, mak-
ing it easier to solve hard problems can simultaneously
make it harder to solve the easy ones, and this happened
with TinyOS.

In retrospect, it would have been better to split the sys-
tem design and evolution efforts into two halves. The
first half would be to make it easier to build larger and
more complex systems. The second half would make
it easier to build trivial systems. Motivating systems
and networking graduate students to take this second
approach would most likely fail. But, for example, sup-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 217

pose TinyOS developers had engaged with work at Stan-
ford [21] or Carnegie Mellon [10] on rapid sensor de-
vice prototyping. It could have possibly enabled whole
new application domains and use for low-power wire-
less sensing devices. Arduinos, which have moved to
fill this capacity, have very limited network capabilities:
who knows what interesting new scientific experiments,
art pieces, or toys could have appeared if TinyOS were
used instead?

On the other hand, nesC’s evolution discovered new
and better ways to write efficient, bug-free embedded
code. Going forward, the right thing to do is to com-
pletely redesign the language, or design a new one, to
make these concepts basic language structures rather than
complex uses of more general features. For example,
one could have a way to define a static virtualization
that automatically sets up parameterization, unique, and
state management: a single file could define the service,
rather than the typical case today of at least 4 files.

8.3 Good: Software Components
Components are a significant improvement over basic

C code. They provided clean, reusable interfaces, data
privacy, and enabled many tools for checking and ver-
ifying TinyOS code. They encourage clean system de-
compositions, which enabled small groups of program-
mers to build intricate, complex systems, ranging from
shooter localization applications [30] to the Tenet pro-
gramming system [33].

8.4 Bad: Software Component Architec-
tures

Faced with such capabilities, however, the inevitable
academic tendency is to generalize and define architec-
tures for core services, such as TinyOS’ network layer
architecture (NLA) [18]. But these generalizations, in
practice, turn out to usually be much more effort than
they are worth. If there is only a small handful of im-
plementations for any given abstraction (e.g., forward-
ing policy, link estimator), the structural complexity that
generalization adds is detrimental. “Don’t generalize;
generalizations are generally wrong.” [29] In practice,
clean, easy-to-understand code without too much struc-
tural complexity can be easier to copy and modify. We
should have started with fine-grained components, then
over time transitioned to more monolithic implementa-
tions as they stabilized.

8.5 Good: Initial Users
Without the NEST project, TinyOS would not have

moved far past Berkeley and a few other schools. NEST
motivated Berkeley developers to embark on sometimes
boring software engineering projects: others would use
their code and so the work had impact. It also led to soft-

ware from outside Berkeley that others could use, ex-
tend, and compare against. Finally it created momentum
and interest in the form of social memory and knowl-
edge. When a researcher thinks about using TinyOS,
chances are they know another person or group who is
already doing so, whom they can learn from.

While it’s obvious that getting an initial group of users
is critical, how does one do so? There are two basic
mechanisms. The first is to promote use internally, among
other groups or researchers who might find the system
useful. One notably successful example is the Click
modular router [27]. Click, originating at MIT, has been
used in many research projects from that institution, such
as Roofnet [12] and wireless network coding [25]. These
demonstrations of Click’s success as not only a research
project but also a practical tool have helped it now be
used by many researchers and companies.

The second approach, which is generally more eas-
ily successful, is to have a funding agency give grants
to work on the system. For the NEST project, using
TinyOS was essentially a requirement. Of course, this
has drawbacks as well. Some NEST participants still
resent that they had to use TinyOS. Other examples that
followed this approach are less extreme, such as DHash++ [17]
as part of IRIS, or PlanetLab [34] and Intel.

8.6 Bad: Focusing on Experts
In retrospect, focusing on growth within the research

community exacerbated TinyOS’ focus on technical com-
plexity. The project, just as with technical directions,
should have also focused on broadening participation.
But in seeking research impact, the project sought im-
pact predominantly with researchers.

While it is possible to achieve impact by having users
outside the research community (X from MIT, BSD from
Berkeley, Mach from CMU, Xen from Cambridge, and
more recently OpenFlow from Stanford, are notable ex-
amples), this is especially difficult for embedded soft-
ware. Embedded systems are often closed, single-vendor,
vertically integrated systems where the vendor gives few
if any real details on the underlying technology. Anec-
dotally, through we know of many companies who use
TinyOS in products, only a tiny handful will say so on
the record.

8.7 Bad: Early Industrial Involvement
When effort on TinyOS 2.x started, several companies

were involved in the design process. Each of them, how-
ever, dropped out within nine months as their develop-
ment timescale was much, much faster than academia.
Frustrated by the long discussions and numerous design
iterations, both Moteiv and Arch Rock forked from the
main tree to develop their own branches. The frustra-
tion was also due to differing goals: both Arch Rock and



218 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Moteiv wanted to focus on the hardware platform they
both used, while academic groups representing multiple
hardware devices wanted more generality.

What is especially revealing is that many of the early
criticisms from Crossbow and Moteiv on the programma-
bility of TinyOS 2.x were, in retrospect, completely cor-
rect. While we believe involving industry in early de-
sign was a mistake, TinyOS would have benefited from
more carefully listening to the requirements industrial
collaborators presented. Instead, early industrial part-
ners departed the project in frustration.

8.8 Good: Late Industrial Involvement
Once the core design was complete in early 2006,

however, companies such as Rincon Research, Hand-
helds.org, Zolertia, and Shockfish began to join the project
and contribute significantly. This code was typically
drivers for their platforms, although it also included a
few utility libraries. Given a well defined structure and
precise, stable interfaces, commercial engineers were
willing to participate and contribute without having to
accommodate what must at times seem like philosoph-
ical debates about hypothetical universes. The Open-
Flow project at Stanford lends additional evidence that
incorporating commercial contributors later, not earlier,
is a better approach than the one TinyOS tried. The
original designs of OpenFlow and Xen originated within
Stanford and Cambridge. Over time, the projects en-
listed industrial partners who are willing to implement,
extend, and use the system.

8.9 Good: Diverse Documentation
As a user community grows, documentation is abso-

lutely critical to keeping down the support effort needed.
Writing documentation can be time consuming, but is
worth the long-term time savings in answering ques-
tions. TinyOS ultimately gravitated towards three forms
of documentation: tutorials, for getting started, TEPs,
which are API and implementation references, and a
TinyOS programming manual (over 200 pages) that goes
into excruciating detail on advanced programming and
software engineering techniques. Tutorials acclimate a
new user to how to write a program and use some simple
functionality; TEPs explain most of the system function-
ality, for when a user wants to build something new; the
programming manual helps when a user wants to write
a reasonably large and complex piece of software.

One sometimes frustrating result of good documen-
tation is that you hear very little from users: no news
is good news. After the TinyOS documentation wiki
started, some developer wondered whether the slow re-
duction in questions was due to the TinyOS community
slowly fading away. But the number of downloads indi-
cates otherwise: more people are downloading TinyOS,

but fewer are asking questions about it.

8.10 Bad: Only Developer Documentation
It’s challenging for someone to write documentation

intended for an audience with a vastly different techni-
cal background. When TinyOS was early in its evolu-
tion and not yet very complex, documentation written
by its developers was reasonably accessible to other C
programmers. But as the system become more complex
and developer expertise increased, tutorials became si-
multaneously longer and more obtuse.

In retrospect, TinyOS was far too late in transition-
ing documentation to a wiki. There was a bit of a con-
trol concern: if you open documentation to the masses,
they might write something incorrect. But generally, for
every mistake, there will be ten additions that are cor-
rect. If a user thinks a certain piece of documentation is
needed, trust that thought. For example, one of the earli-
est community documentation contributions, the second
link on http:/docs.tinyos.net, is a tiny page
that demonstrates the simplest TinyOS program. We
initially thought that something so minor should be in
a tutorial, or deeper in the site, but in retrospect realized
we should leave it to users to decide.

However, one cannot simply create a wiki and expect
users to populate it with content for free. Developers
have to heavily seed the documentation effort. Users,
like everyone else, are much more motivated to improve
something that’s there than to create out of whole cloth.

9. CONCLUSION
A decade is a long time, especially for an academic

project. TinyOS was able to transition from the aca-
demic halls of UC Berkeley into a worldwide commu-
nity of developers and users. Getting to this point in-
volved tens of thousands of hours of work by hundreds
of contributors. In retrospect, some decisions that seemed
sound at the time had significant negative long-term im-
plications that we did not foresee. For example, while
designing language extensions for better operating sys-
tems programming is valuable, co-evolving those exten-
sions with the OS can alienate new users, limiting the
long-term benefits of the work.

TinyOS has been a critical enabler for wireless sen-
sor network research and engineering, the benefits of
which we see in efforts like the IETF developing stan-
dards for connecting low-power wireless sensors to the
Internet [39]. As computing increasingly pervades soci-
ety, the ability for universities to transition research into
practical, real-world impact and benefits will remain im-
portant and valuable. Our hope is that the lessons we
learned so may help others trying to do so in the future.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 219

Acknowledgments
TinyOS is the collaborative work of many developers,
too many to list here, who all deserve credit for its suc-
cess. I’d like to especially acknowledge Jason Hill, David
Gay, Cory Sharp, Joe Polastre, Vlado Handziski, Jan
Heinrich-Hauer, Kevin Klues, David Moss, Omprakash
Gnawali, Jonathan Hui, John Regehr, Matt Welsh, Alec
Woo, Robert Szewczyk, Kamin Whitehouse, Philip Buon-
adonna, Ben Greenstein, and Miklos Maroti. In addi-
tion, David Culler’s leadership, Eric Brewer’s language
design insights, and Shankar Sastry’s application knowl-
edge all set the trajectory that led to the operating sys-
tem’s longevity and success. Last but certainly not least,
TinyOS would never have succeeded without its users,
their bug reports, feature requests, and hard work that
helped define the early years of sensor network research.

I’d also like to thank the program committees of SOSP
2011 and OSDI 2012. Their reviews provided excel-
lent advice on what aspects of TinyOS’s history could
be most beneficial to other researchers and engineers.

This work was supported by generous gifts from Mi-
crosoft Research, Intel Research, DoCoMo Capital, Foun-
dation Capital, the National Science Foundation under
grants #0615308 (“CSR-EHS”), #0627126 (“NeTS-NOSS”),
and #0846014 (“CAREER”), as well as a Stanford Ter-
man Fellowship. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

10. REFERENCES
[1] Make magazine. http://makezine.com.
[2] People Power Company.

http://www.peoplepowerco.com.
[3] Zolertia Wireless Sensor Networks.

http://www.zolertia.com.
[4] Mica2 schematics. http://webs.cs.berkeley.edu/

tos/hardware/design/ORCAD_FILES/MICA2/
6310-0306-01ACLEAN.pdf, Mar. 2003.

[5] Adam Dunkels and Björn Grünvall and and Thiemo Voigt.
Contiki - a Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (IEEE EmNetS-I), 2004.

[6] G.-S. Ahn, S. G. Hong, E. Miluzzo, A. T. Campbell, and
F. Cuomo. Funneling-MAC: a Localized, Sink-Oriented MAC
for Boosting Fidelity in Sensor Networks. In Proceedings of the
Fourth International Conference on Embedded Networked
Sensor Systems (SenSys), 2006.

[7] W. Archer, P. Levis, and J. Regehr. Interface Contracts for
TinyOS. In Proceedings of the Sixth International Conference
on Information Processing in Sensor Networks (IPSN), 2007.

[8] Arduino Team. Arduino home page.
http://www.arduino.cc.

[9] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient
System-Enforced Deterministic Parallelism. In Proceedings of
the Ninth Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[10] D. Avrahami and S. E. Hudson. Forming Interactivity: A Tool
for Rapid Prototyping of Physical Interactive Products. In
Proceedings of the Fourth Conference on Designing Interactive

Systems: Processes, Practices, Methods, and Techniques (DIS),
2002.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[12] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture
and Evaluation of an Unplanned 802.11b Mesh Network. In
Proceedings of the Eleventh Annual International Conference
on Mobile Computing and Networking (Mobicom), 2005.

[13] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and
L. Luo. Declarative Tracepoints: a Programmable and
Application Independent Debugging System for Wireless
Sensor Networks. In Proceedings of the Sixth International
Conference on Embedded Network Sensor Systems (SenSys),
2008.

[14] O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman. Reliable
Clinical Monitoring Using Wireless Sensor Networks:
Experiences in a Step-Down Hospital Unit. In Proceedings of
the Eighth International Conference on Embedded Networked
Sensor Systems (SenSys), 2010.

[15] ChipCon Inc. CC2420 Data Sheet. http://www.chipcon.
com/files/CC2420_Data_Sheet_1_4.pdf, 2006.

[16] O. S. Consortium. Openflow.
http://www.openflow.org/.

[17] F. Dabek. A Distributed Hash Table. PhD thesis, Cambridge,
MA, USA, 2005.

[18] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler,
S. Shenker, and I. Stoica. A Modular Network Layer for
Sensorsets. In Proceedings of the Seventh Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

[19] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin,
and S. Wicker. An Empirical Study of Epidemic Algorithms in
Large Scale Multihop Wireless Networks. UCLA Computer
Science Technical Report UCLA/CSD-TR 02-0013, 2002.

[20] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC Language: A Holistic Approach to
Networked Embedded Systems. In SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2003.

[21] B. Hartmann, S. R. Klemmer, M. Bernstein, L. Abdulla,
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective Physical
Prototyping through Integrated Design, Test, and Analysis. In
Proceedings of the Nineteenth Annual ACM Symposium on
User Interface Software and Technology (UIST), 2006.

[22] J. Hill and D. E. Culler. Mica: a Wireless Platform for Deeply
Embedded Networks. IEEE Micro, 22(6):12–24, 2002.

[23] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System Architecture Directions for Networked
Sensors. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), 2000.

[24] K. Jamieson and H. Balakrishnan. PPR: Partial Packet
Recovery for Wireless Networks. In Proceedings of the 2007
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), 2007.

[25] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft. XORs in the Air: Practical Wireless Network
Coding. In Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), 2006.

[26] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay,
and P. Levis. Integrating Concurrency Control and Energy
Management in Device Drivers. In Proceedings of Twenty-First
ACM Symposium on Operating Systems Principles (SOSP),
2007.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems, 18(3):263–297, August 2000.

[28] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,



220 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

M. Flanigan, N. Kushalnagar, L. Nachman, and M. Yarvis.
Design and Deployment of Industrial Sensor Networks:
Experiences from a Semiconductor Plant and the North Sea. In
Proceedings of the Third International Conference on
Embedded Networked Sensor Systems (SenSys), 2005.

[29] B. W. Lampson. Hints for Computer System Design. In
Proceedings of the Ninth ACM Symposium on Operating
Systems Principles (SOSP), 1983.

[30] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits. Shooter
localization in urban terrain. Computer, 37(8):60–61, Aug.
2004.

[31] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy.
Ultra-Low Power Data Storage for Sensor Networks. ACM
Transactions on Sensor Networks, 5(4):33:1–33:34, 2009.

[32] Micrium. The uC/OS-II Kernel. http:
//micrium.com/page/products/rtos/os-ii.

[33] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki,
M. Vieira, J. Hicks, D. Estrin, R. Govindan, and E. Kohler. The
Tenet Architecture for Tiered Sensor Networks. ACM
Transactions on Sensor Networks, 6(4):34:1–34:44, 2010.

[34] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences Building PlanetLab. In Proceedings of the Seventh
Symposium on Operating Systems Design and Implementation
(OSDI), 2006.

[35] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling
Ultra-Low Power Wireless Research. In Proceedings of the
Fourth International Symposium on Information Processing in
Sensor Networks (IPSN), 2005.

[36] G. Pottie. Casting the Wireless Sensor Net. MIT Technology
Review, July 2003.

[37] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the Sensor Network Debugger. In
Proceedings of the Third International Conference on
Embedded Networked Sensor Systems (SenSys), 2005.

[38] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An
Analysis of a Large Scale Habitat Monitoring Application. In
Proceedings of the Second International Conference on
Embedded Networked Sensor Systems (SenSys), 2004.

[39] T. Winter and P. Thubert (editors). RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. Internet Network Working
Group RFC6550, March 2012.

[40] The eCos project. eCos v2.0 Embedded Operating System.
http://ecos.sourceware.org.

[41] The FreeRTOS project. FreeRTOS – Free professional grade
RTOS. http://www.freertos.org.

[42] M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen,
M. Jain, and P. Levis. Visibility: a New Metric for Protocol
Design. In Proceedings of the Fifth International Conference on
Embedded Networked Sensor Systems (SenSys), 2007.

[43] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and Yield in a Volcano Monitoring Sensor
Network. In Proceedings of the Seventh Symposium on
Operating Systems Design and Implementation (OSDI), 2006.

[44] Xen.org community. The Xen Hypervisor Project.
http://xen.org.

[45] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC
Protocol for Wireless Sensor Networks. In In Proceedings of
the Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 2002.

[46] C. Zhang, A. Syed, Y. H. Cho, and J. Heidemann.
Steam-Powered Sensing. In Proceedings of the Ninth
International Conference on Embedded Networked Sensor
Systems (SenSys), 2011.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 221

Automated Concurrency-Bug Fixing

Guoliang Jin Wei Zhang Dongdong Deng Ben Liblit Shan Lu
University of Wisconsin–Madison

{aliang,wzh,dongdong,liblit,shanlu}@cs.wisc.edu

Abstract
Concurrency bugs are widespread in multithreaded pro-
grams. Fixing them is time-consuming and error-prone.
We present CFix, a system that automates the repair of
concurrency bugs. CFix works with a wide variety of
concurrency-bug detectors. For each failure-inducing inter-
leaving reported by a bug detector, CFix first determines a
combination of mutual-exclusion and order relationships
that, once enforced, can prevent the buggy interleaving.
CFix then uses static analysis and testing to determine
where to insert what synchronization operations to force
the desired mutual-exclusion and order relationships, with
a best effort to avoid deadlocks and excessive performance
losses. CFix also simplifies its own patches by merging
fixes for related bugs.

Evaluation using four different types of bug detectors
and thirteen real-world concurrency-bug cases shows that
CFix can successfully patch these cases without causing
deadlocks or excessive performance degradation. Patches
automatically generated by CFix are of similar quality to
those manually written by developers.

1 Introduction

1.1 Motivation

Concurrency bugs in multithreaded programs have already
caused real-world disasters [27, 46] and are a growing
threat to software reliability in the multi-core era. Tools
to detect data races [12, 50, 68], atomicity violations
[7, 13, 30, 31], order violations [16, 33, 66, 69], and ab-
normal inter-thread data dependencies [53, 70] have been
proposed. However, finding bugs is just a start. Software
reliability does not improve until bugs are actually fixed.

Bug fixing is time-consuming [38] and error-prone [54].
Concurrency bugs in particular bring unique challenges,
such as understanding synchronization problems, selecting
and using the right synchronization primitives in the right
way, and maintaining performance and readability while
adding synchronization into multi-threaded software. A
previous study of open-source software [32] finds that it
takes 73 days on average to correctly fix a concurrency
bug. A study of operating-system patches [65] shows that
among common bug types, concurrency bugs are the most

difficult to fix correctly. 39% of patches to concurrency
bugs in released operating system code are incorrect, a
ratio 4 – 6 times higher than that of memory-bug patches.

Fortunately, concurrency bugs may be more amenable to
automated repair than sequential bugs. Most concurrency
bugs only cause software to fail rarely and nondetermin-
istically. The correct behavior is already present as some
safe subset of all possible executions. Thus, such bugs
can be fixed by systematically adding synchronization into
software and disabling failure-inducing interleavings.

Prior work on AFix demonstrates that this strategy is
feasible [20]. AFix uses static analysis and code transfor-
mation to insert locks and fix atomicity violations detected
by CTrigger [43]. Although promising, AFix only looks at
one type of synchronization primitive (mutex locks) and
can fix only one type of concurrency bug (atomicity vio-
lations) reported by one specific bug detector (CTrigger).
In addition, AFix cannot fix a bug when CTrigger reports
bug side effects instead of bug root causes.

1.2 Contributions

CFix aims to automate the entire process of fixing a wide
variety of concurrency bugs, without introducing new func-
tionality problems, degrading performance excessively,
or making patches needlessly complex. Guided by these
goals, CFix system automates a developer’s typical bug
fixing process in five steps, shown in Figure 1.

The first step is bug understanding. CFix works
with a wide variety of concurrency-bug detectors, such
as atomicity-violation detectors, order-violation detec-
tors, data race detectors, and abnormal inter-thread data-
dependence detectors. These detectors report failure-
inducing interleavings that bootstrap the fixing process.

The second step is fix-strategy design (Section 2). CFix
designs a set of fix strategies for each type of bug re-
port. Each fix strategy includes mutual-exclusion/order
relationships1 that, once enforced, can disable the failure-
inducing interleaving. By decomposing every bug report
into mutual-exclusion and order problems, CFix addresses
the diversity challenge of concurrency bugs and bug de-
tectors. To extend CFix for a new type of bugs, one only

1A mutual-exclusion relationship requires one code region to be mu-
tually exclusive with another code region. An order relationship requires
that some operation always execute before some other operation.



222 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Bug
Understanding

Fix-Strategy
Design

Synchronization
Enforcement

Patch Testing
& Selection

Patch
Merging

Final Patches
& Feedback

Figure 1: CFix bug fixing process

needs to design new fix strategies and simply reuses other
CFix components.

The third step is synchronization enforcement (Sec-
tion 3). Based on the fix strategies provided above, CFix
uses static analysis to decide where and how to synchro-
nize program actions using locks and condition variables,
and then generates patches using static code transforma-
tion. Specifically, CFix uses the existing AFix tool to
enforce mutual exclusion, and a new tool OFix to enforce
order relationships. To our knowledge, OFix is the first
tool that enforces basic order relationships to fix bugs with
correctness, performance, and patch simplicity issues all
considered. This lets CFix use more synchronization prim-
itives and fix more types of bugs than previous work.

The fourth step is patch testing and selection (Section 4).
CFix tests patches generated using different fix strategies,
and selects the best one considering correctness, perfor-
mance, and patch simplicity. In this step, CFix addresses
the challenge of multi-threaded software testing by lever-
aging the testing framework of bug detectors and taking
advantage of multiple patch candidates, as the testing result
of one patch can sometimes imply problems of another.
This step also addresses the challenge of bug detectors
reporting inaccurate root causes: patches fixing the real
root cause are recognizable during testing as having the
best correctness and performance.

The fifth step is patch merging (Section 5). CFix ana-
lyzes and merges related patches. We propose a new merg-
ing algorithm for order synchronization operations (i.e.,
condition-variable signal/wait), and use AFix to merge
mutual-exclusion synchronizations (i.e., locks). This step
reduces the number of synchronization variables and oper-
ations, significantly improving patch simplicity.

Finally, the CFix run-time monitors program execution
with negligible overhead and reports deadlocks caused by
the patches, if they exist, to guide further patch refinement.

We evaluate CFix using ten software projects, including
thirteen different versions of buggy software. Four differ-
ent concurrency-bug detectors have reported 90 concur-
rency bugs in total. CFix correctly fixes 88 of these, with-
out introducing new bugs. This corresponds to correctly
patching either twelve or all thirteen of the buggy soft-
ware versions, depending on the bug detectors used. CFix
patches have excellent performance: software patched by
CFix is at most 1% slower than the original buggy software.
Additionally, manual inspection shows that CFix patches
are fairly simple, with only a few new synchronization
operations added in just the right places.

Overall, this paper makes two major contributions:
Firstly, we design and implement OFix, a tool that en-

forces two common types of order relationship between
two operations identified by call stacks tailored for fixing
concurrency bugs. Specifically, OFix focuses on two basic
order relationships: either (1) an operation B cannot exe-
cute until all instances of operation A have executed; or
(2) an operation B cannot execute until at least one instance
of operation A has executed, if operation A executes in this
run at all. We refer to these respectively as allA–B and
firstA–B relationships. See Sections 3 and 5 for details.

Secondly, we design and implement CFix, a system
that assembles a set of bug detecting, synchronization en-
forcing, and testing techniques to automate the process of
concurrency-bug fixing. Our evaluation shows that CFix is
effective for a wide variety of concurrency bugs.

2 Fix Strategy Design
The focus of CFix is bug fixing; we explicitly do not pro-
pose new bug-detection algorithms. Rather, CFix relies
on any of several existing detectors to guide bug fixing.
We refer to these detectors as CFix’s front end. We re-
quire that the front end provide information about the
failure-inducing interleaving (i.e., a specific execution or-
der among bug-related instructions). We do not require
that the bug detector accurately report bug root causes,
which we will demonstrate using real-world examples in
Section 6.

2.1 Mutual Exclusion and Ordering

To effectively handle different types of concurrency bugs
and bug detectors, CFix decomposes every bug into a com-
bination of mutual-exclusion and order problems. The
rationale is that most synchronization primitives either en-
force mutual exclusion, such as locks and transactional
memories [17, 18, 48], or enforce strict order between two
operations, such as condition-variable signals and waits.
Lu et al. [32] have shown that atomicity violations and
order violations contribute to the root causes of 97% of
real-world non-deadlock concurrency bugs.

In this paper, a mutual-exclusion relationship refers to
the basic relationship as being enforced by AFix [20]
among three instructions p, c, and r. Once mutual ex-
clusion is enforced, code between p and c forms a critical
section which prevents r from executing at the same time.

An order relationship requires that an operation A al-
ways execute before another operation B. Note that A
and B may each have multiple dynamic instances at run



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 223

Table 1: Bug reports and fix strategies. Rectangles denote mutual exclusion regions, wide arrows denote enforced order,
and circles illustrate instructions. Vertical lines represent threads 1 and 2. An is the nth dynamic instance of A.

(a) Atomicity (b) Order Violation (c) Race (d) Def-Use

Violation allA–B firstA–B Remote-is-Bad Local-is-Bad

Reports:
p r 
c 

B 
A1 

An 

…
 good B 

A1 

An 

…
 I1 I2 

Wb 

R Wg 

Wb 

R 
Wg 

bad 

Strategy (1):
p r B 

A1 

An 

…
 B 

A1 

An 

…
 I1 I2 

R Wg 

Wb 

R 
Wg 

Strategy (2):
c 

r N/A N/A
? 

I1 I2 
Wb 

R 
N/A

Strategy (3):
p r 
c N/A N/A N/A

Wb 

R Wg 

N/A

// Thread 1
printf("End at %f", Gend); //p
. . .
printf("Take %f", Gend-init); //c

// Thread 2
// Gend is uninitialized
// until here
Gend = time(); //r

Figure 2: Concurrency bug simplified from FFT. Making
Thread 1 mutually exclusive with Thread 2 cannot fix the
bug, because r can still execute after p and c.

time; the desired ordering among these instances could
vary in different scenarios. We focus on two basic order
relationships: allA–B and firstA–B. When bug fixing needs
to enforce an order relationship, unless specifically de-
manded by the bug report, we try allA–B first and move to
the less restrictive firstA–B later if allA–B causes deadlocks
or timeouts.

2.2 Strategies for Atomicity Violations

An atomicity violation occurs when a code region in one
thread is unserializably interleaved by accesses from an-
other thread. Many atomicity-violation detectors have
been designed [13, 15, 30, 31, 35, 43, 57, 64]. CFix uses
CTrigger [43] as an atomicity-violation-detecting front end.
Each CTrigger bug report is a triple of instructions (p,c, r)
such that software fails almost deterministically when r is
executed between p and c, as shown in Table 1(a).

Jin et al. [20] patch each CTrigger bug by making code
region p–c mutually exclusive with r. However, this patch
may not completely fix a bug: CTrigger may have reported
a side effect of a concurrency bug rather than its root cause.
Figure 2 shows an example.

// Thread 1
while (. . .) {

tmp = buffer[i]; // A
}

// Thread 2
free(buffer); // B

Figure 3: Order violation simplified from PBZIP2

Instead of relying on CTrigger to point out the root
cause, which is challenging, CFix explores all possible
ways to disable the failure-inducing interleaving, as shown
in Table 1(a): (1) enforce an order relationship, making r
always execute before p; (2) enforce an order relationship,
making r always execute after c; or (3) enforce mutual
exclusion between p–c and r.

2.3 Strategies for Order Violations

An order violation occurs when one operation A should
execute before another operation B, but this is not enforced
by the program. Order violations contribute to about one
third of real-world non-deadlock concurrency bugs [32].
Figures 2 and 3 show two examples simplified from real-
world order violations.

Many existing tools detect order violation problems and
could work with CFix. This paper uses ConMem [69] as a
representative order-violation detector. ConMem discovers
buggy interleavings that lead to two types of common or-
der violations: dangling resources and uninitialized reads.
For dangling resources, ConMem identifies a resource-use
operation A and a resource-destroy operation B, such as
those in Figure 3. The original software fails to enforce
that all uses of a resource precede all destructions of the



224 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

same resource. For uninitialized reads, ConMem finds a
read operation B and a write operation A. The original soft-
ware fails to enforce that at least one instance of A occur
before B, leading to uninitialized reads as in Figure 2.

For each of these two types of bugs, CFix has one corre-
sponding fix strategy. As shown in Table 1(b), we enforce
an allA–B order relationship to fix a dangling resource
problem, and we enforce a firstA–B order relationship to
fix an uninitialized-read problem.

2.4 Strategies for Data Races

Race detectors [8, 12, 14, 36, 41, 47, 50, 68] report unsyn-
chronized instructions, including at least one write, that
can concurrently access the same variable from different
threads. Race-guided testing [22, 39, 51] can identify a
race-instruction pair (I1, I2) such that the software fails
when I2 executes immediately after I1. For CFix we imple-
ment a widely used lock-set/happens-before hybrid race-
detection algorithm [2, 52] coupled with a RaceFuzzer-
style testing framework [51]. This front end can identify
failure-inducing interleavings as shown in Table 1(c).

Table 1(c) also illustrates two possible strategies for fix-
ing a typical data-race bug: (1) force an order relationship,
making I2 always execute before I1; or (2) force a mutual-
exclusion relationship between I2 and a code region that
starts from I1 and ends at a to-be-decided instruction. We
use the second strategy only when the front end also re-
ports a data race between I2 and a third instruction I3, I3
comes from the same thread as I1, and software fails when
I2 executes right before I3. If all of these constraints hold,
we consider both the first strategy and the second strategy
that makes I1–I3 mutually exclusive with I2. In all other
cases, we only consider the first strategy.

2.5 Strategies for Abnormal Def-Use

Some bug detectors identify abnormal inter-thread data-
dependence or data-communication patterns that are either
rarely observed [33, 53, 66] or able to cause particular
types of software failures, such as assertion failures [70].
CFix uses such a tool, ConSeq [70], as a bug-detection
front end. Each ConSeq bug report includes two pieces of
information: (1) the software fails almost deterministically
when a read instruction R uses values defined by a write
Wb; and (2) the software is observed to succeed when R
uses values defined by another write Wg. Note that ConSeq
does not guarantee Wg to be the only correct definition of
R. Therefore, CFix only uses Wg as a hint.

We refer to the case when R and Wb come from different
threads as Remote-is-Bad. Depending on where Wg comes
from, there are different ways to fix the bug by enforcing
either mutual exclusion or ordering. Table 1(d) shows one
situation that is common in practice. We refer to the case
when R and Wb come from the same thread as Local-is-

Bad. Enforcing orderings is the only strategy to fix this
case, as shown in Table 1(d).

2.6 Discussion

CFix does not aim to work with deadlock detectors now, be-
cause deadlocks have very different properties from other
concurrency bugs. Furthermore, there is already a widely
accepted way to handle deadlocks in practice: monitor the
lock-wait time and restart a thread/process when necessary.

The goal of this work is not to compare different types
of bug detectors. In practice, no one bug detector is ab-
solutely better than all others. Different detectors have
different strengths and weaknesses in terms of false neg-
atives, false positives, and performance. We leave it to
software developers and tool designers to pick bug detec-
tors. CFix simply aims to support all representative types
of detectors. CFix can also work with other bug detectors,
as long as failure-inducing interleavings and the identity of
the involved instructions are provided. We leave extending
CFix to more detectors to future work.

3 Enforcing an Order Relationship
CFix uses AFix [20] to enforce mutual exclusion during
patch generation. This section presents OFix, the static
analysis and patch-generation component of CFix that en-
forces orderings, specifically allA–B and firstA–B order-
ings. It enforces the desired ordering while making a strong
effort to avoid deadlock, excessive performance loss, or
needless complexity.

OFix expects bug detectors to describe a run-time opera-
tion using two vectors of information: (1) a call stack in the
thread that executes that instruction, and (2) a chain of call
stacks indicating how that thread has been created, which
we call a thread stack. We refer to the instruction that
performs A as an A instruction. The thread that executes
the A instruction is a signal thread. All ancestors of the
signal thread are called s-create threads. Conversely for B
we have the B instruction executed by a wait thread whose
ancestors are w-create threads. We write a call stack as
( f0, i0)→ ( f1, i1)→ ·· · → ( fn, in). f0 is the starting func-
tion of a thread, which could be main or any function
passed to a thread creation function. Each ik before the last
is an instruction in fk that calls function fk+1. In a signal
or wait thread, the last instruction in is the A instruction or
B instruction respectively. In s-create or w-create threads,
the last instruction in calls a thread-creation function.

In Section 7 we discuss limitations of OFix and the
impact on CFix as a whole system, especially those caused
by the decision to try only allA–B and firstA–B orderings
and the choice to use call stack as operation identity.

3.1 Enforcing an allA–B Order

It is difficult to statically determine how many instances of
A will be executed by a program, and hence it is difficult to
find the right place to signal the end of A and make B wait



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 225

while (. . .) {
A;
NaïveSignal;

}
A

E

(a) May signal any number
of times, waking the wait
thread too early or never

while (. . .) {
A;

}
OFixSignal;

A

E

(b) OFix signals exactly
once; gray nodes are
reaching nodes

Figure 4: Naïve signals versus OFix signals for allA–B.
“

E

” marks signal operations on edges.

for all instances of A. Consider that A could be executed
an unknown number of times in each signal thread; signal
threads could be created an unknown number of times by
each s-create thread; and s-create threads could also be
created an unknown number of times. We address these
challenges in four steps: (1) locate places to insert signal
operations in signal threads, (2) locate places to insert
signal operations in s-create threads, (3) locate places to
insert wait operations, and (4) implement the signal and
wait operations to coordinate all relevant threads.

Finding Signal Locations in Signal Threads A naïve
solution that inserts signal operations right after the A
instruction could lead to many problems, as shown in Fig-
ure 4a. OFix aims to place signal operations so that each
signal thread executes exactly one signal operation as soon
as it cannot possibly execute more A.

Assume that A has call stack ( f0, i0) → ·· · → ( fn, in)
where in is the A instruction. OFix analysis starts from f0.
When the program can no longer execute i0 in f0, we know
that the problematic A call stack can no longer arise, and
it is safe to signal. Thus OFix first analyzes the control
flow graph (CFG) of f0 to obtain the set of reaching nodes:
those CFG nodes that can reach i0 in zero or more steps.
OFix then inserts a signal operation on each CFG edge that
crosses from a reaching node to a non-reaching node.

After placing signals in f0, we may need to continue
down the stack to f1, f2, and so on. The critical question
here is whether i0 can call f1 multiple times, i.e., whether
i0 is in a loop. If so, then f1 cannot determine when A
will be executed for the last time in the thread. Rather,
that decision needs to be made in f0, outside of the outer-
most loop that contains i0. The signal-placement algorithm
stops, without continuing down the stack.

Conversely, if f1 can be invoked at most once at i0,
we suppress the signal operation that would ordinarily be
placed on the edge from i0 to its successor. Instead, we
delegate the signaling operation down into f1 and repeat
the signal-placement analysis in f1. This process continues,
pushing signals deeper down the stack. Signal placement

stops when it reaches the end of the call stack or when it
finds a call inside a loop.

Note that a function fk could be invoked under many
different call stacks, while we only want fk to execute a
signal operation under a particular call stack. We solve this
problem using a function-cloning technique discussed in
Section 3.3. All OFix-related transformations are actually
applied to cloned functions.

The above strategy has two important properties. We
omit proofs due to space constraints. First, each termi-
nating execution of a signal thread signals exactly once,
as shown in Figure 4b, because thread execution crosses
from reaching nodes to non-reaching nodes exactly once.
Second, the signal is performed as early as possible within
each function, according to the CFG, and interprocedu-
rally, benefiting from our strategy of pushing signals down
the stack. These properties help ensure the correctness of
our patches. They also help our patches wake up waiting
threads earlier, limiting performance loss and reducing the
risk of deadlocks.

Finding Signal Locations in s-create Threads Signal
operations also need to be inserted into every s-create
thread that could spawn more signal threads. Otherwise,
we still would not know when we had safely passed be-
yond the last of all possible A instances. The procedure
for s-create threads matches that already used for signal
threads. We apply the signal-placement analysis and trans-
formation to each s-create thread in the thread-creation
ancestry sequence that eventually leads to creation of the
signal thread. This algorithm ensures that each of these
ancestral threads signals exactly once immediately when it
can no longer create new s-create threads or signal threads.

Finding Wait Locations in Wait Threads OFix must
insert wait operations that can block the execution of B.
Assuming that ( fn, in) is the last level on the call stack of
B, OFix creates a clone of fn that is only invoked under the
bug-related call stack and thread stack. We then insert the
wait operation immediately before in in the clone of fn.

Implementing Wait and Signal Operations Our imple-
mentation of the signal and wait operations has three parts:

Part 1: track the number of threads that will perform
signal operations. OFix creates a global counter C in each
patch. C is initialized to 1, representing the main thread,
and atomically increases by 1 immediately before the cre-
ation of every signal thread and s-create thread.

Part 2: track how many threads have already signaled.
Each signal operation atomically decrements C by 1. Since
each signal or s-create thread executes exactly one signal
operation, each such thread decreases C exactly once. Fig-
ure 5a shows pseudo-code for the signal operation.

Part 3: allow a wait thread to proceed once all threads
that are going to signal have signaled. This is achieved by



226 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

mutex_lock(L);
if (--C == 0)

cond_broadcast(con);
mutex_unlock(L);

(a) Signal operation

mutex_lock(L);
if (C > 0)

cond_timedwait(con, L, t);
mutex_unlock(L);

(b) Wait operation

Figure 5: Pseudo-code for allA–B operations

condition-variable broadcast/wait and the checking of C,
as shown in Figure 5b.

These signal and wait operations operate on three vari-
ables: one counter, one mutex, and one condition variable.
Each of these is statically associated with the order rela-
tionship it enforces.

OFix’s synchronization operations are not merely
semaphore operations. Since we cannot know in advance
how many signal operations each wait operation should
wait for, OFix relies on a well-managed counter and a
condition variable to achieve the desired synchronization.

Correctness Assessment OFix makes a best effort to
avoid introducing deadlocks by signaling as soon as possi-
ble and starting to wait as late as possible. However, it is
impossible to statically guarantee that a synchronization
enforcement is deadlock free. To mask potential deadlocks
introduced by the patch, OFix allows every wait operation
to timeout. In fact, deadlocks mostly occur when the bug
requires a different fix strategy entirely, making them an
important hint to guide CFix patch selection (Section 4).

Barring timeouts, the wait operation guarantees that
no B executes before C reaches 0. The signal operations
guarantee that C reaches 0 only when all existing signal and
s-create threads have signaled, which implies that no more
signal or s-create threads can be created, and therefore no
more A instances can be executed. Thus, if no wait times
out, OFix patch guarantees that no instance of B executes
before any instance of A.

Simplicity Optimization We use the static number of
synchronization operations added by a patch as the metric
for patch simplicity. In the current implementation, OFix’s
patches operate on LLVM bitcode [25], but we envision
eventually using similar techniques to generate source-
code patches. The simplicity of OFix bitcode patches
would be a major factor affecting the readability of equiva-
lent source-code patches. OFix’s simplicity optimization
attempts to reduce the static number of synchronization
operations being added.

In the algorithm described above, OFix signal operations
are inserted based solely on the calling context of A. In fact,
a signal operation s is unnecessary if it never executes in
the same run as B, such as in Figure 6. Since identifying all
such s is too complicated for multi-threaded software, OFix

void main() {
if (. . .)
foo(); // i0

else
OFixSignal; // s

}

void foo() { // f1
pthread_create(Bthread, . . .); // iB1
pthread_create(Athread, . . .); // iA1

}

(a) Optimization case 1

void main() {
if (. . .) {

OFixSignal; // s
exit(1);

}
pthread_create(Bthread, . . .); // iB0
pthread_create(Athread, . . .); // iA0

}

(b) Optimization case 2

Figure 6: Removing unnecessary OFix signal operations

focuses on two cases that we find common and especially
useful in practice.

To ease our discussion, we use C = (main, i0)→ ·· · →
( fk, ik) to denote the longest common prefix of the calling
contexts of A and B where none of the call sites i0, . . . , ik is
inside a loop. When ik is a statically-bound call, the next
function along the contexts of A and B is the same, denoted
as fl . The next level of B’s context is denoted as ( fl , iBl).

Case 1: OFix signal operations in C can all be removed,
because they never execute in the same run as B. To prove
this, assume s to be a signal operation inserted in fk. The
rationale for optimizing s away is as follows. First, no
instance of B will be executed any more once s is executed:
program execution cannot reach C any more once it exe-
cutes s, according to how OFix inserts signal operations.
Second, no instance of ik, and hence B, has executed yet
when s is executed. If this were not true, then the signal
thread would signal multiple times (once inside the callee
of ik and once at s). But this is impossible in OFix patches.
Therefore, when s is executed, B cannot have executed yet
and will not execute any more. Removing s does not affect
the correctness of our patch, as shown in Figure 6a.

Case 2: An OFix signal operation s in fl can be re-
moved if s cannot reach iBl and iBl cannot reach s. The
rationale of this optimization is similar to that of Case 1.
Figure 6b shows an example of applying this optimization.

3.2 Enforcing a firstA–B Order

Basic Design To guarantee that B waits for the first in-
stance of A, we insert a signal operation immediately after
the A instruction, and a wait operation immediately before
the B instruction. Figure 7 shows the code for firstA–B
synchronization operations. A Boolean flag and a condi-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 227

if (!alreadyBroadcast) {
alreadyBroadcast = true;
mutex_lock(L);
cond_broadcast(con);
mutex_unlock(L);

}

(a) Signal operation

mutex_lock(L);
if (!alreadyBroadcast)

cond_timedwait(con, L, t);
mutex_unlock(L);

(b) Wait operation

Figure 7: Pseudo-code for firstA–B operations. It contains
a benign race on alreadyBroadcast.

tion variable work together to block the wait thread until
at least one signal operation has executed.

Safety-Net Design The basic design works if the pro-
gram guarantees to execute at least one instance of A.
However, this may not be assured, in which case forc-
ing B to wait for A could hang the wait thread. To address
this problem, OFix enhances the basic patch with a safety
net: when the program can no longer execute A, safety-net
signals release the wait thread to continue running.

OFix first checks whether A is guaranteed to execute:
specifically, whether ik post-dominates the entry block of
fk in each level ( fk, ik) of the A call stack. A safety net is
needed only when this is not true.

When a safety net is needed, OFix inserts safety-net
signal operations using the allA–B algorithm of Section 3.1.
That algorithm maintains a counter C as in Figure 5a and
guarantees that C drops to 0 only when the program can no
longer execute A. To allow safety-net signal operations to
wake up the wait thread, these operations share the same
mutex L and the same condition variable con as those
used in the basic patch in Figure 7. Whichever thread
decrements C to 0 executes pthread_cond_broadcast to
unblock any thread that is blocked at con. That thread also
sets alreadyBroadcast to true so that any future instances
of B will proceed without waiting.

OFix checks whether B is post-dominated by any safety-
net signal operation. In that case, the safety net can never
help wake up B and is removed entirely. Lastly, OFix ap-
plies the two simplicity-optimization algorithms presented
in Section 3.1 to remove unnecessary safety-net signals.

Even with the safety net, OFix does not guarantee dead-
lock freedom. As for allA–B patches, OFix uses a timeout
in the firstA–B wait operation to mask potential deadlocks.

3.3 Function Cloning

OFix clones functions to ensure that each OFix patch only
takes effect under the proper call stack and thread-creation
context. All patch-related transformations are applied to
cloned functions.

Consider a failure-related call chain (main, i0) →
( f1, i1) → ·· · → ( fn, in), which chains together the call
stacks of all s-create and signal threads (or all w-create

and wait threads) through thread-creation function calls.
Function cloning starts from the first function fk on this
call chain that can be invoked under more than one call-
ing context. OFix creates a clone f ′k for fk and modifies
ik−1 based on the kind of invocation instruction at ik−1. If
ik−1 is a direct function call to fk, OFix simply changes
the target of that call instruction to the clone f ′k. If ik−1
calls a thread-creation function with fk as the thread-start
routine, OFix changes that parameter to f ′k. If fk is invoked
through a function pointer, OFix adds code to check the
actual value of that function pointer at run time. When
the pointer refers to fk, our modified code substitutes f ′k
instead. OFix proceeds down the stack in this manner
through each level of the call chain to finish the cloning. It
is straightforward to prove that the above cloning technique
inductively guarantees that OFix always patches under the
right context.

OFix repeatedly uses the above cloning technique in
various parts of the patching process, with one f -clone
created for each unique bug-related calling context of f .

3.4 Discussion

In the algorithms given above, we always consider the
calling context of a bug report. We believe this is necessary,
especially for bug-detection front-ends that are based on
dynamic analysis. OFix can also enforce the ordering
between two static instructions, regardless of the call stack.
This option can be used when call stacks are unavailable.

OFix achieves context-awareness by cloning functions,
which could potentially introduce too much duplicated
code. The strategy to start cloning from the first function
that can be invoked under more than one calling context
ensures that all clones are necessary to achieve context-
awareness. Our experience shows that OFix bug fixing
in practice does not introduce excessive code duplication,
affecting only a small portion of the whole program.

Our current implementation uses POSIX condition vari-
ables. We could also use other synchronization primitives,
such as pthread_join. Our function cloning technique and
the analysis to find signal/wait locations would still be
useful: by design, placement and implementation of the
synchronization operations are largely orthogonal.

4 Patch Testing and Selection
After fix strategies are selected and synchronization rela-
tions are enforced, CFix has one or more candidate patches
for each bug report. CFix tests these patches as follows.

CFix first checks the correctness of a patch through static
analysis and interleaving testing. Considering the huge in-
terleaving space, correctness testing is extremely challeng-
ing. CFix first executes the patched software once without
external perturbation, referred to as an RTest, and then
applies a guided testing where the original bug-detection



228 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

front end is used, referred to as a GTest. A patch is rejected
under any of the following scenarios:

Correctness check 1: Deadlock discovered by static
analysis. If an OFix wait operation is post-dominated by an
OFix signal operation that operates on the same condition
variable, the patch will definitely introduce deadlocks.

Correctness check 2: Failure in RTest. Since multi-
threaded software rarely fails without external perturbation,
this failure usually suggests an incorrect fix strategy. For
example, according to the CTrigger bug report shown in
Figure 2, CFix will try a patch that forces r to always
execute after c, which causes deterministic failure.

Correctness check 3: Failure in GTest. This usually
occurs when the patch disables the failure-inducing inter-
leaving among some, but not all, dynamic instances of
bug-related instructions.

Correctness check 4: Timeout in RTest. A patch time-
out could be caused by a masked deadlock or a huge per-
formance degradation of the patch; our timeout threshold
is 10 seconds. CFix rejects the patch in both cases, and
provides deadlock-detection result to developers.

Correctness check 5: Failures of related patches. In-
terestingly, we can use the correctness of one patch to infer
that of a related patch. Consider Figure 2. If an order
patch where r is forced to execute after c fails, we infer
that a patch that makes r mutually exclusive with p–c is
incorrect, because mutual exclusion does not prohibit the
interleaving encountered by the order patch.

Rarely, CFix may not find any patch that passes correct-
ness checking. We discuss this in Section 7.

When multiple patches pass correctness checking, CFix
compares performance impacts. In our current prototype,
CFix discards any patch that is at least 10% slower than
some other patch. When a bug has multiple patches passing
both correctness and performance checking, CFix picks the
patch that introduces the fewest synchronization operations.
Note that some patches can be merged and significantly im-
prove simplicity, which we discuss in Section 5. Therefore,
given two patches for the same bug report, CFix chooses
the one that can be merged with other patches.

CFix includes run-time support to determine whether a
timeout within CFix-patched code is caused by deadlock
or not. Traditional deadlock-detection algorithms cannot
discover the dependency between condition-variable wait
threads and signal threads, because they cannot predict
which thread will signal in the future. Inspired by previous
work [20, 28], CFix addresses this challenge by starting
monitoring and deadlock analysis after a timeout. By
observing which thread signals on which condition variable
as the post-timeout execution continues, CFix can discover
circular wait relationships among threads at the moment
of the timeout. This strategy imposes no overhead until a
patch times out. It can be used for both patch testing and
production-run monitoring. The general idea and much of

the detail are the same as in the run-time for AFix [20], but
we extended the run-time for AFix to support signal and
wait on condition variables. Unlike Pulse [28], CFix does
not require kernel modification, because it focuses only on
deadlocks caused by its own patches.

CFix currently only conducts RTest and GTest using
the failure-inducing inputs reported by the original bug
detectors. In practice, this is usually enough to pick a
good patch for the targeted bug, as demonstrated by our
evaluations. In theory, this may overlook some potential
problems, such as deadlock-induced timeout under other
inputs and other interleavings. In such cases, we rely on
our low-overhead run-time to provide feedback to refine
patches.

5 Patch Merging
The goals of patch merging are to combine synchronization
operations and variables, promote simplicity, and poten-
tially improve performance. Merging is especially useful
in practice, because a single synchronization mistake often
leads to multiple bug reports within a few lines of code.
Fixing these bugs one-by-one would pack many synchro-
nization operations and variables into a few lines of the
original program, harming simplicity and performance. Jin
et al. [20] presented mutual-exclusion patch merging. In
this section, we describe how OFix merges order-enforcing
patches.

5.1 Patch Merging Guidelines

Patch merging in OFix is governed by four guidelines.
Guideline 1: The merged patch must have statically and
dynamically fewer signal and wait operations than the un-
merged patches. Guideline 2: Each individual bug must
still be fixed. Guideline 3: Merging must not add new dead-
locks. Guideline 4: Merging should not cause significant
performance loss. Note that signal operations cannot be
moved earlier, per guideline 2. However, delaying signals
too long can hurt performance and introduce deadlocks.

5.2 Patch Merging for allA–B Orderings

Figure 8 shows a real-world example of merging allA–B
patches. To understand how the merging works, assume
that we have enforced two allA–B orderings, A1–B1 and
A2–B2, using patches P1 and P2.

OFix considers merging only if A1 and A2 share the
same call stack and thread stack, except for the instruction
at the last level of the call stacks, denoted as (fn, i1n) and
(fn, i2n) for A1 and A2 respectively. Our rationale is to avoid
moving signals too far away from their original locations,
as this could dramatically affect performance (guideline 4).
We do not initially consider B1 and B2: each patch includes
just one wait operation, with little simplification potential.

Next OFix determines the locations of signal operations
in the merged patch, assuming a merge will take place. To
fix the original bugs (guideline 2), a signal thread must



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 229

while (1) {
mutex_lock(L); // A1
if (. . .) {

− OFixSignal1;
mutex_unlock(L); // A2

− OFixSignal2;
+ OFixSignal∪;

return;
}
. . .

}

(a) Signal thread

+ OFixWait∪;
− OFixWait1;
− OFixWait2;

mutex_destroy(L); // B1,B2

(b) Wait thread

Figure 8: allA–B merging, simplified from PBZIP2. + and
− denote additions and removals due to patch merging.

A1
. . .

A2

exit

E

(a) ReachSet1 and
OFixSignal1

A1
. . .

A2

exit

E

(b) ReachSet2 and
OFixSignal2

A1
. . .

A2

exit

E

(c) ReachSet∪ and
OFixSignal∪

Figure 9: CFG of the signal thread in Figure 8a. “

E

”
marks signal operations on edges.

execute a merged signal operation exactly once when it
can no longer execute either A1 or A2. This leads to the
same signal locations as those in patch P1 and patch P2,
except for in fn. If P1 and P2 do not actually place any
signal operations in fn, merging is done. Otherwise, we
place the merged signal operations in fn, so that fn signals
once it can no longer execute either i1n or i2n. Let ReachSet1
and ReachSet2 be the sets of nodes in fn that can reach i1n
and i2n respectively. Let ReachSet∪ be union of ReachSet1
and ReachSet2. Merged signal operations should be in-
serted on every edge that crosses from the inside to the
outside of ReachSet∪. Figure 9 shows CFGs correspond-
ing to the code in Figure 8a, with the various reaching sets
highlighted in gray.

Now that we know where signal operations would be
placed if the patches were merged, we reject a merged
patch if it cannot reduce the signal operation count, per
guideline 1. In fact, one can prove that merging improves
simplicity only when ReachSet1 overlaps with ReachSet2.

A final check rejects merging if it delays signal opera-
tions so much that deadlocks could be introduced (guide-

if (. . .) {
Gend = end; // A1,A2

− OFixSignal1; // i1

− OFixSignal2; // i2

+ OFixSignal∪; // i∪

}

(a) Signal thread

+ OFixWait∪;
− OFixWait1;

printf("%d\n", Gend); // B1
− OFixWait2;

printf("%d\n", Gend-init); // B2

(b) Wait thread

Figure 10: firstA–B merging, simplified from FFT. + and −
denote additions and removals due to patch merging.

line 3). OFix merges only when there is no blocking oper-
ation on any path from where unmerged signal operations
are to where merged signal operations would be, thereby
guaranteeing not to introduce new deadlocks. Our im-
plementation considers blocking function calls (such as
lock acquisitions) and loops conditioned by heap or global
variables as blocking operations. To determine whether
a function call may block, CFix keeps a whitelist of non-
blocking function calls.

OFix merges P1 and P2, when all of the above checks
pass. OFix removes the original signal operations in P1
and P2, and inserts merged signal operations into locations
selected above. The simplicity optimizations described in
Section 3.1 are reapplied: a merged signal is removed if
neither B1 nor B2 would execute whenever it executes.

To merge wait operations, OFix changes the two wait
operations, OFixWait1 and OFixWait2, in P1 and P2 to
operate on the same synchronization variables as those
in the merged signal operations. OFix also has the op-
tion to replace OFixWait1 and OFixWait2 with a single
wait, OFixWait∪, located at their nearest common dom-
inator. This option is taken only when OFixWait1 and
OFixWait2 share the same call stack and thread stack, and
when this replacement will not introduce deadlocks. For
example, OFixWait1 and OFixWait2 in Figure 8 pass the
above checks and are merged into OFixWait∪.

This ends the merging process for a single pair of allA–B
patches. The merged patch may itself be a candidate for
merging with other patches. Merging continues until no
suitable merging candidates remain.

5.3 Patch Merging for firstA–B Orderings

Figure 10 provides a real-world example of merging firstA–
B patches, highlighting the changes made by merging.

Given two firstA–B orderings, A1–B1 and A2–B2, OFix
considers merging their patches only if A1 and A2 share
the same call stack and thread stack, except for the last
instruction on the call stack. This reflects the same perfor-
mance concern discussed for allA–B merging. We denote
the basic signal operations used to separately enforce these
two orderings as i1 and i2, as shown in Figure 10a.



230 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Table 2: CFix Benchmarks. Not all benchmarks have a report ID. A report ID could be a bug report ID in their
corresponding bug database, which is the case for Apache, cherokee, Mozilla, MySQL and Transmission, or a forum
post ID, which is the case for HTTrack and ZSNES.

ID App.[-ReportID] LoC Description

Root Cause: Order Violations
OB1 PBZIP2 2.0K Several variables are used in one thread after being destroyed/nullified/freed by main.
OB2 x264 30K One file is read in one thread after being closed by main.
OB3 FFT 1.2K Several statistical variables are accessed in main before being initialized by another thread.
OB4 HTTrack-20247 55K One pointer is dereferenced in main before being initialized by another thread.
OB5 Mozilla-61369 192K One pointer is dereferenced in one thread before being initialized by main.
OB6 Transmission-1818 95K One variable is used in one thread before being initialized by main.
OB7 ZSNES-10918 37K One mutex variable is used in one thread before being initialized by main.

Root Cause: Atomicity Violations
AB1 Apache-25520 333K Threads write to the same log buffer concurrently, resulting in corrupted logs or crashes.
AB2 MySQL-791 681K The call to create a new log file is not mutually exclusive with the checking of file status.
AB3 MySQL-3596 693K The checking and dereference of two pointers are not mutually exclusive with the NULL assignments.
AB4 Mozilla-142651 87K One memory region could be deallocated by one thread between another thread’s two dereferences.
AB5 Cherokee-326 83K Threads write to the same time string concurrently, resulting in corrupted time strings.
AB6 Mozilla-18025 108K The checking and dereference of one pointer are not mutually exclusive with the NULL assignment.

To maintain the A1–B1 and A2–B2 orderings (guide-
line 2), we should guarantee that the merged basic signal
executes when both A1 and A2 have executed. This loca-
tion, denoted as i∪, is the nearest common post-dominator
of i1 and i2 that is also dominated by i1 and i2. OFix
abandons the merge if this location i∪ does not exist.

After locating i∪, OFix checks whether merging could
cause new deadlocks, checks whether the wait operations
can also be merged, inserts safety-net signal operations for
a merged patch, and continues merging until no suitable
merging candidates remain.

6 Experimental Evaluation

6.1 Methodology

CFix includes two static analysis and patching components:
(1) AFix by Jin et al. [20]; and (2) OFix, newly presented in
this paper. Both AFix and OFix are built using LLVM [25].
They apply patches by modifying the buggy program’s
LLVM bitcode, then compiling this to a native, patched
binary executable.

We evaluate CFix on 13 real-world bug cases, represent-
ing different types of root causes, from 10 open-source
C/C++ server and client applications, as shown in Table 2.
We collect similar numbers of bug cases from two cate-
gories: (1) bug cases that require atomicity enforcement
and (2) bug cases that require order enforcement. For the
first category, we use exactly the same set of bug cases as
in the AFix [20] evaluation. For the second category, we
gather bug cases that have been used in previous papers on
ConMem [69], ConSeq [70], and DUI [53]. These three
previous papers altogether contain nine bug cases that re-
quire order enforcement; we randomly select seven out
of these nine. We believe that our bug case set is repre-

sentative to some extent, although we cannot claim that it
represents all concurrency bugs in the real world.

To patch these buggy applications, we follow the five
steps described in Section 1. We first apply the four bug-
detection front-ends discussed in Section 2 to these ap-
plications using the bug-triggering inputs described in
the original reports. We refer to these four detectors as
the atomicity-violation front end (AV), the order-violation
front end (OV), the data-race front end (RA), and the
definition-use front end (DU). In each case, at least one
front-end detects bugs that lead to the failures described in
the original reports. CFix then generates, tests, and selects
patches for each of the 90 bug reports generated by AV,
OV, RA, and DU. It also tries patch merging for cases with
multiple bug reports before generating the final patches.

Our experiments evaluate the correctness, performance,
and simplicity of CFix’s final patches. Our experiments
also look at the original buggy program and the program
manually fixed by software developers, referred to as orig-
inal and manual respectively. For fair comparison, all
binaries are generated using identical LLVM settings. All
experiments use an eight-core Intel Xeon machine running
Red Hat Enterprise Linux 5.

6.2 Overall Results

The “Number of Bug Reports” columns of Table 3 show
the number of reports from different bug detectors. The
reports for each case from each detector are mostly very
different from each other and are not just multiple stack
traces of the same static instructions.

The “Overall Patch Quality” columns of Table 3 summa-
rize our experimental results. In this table, “�” indicates
clear and complete success: the original concurrency-bug
problem is completely fixed, no new bug is observed, and
performance degradation is negligible. “-” indicates that



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 231

Table 3: Results of OFix patches. The a and f subscripts indicate allA–B and firstA–B bug reports respectively. The L
and R subscripts indicate Local-is-Bad and Remote-is-Bad definition-use bug reports respectively. � a good patch; -
good patch is not generated; blank: not applicable.

Number of Bug Reports Overall Patch Quality Failure Rates Overhead

ID AV OV RA DU AV OV RA DU CFix Manual Original CFix CFix Manual
# of CFix
Sync Ops

OB1 2 5a 4 � � � � � 43% 0% -0.3% 1.6% 5
OB2 1a � � � 65% 0% -0.1% 3.6% 7
OB3 7 4 f 10 4L � � � � � � 100% 0% 0.2% 0.0% 5
OB4 1 1 f 2 � � � � 97% 0% 0.5% 2
OB5 1 1 � � � � 64% 0% 0.0% 0.0% 2
OB6 1 1 f 2 1L � � � � � � 93% 0% 0.3% -0.3% 2
OB7 1 f � � � 97% 0% 0.2% 3
AB1 6 6 � � � � 52% 0% -0.9% -0.4% 3
AB2 1 2 1R � � � � � 39% 0% 0.7% 0.5% 5
AB3 2 4 2R � � - � - 53% 0% -0.0% 1.0% 9
AB4 1 2 � � � - 55% 0% -0.5% 0.0% 3
AB5 4 5 1R � � � � � 68% 0% -0.2% 0.4% 2
AB6 1 2 1R � � � � � 42% 0% 0.7% 0.5% 5

CFix fails to generate a patch that passes its own internal
testing. Blanks are cases where no bug is reported by the
corresponding front end. For manual patches, “-” means
developers submitted intermediate patches that were later
found to be incomplete by developers or testers (i.e., the
original software failure can still occur with the patch ap-
plied); blanks mark cases where developers have not yet
provided any patch for the corresponding bug.

Overall, CFix is highly effective. Across all four bug-
detection front ends and all 13 benchmarks, CFix suc-
cessfully fixes all bugs except two reports for one case
(AB3) under one front end (DU). CFix’s final patches are
all of high quality regarding correctness, performance and
simplicity, comparable with the final patches designed by
software developers. In several cases, CFix patches are
even better than the first few patches generated by devel-
opers. In the case of HTTrack, CFix creates good patches
while the developers have yet to propose any patches at
all. Note that Jin et al.’s work on automated atomicity-bug
fixing [20] only works with the AV front end and can only
fix 6 cases, AB1 through AB6.

6.3 Patching for Different Bug Detectors

CFix generates one or more patches using the fixing strate-
gies described in Section 2. Among all front ends, OV has
the most straightforward fixing process. OV only detects
order violations. It reports six allA–B violations and seven
firstA–B violations. CFix generates one ordering patch for
each report. All of these patches pass correctness testing.

Fixing AV bug reports is much more challenging. As
shown in Table 4, AV finds 27 atomicity violations for 11
benchmarks. Among these, 12 reports from OB1 through
OB6 are side effects of order violations, akin to Figure 2.
These are examples of bug reports that are different from

Table 4: Patch testing and selection for AV front end. Sub-
scripts aO, f O, and A indicate allA–B ordering, firstA–B
ordering, and mutual exclusion patches respectively. C1–
C5 count correctness rejections as in Section 4. P and R
respectively count performance and simplicity rejections.

Rejected Patches

ID
# AV
Bugs C1 C2 C3 C4 C5 P R

Final
Patch

OB1 2 0 0 0 4 0 1 1 2aO
OB3 7 0 7 0 0 7 0 0 7aO
OB4 1 1 1 0 0 1 0 0 1 f O
OB5 1 0 0 0 2 0 0 1 1aO
OB6 1 0 1 0 0 1 0 0 1aO
AB1 6 12 0 5 7 0 0 0 6A
AB2 1 2 0 1 1 0 0 0 1A
AB3 2 4 0 2 2 0 0 0 2A
AB4 1 2 0 0 2 0 0 0 1A
AB5 4 8 0 2 6 0 0 0 4A
AB6 1 0 0 0 2 0 1 0 1A

actual root cause. The software would still fail if we merely
enforced mutual exclusions based on these 12 bug reports.

CFix successfully picks patches that match the root
causes and completely fixes the 11 benchmarks. Table 4
summarizes this process. For each AV bug report, CFix
tries to generate 3–5 patches: one mutual-exclusion patch
and two allA–B ordering patches, as shown in Table 1(a).
If an allA–B patch is rejected due to timeouts or dead-
locks, the corresponding firstA–B patch is generated and
tested instead. Although testing multi-threaded software is
challenging, the static (C1) and dynamic (C2–C5) correct-
ness checks complement each other and help CFix identify
and reject bad patches. Most patches that do not reflect
root causes are rejected this way, as shown by the C1–C5
columns of Table 4. In a few cases in OB1, OB5, and AB6,
the buggy software can be fixed by either mutual-exclusion



232 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

or order synchronization. CFix generates both patches and
selects the one with the best performance and simplicity.

Fixing RA bugs is also challenging, because a data-race
report itself contains no root cause information. CFix suc-
cessfully generates final patches for RA bug reports as
follows. RA finds 19 data races for 5 benchmarks with
order-violation root causes. Following Section 2.4, CFix
decides that no mutual-exclusion patch is suitable for any
of these bugs. The ordering patches generated by OFix
all pass correctness testing and are selected as CFix’s fi-
nal patches. RA also finds data races for 6 benchmarks
that have mutual-exclusion root causes (AB1–AB6). CFix
generates mutual-exclusion patches, all of which pass cor-
rectness testing. However, all ordering patches for AB2,
AB3, AB4 and some ordering patches for AB1 and AB5
are rejected, because OFix statically determines that these
patches would cause deadlocks. Ordering patches for AB6
are rejected due to failures under guided testing. CFix does
not generate any ordering patch for 6 data-race bugs in
AB1 and AB5, because the RA front-end indicates that
software fails as long as the race instructions execute one
right after the other regardless of the order between them.

The DU patch-generation process is similar to that for
OV in the case of Local-is-Bad reports, and is similar to
that for AV in the case of Remote-is-Bad reports. However,
CFix fails to generate any patch for AB3. The problem
in AB3 is that two reads R1 and R2 should not read val-
ues defined by different write instructions. Unfortunately,
DU simply reports R1 should not read values from a par-
ticular write instruction. CFix statically determines that
disabling this data dependence, without considering R2,
causes deadlocks, and therefore does not generate a patch.

CFix’s final patches are generally identical or have only
trivial differences as we switch from one front end to an-
other. The two exceptions are in OB3 and OB4. In OB3,
CFix generates a firstA–B patch for an OV-reported bug
following the fix strategy design, but an allA–B patch for
three other front ends. In fact the program can only execute
one instance of A at run time, so these two patches only
differ in simplicity. In OB4, the final patch generated for
RA and the one generated for AV and OV both correctly
fix the reported failure without perceivable performance
differences. The RA patch also fixes unreported failures
under different inputs. Unless otherwise specified, we use
majority vote to select final patches for evaluation results
in Table 3 and Section 6.4.

6.4 Quality of CFix’s Final Patches

Correctness Results As discussed in Section 4, CFix’s
final patches have all passed the guided testing of CFix
bug-detection front end, without triggering the previously
reported failures. To further test the correctness of CFix’s
final patches, we insert random sleeps in code regions
that are involved in each bug report. The “Failure Rates”

columns of Table 3 show the failure rates of the original
buggy software and the CFix-patched software through
1,000 testing runs with the same random sleep patterns. As
we can see, CFix patches eliminate all of the failures. In
addition, the timeouts CFix inserted in its wait operations
have never fired in our experiments with these final patches.
Thus, our deadlock-avoidance heuristics, while imperfect
in theory, perform extremely well in practice.

Manual inspection confirms that these fixes are correct
and nontrivial. For example, half of the benchmarks cannot
be fixed using locks alone. In OB1 and OB2, either the
number of signal threads or the number of A instances
per thread is not statically bound. Without OFix’s careful
analyses, naïve patches could easily lead to deadlocks or
fail to fix the problem. A naïve firstA–B patch without the
safety net would cause FFT to hang nondeterministically.

Performance Results The “Overhead” columns of Ta-
ble 3 show the overheads of both CFix and manual patches
relative to the original buggy software. All CFix overheads
are below 1%, which is comparable with correct manual
patches. These results are averages across 100 non-failing
runs of each version of the software with potentially-bug-
triggering inputs.

For ordering patches, good performance stems from
OFix’s efforts to signal as soon as possible and wait as
late as possible. This leads to little or no unnecessary
delay in the program. For mutual-exclusion patches, good
performance is due to short critical sections.

The static analyses in OFix perform well, taking less
than one second to generate one patch. We anticipate no
scalability problems for larger code bases.

Simplicity Results Jin et al. [20] have shown that AFix
can provide mutual-exclusion patches with good simplicity.
OFix uses patch optimization (Section 3.1) and patch merg-
ing (Section 5) to simplify ordering patches. To evaluate
these two techniques, Table 5 presents detailed counts of
signal operations (numbers followed by “s”) and wait oper-
ations (numbers followed by “w”) in CFix’s final patches
that are generated by OFix, under different optimization
and merging strategies. In the few cases where different
final patches are generated under different front ends, we
present worst-case results for the final patch with the most
synchronization operations.

The “All Opt” column of Table 5 counts synchronization
operations with both simplicity optimizations enabled. We
find that these numbers are quite moderate when patch
merging is also enabled, highlighted in bold. Out of seven
benchmarks, six can be fixed with no more than five syn-
chronization operations. In the worst case, OB2 can be
fixed with six signal operations and one wait operation.
Manual inspection confirms that all of the synchronization
operations in these final patches are genuinely necessary
for our fixing strategy.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 233

Table 5: Number of synchronization operations in patches

ID All Opt Only 1st Only 2nd No Opt

OB1 merged 4s, 1w 19s, 1w 4s, 1w 19s, 1w
OB1 unmerged 20s, 5w 95s, 5w 20s, 5w 95s, 5w
OB2 6s, 1w 8s, 1w 20s, 1w 22s, 1w
OB3 merged 4s, 1w 17s, 1w 4s, 1w 17s, 1w
OB3 unmerged 40s,10w 170s,10w 40s, 10w 170s,10w
OB4 merged 1s, 2w 1s, 2w 1s, 2w 1s, 2w
OB4 unmerged 2s, 2w 2s, 2w 2s, 2w 2s, 2w
OB5 1s, 1w 1s, 1w 4s, 1w 4s, 1w
OB6 merged 1s, 1w 1s, 1w 1s, 1w 10s, 1w
OB6 unmerged 2s, 2w 2s, 2w 2s, 2w 20s, 2w
OB7 2s, 1w 2s, 1w 36s, 1w 36s, 1w

OB1 and OB3 respectively have five and ten bugs re-
ported by the corresponding front-end. As a result, their
unmerged OFix patches contain twenty five and fifty syn-
chronization operations respectively, severely hurting the
code simplicity. Fortunately, only five synchronization
operations remain in the merged patches: a very modest
number considering the number of bugs fixed.

The “Only 1st” and “Only 2nd” columns of Table 5 show
how many synchronization operations would be required
if each of the two simplicity optimizations of Section 3.1
were used in isolation, while “No Opt” shows the effect
of disabling both optimizations. These large numbers on
OB1 and OB3 are caused by unnecessary signal operations
before return statements as in Figure 6b. Many such state-
ments appear in the command-line option parsing code
for these two applications. OB4 is the only benchmark
that does not benefit from simplicity optimization. In fact,
OFix initially adds 103 safety-net signal operations into
OB4. Further analysis of OFix finds that the B operation
in OB4 is post-dominated by a safety-net signal. OFix
therefore removes the entire safety net before optimization
is applied, per Section 3.2. For the other benchmarks, the
optimizations are quite effective; with neither in place, our
patches would have 2.5 to 12 times as many synchroniza-
tion operations. Each of the two optimizations has its own
strengths. OB5 and OB7 benefit from the first optimiza-
tion; OB1 and OB3 benefit from the second; and OB2 and
OB6 benefit from both.

Our current CFix implementation operates directly on
LLVM bitcode, not source code. However, these simplicity
results suggest that CFix patches are a good starting point
for generating clean, readable source-level patches as well.

7 Limitations of CFix
Although CFix correctly fixes all bugs that require order
enforcement in our evaluation using OFix, OFix is not
a universal fixer for all possible bugs that require order
enforcement. OFix is restricted by the fact that it only tries
two different orderings, as well as by its use of call stacks
to identify operations. Therefore, OFix cannot fix bugs

char *buffer[10];

void child(. . .) { // child-i
. . .
buffer[i] = malloc(32); // A
. . .

}

void main() {
for (i = 0; i < 10; ++i) {

pthread_create(child, . . .);
buffer[i][0] = 'a'; // B
free(buffer[i]);

}
}

Figure 11: Example that presents a challenge to OFix

that require allA–B or firstA–B relationships between some,
but not all, instances of one call stack and some instances
of another call stack.

Figure 11 shows a bug that OFix cannot fix. Opera-
tions A and B require order enforcement, but share the
for loop in function main. The ideal way to fix this bug
is to force each dynamic instance of B (“buffer[i][0] = 'a'”
in main) to wait until after the corresponding instance of
A (“buffer[i] = malloc(32)” in child). The allA–B strategy
cannot fix this bug, because it would make the main thread
wait during the first iteration of the loop for all potential
instances of A, which causes a deadlock-induced timeout.
The firstA–B strategy cannot fix this bug either: after the
first B instance, a later instance of B could still happen
before the corresponding instance of A.

To fix the above bug requires using loop indexes as part
of operations’ identities and enforcing order relationships
accordingly. This type of code pattern is common in server
applications with dispatch loops. As a result, OFix has
certain limits in those applications.

The bug cases evaluated in Section 6 include bugs whose
buggy code regions are contained in one loop: AB1–AB6.
The patch testing and selection process of CFix has cor-
rectly judged that OFix cannot fix any of these bugs. These
six bugs happen to all require atomicity enforcement and
are correctly fixed by AFix.

The other two benchmarks in papers on ConMem [69],
ConSeq [70], and DUI [53] require order enforcement but
are not included in our evaluation. Our preliminary results
show that one of them can be patched correctly by CFix.
The other cannot, as it is a true order violation but the two
operations share a loop as discussed earlier in this section.

CFix may fail to fix a bug in several other scenarios.
First, the software may have deep design flaws and not be
fixable through synchronization enforcement alone. Sec-
ond, the bug detector may provide insufficient information
for bug fixing, such as AB3 under DU. Third, OFix makes
a best effort to avoid deadlocks, by signaling as soon as
possible in signal threads and waiting as late as possible in
wait threads. When OFix patches suffer deadlocks, CFix
concludes that the bug should not be fixed through order-
ing enforcement. However, this could be wrong in rare
cases. For example, complex branch conditions may cause
infeasible paths and prevent OFix from identifying earlier



234 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

opportunities to signal. While possible in theory, this never
occurs in our experiments: OFix successfully generates
final patches without deadlocks detected during patch test-
ing. Lastly, CFix patch testing cannot guarantee to catch
all problems in a patch, as this is infeasible for any large
multi-threaded application. The CFix run-time supports
production-run patch monitoring and could potentially be
extended to avoid deadlocks at run time [21].

Based on our experience, CFix can work with most
concurrency bug detectors that report failure inducing in-
terleavings. Adding a new detector as CFix front end
mainly requires a corresponding fix-strategy design, as
discussed in Section 2. CFix currently uses four front ends
that report no false positives. If a future front end reports
false positives or benign races, CFix may enforce some
unnecessary synchronizations in the program. This may
result in a patch with poor performance or that cannot pass
the testing stage in the first place.

In some cases, CFix patches are more complicated
than manual patches. These manual patches use non-
lock/condition-variable synchronization primitives and
sometimes leverage developers’ knowledge of special pro-
gram semantics. For example, some order violations are
fixed by swapping the order of original program statements
and some are fixed by using pthread_join. Future work
can further simplify CFix patches in this direction.

CFix’s patch currently operate in terms of LLVM bit-
code. This enables quick deployment but makes develop-
ers’ involvement difficult in the long term. Our evaluation
shows CFix can generate compact patches containing few
new synchronization operations. This lays a good founda-
tion for eventual production of simple source-level patches.
Such a transformation tool will need to consider additional
source-level syntax issues that we have not addressed here.
We leave such an extension to future work.

8 Related Work
As discussed in Section 1, many concurrency-bug detectors
have been proposed. These tools aim to identify problems,
not to fix them. Therefore, they inevitably leave many
challenges for bug fixing, such as figuring out root causes
and inserting synchronization operations correctly without
unnecessary degradation in performance or simplicity. As
a bug-fixing tool, CFix has considered and addressed these
challenges, complementing bug detectors.

Techniques have been proposed to insert lock opera-
tions into software based on annotations [37, 57], atomic
regions inferred from profiling [61], and whole-program
serialization analysis [56]. QuickStep [23] automatically
selects functions to put into critical sections based on race-
detection results during loop parallelization. Recent work
by Navabi et al. [40] parallelizes sequential software based
on future-style annotations. It automatically inserts barri-
ers to preserve sequential semantics during parallelization.

Compared with the above techniques, CFix is unique in
fixing concurrency bugs reported by a wide variety of bug
detectors and in synchronizing using both locks and con-
dition variables. CFix addresses unique challenges such
as fix-strategy design, simplicity optimization, patch merg-
ing, and patch testing. The static analysis conducted by
OFix differs from that of Navabi et al. [40] by considering
additional issues such as simplicity and performance.

Program synthesis [11, 55, 58] uses verification tech-
niques to generate synchronized programs that satisfy cer-
tain specifications. The nature of the problem makes it
hard to scale to large, real-world applications. CFix does
not try to understand all synchronizations in a program and
therefore avoids the associated scalability problems.

Hot-patching tools fix running software. ClearView [45]
patches security vulnerabilities by modifying variable val-
ues at run time. Its design is not suitable for concurrency
bugs. The LOOM system [62] provides a language for
developers to specify synchronizations they want to add
to a running software and deploys these synchronization
changes safely. Similar to CFix, LOOM also does CFG
reachability analysis for safety, and has a run-time compo-
nent to recover from deadlocks. Since LOOM has different
design goals from CFix, it does not need to consider is-
sues like working with bug detectors, fix-strategy design,
locating synchronization operations, handling statically-
unknown numbers of signals, simplicity concerns, patch
merging and testing. Tools like CFix can potentially com-
plement LOOM by automatically generating patches for
LOOM to deploy.

Run-time tools can help survive some concurrency bugs
[7, 21, 24, 26, 34, 49, 59, 66, 67]. Since CFix aims to
permanently fix bugs, it has different design constraints
and must address unique challenges, such as fixing a wide
variety of bugs completely, instead of statistically, with
unknown root causes, statically locating synchronization
operations while lowering the risk of deadlock, maintain-
ing simplicity, patch testing, and patch selection.

Many record-replay tools [1, 44, 60, 63] and production-
run bug detectors [6, 19, 36, 59] have been proposed. They
can enable CFix to fix bugs discovered in production runs.

Deterministic systems [3–5, 9, 10, 29, 42] can make
some concurrency bugs deterministically happen and some
other bugs never occur. This promising approach still faces
challenges, such as run-time overhead, integration with
system non-determinism, language design, etc. In general,
these tools address different problems than CFix. Even
for software executed inside a deterministic environment,
fixing bugs still requires manual intervention. CFix and
these tools can complement each other. Tern [9] and Pere-
grine [10] proposed precondition computation to enforce
specific interleavings for selected inputs. This technique
can potentially be used to enable or disable CFix patches
for selected inputs.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 235

9 Conclusion

CFix is a framework for automatically fixing concurrency
bugs. For concurrency bugs reported by a wide variety of
detection tools, CFix automatically inserts synchroniza-
tion operations to enforce the desired orderings/mutual-
exclusion and fix the bugs. CFix uses testing to select the
best patch among patch candidates, and incorporates opti-
mization and merging algorithms to keep patches simple.
Experimental evaluation shows that CFix produces high-
quality patches that fix real-world bugs while exhibiting ex-
cellent performance. CFix is a significant step forward to-
ward relieving software developers of the time-consuming
and error-prone task of fixing concurrency bugs. It can be
used to generate patches or patch candidates for developers.
Its analysis, testing, and run-time monitoring results can
also provide useful feedback to both developers and bug
detection tools.

Acknowledgments

We thank the anonymous reviewers for their invaluable
feedback, and our shepherd, Jason Flinn, for his guid-
ance in preparing the final version. We thank the Opera
group from UCSD for sharing with us their bug bench-
marks. This work is supported in part by DoE contract DE-
SC0002153; LLNL contract B580360; NSF grants CCF-
0701957, CCF-0953478, CCF-1018180, CCF-1054616,
and CCF-1217582; and a Claire Boothe Luce faculty fel-
lowship. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF or
other institutions.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay

for multicore debugging. In SOSP, 2009.
[2] C. Armour-Brown, J. Fitzhardinge, T. Hughes, N. Nether-

cote, P. Mackerras, D. Mueller, J. Seward, B. V. Ass-
che, R. Walsh, and J. Weidendorfer. Valgrind User Man-
ual. Valgrind project, 3.5.0 edition, Aug. 2009. http:
//valgrind.org/docs/manual/manual.html.

[3] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient
system-enforced deterministic parallelism. In OSDI, 2010.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Determin-
istic process groups in dOS. In OSDI, 2010.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe
multithreaded programming for C/C++. In OOPSLA, 2009.

[6] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional detection of data races. In PLDI, 2010.

[7] L. Chew and D. Lie. Kivati: fast detection and prevention
of atomicity violations. In EuroSys, 2010.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace detection
for multithreaded object-oriented programs. In PLDI, 2002.

[9] H. Cui, J. Wu, C. che Tsai, and J. Yang. Stable deterministic
multithreading through schedule memoization. In OSDI,
2010.

[10] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
deterministic multithreading through schedule relaxation.
In SOSP, 2011.

[11] J. Deshmukh, G. Ramalingam, V. P. Ranganath, and
K. Vaswani. Logical concurrency control from sequential
proofs. In ESOP, 2010.

[12] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In OSDI, 2010.

[13] C. Flanagan and S. N. Freund. Atomizer: a dynamic atom-
icity checker for multithreaded programs. In POPL, 2004.

[14] C. Flanagan and S. N. Freund. FastTrack: efficient and
precise dynamic race detection. In PLDI, 2009.

[15] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In PLDI, 2003.

[16] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2nd-
Strike: toward manifesting hidden concurrency typestate
bugs. In ASPLOS, 2011.

[17] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA, 2003.

[18] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In ISCA,
1993.

[19] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation
and sampling strategies for Cooperative Concurrency Bug
Isolation. In OOPSLA, 2010.

[20] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In PLDI, 2011.

[21] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Dead-
lock immunity: Enabling systems to defend against dead-
locks. In OSDI, 2008.

[22] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data
race bugs: telling the difference with Portend. In ASPLOS,
2012.

[23] D. Kim, S. Misailovic, and M. Rinard. Automatic par-
allelization with statistical accuracy bounds. Technical
Report MIT-CSAIL-TR-2010-007, MIT, 2010. URL http:
//hdl.handle.net/1721.1/51680.

[24] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing
data races on-the-fly. In PADTAD, 2007.

[25] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO,
2004.

[26] Z. Letko, T. Vojnar, and B. Křena. AtomRace: data race
and atomicity violation detector and healer. In PADTAD,
2008.

[27] N. G. Leveson and C. S. Turner. An investigation of the
Therac-25 accidents. Computer, 26(7):18–41, July 1993.
ISSN 0018-9162.

[28] T. Li, C. S. Ellis, A. R. Lebeck, and D. J. Sorin. Pulse: A
dynamic deadlock detection mechanism using speculative
execution. In USENIX, 2005.

[29] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient
deterministic multithreading. In SOSP, 2011.



236 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[30] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access-interleaving invariants. In
ASPLOS, 2006.

[31] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa,
and Y. Zhou. MUVI: Automatically inferring multi-variable
access correlations and detecting related semantic and con-
currency bugs. In SOSP, 2007.

[32] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes
– a comprehensive study of real world concurrency bug
characteristics. In ASPLOS, 2008.

[33] B. Lucia and L. Ceze. Finding concurrency bugs with
context-aware communication graphs. In MICRO, 2009.

[34] B. Lucia, J. Devietti, L. Ceze, and K. Strauss. Atom-Aid:
Detecting and surviving atomicity violations. IEEE Micro,
29(1), 2009.

[35] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: architec-
tural support for debugging and dynamically avoiding multi-
variable atomicity violations. In ISCA, 2010.

[36] D. Marino, M. Musuvathi, and S. Narayanasamy. Effective
sampling for lightweight data-race detection. In PLDI,
2009.

[37] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In POPL,
2006.

[38] MySQL. Bug report time to close stats. http://bugs.mysql.
com/bugstats.php, Dec. 2011.

[39] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful
data races using replay analysis. In PLDI, 2007.

[40] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static
scheduling for safe futures. In PPOPP, 2008.

[41] R. H. B. Netzer and B. P. Miller. Improving the accuracy
of data race detection. In PPoPP, 1991.

[42] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: effi-
cient deterministic multithreading in software. In ASPLOS,
2009.

[43] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. In ASPLOS, 2009.

[44] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: probabilistic replay with execution
sketching on multiprocessors. In SOSP, 2009.

[45] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. C. Rinard. Automatically patching errors in
deployed software. In SOSP, 2009.

[46] K. Poulsen. Software bug contributed to blackout. http:
//www.securityfocus.com/news/8016, Feb. 2004.

[47] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
context-sensitive correlation analysis for race detection. In
PLDI, 2006.

[48] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
MICRO, 2001.

[49] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn,
R. Nagpal, and K. Pattabiraman. Detecting and tolerating
asymmetric races. In PPoPP, 2009.

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15, 1997.

[51] K. Sen. Race directed random testing of concurrent pro-
grams. In PLDI, 2008.

[52] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer – data
race detection in practice. In WBIA, 2009.

[53] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng. Do I use the wrong definition?: DefUse:
definition-use invariants for detecting concurrency and se-
quential bugs. In OOPSLA, 2010.

[54] S. Sidiroglou, S. Ioannidis, and A. D. Keromytis. Band-aid
patching. In HotDep, 2007.

[55] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI, 2008.

[56] G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Automatic
atomic region identification in shared memory SPMD pro-
grams. In OOPSLA, 2010.

[57] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In
POPL, 2006.

[58] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided
synthesis of synchronization. In POPL, 2010.

[59] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Detecting and surviving data
races using complementary schedules. In SOSP, 2011.

[60] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.
Chen, J. Flinn, and S. Narayanasamy. DoublePlay: paral-
lelizing sequential logging and replay. In ASPLOS, 2011.

[61] D. Weeratunge, X. Zhang, and S. Jagannathan. Accentu-
ating the positive: Atomicity inference and enforcement
using correct executions. In OOPSLA, 2011.

[62] J. Wu, H. Cui, and J. Yang. Bypassing races in live applica-
tions with execution filters. In OSDI, 2010.

[63] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In FSE, 2010.

[64] M. Xu, R. Bodík, and M. D. Hill. A serializability violation
detector for shared-memory server programs. In PLDI,
2005.

[65] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairava-
sundaram. How do fixes become bugs? In FSE, 2011.

[66] J. Yu and S. Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. In ISCA, 2009.

[67] J. Yu and S. Narayanasamy. Tolerating concurrency bugs
using transactions as lifeguards. In MICRO, 2010.

[68] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[69] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe
concurrency bugs through an effect-oriented approach. In
ASPLOS, 2010.

[70] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,
S. Lu, and T. Reps. ConSeq: detecting concurrency bugs
through sequential errors. In ASPLOS, 2011.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 237

All about Eve: Execute-Verify Replication for Multi-Core Servers

Manos Kapritsos∗, Yang Wang∗, Vivien Quema†, Allen Clement‡, Lorenzo Alvisi∗, Mike Dahlin∗
∗The University of Texas at Austin †Grenoble INP ‡MPI-SWS

Abstract: This paper presents Eve, a new Execute-Verify
architecture that allows state machine replication to scale
to multi-core servers. Eve departs from the traditional
agree-execute architecture of state machine replication:
replicas first execute groups of requests concurrently and
then verify that they can reach agreement on a state and
output produced by a correct replica; if they can not, they
roll back and execute the requests sequentially. Eve min-
imizes divergence using application-specific criteria to
organize requests into groups of requests that are un-
likely to interfere. Our evaluation suggests that Eve’s
unique ability to combine execution independence with
nondetermistic interleaving of requests enables high-
performance replication for multi-core servers while tol-
erating a wide range of faults, including elusive concur-
rency bugs.

1 Introduction
This paper presents Eve, a new Execute-Verify archi-
tecture that allows state machine replication to scale to
multi-core servers.

State machine replication (SMR) is a powerful fault
tolerance technique [26, 38]. Historically, the essential
idea is for replicas to deterministically process the same
sequence of requests so that correct replicas traverse the
same sequence of internal states and produce the same
sequence of outputs.

Multi-core servers pose a challenge to this approach.
To take advantage of parallel hardware, modern servers
execute multiple requests in parallel. However, if differ-
ent servers interleave requests’ instructions in different
ways, the states and outputs of correct servers may di-
verge even if no faults occur. As a result, most SMR
systems require servers to process requests sequentially:
a replica finishes executing one request before beginning
to execute the next [7, 27, 31, 39, 44, 50].

At first glance, recent efforts to enforce determinis-
tic parallel execution seem to offer a promising approach
to overcoming this impasse. Unfortunately, as we de-
tail in the next section, these efforts fall short, not just
because of the practical limitations of current implemen-
tations (e.g. high overhead [2, 3, 5]) but more fundamen-

tally because, to achieve better performance, many mod-
ern replication algorithms do not actually execute opera-
tions in the same order at every replica (and sometimes
do not even execute the same set of operations) [7, 11,
21, 47].

To avoid these issues, Eve’s replication architecture
eliminates the requirement that replicas execute requests
in the same order. Instead, Eve partitions requests in
batches and, after taking lightweight measures to make
conflicts within a batch unlikely, it allows different repli-
cas to execute requests within each batch in parallel,
speculating that the result of these parallel executions
(i.e. the system’s important state and output at each
replica) will match across enough replicas.

To execute requests in parallel without violating the
safety requirements of replica coordination, Eve turns
on its head the established architecture of state ma-
chine replication. Traditionally, deterministic replicas
first agree on the order in which requests are to be ex-
ecuted and then execute them [7, 26, 27, 31, 38, 50]; in
Eve, replicas first speculatively execute requests concur-
rently, and then verify that they have agreed on the state
and the output produced by a correct replica. If too many
replicas diverge so that a correct state/output cannot be
identified, Eve guarantees safety and liveness by rolling
back and sequentially and deterministically re-executing
the requests.

Critical to Eve’s performance are mechanisms that en-
sure that, despite the nondeterminism introduced by al-
lowing parallel execution, replicas seldom diverge, and
that, if they do, divergence is efficiently detected and
reconciled. Eve minimizes divergence through a mixer
stage that applies application-specific criteria to produce
groups of requests that are unlikely to interfere, and it
makes repair efficient through incremental state transfer
and fine-grained rollbacks. Note that if the underlying
program is correct under unreplicated parallel execution,
then delaying agreement until after execution and, when
necessary, falling back to sequential re-execution guar-
antees that replication remains safe and live even if the
mixer allows interfering requests in the same group.

Eve’s execute-verify architecture is general and ap-

1



238 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

plies to both crash tolerant and Byzantine tolerant sys-
tems. In particular, when Eve is configured to toler-
ate crash faults, it also provides significant protection
against concurrency bugs, thus addressing a region of
the design space that falls short of Byzantine fault tol-
erance but that strengthens guarantees compared to stan-
dard crash tolerance. Eve’s robustness stems from two
sources. First, Eve’s mixer reduces the likelihood of trig-
gering latent concurrency bugs by attempting to run only
unlikely-to-interfere requests in parallel [25, 35]. Sec-
ond, its execute-verify architecture allows Eve to detect
and recover when concurrency causes executions to di-
verge, regardless of whether the divergence results from
a concurrency bug or from distinct correct replicas mak-
ing different legal choices.

In essence, Eve refines the assumptions that underlie
the traditional implementation of state machine replica-
tion. In the agree-execute architecture, the safety require-
ment that correct replicas agree on the same state and
output is reduced to the problem of guaranteeing that de-
terministic replicas process identical sequences of com-
mands (i.e. agree on the same inputs). Eve continues to
require replicas to be deterministic, but it no longer in-
sists on them executing identical sequences of requests:
instead of relying on agreement on inputs, Eve reverts to
the weaker original safety requirement that replicas agree
on state and output.

The practical consequence of this refinement is that
in Eve correct replicas enjoy two properties that prior
replica coordination protocols have treated as fundamen-
tally at odds with each other: nondeterministic interleav-
ing of requests and execution independence. Indeed, it is
precisely through the combination of these two proper-
ties that Eve improves the state of the art for replicating
multi-core servers:
1. Nondeterministic interleaving of requests lets Eve pro-

vide high-performance replication for multi-core
servers. Eve gains performance by avoiding the
overhead of enforcing determinism. For example,
in our experiments with the TPC-W benchmark,
Eve achieves a 6.5x speedup over sequential execu-
tion that approaches the 7.5x speedup of the orig-
inal unreplicated server. For the same benchmark,
Eve achieves a 4.7x speedup over the Remus primary-
backup system [13] by exploiting its unique ability to
allow independent replicas to interleave requests non-
deterministically.

2. Independence lets Eve mask a wide range of faults.
Without independently executing replicas, it is in gen-
eral impossible to tolerate arbitrary faults. Indepen-
dence makes Eve’s architecture fully general, as our
prototype supports tunable fault tolerance [9], retain-
ing traditional state machine replication’s ability to be
configured to tolerate crash, omission, or Byzantine

faults. Notably, we find that execution independence
pays dividends even when Eve is configured to tol-
erate only crash or omission failures by offering the
opportunity to mask some concurrency failures. Al-
though we do not claim that our experimental results
are general, we find them promising: for the TPC-W
benchmark running on the H2 database, executing re-
quests in parallel on an unreplicated server triggered
a previously undiagnosed concurrency bug in H2 73
times in a span of 750K requests. Under Eve, our
mixer eliminated all manifestations of this bug. Fur-
thermore, when we altered our mixer to occassionally
allow conflicting requests to be parallelized, Eve de-
tected and corrected the effects of this bug 82% of the
times it manifested, because Eve’s independent execu-
tion allowed the bug to manifest (or not) in different
ways on different replicas.

The rest of the paper proceeds as follows. In Section
2 we explain why deterministic multithreaded execution
does not solve the problem of replicating multithreaded
services. Section 3 describes the system model and Sec-
tion 4 gives an overview of the protocol. In Section 5 we
discuss the execution stage in more detail and in Section
6 we present the agreement protocols used by the veri-
fication stage for two interesting configurations and dis-
cuss Eve’s ability to mask concurrency bugs. Section 7
presents an experimental evaluation of Eve, and Section
8 presents related work. Section 9 concludes the paper.

2 Why not deterministic execution?
Deterministic execution of multithreaded programs [2, 3,
5, 30] guarantees that, given the same input, all correct
replicas of a multithreaded application will produce iden-
tical internal application states and outputs. Although
at first glance this approach appears a perfect match
for the challenge of multithreaded SMR on multi-core
servers, there are two issues that lead us to look beyond
it. The first issue [4] is straightforward: current tech-
niques for deterministic multithreading either require
hardware support [14, 15, 20] or are too slow (1.2x-10x
overhead) [2, 3, 5] for production environments. The sec-
ond issue originates from the semantic gap that exists be-
tween modern SMR protocols and the techniques used to
achieve deterministic multithreading.

Seeking opportunities for higher throughput, SMR
protocols have in recent years looked for ways to exploit
the semantics of the requests processed by the replicas to
achieve replica coordination without forcing all replicas
to process identical sequences of inputs. For example,
many modern SMR systems no longer insist that read
requests be performed in the same order at all replicas,
since read requests do not modify the state of the repli-
cated application. This read-only optimization [7, 9, 24]

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 239

is often combined with a second optimization that allows
read requests to be executed only at a preferred quo-
rum of replicas, rather than at all replicas [21]. Several
SMR systems [11, 47] use the preferred quorum opti-
mization during failure-free executions also for requests
that change the application’s state, asking other replicas
to execute these requests only if a preferred replica fails.

Unfortunately, deterministic multithreading tech-
niques know nothing of the semantics of the operations
they perform. Their ability to guarantee replica coordina-
tion of multithreaded servers is based purely on syntactic
mechanisms that critically rely on the assumption that all
replicas receive identical sequences of inputs: only then
can deterministic multithreading ensure that the replicas’
states and outputs will be the same. Read-only opti-
mizations and preferred quorum operations violate that
assumption, leading correct replicas to diverge. For in-
stance, read-only requests advance a replica’s instruction
counter and may cause the replica to acquire additional
read locks: it is easy to build executions where such low-
level differences may eventually cause the application
state of correct replicas to diverge [22]. Paradoxically,
the troubles of deterministic replication stem from stick-
ing to the letter of the state machine approach [26, 38], at
the same time that modern SMR protocols have relaxed
its requirements while staying true to its spirit.

3 System model

The novel architecture for state machine replication that
we propose is fully general: Eve can be applied to co-
ordinate the execution of multithreaded replicas in both
synchronous and asynchronous systems and can be con-
figured to tolerate failures of any severity, from crashes
to Byzantine faults.

In this paper, we primarily target asynchronous en-
vironments where the network can arbitrarily delay, re-
order, or lose messages without imperiling safety. For
liveness, we require the existence of synchronous in-
tervals during which the network is well-behaved and
messages sent between two correct nodes are received
and processed with bounded delay. Because syn-
chronous primary-backup with reliable links is a prac-
tically interesting configuration [13], we also evaluate
Eve in a server-pair configuration that—like primary-
backup [6]—relies on timing assumptions for both safety
and liveness.

Eve can be configured to produce systems that are live,
i.e. provide a response to client requests, despite a to-
tal of up to u failures, whether of omission or commis-
sion, and to ensure that all responses accepted by correct
clients are correct despite up to r commission failures
and any number of omission failures [9]. Commission
failures include all failures that are not omission fail-

Clients Execution Verification

Mixer

ParallelBatches

Application
logic

Decision?

Rollback

Commit

State transfer

to clients...

to other replicas...

client
requests

Figure 1: Overview of Eve.

ures. The union of omission and commission failures are
Byzantine failures. However, we assume that failures do
not break cryptographic primitives; i.e., a faulty node can
never produce a correct node’s MAC. We denote a mes-
sage X sent by Y that includes an authenticator (a vector
of MACs, one per receiving replica) as 〈X〉�µY .

4 Protocol overview
Figure 1 shows an overview of Eve, whose “execute-
then-verify” design departs from the “agree-then-
execute” approach of traditional SMR [7, 27, 50].

4.1 Execution stage
Eve divides requests in batches, and lets replicas exe-
cute requests within a batch in parallel, without requiring
them to agree on the order of request execution within
a batch. However, Eve takes steps to make it likely that
replicas will produce identical final states and outputs for
each batch.

Batching Clients send their requests to the current pri-
mary execution replica. The primary groups requests
into batches, assigns each batch a sequence number,
and sends them to all execution replicas. Multiple such
batches can be in flight at the same time, but they are
processed in order. Along with the requests, the pri-
mary sends any data needed to consistently process any
nondeterministic requests in the batch (e.g. a seed for
random() calls or a timestamp for gettimeofday()
calls [7, 9]). The primary however makes no effort to

3



240 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

eliminate the nondeterminism that may arise when mul-
tithreaded replicas independently execute their batches.

Mixing Each replica runs the same deterministic mixer
to partition each batch received from the primary into
the same ordered sequence of parallelBatches—groups
of requests that the mixer believes can be executed in par-
allel with little likelihood that different interleavings will
produce diverging results at distinct replicas. For exam-
ple, if conflicting requests ρ1 and ρ2 both modify object
A, the mixer will place them in different parallelBatches.
Section 5.1 describes the mixer in more detail.

Executing (in parallel) Each replica executes the par-
allelBatches in the order specified by the determinis-
tic mixer. After executing all parallelBatches in the ith

batch, a replica computes a hash of its application state
and of the outputs generated in response to requests in
that batch. This hash, along with the sequenceNumber
i and the hash for batch i− 1,1 constitute a token that is
sent to the verification stage in order to discern whether
the replicas have diverged. Section 5.2 describes how we
efficiently and deterministically compute the hash of the
final state and outputs.

4.2 Verification stage
Eve’s execution stage strives to make divergence un-
likely, but offers no guarantees: for instance, despite its
best effort, the mixer may inadvertently include conflict-
ing requests in the same parallelBatch and cause distinct
correct replicas to produce different final states and out-
puts. It is up to the verification stage to ensure that such
divergences cannot affect safety, but only performance:
at the end of the verification stage, all correct replicas
that have executed the ith batch of requests are guaran-
teed to have reached the same final state and produced
the same outputs.

Agreement The verification stage runs an agreement
protocol to determine the final state and outputs of all
correct replicas after each batch of requests. The input
to the agreement protocol (see Section 6) are the tokens
received from the execution replicas. The final decision
is either commit (if enough tokens match) or rollback (if
too many tokens differ). In particular, the protocol first
verifies whether replicas have diverged at all: if all to-
kens agree, the replicas’ common final state and outputs
are committed. If there is divergence, the agreement pro-
tocol tallies the received tokens, trying to identify a final
state and outputs pair reached by enough replicas to guar-
antee that the pair is the product of a correct replica. If

1We include the hash for the previous batch to make sure that the
system only accepts valid state transitions. Verification replicas will
only accept a token as valid if they have already agreed that there is a
committed hash for sequence number i−1 that matches the one in the
ith token.

one such pair is found, then Eve ensures that all correct
replicas commit to that state and outputs; if not, then the
agreement protocol decides to roll back.

Commit If the result of the verification stage is commit,
the execution replicas mark the corresponding sequence
number as committed and send the responses for that par-
allelBatch to the clients.

Rollback If the result of the verification stage is rollback,
the execution replicas roll back their state to the latest
committed sequence number and re-execute the batch se-
quentially to guarantee progress. A rollback may also
cause a primary change, to deal with a faulty primary. To
guarantee progress, the first batch created by the new pri-
mary, which typically includes some subset of the rolled
back requests, is executed sequentially by all execution
replicas.

A serendipitous consequence of its “execute-verify”
architecture is that Eve can often mask replica diver-
gences caused by concurrency bugs, i.e. deviations from
an application’s intended behavior triggered by particular
thread interleavings [18]. Some concurrency bugs may
manifest as commission failures; however, because such
failures are typically triggered probabilistically and are
not the result of the actions of a strategic adversary, they
can be often masked by configurations of Eve designed
to tolerate only omission failures. Of course, as every
system that uses redundancy to tolerate failures, Eve is
vulnerable to correlated failures and cannot mask con-
currency failures if too many replicas fail in exactly the
same way. This said, Eve’s architecture should help, both
because the mixer, by trying to avoid parallelizing re-
quests that interfere, makes concurrency bugs less likely
and because concurrency bugs may manifest differently
(if at all) on different replicas.

5 Execution stage
In this section we describe the execution stage in more
detail. In particular, we discuss the design of the mixer
and the design and implementation of the state manage-
ment framework that allows Eve to perform efficient state
comparison, state transfer, and rollback.

5.1 Mixer design
Parallel execution will result in better performance only
if divergence is rare. The mission of the mixer is to iden-
tify requests that may productively be executed in paral-
lel and to do so with low false negative and false positive
rates. False negatives will cause conflicting requests to
be executed in parallel, creating the potential for diver-
gence and rollback. False positives will cause requests
that could have been successfully executed in parallel to
be serialized, reducing the parallelism of the execution.
Note however that Eve remains safe and live independent

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 241

Transaction Read and write keys
getBestSellers read: item, author, order line
getRelated read: item
getMostRecentOrder read: customer, cc xacts, address,

country, order line
doCart read: item

write: shopping cart line, shopping cart
doBuyConfirm read: customer, address

write: order line, item, cc xacts,
shopping cart line

Figure 2: The keys used for the 5 most frequent transac-
tions of the TPC-W workload.

of the false negative and false positive rates of the mixer.
A good mixer is just a performance optimization (albeit
an important one).

The mixer we use for our experiments parses each re-
quest, trying to predict which state it will access: de-
pending on the application, this state can vary from a
single file or application-level object to higher level ob-
jects such as database rows or tables. Two requests con-
flict when they access the same object in a read/write or
write/write manner. To avoid putting together conflict-
ing requests, the mixer starts with an empty parallelBatch
and two (initially empty) hash tables, one for objects be-
ing read, the other for objects being written. The mixer
then scans in turn each request, mapping the objects ac-
cessed in the request to a read or write key, as appro-
priate. Before adding a request to a parallelBatch, the
mixer checks whether that request’s keys have read/write
or write/write conflicts with the keys already present in
the two hash tables. If not, the mixer adds the request
to the parallelBatch and adds its keys to the appropri-
ate hash table; when a conflict occurs, the mixer tries to
add the request to a different parallelBatch—or creates a
new parallelBatch, if the request conflicts with all exist-
ing parallelBatches.

In our experiments with the H2 Database Engine and
the TPC-W workload, we simply used the names of the
tables accessed in read or write mode as read and write
keys for each transaction2 (see Table 2). Note that be-
cause the mixer can safely misclassify requests, we need
not explicitly capture additional conflicts potentially gen-
erated through database triggers or view accesses that
may be invisible to us: Eve’s verification stage allows us
to be safe without being perfect. Moreover, the mixer can
be improved over time using feedback from the system
(e.g. by logging parallelBatches that caused rollbacks).

Although implementing a perfect mixer might prove
tricky for some cases, we expect that a good mixer can be
written for many interesting applications and workloads
with modest effort. Databases and key-value stores are
examples of applications where requests typically iden-

2Since H2 does not support row-level locking, we did not imple-
ment conflict checks at a granularity finer than a table.

tify the application-level objects that will be affected—
tables and values respectively. Our experience so far is
encouraging. Our TPC-W mixer took 10 student-hours
to build, without any prior familiarity with the TPC-W
code. As demonstrated in Section 7, this simple mixer
achieves good parallelism (acceptably few false posi-
tives), and we do not observe any rollbacks (few or no
false negatives).

5.2 State management
Moving from an agree-execute to an execute-verify ar-
chitecture puts pressure on the implementation of state
checkpointing, comparison, rollback, and transfer. For
example, replicas in Eve must compute a hash of the
application state reached after executing every batch of
requests; in contrast, traditional SMR protocols check-
point and compare application states much less often
(e.g. when garbage collecting the request log).

To achieve efficient state comparison and fine-grained
checkpointing and rollback, Eve stores the state using a
copy-on-write Merkle tree, whose root is a concise repre-
sentation of the entire state. The implementation borrows
two ideas from BASE [36]. First, it includes only the
subset of state that determines the operation of the state
machine, omitting other state (such as an IP address or
a TCP connection) that can vary across different replicas
but has no semantic effect on the state and output pro-
duced by the application. Second, it provides an abstrac-
tion wrapper on some objects to mask variations across
different replicas.

Similar to BASE and other traditional SMR systems
such as PBFT, Zyzzyva, and UpRight, where program-
mers are required to manually annotate which state is
to be included in the state machine’s checkpoint [7, 9,
24, 36], our current implementation of Eve manually an-
notates the application code to denote the objects that
should be added to the Merkle tree and to mark them
as dirty when they get modified.

Compared to BASE, however, Eve faces two novel
challenges: maintaining a deterministic Merkle tree
structure under parallel execution and parallel hash gen-
eration as well as issues related to our choice to imple-
ment Eve in Java.
5.2.1 Deterministic Merkle trees

To generate the same checksum, different replicas must
put the same objects at the same location in their Merkle
tree. In single-threaded execution, determinism comes
easily by adding an object to the tree when it is created.
Determinism is more challenging in multithreaded exe-
cution when objects can be created concurrently.

There are two intuitive ways to address the problem.
The first option is to make memory allocation synchro-
nized and deterministic. This approach not only negates
efforts toward concurrent memory allocation [17, 40],

5



242 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

but is unnecessary, since the allocation order usually does
not fundamentally affect replica equivalence. The second
option is to generate an ID based on object content and
to use it to determine an object’s location in the tree; this
approach does not work, however, since many objects
have the same content, especially at creation time.

Our solution is to postpone adding newly created ob-
jects to the Merkle tree until the end of the batch, when
they can be added deterministically. Eve scans existing
modified objects, and if one contains a reference to an
object not yet in the tree, Eve adds that object into the
tree’s next empty slot and iteratively repeats the process
for all newly added objects.

Object scanning is deterministic for two reasons. First,
existing objects are already put at deterministic locations
in the tree. Second, for a single object, Eve can iterate
all its references in a deterministic order. Usually we can
use the order in which references are defined in a class.
However some classes, like Hashtable, do not store their
references in a deterministic order; we discuss how to
address these classes in Section 5.2.2.

We do not parallelize the process of scanning for new
objects, since it has low overhead. We do parallelize hash
generation, however: we split the Merkle tree into sub-
trees and compute their hashes in parallel before combin-
ing them to obtain the hash of the Merkle tree’s root.
5.2.2 Java Language & Runtime

The choice of implementing our prototype in Java pro-
vides us with several desirable features, including an
easy way to differentiate references from other data that
simplifies the implementation of deterministic scanning;
at the same time, it also raises some challenges.

First, objects to which the Merkle tree holds a ref-
erence to are not eligible for Java’s automatic garbage
collection (GC). Our solution is to periodically perform
a Merkle-tree-level scan, using a mark-and-sweep algo-
rithm similar to Java’s GC, to find unused objects and
remove them from the tree. This ensures that those ob-
jects can be correctly garbage collected by Java’s GC.
For the applications we have considered, this scan can be
performed less frequently than Java’s GC, since objects
in the tree tend to be “important” and have a long life-
time. In our experience this scan is not a major source of
overhead.

Second, several standard set-like data structures in
Java, including instances of the widely-used Hashtable
and HashSet classes, are not oblivious to the order in
which they are populated. For example, the serialized
state of a Java Hashtable object is sensitive to the order
in which keys are added and removed. So, while two set-
like data structures at different replicas may contain the
same elements, they may generate different checksums
when added to a Merkle tree: while semantically equiva-
lent, the states of these replicas would instead be seen as

having diverged, triggering unnecessary rollbacks.
Our solution is to create wrappers [36] that abstract

away semantically irrelevant differences between in-
stances of set-like classes kept at different replicas. The
wrappers generate, for each set-like data structure, a de-
terministic list of all the elements it contains, and, if nec-
essary, a corresponding iterator. If the elements’ type
is one for which Java already provides a comparator
(e.g. Integer, Long, String, etc.), this is easy to do. Oth-
erwise, the elements are sorted using an ordered pair (re-
questId, count) that Eve assigns to each element before
adding it to the data structure. Here, requestId is the
unique identifier of the request responsible for adding the
element, and count is the number of elements added so
far to the data structure by request requestId. In practice,
we only found the need to generate two wrappers, one
for each of the two interfaces (Set and Map) commonly
used by Java’s set-like data structures.

6 Verification stage
The goal of the verification stage is to determine whether
enough execution replicas agree on their state and re-
sponses after executing a batch of requests. Given that
the tokens produced by the execution replicas reflect their
current state as well as the state transition they under-
went, all the verification stage has to decide is whether
enough of these tokens match.

To come to that decision, the verification replicas
use an agreement protocol [7, 27] whose details depend
largely on the system model. As an optimization, read-
only requests are first executed at multiple replicas with-
out involving the verification stage. If enough replies
match, the client accepts the returned value; otherwise,
the read-only request is reissued and processed as a reg-
ular request. We present the protocol for two extreme
cases: an asynchronous Byzantine fault tolerant system,
and a synchronous primary-backup system. We then dis-
cuss how the verification stage can offer some defense
against concurrency bugs and how it can be tuned to
maximize the number of tolerated concurrency bugs.

6.1 Asynchronous BFT
In this section we describe the verification protocol for an
asynchronous Byzantine fault tolerant system with nE =
u+max(u,r)+1 execution replicas and nV = 2u+ r+1
verification replicas [8, 9], which allows the system to
remain live despite u failures (whether of omission or
commission), and safe despite r commission failures and
any number of omission failures. Readers familiar with
PBFT [7] will find many similarities between these two
protocols; this is not surprising, since both protocols at-
tempt to perform agreement among 2u+ r + 1 replicas
(3 f +1 in PBFT terminology). The main differences be-
tween these protocols stem from two factors. First, in

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 243

PBFT the replicas try to agree on the output of a single
node—the primary. In Eve the object of agreement is the
behavior of a collection of replicas—the execution repli-
cas. Therefore, in Eve verification replicas use a quorum
of tokens from the execution replicas as their “proposed”
value. Second, in PBFT the replicas try to agree on the
inputs to the state machine (the incoming requests and
their order). Instead, in Eve replicas try to agree on the
outputs of the state machine (the application state and
the responses to the clients). As such, in the view change
protocol (which space considerations compel us to dis-
cuss in full detail elsewhere [22]) the existence of a cer-
tificate for a given sequence number is enough to commit
that sequence number to the next view—a prefix of com-
mitted sequence numbers is no longer required.

When an execution replica executes a batch of re-
quests (i.e. a sequence of parallelBatches), it sends a
〈VERIFY,υ,n,T,e〉�µe message to all verification replicas,
where υ is the current view number, n is the batch se-
quence number, T is the computed token for that batch,
and e is the sending execution replica. Recall that T con-
tains the hash of both batch n and of batch n− 1: a ver-
ification replica accepts a VERIFY message for batch n
only if it has previously committed a hash for batch n−1
that matches the one stored in T .

When a verification replica receives max(u,r) +
1 VERIFY messages with matching tokens, it marks
this sequence number as preprepared and sends
a 〈PREPARE,υ,n,T,v〉�µv message to all other ver-
ification replicas. Similarly when a verification
replica receives nV − u matching PREPARE messages,
it marks this sequence number as prepared and
sends a 〈COMMIT,υ,n,T,v〉�µv to all other verifica-
tion replicas. Finally, when a verification replica re-
ceives nV − u matching COMMIT messages, it marks
this sequence number as committed and sends a
〈VERIFY-RESPONSE,υ,n,T,v〉�µv message to all execu-
tion replicas. Note that the view number υ is the same
as that of the VERIFY message; this indicates that agree-
ment was reached and no view change was necessary.

If agreement can not be reached, either because of
diverging replicas, asynchrony, or because of a Byzan-
tine execution primary, the verification replicas initiate
a view change.3 During the view change, the verifica-
tion replicas identify the highest sequence number (and
corresponding token) that has been prepared by at least
nV − u replicas and start the new view with that token.
They send a 〈VERIFY-RESPONSE,υ+1,n,T,v, f 〉�µv mes-
sage to all execution replicas, where f is a flag that indi-
cates that the next batch should be executed sequentially
to ensure progress. Note that in this case the view num-
ber has increased; this indicates that agreement was not

3The view change is triggered when the commit throughput is lower
than expected, similar to [10].

reached and a rollback to sequence number n is required.

Commit, State transfer and Rollback Upon receipt of
r+1 matching VERIFY-RESPONSE messages, an execu-
tion replica e distinguishes three cases:

Commit If the view number has not increased and the
agreed-upon token matches the one e previously
sent, then e marks that sequence number as stable,
garbage-collects any portions of the state that have
now become obsolete, and releases the responses
computed from the requests in this batch to the cor-
responding clients.

State transfer If the view number has not increased,
but the token does not match the one e previously
sent, it means that this replica has diverged from
the agreed-upon state. To repair this divergence,
it issues a state transfer request to other replicas.
This transfer is incremental: rather than transferring
the entire state, Eve transfers only the part that has
changed since the last stable sequence number. In-
cremental transfer, which uses the Merkle tree to
identify what state needs to be transferred, allows
Eve to rapidly bring slow and diverging replicas up-
to-date.

Rollback If the view number has increased, this means
that agreement could not be reached. Replica e dis-
cards any unexecuted requests and rolls back its
state to the sequence number indicated by the token
T , while verifying that its new state matches the to-
ken (else it initiates a state transfer). The increased
view number also implicitly rotates the execution
primary. The replicas start receiving batches from
the new primary and, since the flag f was set, exe-
cute the first batch sequentially to ensure progress.

6.2 Synchronous primary-backup
A system configured for synchronous primary-backup
has only two replicas that are responsible for both exe-
cution and verification. The primary receives client re-
quests and groups them into batches. When a batch
B is formed, it sends a 〈EXECUTE-BATCH,n,B,ND〉
message to the backup, where n is the batch sequence
number and ND is the data needed for consistent exe-
cution of nondeterministic calls such as random() and
gettimeofday(). Both replicas apply the mixer to the
batch, execute the resulting parallelBatches, and com-
pute the state token, as described in Section 4. The
backup sends its token to the primary, which compares it
to its own token. If the tokens match, the primary marks
this sequence number as stable and releases the responses
to the clients. If the tokens differ, the primary rolls back
its state to the latest stable sequence number and noti-

7



244 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

fies the backup to do the same. To ensure progress, they
execute the next batch sequentially.

If the primary crashes, the backup is eventually noti-
fied and assumes the role of the primary. As long as the
old primary is unavailable, the new primary will keep
executing requests on its own. After a period of unavail-
ability, a replica uses incremental state transfer to bring
its state up-to-date before processing any new requests.

6.3 Tolerating concurrency bugs
A happy consequence of the execute-verify architecture
is that even when configured with the minimum number
of replicas required to tolerate u omission faults, Eve pro-
vides some protection against concurrency bugs.

Concurrency bugs can lead to both omission faults
(e.g., a replica could get stuck) and commission faults
(e.g., a replica could produce an incorrect output or tran-
sition to an incorrect state). However, faults due to con-
currency bugs have an important property that in general
cannot be assumed for Byzantine faults: they are easy to
repair. If Eve detects a concurrency fault, it can repair
the fault via rollback and sequential re-execution.

Asynchronous case When configured with r = 0, Eve
provides the following guarantee:

Theorem 1. When configured with nexec = 2u+ 1 and
r = 0, asynchronous Eve is safe, live, and correct despite
up to u concurrency or omission faults.

Note that safety and liveness refer to the requirements of
state machine replication—that the committed state and
outputs at correct replicas match and that requests even-
tually commit. Correctness refers to the state machine
itself; a committed state is correct if it is a state that can
be reached by the state machine in a fault-free run.
Proof sketch: The system is always safe and correct be-
cause the verifier requires u+ 1 matching execution to-
kens to commit a batch. If there are at most u concur-
rency faults and no other commission faults, then every
committed batch has at least one execution token pro-
duced by a correct replica.

The system is live because if a batch fails to gather
u+ 1 matching tokens, the verifier forces the execution
replicas to roll back and sequentially re-execute. During
sequential execution deterministic correct replicas do not
diverge; so, re-execution suffers at most u omission faults
and produces at least u+ 1 matching execution tokens,
allowing the batch to commit.

When more than u correlated concurrency faults pro-
duce exactly the same state and output, Eve still provides
the safety and liveness properties of state machine repli-
cation, but can no longer guarantee correctness.

Synchronous case When configured with just u+1 ex-
ecution replicas, Eve can continue to operate with 1

replica if u replicas fail by omission. In such configu-
rations, Eve does not have spare redundancy and can not
mask concurrency faults at the one remaining replica.

Extra protection during good intervals During good
intervals when there are no replica faults or time-
outs other than those caused by concurrency bugs, Eve
uses spare redundancy to boost its best-effort protection
against concurrency bugs to nE −1 execution replicas in
both the synchronous and asynchronous cases.

For example, in the synchronous primary-backup case,
when both execution replicas are alive, the primary re-
ceives both execution responses, and if they do not
match, it orders a rollback and sequential re-execution.
Thus, during a good interval this configuration masks
one-replica concurrency failures. We expect this to be
the common case.

In both the synchronous and asynchronous case Eve,
when configured for r = 0, enters extra protection mode
(EPM) after k consecutive batches for which all nE ex-
ecution replicas provided matching, timely responses.
While Eve is in EPM, after the verifiers receive the
minimum number of execution responses necessary for
progress, they continue to wait for up to a short timeout
to receive all nE responses. If the verifiers receive all nE
matching responses, they commit the response. Other-
wise, they order a rollback and sequential re-execution.
Then, if they receive nE matching responses within a
short timeout, they commit the response and remain in
EPM. Conversely, if sequential re-execution does not
produce nE matching and timely responses, they suspect
a non-concurrency failure and exit EPM to ensure live-
ness by allowing the system to make progress with fewer
matching responses.

7 Evaluation
Our evaluation tries to answer the following questions:
• What is the throughput gain that Eve provides com-

pared to a traditional sequential execution approach?

• How does Eve’s performance compare to an unrepli-
cated multithreaded execution and alternative replica-
tion approaches?

• How is Eve’s performance affected by the mixer and
by other workload characteristics?

• How well does Eve mask concurrency bugs?
We address these questions by using a key-value store

application and the H2 Database Engine. We imple-
mented a simple key-value store application to perform
microbenchmark measurements of Eve’s sensitivity to
various parameters. Specifically, we vary the amount of
execution time required per request, the size of the ap-
plication objects and the accuracy of our mixer, in terms
of both false positives and false negatives. For the H2

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 245

Database Engine we use an open-source implementation
of the TPC-W benchmark [42, 43]. For brevity, we will
present the results of the browsing workload, which has
more opportunities for concurrency.

Our current prototype omits some of the features de-
scribed above. Specifically, although we implement the
extra protection mode optimization from Section 6.3 for
synchronous primary-backup replication, we do not im-
plement it for our asynchronous configurations. Also,
our current implementation does not handle applications
that include objects for which Java’s finalize method
modifies state that needs to be consistent across replicas.
Finally, our current prototype only supports in-memory
application state.

We run our microbenchmarks on an Emulab testbed
with 14x 4-core Intel Xeon @2.4 GHz, 4x 8-core In-
tel Xeon @2.66 GHz, and 2x 8-core hyper-threaded
Intel Xeon @1.6 GHz, connected with a 1 Gb Ether-
net. We were able to get limited access to 3x 16-
core AMD Opteron @3.0 GHz and 2x 8-core Intel Xeon
L5420 @2.5 Ghz. We use the AMD machines as ex-
ecution replicas to run the TPC-W benchmark on the
H2 Database Engine for both the synchronous primary-
backup and the asynchronous BFT configuration (Fig-
ure 3). For the asynchronous BFT configuration we use
3 execution and 4 verifier nodes, which are sufficient to
tolerate 1 Byzantine fault (u = 1, r = 1). The L5420 ma-
chines are running Xen and we use them to perform our
comparison with Remus (Figure 10 and Figure 11).

7.1 H2 Database with TPC-W
Figures 3 demonstrates the performance of Eve for the
H2 Database Engine [19] with the TPC-W browsing
workload [42, 43]. We report the throughput of Eve us-
ing an asynchronous BFT configuration (Eve-BFT) and a
synchronous active primary-backup configuration (Eve-
PrimaryBackup). We compare against the throughput
achieved by an unreplicated server that uses sequential
execution regardless of the number of available hard-
ware threads (sequential). Note that this represents an
upper bound of the performance achievable by previous
replication systems that use sequential execution [7, 9,
27, 31]. We also compare against the performance of an
unreplicated server that uses parallel execution.

With 16 execution threads, Eve achieves a speedup
of 6.5x compared to sequential execution. That ap-
proaches the 7.5x speedup achieved by an unreplicated
H2 Database server using 16 threads.

In both configurations and across all runs and for all
data points, Eve never needs to roll back. This sug-
gests that our simple mixer never parallelized requests
it should have serialized. At the same time, the good
speedup indicates that it was adequately aggressive in
identifying opportunities for parallelism.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

# execution threads

TPC-W throughput

sequential

Eve-BFT
Eve-PrimaryBackup

unreplicated

Figure 3: The throughput of Eve running the TPC-W
browsing workload on the H2 Database Engine.

7.2 Microbenchmarks
In this section, we use a simple key-value store appli-
cation to measure how various parameters affect Eve’s
performance. Due to lack of space, we only show the
graphs for the primary-backup configuration; the results
for asynchronous replication are similar. Except when
noted, the default workload consumes 1 ms of execution
time per request, each request updates one application
object, and the application object size is 1 KB.

Figure 4 shows the impact of varying the CPU de-
mand of each request. We observe that heavier work-
loads (10 ms of execution time per request) scale well,
up to 12.5x on 16 threads compared to sequential exe-
cution. As the workload gets lighter, the overhead of
Eve becomes more pronounced. Speedups fall to 10x
for 1 ms/request and to 3.3x for 0.1 ms/request. The 3.3x
scaling is partially an artifact of our inability to fully load
the server with lightweight requests. In our workload
generator, clients have 1 outstanding request at a time,
thus requiring a high number of clients to saturate the
servers; this causes our servers to run out of sockets be-
fore they are fully loaded. We measure our server CPU
utilization during this experiment to be about 30%.

In Figure 4 we plot throughput speedup, so that trends
are apparent. For reference, the absolute peak through-
puts in requests per second are 25.2K, 10.0K, 1242 for
the 0.1 ms, 1 ms, 10 ms lines, respectively.

The next experiment explores the impact of the appli-
cation object size on the system throughput. We run the
experiment using object sizes of 10 B, 1 KB, and 10 KB.
Figure 5 shows the results. While the achieved through-
put scales well for object sizes of 10 B and 1 KB, its scal-
ability decreases for larger objects (10 KB). This is an
artifact of the hashing library we use, as it first copies
the object before computing its hash: for large objects,
this memory copy limits the achievable throughput. Note
that in this figure we plot throughput speedup rather than

9



246 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 0

 2

 4

 6

 8

 10

 12

 14

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Sp
ee

du
p 

ov
er

 s
eq

ue
nt

ia
l

# execution threads

Impact of CPU demand

10ms
1ms

0.1ms

Figure 4: The impact of CPU demand per request on
Eve’s throughput speedup.

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

Sp
ee

du
p 

ov
er

 s
eq

ue
nt

ia
l

# execution threads

Impact of object size

10B
1KB

10KB

Figure 5: The impact of application object size on Eve’s
throughput speedup.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01  0.1  1  10

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Pairwise conflict probability (%) (log)

Impact of false negatives

single-threaded
0% FN

0.01% FN
0.1% FN

1% FN
2% FN

10% FN

Figure 6: The impact of conflict probability and false
negative rate on Eve’s throughput.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.01  0.1  1  10

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Pairwise conflict probability (%) (log)

Impact of false positives

single-threaded
0% FP
1% FP

10% FP
25% FP
50% FP

100% FP

Figure 7: The impact of conflict probability and false
positive rate on Eve’s throughput.

absolute throughput to better indicate the trends across
workloads. For reference, the absolute peak throughput
values in requests per second are 10.0K, 10.0K, 5.6K for
the 10 B, 1 KB, 10 KB lines, respectively.

Next, we evaluate Eve’s sensitivity to inaccurate mix-
ers. Specifically, we explore the limits of tolerance to
false negatives (misclassifying conflicting requests as
non-conflicting) and false positives (misclassifying non-
conflicting requests as conflicting). The effect of these
parameters is measured as a function of the pairwise con-
flict probability: the probability that two requests have a
conflict. In practice, we achieve this by having each re-
quest modify one object and then varying the number of
application objects. For example, to produce a 1% con-
flict chance, we create 100 objects. Similarly, a 1% false
negative rate means that each pair of conflicting requests
has a 1% chance of being classified as non-conflicting.

Figure 6 shows the effect of false negatives on
throughput. First notice that, even for 0% false negatives,
the throughput drops as the pairwise conflict chance in-
creases due to the decrease of available parallelism. For
example, if a batch has 100 requests and each request has
a 10% chance of conflicting with each other request, then

a perfect mixer is likely to divide the batch into about 10
parallelBatches, each with about 10 requests.

When we add false negatives, we add rollbacks, and
the number of rollbacks increases with both the underly-
ing conflict rate and the false negative rate. Notice that
the impact builds more quickly than one might expect
because there is essentially a birthday “paradox”—if we
have a 1% conflict rate and a 1% false negative rate, then
the probability that any pair of conflicting requests be
misclassified is 1 in 10000. But in a batch of 100 re-
quests, each of these requests has about a 1% chance of
being party to a conflict, which means there is about a
39% chance that a batch of 100 requests contain an unde-
tected conflict. Furthermore, with a 1% conflict rate, the
batch will be divided into only a few parallelBatches, so
there is a good chance that conflicting requests will land
in the same parallelBatch. In fact, in this case we mea-
sure 1 rollback per 7 parallelBatches executed. Despite
this high conflict rate and this high number of rollbacks,
Eve achieves a speedup of 2.6x compared to sequential
execution.

Figure 7 shows the effect of false positives on through-
put. As expected, increased false positive ratios can lead

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 247

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20  40  60  80  100  120  140  160

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

se
c)

Time (seconds)

Figure 8: Throughput during node crash and recovery
for an Eve primary-backup configuration.

to lower throughput, but the effect is not as significant as
for false negatives. The reason is simple: false positives
reduce the opportunities for parallel execution, but they
don’t incur any additional overhead.

From these experiments, we conclude that Eve does
require a good mixer to achieve good performance. This
requirement does not particularly worry us. We found it
easy to build a mixer that (to the best of our knowledge)
detects all conflicts and still allows for a good amount of
parallelism. Others have had similar experience [25]. Al-
though creating perfect mixers may be difficult in some
cases, we speculate that it will often be feasible to con-
struct mixers with the low false negative rates and modest
false positive rates needed by Eve.

7.3 Failure and recovery
In Figure 8, we demonstrate Eve’s ability to mask and re-
cover from failures. In the primary-backup configuration
we run an experiment where we kill the primary node n1
at t = 30 seconds and recover it at t = 60 seconds (by
which time the secondary n2 has become the new pri-
mary). We then kill the new secondary (n1) at t = 90
seconds and recover it at t = 120 seconds. We observe
that after the first failure the throughput drops to zero
until the backup realizes that the primary is dead after
a timeout of 4 seconds.4 The backup then assumes the
role of the primary and starts processing requests. The
throughput during this period is higher because the new
primary knows that the other node is crashed and does
not send any messages to it. At t = 60, the first node
recovers, and the throughput drops to zero for about one
second while the newly recovered node catches up. Then
the throughput returns to its original value. The process
repeats when n1 crashes again at t = 90 seconds and re-
covers at t = 120 seconds.

7.4 Concurrency faults
To evaluate Eve’s ability to mask concurrency faults, we
use a primary-backup configuration with 16 execution
threads and run the TPC-W browsing workload on the

4One could use a fast failure detector [29] to achieve sub-second
detection.

H2 Database Engine with various mixers. H2 has a pre-
viously undiagnosed concurrency bug in which a row
counter is not incremented properly when multiple re-
quests access the same table in read uncommitted mode.
Our standard mixer completely masks this bug because
it does not let requests that modify the same table exe-
cute in parallel. By introducing less accurate mixers we
explore how well Eve’s second line of defense—parallel
execution—works in masking this bug.

Figure 9 shows the number of times that the bug man-
ifested in one or both replicas. When the bug manifests
only in one replica, Eve detects that the replicas have
diverged and repairs the damage by rolling back and re-
executing sequentially. If the bug happens to manifest in
both replicas in the same way, Eve will not detect it.

The first column shows the results when there is a triv-
ial aggressive mixer that places all requests of batch i in
the same parallelBatch. In this case, all requests that ar-
rive together in a batch are allowed to execute in parallel.
Naturally, this case has the highest number of bug man-
ifestations. We observe that even when the mixer does
no filtering at all, Eve masks 82% of the instances where
the bug manifests. In the remaining 18% of the cases,
the bug manifested in the same way in both replicas and
was not corrected by Eve. In columns 2 through 4, we
introduce mixers with high rates of false negatives. This
results in fewer manifestations of the bug, with Eve still
masking the majority of those manifestations. In the fifth
column, we show results for our original mixer, which
(to the best of our knowledge) does not introduce false
negatives. In this case, the bug does not manifest at all.

Although we do not claim that these results are gen-
eral, we find them promising.

7.5 Remus
Remus [13] is a primary-backup system that uses Virtual
Machines (VMs) to send modified state from the primary
to the backup. An advantage of this approach is that it
is simple and requires no modifications to the applica-
tion. A drawback of this approach is that it aggressively
utilizes network resources to keep the backup consistent
with the primary. The issue is aggravated by two prop-
erties of Remus. First, Remus does not make fine-grain
distinctions between state that is required for the state
machine and temporary state. Second, Remus operates
on the VM level, which forces it to send entire pages,
rather than just the modified objects. Also, because Re-
mus is using passive replication, it tolerates a narrower
range of faults than Eve. Our experiments show that, de-
spite Eve’s stronger guarantees, it outperforms Remus by
a factor of 4.7x, while using two orders of magnitude less
network bandwidth.

Figure 10 shows the throughput achieved by Remus
and Eve on the browsing workload of the TPC-W bench-

11



248 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Group all 1% FN 0.5% FN 0.1% FN Original Mixer
Times bug manifested 73 51 29 4 0
Fixed with rollback 60 38 18 3 0
All identical (not masked) 13 13 11 1 0
Throughput 1104 1233 1240 1299 1322

Figure 9: Effectiveness of Eve in masking concurrency bugs when various mixers are used.

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000  1200  1400  1600

La
te

nc
y 

(m
s)

Throughput (requests/sec)

Latency and throughput

Unreplicated

Eve

Remus

Figure 10: The latency and throughput of Remus and
Eve running the H2 Database Engine on Xen. Both sys-
tems use a 2-node configuration. The workload is the
browsing workload of the TPC-W benchmark.

mark. We also show the latency and throughput of the
unreplicated system for the same workload. Both sys-
tems run the H2 Database Engine on Xen and using a
2-node (primary-backup) configuration. Remus achieves
a maximum throughput of 235 requests per second, while
Eve peaks at 1225 requests per second. Remus crashes
for loads higher than 235 requests per second, as its
bandwidth requirements approach the capacity of the
network, as Figure 11 shows. In contrast with Remus,
Eve executes requests independently at each replica and
does not need to propagate state modifications over the
network. The practical consequence is that Eve uses
significantly less bandwidth, achieves higher throughput,
and provides stronger guarantees compared to a passive
replication approach like Remus.

7.6 Latency and batching
Figure 10 provides some insight in Eve’s tradeoff be-
tween latency and throughput. When Eve is not satu-
rated, its latency is only marginally higher than that of
an unreplicated server. As the load increases, Eve’s la-
tency increases somewhat, until it finally spikes up at
the saturation point, at a throughput of 1225 requests
per second; the unreplicated server’s latency spikes up
at around 1470 requests per second. To keep its latency
low while maintaing a high peak throughput, Eve uses
a dynamic batching scheme: the batch size decreases
when the demand is low (providing good latency), and

 1

 10

 100

 1000

 0  200  400  600  800  1000  1200

Ba
nd

w
id

th
 c

on
su

m
pt

io
n 

(M
b/

se
c)

 (l
og

)
Throughput (requests/sec)

Network bandwidth consumption

Eve

Remus

Figure 11: The bandwidth consumption of Remus and
Eve for the experiment shown in Figure 10.

increases when the system starts becoming saturated, in
order to leverage as much parallelism as possible.

8 Related Work
Vandiver et al. [45] describe a Byzantine-tolerant semi-
active replication scheme for transaction processing sys-
tems. Their system supports concurrent execution of
queries but its scope is limited: it applies to the sub-
set of transaction processing systems that use strict two-
phase locking (2PL). A recent paper suggests that it may
be viable to enforce deterministic concurrency control in
transactional systems [41], but the general case remains
hard. Kim et al. [23] recently proposed applying this
idea to a transactional operating system. This approach
assumes that all application state is manageable by the
kernel and does not handle in-memory application state.

One alternative is to use a replication technique other
than state machine replication. Semi-active replica-
tion [34] weakens state machine replication with respect
to both determinism and execution independence: one
replica, the primary, executes nondeterministically and
logs all the nondeterministic actions it performs. All
other replicas then execute by deterministically repro-
ducing the primary’s choices. In this context, one may
hope to be able to leverage the large body of work on
deterministic multiprocessor replay [1, 12, 16, 28, 32, 33,
37, 46, 48, 49]. Unfortunately, relaxing the requirement
of independent execution makes these systems vulnera-
ble to commission failures. Also, similar to determin-

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 249

istic multithreaded execution approaches, record and re-
play approaches assume that the same input is given to
all replicas. As discussed in Section 2 this assumption is
violated in modern replication systems.

The Remus primary-backup system [13] takes a dif-
ferent approach: the backup does not execute requests,
but instead passively absorbs state updates from the pri-
mary: since execution occurs only at the primary, the
costs and difficulty of coordinating parallel execution are
sidestepped. These advantages however come at a sig-
nificant price in terms of fault coverage: Remus can only
tolerate omission failures—all commission failures, in-
cluding common failures such as concurrency bugs, are
beyond its reach. Like Remus, Eve neither tracks nor
eliminates nondeterminism, but it manages to do so with-
out forsaking fault coverage; further, despite its stronger
guarantees, Eve outperforms Remus by a factor of 4.7x
and uses two orders of magnitude less network band-
width (see Section 7.5) because it can ensure that the
states of replicas converge without requiring the transfer
of all modified state.

One of the keys to Eve’s ability to combine indepen-
dent execution with nondeterministic interleaving of re-
quests is the use of the mixer, which allows replicas to
execute requests concurrently with low chance of inter-
ference. Kotla et al. [25] use a similar mechanism to im-
prove the throughput of BFT replication systems. How-
ever, since they still assume a traditional agree-execute
architecture, the safety of their system depends on the
assumption that the criteria used by the mixer never mis-
takenly parallelize conflicting requests: a single unantic-
ipated conflict can lead to a safety violation.

Both Eve and Zyzzyva [24] allow speculative execu-
tion that precedes completion of agreement, but the as-
sumptions on which Eve and Zyzzyva rest are fundamen-
tally different. Zyzzyva depends on correct nodes being
deterministic, so that agreement on inputs is enough to
guarantee agreement on outputs: hence, a replica need
only send (a hash of) the sequence of requests it has
executed to convey its state to a client. In contrast, in
Eve there is no guarantee that correct replicas, even if
they have executed the same batch of requests, will be in
the same state, as the mixer may have incorrectly placed
conflicting requests in the same parallelBatch.

We did contemplate an Eve implementation in which
verification is not performed within the logical bound-
aries of the replicated service but, as in Zyzzyva, it is
moved to the clients to reduce overhead. For example, a
server’s reply to a client’s request could contain not just
the response, but also the root of the Merkle tree that
encodes the server’s state. However, since agreement is
not a bottleneck for the applications we consider, we ul-
timately chose to heed the lessons of Aardvark [10] and
steer away from the corner cases that such an implemen-

tation would have introduced.

9 Conclusion
Eve is a new execute-verify architecture that allows state
machine replication to scale to multi-core servers. By
revisiting the role of determinism in replica coordina-
tion, Eve enables new SMR protocols that for the first
time allow replicas to interleave requests nondetermin-
istically and execute independently. This unprecedented
combination is critical to both Eve’s scalability and to
its generality, as Eve can be configured to tolerate both
omission and commission failures in both synchronous
and asynchronous settings. As an added bonus, Eve’s
unconventional architecture can be easily tuned to pro-
vide low-cost, best-effort protection against concurrency
bugs.

Acknowledgements
We thank our shepherd Robert Morris, and the OSDI re-
viewers for their insightful comments. This work was
supported by NSF grants NSF-CiC-FRCC-1048269 and
CNS-0720649.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In SOSP, 2009.

[2] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In OSDI, 2010.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
CoreDet: a compiler and runtime system for deterministic multi-
threaded execution. SIGARCH Comput. Archit. News, 2010.

[4] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic
execution hammer: How well does it actually pound nails? In
2nd Workshop on Determinism and Correctness in Parallel Pro-
gramming, 2011.

[5] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In OSDI, 2010.

[6] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
Primary-backup protocols: Lower bounds and optimal imple-
mentations. In CDCCA, 1992.

[7] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 2002.

[8] A. Clement. UpRight Fault Tolerance. PhD thesis, The Univer-
sity of Texas at Austin, Dec. 2010.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche. UpRight cluster services. In SOSP, 2009.

[10] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance. In OSDI, 2006.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient de-
terministic multithreading through schedule relaxation. In SOSP,
2011.

13



250 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High availability via asynchronous virtual
machine replication. In NSDI, 2008.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[15] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: a relaxed consistency deterministic computer. In ASP-
LOS, 2011.

[16] G. Dunlap, D. Lucchetti, M. Fetterman, and P. Chen. Execution
replay for multiprocessor virtual machines. In VEE, 2008.

[17] J. Evans. A scalable concurrent malloc(3) implementation for
FreeBSD, April 2006.

[18] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A study of the
internal and external effects of concurrency bugs. In DSN, 2010.

[19] H2. The H2 home page. http://www.h2database.com.

[20] D. Hower, P. Dudnik, M. Hill, and D. Wood. Calvin: Determin-
istic or not? Free will to choose. In HPCA, 2011.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-
free coordination for internet-scale systems. In USENIX, 2010.

[22] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin. All about Eve: Execute-verify replication for multi-
core servers (extended version). Technical Report TR-12-23,
Department of Computer Science, The University of Texas at
Austin, September 2012.

[23] S. Kim, M. Z. Lee, A. M. Dunn, O. S. Hofmann, X. Wang,
E. Witchel, and D. E. Porter. Improving server applications with
system transactions. In EuroSys, 2012.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In SOSP, 2007.

[25] R. Kotla and M. Dahlin. High throughput Byzantine fault toler-
ance. In DSN, 2004.

[26] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. CACM, 1978.

[27] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[28] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiprocessor replay
via speculation and external determinism. In ASPLOS, 2010.

[29] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Wal-
fish. Detecting failures in distributed systems with the Falcon spy
network. In SOSP, 2011.

[30] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient deter-
ministic multithreading. In SOSP, 2011.

[31] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building
efficient replicated state machines for WANs. In OSDI, 2008.

[32] J. T. Pablo Montesinos, Luis Ceze. Delorean: Recording and
deterministically replaying shared-memory multiprocessor exe-
cution efficiently. In ISCA, 2008.

[33] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessor. In SOSP, 2009.

[34] D. Powell, M. Chéréque, and D. Drackley. Fault-tolerance in
Delta-4. ACM OSR, 1991.

[35] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In OSDI, 2006.

[36] R. Rodrigues, M. Castro, and B. Liskov. BASE: using abstraction
to improve fault tolerance. In SOSP, 2001.

[37] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM TCS, 1999.

[38] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys,
1990.

[39] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Mani-
atis. Zeno: Eventually consistent Byzantine-fault tolerance. In
NSDI, 2009.

[40] Sun Microsystems, Inc. Memory management in the Java
HotSpot virtual machine, April 2006.

[41] A. Thomson and D. J. Abadi. The case for determinism in
database systems. VLDB, 2010.

[42] TPC-W. Open-source TPC-W implementation.
http://pharm.ece.wisc.edu/tpcw.shtml.

[43] Transaction Processing Performance Council. The TPC-W home
page. http://www.tpc.org/tpcw.

[44] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. CACM, 1996.

[45] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden. Tol-
erating Byzantine faults in transaction processing systems using
commit barrier scheduling. In SOSP, 2007.

[46] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: parallelizing se-
quential logging and replay. In ASPLOS, 2011.

[47] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet.
ZZ and the art of practical BFT. In Eurosys, 2011.

[48] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for en-
abling full-system multiprocessor deterministic replay. In ISCA,
2003.

[49] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man. Retrace: Collecting execution trace with virtual machine
deterministic replay. In MOBS, 2007.

[50] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin.
Separating agreement from execution for Byzantine fault tolerant
services. In SOSP, 2003.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 251

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-
matically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
to balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.

Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents. Our
initial customer was F1 [35], a rewrite of Google’s ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 to 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, most applications will choose lower la-

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to control write la-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters. Second, Spanner has two features
that are difficult to implement in a distributed database: it



252 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

provides externally consistent [16] reads and writes, and
globally-consistent reads across the database at a time-
stamp. These features enable Spanner to support con-
sistent backups, consistent MapReduce executions [12],
and atomic schema updates, all at global scale, and even
in the presence of ongoing transactions.

These features are enabled by the fact that Spanner as-
signs globally-meaningful commit timestamps to trans-
actions, even though transactions may be distributed.
The timestamps reflect serialization order. In addition,
the serialization order satisfies external consistency (or
equivalently, linearizability [20]): if a transaction T1

commits before another transaction T2 starts, then T1’s
commit timestamp is smaller than T2’s. Spanner is the
first system to provide such guarantees at global scale.

The key enabler of these properties is a new TrueTime
API and its implementation. The API directly exposes
clock uncertainty, and the guarantees on Spanner’s times-
tamps depend on the bounds that the implementation pro-
vides. If the uncertainty is large, Spanner slows down to
wait out that uncertainty. Google’s cluster-management
software provides an implementation of the TrueTime
API. This implementation keeps uncertainty small (gen-
erally less than 10ms) by using multiple modern clock
references (GPS and atomic clocks).

Section 2 describes the structure of Spanner’s imple-
mentation, its feature set, and the engineering decisions
that went into their design. Section 3 describes our new
TrueTime API and sketches its implementation. Sec-
tion 4 describes how Spanner uses TrueTime to imple-
ment externally-consistent distributed transactions, lock-
free read-only transactions, and atomic schema updates.
Section 5 provides some benchmarks on Spanner’s per-
formance and TrueTime behavior, and discusses the ex-
periences of F1. Sections 6, 7, and 8 describe related and
future work, and summarize our conclusions.

2 Implementation

This section describes the structure of and rationale un-
derlying Spanner’s implementation. It then describes the
directory abstraction, which is used to manage replica-
tion and locality, and is the unit of data movement. Fi-
nally, it describes our data model, why Spanner looks
like a relational database instead of a key-value store, and
how applications can control data locality.

A Spanner deployment is called a universe. Given
that Spanner manages data globally, there will be only
a handful of running universes. We currently run a
test/playground universe, a development/production uni-
verse, and a production-only universe.

Spanner is organized as a set of zones, where each
zone is the rough analog of a deployment of Bigtable

Figure 1: Spanner server organization.

servers [9]. Zones are the unit of administrative deploy-
ment. The set of zones is also the set of locations across
which data can be replicated. Zones can be added to or
removed from a running system as new datacenters are
brought into service and old ones are turned off, respec-
tively. Zones are also the unit of physical isolation: there
may be one or more zones in a datacenter, for example,
if different applications’ data must be partitioned across
different sets of servers in the same datacenter.

Figure 1 illustrates the servers in a Spanner universe.
A zone has one zonemaster and between one hundred
and several thousand spanservers. The former assigns
data to spanservers; the latter serve data to clients. The
per-zone location proxies are used by clients to locate
the spanservers assigned to serve their data. The uni-
verse master and the placement driver are currently sin-
gletons. The universe master is primarily a console that
displays status information about all the zones for inter-
active debugging. The placement driver handles auto-
mated movement of data across zones on the timescale
of minutes. The placement driver periodically commu-
nicates with the spanservers to find data that needs to be
moved, either to meet updated replication constraints or
to balance load. For space reasons, we will only describe
the spanserver in any detail.

2.1 Spanserver Software Stack

This section focuses on the spanserver implementation
to illustrate how replication and distributed transactions
have been layered onto our Bigtable-based implementa-
tion. The software stack is shown in Figure 2. At the
bottom, each spanserver is responsible for between 100
and 1000 instances of a data structure called a tablet. A
tablet is similar to Bigtable’s tablet abstraction, in that it
implements a bag of the following mappings:

(key:string, timestamp:int64) → string

Unlike Bigtable, Spanner assigns timestamps to data,
which is an important way in which Spanner is more
like a multi-version database than a key-value store. A



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 253

Figure 2: Spanserver software stack.

tablet’s state is stored in set of B-tree-like files and a
write-ahead log, all on a distributed file system called
Colossus (the successor to the Google File System [15]).

To support replication, each spanserver implements a
single Paxos state machine on top of each tablet. (An
early Spanner incarnation supported multiple Paxos state
machines per tablet, which allowed for more flexible
replication configurations. The complexity of that de-
sign led us to abandon it.) Each state machine stores
its metadata and log in its corresponding tablet. Our
Paxos implementation supports long-lived leaders with
time-based leader leases, whose length defaults to 10
seconds. The current Spanner implementation logs ev-
ery Paxos write twice: once in the tablet’s log, and once
in the Paxos log. This choice was made out of expedi-
ency, and we are likely to remedy this eventually. Our
implementation of Paxos is pipelined, so as to improve
Spanner’s throughput in the presence of WAN latencies;
but writes are applied by Paxos in order (a fact on which
we will depend in Section 4).

The Paxos state machines are used to implement a
consistently replicated bag of mappings. The key-value
mapping state of each replica is stored in its correspond-
ing tablet. Writes must initiate the Paxos protocol at the
leader; reads access state directly from the underlying
tablet at any replica that is sufficiently up-to-date. The
set of replicas is collectively a Paxos group.

At every replica that is a leader, each spanserver im-
plements a lock table to implement concurrency control.
The lock table contains the state for two-phase lock-
ing: it maps ranges of keys to lock states. (Note that
having a long-lived Paxos leader is critical to efficiently
managing the lock table.) In both Bigtable and Span-
ner, we designed for long-lived transactions (for exam-
ple, for report generation, which might take on the order
of minutes), which perform poorly under optimistic con-
currency control in the presence of conflicts. Operations

Figure 3: Directories are the unit of data movement between
Paxos groups.

that require synchronization, such as transactional reads,
acquire locks in the lock table; other operations bypass
the lock table.

At every replica that is a leader, each spanserver also
implements a transaction manager to support distributed
transactions. The transaction manager is used to imple-
ment a participant leader; the other replicas in the group
will be referred to as participant slaves. If a transac-
tion involves only one Paxos group (as is the case for
most transactions), it can bypass the transaction manager,
since the lock table and Paxos together provide transac-
tionality. If a transaction involves more than one Paxos
group, those groups’ leaders coordinate to perform two-
phase commit. One of the participant groups is chosen as
the coordinator: the participant leader of that group will
be referred to as the coordinator leader, and the slaves of
that group as coordinator slaves. The state of each trans-
action manager is stored in the underlying Paxos group
(and therefore is replicated).

2.2 Directories and Placement

On top of the bag of key-value mappings, the Spanner
implementation supports a bucketing abstraction called a
directory, which is a set of contiguous keys that share a
common prefix. (The choice of the term directory is a
historical accident; a better term might be bucket.) We
will explain the source of that prefix in Section 2.3. Sup-
porting directories allows applications to control the lo-
cality of their data by choosing keys carefully.

A directory is the unit of data placement. All data in
a directory has the same replication configuration. When
data is moved between Paxos groups, it is moved direc-
tory by directory, as shown in Figure 3. Spanner might
move a directory to shed load from a Paxos group; to put
directories that are frequently accessed together into the
same group; or to move a directory into a group that is
closer to its accessors. Directories can be moved while
client operations are ongoing. One could expect that a
50MB directory can be moved in a few seconds.

The fact that a Paxos group may contain multiple di-
rectories implies that a Spanner tablet is different from



254 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

a Bigtable tablet: the former is not necessarily a single
lexicographically contiguous partition of the row space.
Instead, a Spanner tablet is a container that may encap-
sulate multiple partitions of the row space. We made this
decision so that it would be possible to colocate multiple
directories that are frequently accessed together.

Movedir is the background task used to move direc-
tories between Paxos groups [14]. Movedir is also used
to add or remove replicas to Paxos groups [25], be-
cause Spanner does not yet support in-Paxos configura-
tion changes. Movedir is not implemented as a single
transaction, so as to avoid blocking ongoing reads and
writes on a bulky data move. Instead, movedir registers
the fact that it is starting to move data and moves the data
in the background. When it has moved all but a nominal
amount of the data, it uses a transaction to atomically
move that nominal amount and update the metadata for
the two Paxos groups.

A directory is also the smallest unit whose geographic-
replication properties (or placement, for short) can
be specified by an application. The design of our
placement-specification language separates responsibil-
ities for managing replication configurations. Adminis-
trators control two dimensions: the number and types of
replicas, and the geographic placement of those replicas.
They create a menu of named options in these two di-
mensions (e.g., North America, replicated 5 ways with
1 witness). An application controls how data is repli-
cated, by tagging each database and/or individual direc-
tories with a combination of those options. For example,
an application might store each end-user’s data in its own
directory, which would enable user A’s data to have three
replicas in Europe, and user B’s data to have five replicas
in North America.

For expository clarity we have over-simplified. In fact,
Spanner will shard a directory into multiple fragments
if it grows too large. Fragments may be served from
different Paxos groups (and therefore different servers).
Movedir actually moves fragments, and not whole direc-
tories, between groups.

2.3 Data Model

Spanner exposes the following set of data features
to applications: a data model based on schematized
semi-relational tables, a query language, and general-
purpose transactions. The move towards support-
ing these features was driven by many factors. The
need to support schematized semi-relational tables and
synchronous replication is supported by the popular-
ity of Megastore [5]. At least 300 applications within
Google use Megastore (despite its relatively low per-
formance) because its data model is simpler to man-

age than Bigtable’s, and because of its support for syn-
chronous replication across datacenters. (Bigtable only
supports eventually-consistent replication across data-
centers.) Examples of well-known Google applications
that use Megastore are Gmail, Picasa, Calendar, Android
Market, and AppEngine. The need to support a SQL-
like query language in Spanner was also clear, given
the popularity of Dremel [28] as an interactive data-
analysis tool. Finally, the lack of cross-row transactions
in Bigtable led to frequent complaints; Percolator [32]
was in part built to address this failing. Some authors
have claimed that general two-phase commit is too ex-
pensive to support, because of the performance or avail-
ability problems that it brings [9, 10, 19]. We believe it
is better to have application programmers deal with per-
formance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack
of transactions. Running two-phase commit over Paxos
mitigates the availability problems.

The application data model is layered on top of the
directory-bucketed key-value mappings supported by the
implementation. An application creates one or more
databases in a universe. Each database can contain an
unlimited number of schematized tables. Tables look
like relational-database tables, with rows, columns, and
versioned values. We will not go into detail about the
query language for Spanner. It looks like SQL with some
extensions to support protocol-buffer-valued fields.

Spanner’s data model is not purely relational, in that
rows must have names. More precisely, every table is re-
quired to have an ordered set of one or more primary-key
columns. This requirement is where Spanner still looks
like a key-value store: the primary keys form the name
for a row, and each table defines a mapping from the
primary-key columns to the non-primary-key columns.
A row has existence only if some value (even if it is
NULL) is defined for the row’s keys. Imposing this struc-
ture is useful because it lets applications control data lo-
cality through their choices of keys.

Figure 4 contains an example Spanner schema for stor-
ing photo metadata on a per-user, per-album basis. The
schema language is similar to Megastore’s, with the ad-
ditional requirement that every Spanner database must
be partitioned by clients into one or more hierarchies
of tables. Client applications declare the hierarchies in
database schemas via the INTERLEAVE IN declara-
tions. The table at the top of a hierarchy is a directory
table. Each row in a directory table with key K, together
with all of the rows in descendant tables that start with K
in lexicographic order, forms a directory. ON DELETE
CASCADE says that deleting a row in the directory table
deletes any associated child rows. The figure also illus-
trates the interleaved layout for the example database: for



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 255

CREATE TABLE Users {
uid INT64 NOT NULL, email STRING

} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {
uid INT64 NOT NULL, aid INT64 NOT NULL,
name STRING

} PRIMARY KEY (uid, aid),
INTERLEAVE IN PARENT Users ON DELETE CASCADE;

Figure 4: Example Spanner schema for photo metadata, and
the interleaving implied by INTERLEAVE IN.

example, Albums(2,1) represents the row from the
Albums table for user id 2, album id 1. This
interleaving of tables to form directories is significant
because it allows clients to describe the locality relation-
ships that exist between multiple tables, which is nec-
essary for good performance in a sharded, distributed
database. Without it, Spanner would not know the most
important locality relationships.

3 TrueTime

Method Returns

TT.now() TTinterval: [earliest, latest]
TT.after(t) true if t has definitely passed

TT.before(t) true if t has definitely not arrived

Table 1: TrueTime API. The argument t is of type TTstamp.

This section describes the TrueTime API and sketches
its implementation. We leave most of the details for an-
other paper: our goal is to demonstrate the power of
having such an API. Table 1 lists the methods of the
API. TrueTime explicitly represents time as a TTinterval,
which is an interval with bounded time uncertainty (un-
like standard time interfaces that give clients no notion
of uncertainty). The endpoints of a TTinterval are of
type TTstamp. The TT.now() method returns a TTinterval
that is guaranteed to contain the absolute time during
which TT.now() was invoked. The time epoch is anal-
ogous to UNIX time with leap-second smearing. De-
fine the instantaneous error bound as ε, which is half of
the interval’s width, and the average error bound as ε.
The TT.after() and TT.before() methods are convenience
wrappers around TT.now().

Denote the absolute time of an event e by the func-
tion tabs(e). In more formal terms, TrueTime guaran-
tees that for an invocation tt = TT.now(), tt.earliest ≤
tabs(enow) ≤ tt.latest, where enow is the invocation event.

The underlying time references used by TrueTime
are GPS and atomic clocks. TrueTime uses two forms
of time reference because they have different failure
modes. GPS reference-source vulnerabilities include an-
tenna and receiver failures, local radio interference, cor-
related failures (e.g., design faults such as incorrect leap-
second handling and spoofing), and GPS system outages.
Atomic clocks can fail in ways uncorrelated to GPS and
each other, and over long periods of time can drift signif-
icantly due to frequency error.

TrueTime is implemented by a set of time master ma-
chines per datacenter and a timeslave daemon per ma-
chine. The majority of masters have GPS receivers with
dedicated antennas; these masters are separated physi-
cally to reduce the effects of antenna failures, radio in-
terference, and spoofing. The remaining masters (which
we refer to as Armageddon masters) are equipped with
atomic clocks. An atomic clock is not that expensive:
the cost of an Armageddon master is of the same order
as that of a GPS master. All masters’ time references
are regularly compared against each other. Each mas-
ter also cross-checks the rate at which its reference ad-
vances time against its own local clock, and evicts itself
if there is substantial divergence. Between synchroniza-
tions, Armageddon masters advertise a slowly increasing
time uncertainty that is derived from conservatively ap-
plied worst-case clock drift. GPS masters advertise un-
certainty that is typically close to zero.

Every daemon polls a variety of masters [29] to re-
duce vulnerability to errors from any one master. Some
are GPS masters chosen from nearby datacenters; the
rest are GPS masters from farther datacenters, as well
as some Armageddon masters. Daemons apply a variant
of Marzullo’s algorithm [27] to detect and reject liars,
and synchronize the local machine clocks to the non-
liars. To protect against broken local clocks, machines
that exhibit frequency excursions larger than the worst-
case bound derived from component specifications and
operating environment are evicted.

Between synchronizations, a daemon advertises a
slowly increasing time uncertainty. ε is derived from
conservatively applied worst-case local clock drift. ε also
depends on time-master uncertainty and communication
delay to the time masters. In our production environ-
ment, ε is typically a sawtooth function of time, varying
from about 1 to 7 ms over each poll interval. ε is there-
fore 4 ms most of the time. The daemon’s poll interval is
currently 30 seconds, and the current applied drift rate is
set at 200 microseconds/second, which together account



256 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Timestamp Concurrency
Operation Discussion Control Replica Required

Read-Write Transaction § 4.1.2 pessimistic leader

Read-Only Transaction § 4.1.4 lock-free
leader for timestamp; any for
read, subject to § 4.1.3

Snapshot Read, client-provided timestamp — lock-free any, subject to § 4.1.3
Snapshot Read, client-provided bound § 4.1.3 lock-free any, subject to § 4.1.3

Table 2: Types of reads and writes in Spanner, and how they compare.

for the sawtooth bounds from 0 to 6 ms. The remain-
ing 1 ms comes from the communication delay to the
time masters. Excursions from this sawtooth are possi-
ble in the presence of failures. For example, occasional
time-master unavailability can cause datacenter-wide in-
creases in ε. Similarly, overloaded machines and network
links can result in occasional localized ε spikes.

4 Concurrency Control

This section describes how TrueTime is used to guaran-
tee the correctness properties around concurrency con-
trol, and how those properties are used to implement
features such as externally consistent transactions, lock-
free read-only transactions, and non-blocking reads in
the past. These features enable, for example, the guar-
antee that a whole-database audit read at a timestamp t
will see exactly the effects of every transaction that has
committed as of t.

Going forward, it will be important to distinguish
writes as seen by Paxos (which we will refer to as Paxos
writes unless the context is clear) from Spanner client
writes. For example, two-phase commit generates a
Paxos write for the prepare phase that has no correspond-
ing Spanner client write.

4.1 Timestamp Management
Table 2 lists the types of operations that Spanner sup-
ports. The Spanner implementation supports read-
write transactions, read-only transactions (predeclared
snapshot-isolation transactions), and snapshot reads.
Standalone writes are implemented as read-write trans-
actions; non-snapshot standalone reads are implemented
as read-only transactions. Both are internally retried
(clients need not write their own retry loops).

A read-only transaction is a kind of transaction that
has the performance benefits of snapshot isolation [6].
A read-only transaction must be predeclared as not hav-
ing any writes; it is not simply a read-write transaction
without any writes. Reads in a read-only transaction ex-
ecute at a system-chosen timestamp without locking, so
that incoming writes are not blocked. The execution of

the reads in a read-only transaction can proceed on any
replica that is sufficiently up-to-date (Section 4.1.3).

A snapshot read is a read in the past that executes with-
out locking. A client can either specify a timestamp for a
snapshot read, or provide an upper bound on the desired
timestamp’s staleness and let Spanner choose a time-
stamp. In either case, the execution of a snapshot read
proceeds at any replica that is sufficiently up-to-date.

For both read-only transactions and snapshot reads,
commit is inevitable once a timestamp has been cho-
sen, unless the data at that timestamp has been garbage-
collected. As a result, clients can avoid buffering results
inside a retry loop. When a server fails, clients can inter-
nally continue the query on a different server by repeat-
ing the timestamp and the current read position.

4.1.1 Paxos Leader Leases

Spanner’s Paxos implementation uses timed leases to
make leadership long-lived (10 seconds by default). A
potential leader sends requests for timed lease votes;
upon receiving a quorum of lease votes the leader knows
it has a lease. A replica extends its lease vote implicitly
on a successful write, and the leader requests lease-vote
extensions if they are near expiration. Define a leader’s
lease interval as starting when it discovers it has a quo-
rum of lease votes, and as ending when it no longer has
a quorum of lease votes (because some have expired).
Spanner depends on the following disjointness invariant:
for each Paxos group, each Paxos leader’s lease interval
is disjoint from every other leader’s. Appendix A de-
scribes how this invariant is enforced.

The Spanner implementation permits a Paxos leader
to abdicate by releasing its slaves from their lease votes.
To preserve the disjointness invariant, Spanner constrains
when abdication is permissible. Define smax to be the
maximum timestamp used by a leader. Subsequent sec-
tions will describe when smax is advanced. Before abdi-
cating, a leader must wait until TT.after(smax) is true.

4.1.2 Assigning Timestamps to RW Transactions

Transactional reads and writes use two-phase locking.
As a result, they can be assigned timestamps at any time



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 257

when all locks have been acquired, but before any locks
have been released. For a given transaction, Spanner as-
signs it the timestamp that Paxos assigns to the Paxos
write that represents the transaction commit.

Spanner depends on the following monotonicity in-
variant: within each Paxos group, Spanner assigns times-
tamps to Paxos writes in monotonically increasing or-
der, even across leaders. A single leader replica can triv-
ially assign timestamps in monotonically increasing or-
der. This invariant is enforced across leaders by making
use of the disjointness invariant: a leader must only as-
sign timestamps within the interval of its leader lease.
Note that whenever a timestamp s is assigned, smax is
advanced to s to preserve disjointness.

Spanner also enforces the following external-
consistency invariant: if the start of a transaction T2

occurs after the commit of a transaction T1, then the
commit timestamp of T2 must be greater than the
commit timestamp of T1. Define the start and commit
events for a transaction Ti by estart

i and ecommit
i ; and

the commit timestamp of a transaction Ti by si. The
invariant becomes tabs(e

commit
1 ) < tabs(e

start
2 ) ⇒ s1 < s2.

The protocol for executing transactions and assigning
timestamps obeys two rules, which together guarantee
this invariant, as shown below. Define the arrival event
of the commit request at the coordinator leader for a
write Ti to be eserver

i .
Start The coordinator leader for a write Ti assigns
a commit timestamp si no less than the value of
TT.now().latest, computed after eserver

i . Note that the
participant leaders do not matter here; Section 4.2.1 de-
scribes how they are involved in the implementation of
the next rule.
Commit Wait The coordinator leader ensures that
clients cannot see any data committed by Ti until
TT.after(si) is true. Commit wait ensures that si is
less than the absolute commit time of Ti, or si <
tabs(e

commit
i ). The implementation of commit wait is de-

scribed in Section 4.2.1. Proof:

s1 < tabs(e
commit
1 ) (commit wait)

tabs(e
commit
1 ) < tabs(e

start
2 ) (assumption)

tabs(e
start
2 ) ≤ tabs(e

server
2 ) (causality)

tabs(e
server
2 ) ≤ s2 (start)

s1 < s2 (transitivity)

4.1.3 Serving Reads at a Timestamp

The monotonicity invariant described in Section 4.1.2 al-
lows Spanner to correctly determine whether a replica’s
state is sufficiently up-to-date to satisfy a read. Every
replica tracks a value called safe time tsafe which is the

maximum timestamp at which a replica is up-to-date. A
replica can satisfy a read at a timestamp t if t <= tsafe.

Define tsafe = min(tPaxos
safe , tTM

safe), where each Paxos
state machine has a safe time tPaxos

safe and each transac-
tion manager has a safe time tTM

safe. tPaxos
safe is simpler: it

is the timestamp of the highest-applied Paxos write. Be-
cause timestamps increase monotonically and writes are
applied in order, writes will no longer occur at or below
tPaxos

safe with respect to Paxos.
tTM

safe is ∞ at a replica if there are zero prepared (but
not committed) transactions—that is, transactions in be-
tween the two phases of two-phase commit. (For a par-
ticipant slave, tTM

safe actually refers to the replica’s leader’s
transaction manager, whose state the slave can infer
through metadata passed on Paxos writes.) If there are
any such transactions, then the state affected by those
transactions is indeterminate: a participant replica does
not know yet whether such transactions will commit. As
we discuss in Section 4.2.1, the commit protocol ensures
that every participant knows a lower bound on a pre-
pared transaction’s timestamp. Every participant leader
(for a group g) for a transaction Ti assigns a prepare
timestamp sprepare

i,g to its prepare record. The coordinator
leader ensures that the transaction’s commit timestamp
si >= sprepare

i,g over all participant groups g. Therefore,
for every replica in a group g, over all transactions Ti pre-
pared at g, tTM

safe = mini(s
prepare
i,g )− 1 over all transactions

prepared at g.

4.1.4 Assigning Timestamps to RO Transactions

A read-only transaction executes in two phases: assign
a timestamp sread [8], and then execute the transaction’s
reads as snapshot reads at sread. The snapshot reads can
execute at any replicas that are sufficiently up-to-date.

The simple assignment of sread = TT.now().latest, at
any time after a transaction starts, preserves external con-
sistency by an argument analogous to that presented for
writes in Section 4.1.2. However, such a timestamp may
require the execution of the data reads at sread to block
if tsafe has not advanced sufficiently. (In addition, note
that choosing a value of sread may also advance smax to
preserve disjointness.) To reduce the chances of block-
ing, Spanner should assign the oldest timestamp that pre-
serves external consistency. Section 4.2.2 explains how
such a timestamp can be chosen.

4.2 Details

This section explains some of the practical details of
read-write transactions and read-only transactions elided
earlier, as well as the implementation of a special trans-
action type used to implement atomic schema changes.



258 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

It then describes some refinements of the basic schemes
as described.

4.2.1 Read-Write Transactions

Like Bigtable, writes that occur in a transaction are
buffered at the client until commit. As a result, reads
in a transaction do not see the effects of the transaction’s
writes. This design works well in Spanner because a read
returns the timestamps of any data read, and uncommit-
ted writes have not yet been assigned timestamps.

Reads within read-write transactions use wound-
wait [33] to avoid deadlocks. The client issues reads
to the leader replica of the appropriate group, which
acquires read locks and then reads the most recent
data. While a client transaction remains open, it sends
keepalive messages to prevent participant leaders from
timing out its transaction. When a client has completed
all reads and buffered all writes, it begins two-phase
commit. The client chooses a coordinator group and
sends a commit message to each participant’s leader with
the identity of the coordinator and any buffered writes.
Having the client drive two-phase commit avoids send-
ing data twice across wide-area links.

A non-coordinator-participant leader first acquires
write locks. It then chooses a prepare timestamp that
must be larger than any timestamps it has assigned to pre-
vious transactions (to preserve monotonicity), and logs a
prepare record through Paxos. Each participant then no-
tifies the coordinator of its prepare timestamp.

The coordinator leader also first acquires write locks,
but skips the prepare phase. It chooses a timestamp for
the entire transaction after hearing from all other partici-
pant leaders. The commit timestamp s must be greater or
equal to all prepare timestamps (to satisfy the constraints
discussed in Section 4.1.3), greater than TT.now().latest
at the time the coordinator received its commit message,
and greater than any timestamps the leader has assigned
to previous transactions (again, to preserve monotonic-
ity). The coordinator leader then logs a commit record
through Paxos (or an abort if it timed out while waiting
on the other participants).

Before allowing any coordinator replica to apply
the commit record, the coordinator leader waits until
TT.after(s), so as to obey the commit-wait rule described
in Section 4.1.2. Because the coordinator leader chose s
based on TT.now().latest, and now waits until that time-
stamp is guaranteed to be in the past, the expected wait
is at least 2 ∗ ε. This wait is typically overlapped with
Paxos communication. After commit wait, the coordi-
nator sends the commit timestamp to the client and all
other participant leaders. Each participant leader logs the
transaction’s outcome through Paxos. All participants
apply at the same timestamp and then release locks.

4.2.2 Read-Only Transactions

Assigning a timestamp requires a negotiation phase be-
tween all of the Paxos groups that are involved in the
reads. As a result, Spanner requires a scope expression
for every read-only transaction, which is an expression
that summarizes the keys that will be read by the entire
transaction. Spanner automatically infers the scope for
standalone queries.

If the scope’s values are served by a single Paxos
group, then the client issues the read-only transaction to
that group’s leader. (The current Spanner implementa-
tion only chooses a timestamp for a read-only transac-
tion at a Paxos leader.) That leader assigns sread and ex-
ecutes the read. For a single-site read, Spanner gener-
ally does better than TT.now().latest. Define LastTS() to
be the timestamp of the last committed write at a Paxos
group. If there are no prepared transactions, the assign-
ment sread = LastTS() trivially satisfies external consis-
tency: the transaction will see the result of the last write,
and therefore be ordered after it.

If the scope’s values are served by multiple Paxos
groups, there are several options. The most complicated
option is to do a round of communication with all of
the groups’s leaders to negotiate sread based on LastTS().
Spanner currently implements a simpler choice. The
client avoids a negotiation round, and just has its reads
execute at sread = TT.now().latest (which may wait for
safe time to advance). All reads in the transaction can be
sent to replicas that are sufficiently up-to-date.

4.2.3 Schema-Change Transactions

TrueTime enables Spanner to support atomic schema
changes. It would be infeasible to use a standard transac-
tion, because the number of participants (the number of
groups in a database) could be in the millions. Bigtable
supports atomic schema changes in one datacenter, but
its schema changes block all operations.

A Spanner schema-change transaction is a generally
non-blocking variant of a standard transaction. First, it
is explicitly assigned a timestamp in the future, which
is registered in the prepare phase. As a result, schema
changes across thousands of servers can complete with
minimal disruption to other concurrent activity. Sec-
ond, reads and writes, which implicitly depend on the
schema, synchronize with any registered schema-change
timestamp at time t: they may proceed if their times-
tamps precede t, but they must block behind the schema-
change transaction if their timestamps are after t. With-
out TrueTime, defining the schema change to happen at t
would be meaningless.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 259

latency (ms) throughput (Kops/sec)
replicas write read-only transaction snapshot read write read-only transaction snapshot read

1D 9.4±.6 — — 4.0±.3 — —
1 14.4±1.0 1.4±.1 1.3±.1 4.1±.05 10.9±.4 13.5±.1
3 13.9±.6 1.3±.1 1.2±.1 2.2±.5 13.8±3.2 38.5±.3
5 14.4±.4 1.4±.05 1.3±.04 2.8±.3 25.3±5.2 50.0±1.1

Table 3: Operation microbenchmarks. Mean and standard deviation over 10 runs. 1D means one replica with commit wait disabled.

4.2.4 Refinements

tTM
safe as defined above has a weakness, in that a single

prepared transaction prevents tsafe from advancing. As
a result, no reads can occur at later timestamps, even
if the reads do not conflict with the transaction. Such
false conflicts can be removed by augmenting tTM

safe with
a fine-grained mapping from key ranges to prepared-
transaction timestamps. This information can be stored
in the lock table, which already maps key ranges to
lock metadata. When a read arrives, it only needs to be
checked against the fine-grained safe time for key ranges
with which the read conflicts.

LastTS() as defined above has a similar weakness: if
a transaction has just committed, a non-conflicting read-
only transaction must still be assigned sread so as to fol-
low that transaction. As a result, the execution of the read
could be delayed. This weakness can be remedied sim-
ilarly by augmenting LastTS() with a fine-grained map-
ping from key ranges to commit timestamps in the lock
table. (We have not yet implemented this optimization.)
When a read-only transaction arrives, its timestamp can
be assigned by taking the maximum value of LastTS()
for the key ranges with which the transaction conflicts,
unless there is a conflicting prepared transaction (which
can be determined from fine-grained safe time).
tPaxos

safe as defined above has a weakness in that it cannot
advance in the absence of Paxos writes. That is, a snap-
shot read at t cannot execute at Paxos groups whose last
write happened before t. Spanner addresses this problem
by taking advantage of the disjointness of leader-lease
intervals. Each Paxos leader advances tPaxos

safe by keeping
a threshold above which future writes’ timestamps will
occur: it maintains a mapping MinNextTS(n) from Paxos
sequence number n to the minimum timestamp that may
be assigned to Paxos sequence number n + 1. A replica
can advance tPaxos

safe to MinNextTS(n) − 1 when it has ap-
plied through n.

A single leader can enforce its MinNextTS()
promises easily. Because the timestamps promised
by MinNextTS() lie within a leader’s lease, the disjoint-
ness invariant enforces MinNextTS() promises across
leaders. If a leader wishes to advance MinNextTS()
beyond the end of its leader lease, it must first extend its

lease. Note that smax is always advanced to the highest
value in MinNextTS() to preserve disjointness.

A leader by default advances MinNextTS() values ev-
ery 8 seconds. Thus, in the absence of prepared trans-
actions, healthy slaves in an idle Paxos group can serve
reads at timestamps greater than 8 seconds old in the
worst case. A leader may also advance MinNextTS() val-
ues on demand from slaves.

5 Evaluation

We first measure Spanner’s performance with respect to
replication, transactions, and availability. We then pro-
vide some data on TrueTime behavior, and a case study
of our first client, F1.

5.1 Microbenchmarks
Table 3 presents some microbenchmarks for Spanner.
These measurements were taken on timeshared ma-
chines: each spanserver ran on scheduling units of 4GB
RAM and 4 cores (AMD Barcelona 2200MHz). Clients
were run on separate machines. Each zone contained one
spanserver. Clients and zones were placed in a set of dat-
acenters with network distance of less than 1ms. (Such a
layout should be commonplace: most applications do not
need to distribute all of their data worldwide.) The test
database was created with 50 Paxos groups with 2500 di-
rectories. Operations were standalone reads and writes of
4KB. All reads were served out of memory after a com-
paction, so that we are only measuring the overhead of
Spanner’s call stack. In addition, one unmeasured round
of reads was done first to warm any location caches.

For the latency experiments, clients issued sufficiently
few operations so as to avoid queuing at the servers.
From the 1-replica experiments, commit wait is about
5ms, and Paxos latency is about 9ms. As the number
of replicas increases, the latency stays roughly constant
with less standard deviation because Paxos executes in
parallel at a group’s replicas. As the number of replicas
increases, the latency to achieve a quorum becomes less
sensitive to slowness at one slave replica.

For the throughput experiments, clients issued suffi-
ciently many operations so as to saturate the servers’



260 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

latency (ms)
participants mean 99th percentile

1 17.0 ±1.4 75.0 ±34.9
2 24.5 ±2.5 87.6 ±35.9
5 31.5 ±6.2 104.5 ±52.2
10 30.0 ±3.7 95.6 ±25.4
25 35.5 ±5.6 100.4 ±42.7
50 42.7 ±4.1 93.7 ±22.9

100 71.4 ±7.6 131.2 ±17.6
200 150.5 ±11.0 320.3 ±35.1

Table 4: Two-phase commit scalability. Mean and standard
deviations over 10 runs.

CPUs. Snapshot reads can execute at any up-to-date
replicas, so their throughput increases almost linearly
with the number of replicas. Single-read read-only trans-
actions only execute at leaders because timestamp as-
signment must happen at leaders. Read-only-transaction
throughput increases with the number of replicas because
the number of effective spanservers increases: in the
experimental setup, the number of spanservers equaled
the number of replicas, and leaders were randomly dis-
tributed among the zones. Write throughput benefits
from the same experimental artifact (which explains the
increase in throughput from 3 to 5 replicas), but that ben-
efit is outweighed by the linear increase in the amount of
work performed per write, as the number of replicas in-
creases.

Table 4 demonstrates that two-phase commit can scale
to a reasonable number of participants: it summarizes
a set of experiments run across 3 zones, each with 25
spanservers. Scaling up to 50 participants is reasonable
in both mean and 99th-percentile, and latencies start to
rise noticeably at 100 participants.

5.2 Availability
Figure 5 illustrates the availability benefits of running
Spanner in multiple datacenters. It shows the results of
three experiments on throughput in the presence of dat-
acenter failure, all of which are overlaid onto the same
time scale. The test universe consisted of 5 zones Zi,
each of which had 25 spanservers. The test database was
sharded into 1250 Paxos groups, and 100 test clients con-
stantly issued non-snapshot reads at an aggregrate rate
of 50K reads/second. All of the leaders were explic-
itly placed in Z1. Five seconds into each test, all of
the servers in one zone were killed: non-leader kills Z2;
leader-hard kills Z1; leader-soft kills Z1, but it gives no-
tifications to all of the servers that they should handoff
leadership first.

Killing Z2 has no effect on read throughput. Killing
Z1 while giving the leaders time to handoff leadership to

0 5 10 15 20

Time in seconds

200K

400K

600K

800K

1M

1.2M

1.4M

C
u

m
u

la
ti

v
e 

re
a
d

s 
co

m
p

le
te

d

non-leader

leader-soft

leader-hard

Figure 5: Effect of killing servers on throughput.

a different zone has a minor effect: the throughput drop
is not visible in the graph, but is around 3-4%. On the
other hand, killing Z1 with no warning has a severe ef-
fect: the rate of completion drops almost to 0. As leaders
get re-elected, though, the throughput of the system rises
to approximately 100K reads/second because of two ar-
tifacts of our experiment: there is extra capacity in the
system, and operations are queued while the leader is un-
available. As a result, the throughput of the system rises
before leveling off again at its steady-state rate.

We can also see the effect of the fact that Paxos leader
leases are set to 10 seconds. When we kill the zone,
the leader-lease expiration times for the groups should
be evenly distributed over the next 10 seconds. Soon af-
ter each lease from a dead leader expires, a new leader is
elected. Approximately 10 seconds after the kill time, all
of the groups have leaders and throughput has recovered.
Shorter lease times would reduce the effect of server
deaths on availability, but would require greater amounts
of lease-renewal network traffic. We are in the process of
designing and implementing a mechanism that will cause
slaves to release Paxos leader leases upon leader failure.

5.3 TrueTime
Two questions must be answered with respect to True-
Time: is ε truly a bound on clock uncertainty, and how
bad does ε get? For the former, the most serious prob-
lem would be if a local clock’s drift were greater than
200us/sec: that would break assumptions made by True-
Time. Our machine statistics show that bad CPUs are 6
times more likely than bad clocks. That is, clock issues
are extremely infrequent, relative to much more serious
hardware problems. As a result, we believe that True-
Time’s implementation is as trustworthy as any other
piece of software upon which Spanner depends.

Figure 6 presents TrueTime data taken at several thou-
sand spanserver machines across datacenters up to 2200



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 261

Mar 29 Mar 30 Mar 31 Apr 1

Date

2

4

6

8

10
E

p
si

lo
n

 (
m

s)

99.9

99

90

6AM 8AM 10AM 12PM

Date (April 13)

1

2

3

4

5

6

Figure 6: Distribution of TrueTime ε values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and
99.9th percentiles are graphed.

km apart. It plots the 90th, 99th, and 99.9th percentiles
of ε, sampled at timeslave daemons immediately after
polling the time masters. This sampling elides the saw-
tooth in ε due to local-clock uncertainty, and therefore
measures time-master uncertainty (which is generally 0)
plus communication delay to the time masters.

The data shows that these two factors in determining
the base value of ε are generally not a problem. How-
ever, there can be significant tail-latency issues that cause
higher values of ε. The reduction in tail latencies begin-
ning on March 30 were due to networking improvements
that reduced transient network-link congestion. The in-
crease in ε on April 13, approximately one hour in dura-
tion, resulted from the shutdown of 2 time masters at a
datacenter for routine maintenance. We continue to in-
vestigate and remove causes of TrueTime spikes.

5.4 F1

Spanner started being experimentally evaluated under
production workloads in early 2011, as part of a rewrite
of Google’s advertising backend called F1 [35]. This
backend was originally based on a MySQL database that
was manually sharded many ways. The uncompressed
dataset is tens of terabytes, which is small compared to
many NoSQL instances, but was large enough to cause
difficulties with sharded MySQL. The MySQL sharding
scheme assigned each customer and all related data to a
fixed shard. This layout enabled the use of indexes and
complex query processing on a per-customer basis, but
required some knowledge of the sharding in application
business logic. Resharding this revenue-critical database
as it grew in the number of customers and their data was
extremely costly. The last resharding took over two years
of intense effort, and involved coordination and testing
across dozens of teams to minimize risk. This operation
was too complex to do regularly: as a result, the team had
to limit growth on the MySQL database by storing some

# fragments # directories

1 >100M
2–4 341
5–9 5336

10–14 232
15–99 34

100–500 7

Table 5: Distribution of directory-fragment counts in F1.

data in external Bigtables, which compromised transac-
tional behavior and the ability to query across all data.

The F1 team chose to use Spanner for several rea-
sons. First, Spanner removes the need to manually re-
shard. Second, Spanner provides synchronous replica-
tion and automatic failover. With MySQL master-slave
replication, failover was difficult, and risked data loss
and downtime. Third, F1 requires strong transactional
semantics, which made using other NoSQL systems im-
practical. Application semantics requires transactions
across arbitrary data, and consistent reads. The F1 team
also needed secondary indexes on their data (since Span-
ner does not yet provide automatic support for secondary
indexes), and was able to implement their own consistent
global indexes using Spanner transactions.

All application writes are now by default sent through
F1 to Spanner, instead of the MySQL-based application
stack. F1 has 2 replicas on the west coast of the US, and
3 on the east coast. This choice of replica sites was made
to cope with outages due to potential major natural disas-
ters, and also the choice of their frontend sites. Anecdo-
tally, Spanner’s automatic failover has been nearly invisi-
ble to them. Although there have been unplanned cluster
failures in the last few months, the most that the F1 team
has had to do is update their database’s schema to tell
Spanner where to preferentially place Paxos leaders, so
as to keep them close to where their frontends moved.

Spanner’s timestamp semantics made it efficient for
F1 to maintain in-memory data structures computed from
the database state. F1 maintains a logical history log of
all changes, which is written into Spanner itself as part
of every transaction. F1 takes full snapshots of data at a
timestamp to initialize its data structures, and then reads
incremental changes to update them.

Table 5 illustrates the distribution of the number of
fragments per directory in F1. Each directory typically
corresponds to a customer in the application stack above
F1. The vast majority of directories (and therefore cus-
tomers) consist of only 1 fragment, which means that
reads and writes to those customers’ data are guaranteed
to occur on only a single server. The directories with
more than 100 fragments are all tables that contain F1
secondary indexes: writes to more than a few fragments



262 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

latency (ms)
operation mean std dev count

all reads 8.7 376.4 21.5B
single-site commit 72.3 112.8 31.2M
multi-site commit 103.0 52.2 32.1M

Table 6: F1-perceived operation latencies measured over the
course of 24 hours.

of such tables are extremely uncommon. The F1 team
has only seen such behavior when they do untuned bulk
data loads as transactions.

Table 6 presents Spanner operation latencies as mea-
sured from F1 servers. Replicas in the east-coast data
centers are given higher priority in choosing Paxos lead-
ers. The data in the table is measured from F1 servers
in those data centers. The large standard deviation in
write latencies is caused by a pretty fat tail due to lock
conflicts. The even larger standard deviation in read la-
tencies is partially due to the fact that Paxos leaders are
spread across two data centers, only one of which has
machines with SSDs. In addition, the measurement in-
cludes every read in the system from two datacenters:
the mean and standard deviation of the bytes read were
roughly 1.6KB and 119KB, respectively.

6 Related Work

Consistent replication across datacenters as a storage
service has been provided by Megastore [5] and Dy-
namoDB [3]. DynamoDB presents a key-value interface,
and only replicates within a region. Spanner follows
Megastore in providing a semi-relational data model,
and even a similar schema language. Megastore does
not achieve high performance. It is layered on top of
Bigtable, which imposes high communication costs. It
also does not support long-lived leaders: multiple repli-
cas may initiate writes. All writes from different repli-
cas necessarily conflict in the Paxos protocol, even if
they do not logically conflict: throughput collapses on
a Paxos group at several writes per second. Spanner pro-
vides higher performance, general-purpose transactions,
and external consistency.

Pavlo et al. [31] have compared the performance of
databases and MapReduce [12]. They point to several
other efforts that have been made to explore database
functionality layered on distributed key-value stores [1,
4, 7, 41] as evidence that the two worlds are converging.
We agree with the conclusion, but demonstrate that in-
tegrating multiple layers has its advantages: integrating
concurrency control with replication reduces the cost of
commit wait in Spanner, for example.

The notion of layering transactions on top of a repli-
cated store dates at least as far back as Gifford’s disser-
tation [16]. Scatter [17] is a recent DHT-based key-value
store that layers transactions on top of consistent repli-
cation. Spanner focuses on providing a higher-level in-
terface than Scatter does. Gray and Lamport [18] de-
scribe a non-blocking commit protocol based on Paxos.
Their protocol incurs more messaging costs than two-
phase commit, which would aggravate the cost of com-
mit over widely distributed groups. Walter [36] provides
a variant of snapshot isolation that works within, but not
across datacenters. In contrast, our read-only transac-
tions provide a more natural semantics, because we sup-
port external consistency over all operations.

There has been a spate of recent work on reducing
or eliminating locking overheads. Calvin [40] elimi-
nates concurrency control: it pre-assigns timestamps and
then executes the transactions in timestamp order. H-
Store [39] and Granola [11] each supported their own
classification of transaction types, some of which could
avoid locking. None of these systems provides external
consistency. Spanner addresses the contention issue by
providing support for snapshot isolation.

VoltDB [42] is a sharded in-memory database that
supports master-slave replication over the wide area for
disaster recovery, but not more general replication con-
figurations. It is an example of what has been called
NewSQL, which is a marketplace push to support scal-
able SQL [38]. A number of commercial databases im-
plement reads in the past, such as MarkLogic [26] and
Oracle’s Total Recall [30]. Lomet and Li [24] describe an
implementation strategy for such a temporal database.

Farsite derived bounds on clock uncertainty (much
looser than TrueTime’s) relative to a trusted clock refer-
ence [13]: server leases in Farsite were maintained in the
same way that Spanner maintains Paxos leases. Loosely
synchronized clocks have been used for concurrency-
control purposes in prior work [2, 23]. We have shown
that TrueTime lets one reason about global time across
sets of Paxos state machines.

7 Future Work

We have spent most of the last year working with the
F1 team to transition Google’s advertising backend from
MySQL to Spanner. We are actively improving its mon-
itoring and support tools, as well as tuning its perfor-
mance. In addition, we have been working on improving
the functionality and performance of our backup/restore
system. We are currently implementing the Spanner
schema language, automatic maintenance of secondary
indices, and automatic load-based resharding. Longer
term, there are a couple of features that we plan to in-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 263

vestigate. Optimistically doing reads in parallel may be
a valuable strategy to pursue, but initial experiments have
indicated that the right implementation is non-trivial. In
addition, we plan to eventually support direct changes of
Paxos configurations [22, 34].

Given that we expect many applications to replicate
their data across datacenters that are relatively close to
each other, TrueTime ε may noticeably affect perfor-
mance. We see no insurmountable obstacle to reduc-
ing ε below 1ms. Time-master-query intervals can be
reduced, and better clock crystals are relatively cheap.
Time-master query latency could be reduced with im-
proved networking technology, or possibly even avoided
through alternate time-distribution technology.

Finally, there are obvious areas for improvement. Al-
though Spanner is scalable in the number of nodes, the
node-local data structures have relatively poor perfor-
mance on complex SQL queries, because they were de-
signed for simple key-value accesses. Algorithms and
data structures from DB literature could improve single-
node performance a great deal. Second, moving data au-
tomatically between datacenters in response to changes
in client load has long been a goal of ours, but to make
that goal effective, we would also need the ability to
move client-application processes between datacenters in
an automated, coordinated fashion. Moving processes
raises the even more difficult problem of managing re-
source acquisition and allocation between datacenters.

8 Conclusions

To summarize, Spanner combines and extends on ideas
from two research communities: from the database com-
munity, a familiar, easy-to-use, semi-relational interface,
transactions, and an SQL-based query language; from
the systems community, scalability, automatic sharding,
fault tolerance, consistent replication, external consis-
tency, and wide-area distribution. Since Spanner’s in-
ception, we have taken more than 5 years to iterate to the
current design and implementation. Part of this long it-
eration phase was due to a slow realization that Spanner
should do more than tackle the problem of a globally-
replicated namespace, and should also focus on database
features that Bigtable was missing.

One aspect of our design stands out: the linchpin of
Spanner’s feature set is TrueTime. We have shown that
reifying clock uncertainty in the time API makes it possi-
ble to build distributed systems with much stronger time
semantics. In addition, as the underlying system en-
forces tighter bounds on clock uncertainty, the overhead
of the stronger semantics decreases. As a community, we
should no longer depend on loosely synchronized clocks
and weak time APIs in designing distributed algorithms.

Acknowledgements

Many people have helped to improve this paper: our
shepherd Jon Howell, who went above and beyond
his responsibilities; the anonymous referees; and many
Googlers: Atul Adya, Fay Chang, Frank Dabek, Sean
Dorward, Bob Gruber, David Held, Nick Kline, Alex
Thomson, and Joel Wein. Our management has been
very supportive of both our work and of publishing this
paper: Aristotle Balogh, Bill Coughran, Urs Hölzle,
Doron Meyer, Cos Nicolaou, Kathy Polizzi, Sridhar Ra-
maswany, and Shivakumar Venkataraman.

We have built upon the work of the Bigtable and
Megastore teams. The F1 team, and Jeff Shute in particu-
lar, worked closely with us in developing our data model
and helped immensely in tracking down performance and
correctness bugs. The Platforms team, and Luiz Barroso
and Bob Felderman in particular, helped to make True-
Time happen. Finally, a lot of Googlers used to be on our
team: Ken Ashcraft, Paul Cychosz, Krzysztof Ostrowski,
Amir Voskoboynik, Matthew Weaver, Theo Vassilakis,
and Eric Veach; or have joined our team recently: Nathan
Bales, Adam Beberg, Vadim Borisov, Ken Chen, Brian
Cooper, Cian Cullinan, Robert-Jan Huijsman, Milind
Joshi, Andrey Khorlin, Dawid Kuroczko, Laramie Leav-
itt, Eric Li, Mike Mammarella, Sunil Mushran, Simon
Nielsen, Ovidiu Platon, Ananth Shrinivas, Vadim Su-
vorov, and Marcel van der Holst.

References

[1] Azza Abouzeid et al. “HadoopDB: an architectural hybrid of
MapReduce and DBMS technologies for analytical workloads”.
Proc. of VLDB. 2009, pp. 922–933.

[2] A. Adya et al. “Efficient optimistic concurrency control using
loosely synchronized clocks”. Proc. of SIGMOD. 1995, pp. 23–
34.

[3] Amazon. Amazon DynamoDB. 2012.

[4] Michael Armbrust et al. “PIQL: Success-Tolerant Query Pro-
cessing in the Cloud”. Proc. of VLDB. 2011, pp. 181–192.

[5] Jason Baker et al. “Megastore: Providing Scalable, Highly
Available Storage for Interactive Services”. Proc. of CIDR.
2011, pp. 223–234.

[6] Hal Berenson et al. “A critique of ANSI SQL isolation levels”.
Proc. of SIGMOD. 1995, pp. 1–10.

[7] Matthias Brantner et al. “Building a database on S3”. Proc. of
SIGMOD. 2008, pp. 251–264.

[8] A. Chan and R. Gray. “Implementing Distributed Read-Only
Transactions”. IEEE TOSE SE-11.2 (Feb. 1985), pp. 205–212.

[9] Fay Chang et al. “Bigtable: A Distributed Storage System for
Structured Data”. ACM TOCS 26.2 (June 2008), 4:1–4:26.

[10] Brian F. Cooper et al. “PNUTS: Yahoo!’s hosted data serving
platform”. Proc. of VLDB. 2008, pp. 1277–1288.

[11] James Cowling and Barbara Liskov. “Granola: Low-Overhead
Distributed Transaction Coordination”. Proc. of USENIX ATC.
2012, pp. 223–236.



264 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[12] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: a flexible
data processing tool”. CACM 53.1 (Jan. 2010), pp. 72–77.

[13] John Douceur and Jon Howell. Scalable Byzantine-Fault-
Quantifying Clock Synchronization. Tech. rep. MSR-TR-2003-
67. MS Research, 2003.

[14] John R. Douceur and Jon Howell. “Distributed directory service
in the Farsite file system”. Proc. of OSDI. 2006, pp. 321–334.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google file system”. Proc. of SOSP. Dec. 2003, pp. 29–43.

[16] David K. Gifford. Information Storage in a Decentralized Com-
puter System. Tech. rep. CSL-81-8. PhD dissertation. Xerox
PARC, July 1982.

[17] Lisa Glendenning et al. “Scalable consistency in Scatter”. Proc.
of SOSP. 2011.

[18] Jim Gray and Leslie Lamport. “Consensus on transaction com-
mit”. ACM TODS 31.1 (Mar. 2006), pp. 133–160.

[19] Pat Helland. “Life beyond Distributed Transactions: an Apos-
tate’s Opinion”. Proc. of CIDR. 2007, pp. 132–141.

[20] Maurice P. Herlihy and Jeannette M. Wing. “Linearizability: a
correctness condition for concurrent objects”. ACM TOPLAS
12.3 (July 1990), pp. 463–492.

[21] Leslie Lamport. “The part-time parliament”. ACM TOCS 16.2
(May 1998), pp. 133–169.

[22] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. “Reconfigur-
ing a state machine”. SIGACT News 41.1 (Mar. 2010), pp. 63–
73.

[23] Barbara Liskov. “Practical uses of synchronized clocks in dis-
tributed systems”. Distrib. Comput. 6.4 (July 1993), pp. 211–
219.

[24] David B. Lomet and Feifei Li. “Improving Transaction-Time
DBMS Performance and Functionality”. Proc. of ICDE (2009),
pp. 581–591.

[25] Jacob R. Lorch et al. “The SMART way to migrate replicated
stateful services”. Proc. of EuroSys. 2006, pp. 103–115.

[26] MarkLogic. MarkLogic 5 Product Documentation. 2012.

[27] Keith Marzullo and Susan Owicki. “Maintaining the time in a
distributed system”. Proc. of PODC. 1983, pp. 295–305.

[28] Sergey Melnik et al. “Dremel: Interactive Analysis of Web-
Scale Datasets”. Proc. of VLDB. 2010, pp. 330–339.

[29] D.L. Mills. Time synchronization in DCNET hosts. Internet
Project Report IEN–173. COMSAT Laboratories, Feb. 1981.

[30] Oracle. Oracle Total Recall. 2012.

[31] Andrew Pavlo et al. “A comparison of approaches to large-scale
data analysis”. Proc. of SIGMOD. 2009, pp. 165–178.

[32] Daniel Peng and Frank Dabek. “Large-scale incremental pro-
cessing using distributed transactions and notifications”. Proc.
of OSDI. 2010, pp. 1–15.

[33] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis
II. “System level concurrency control for distributed database
systems”. ACM TODS 3.2 (June 1978), pp. 178–198.

[34] Alexander Shraer et al. “Dynamic Reconfiguration of Pri-
mary/Backup Clusters”. Proc. of USENIX ATC. 2012, pp. 425–
438.

[35] Jeff Shute et al. “F1 — The Fault-Tolerant Distributed RDBMS
Supporting Google’s Ad Business”. Proc. of SIGMOD. May
2012, pp. 777–778.

[36] Yair Sovran et al. “Transactional storage for geo-replicated sys-
tems”. Proc. of SOSP. 2011, pp. 385–400.

[37] Michael Stonebraker. Why Enterprises Are Uninterested in
NoSQL. 2010.

[38] Michael Stonebraker. Six SQL Urban Myths. 2010.

[39] Michael Stonebraker et al. “The end of an architectural era: (it’s
time for a complete rewrite)”. Proc. of VLDB. 2007, pp. 1150–
1160.

[40] Alexander Thomson et al. “Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems”. Proc. of SIGMOD.
2012, pp. 1–12.

[41] Ashish Thusoo et al. “Hive — A Petabyte Scale Data Ware-
house Using Hadoop”. Proc. of ICDE. 2010, pp. 996–1005.

[42] VoltDB. VoltDB Resources. 2012.

A Paxos Leader-Lease Management

The simplest means to ensure the disjointness of Paxos-
leader-lease intervals would be for a leader to issue a syn-
chronous Paxos write of the lease interval, whenever it
would be extended. A subsequent leader would read the
interval and wait until that interval has passed.

TrueTime can be used to ensure disjointness without
these extra log writes. The potential ith leader keeps a
lower bound on the start of a lease vote from replica r as
vleader
i,r = TT.now().earliest, computed before esend

i,r (de-
fined as when the lease request is sent by the leader).
Each replica r grants a lease at lease egrant

i,r , which hap-
pens after ereceive

i,r (when the replica receives a lease re-
quest); the lease ends at tend

i,r = TT.now().latest + 10,
computed after ereceive

i,r . A replica r obeys the single-
vote rule: it will not grant another lease vote until
TT.after(tend

i,r ) is true. To enforce this rule across different
incarnations of r, Spanner logs a lease vote at the grant-
ing replica before granting the lease; this log write can
be piggybacked upon existing Paxos-protocol log writes.

When the ith leader receives a quorum of votes
(event equorum

i ), it computes its lease interval as
leasei = [TT.now().latest,minr(vleader

i,r ) + 10]. The
lease is deemed to have expired at the leader when
TT.before(minr(vleader

i,r ) + 10) is false. To prove disjoint-
ness, we make use of the fact that the ith and (i + 1)th
leaders must have one replica in common in their quo-
rums. Call that replica r0. Proof:

leasei.end = minr(v
leader
i,r ) + 10 (by definition)

minr(v
leader
i,r ) + 10 ≤ vleader

i,r0 + 10 (min)

vleader
i,r0 + 10 ≤ tabs(e

send
i,r0) + 10 (by definition)

tabs(e
send
i,r0) + 10 ≤ tabs(e

receive
i,r0 ) + 10 (causality)

tabs(e
receive
i,r0 ) + 10 ≤ tend

i,r0 (by definition)

tend
i,r0 < tabs(e

grant
i+1,r0) (single-vote)

tabs(e
grant
i+1,r0) ≤ tabs(e

quorum
i+1 ) (causality)

tabs(e
quorum
i+1 ) ≤ leasei+1.start (by definition)



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 265

Making Geo-Replicated Systems Fast as Possible,
Consistent when Necessary

Cheng Li†, Daniel Porto∗†, Allen Clement†, Johannes Gehrke‡, Nuno Preguiça∗, Rodrigo Rodrigues∗
†Max Planck Institute for Software Systems (MPI-SWS), ∗CITI / DI-FCT-Universidade Nova de Lisboa, ‡Cornell University

Abstract: Online services distribute and replicate state
across geographically diverse data centers and direct user
requests to the closest or least loaded site. While ef-
fectively ensuring low latency responses, this approach
is at odds with maintaining cross-site consistency. We
make three contributions to address this tension. First,
we propose RedBlue consistency, which enables blue
operations to be fast (and eventually consistent) whi-
le the remaining red operations are strongly consistent
(and slow). Second, to make use of fast operation when-
ever possible and only resort to strong consistency when
needed, we identify conditions delineating when opera-
tions can be blue and must be red. Third, we introduce
a method that increases the space of potential blue op-
erations by breaking them into separate generator and
shadow phases. We built a coordination infrastructure
called Gemini that offers RedBlue consistency, and we
report on our experience modifying the TPC-W and RU-
BiS benchmarks and an online social network to use
Gemini. Our experimental results show that RedBlue
consistency provides substantial performance gains with-
out sacrificing consistency.

1 Introduction
Scaling services over the Internet to meet the needs of

an ever-growing user base is challenging. In order to im-
prove user-perceived latency, which directly affects the
quality of the user experience [32], services replicate sys-
tem state across geographically diverse sites and direct
users to the closest or least loaded site.

To avoid paying the performance penalty of synchro-
nizing concurrent actions across data centers, some sys-
tems, such as Amazon’s Dynamo [9], resort to weaker
consistency semantics like eventual consistency where
state can temporarily diverge. Others, such as Yahoo!’s
PNUTS [8], avoid state divergence by requiring all oper-
ations that update the service state to be funneled through
a primary site and thus incurring increased latency.

This paper addresses the inherent tension between
performance and meaningful consistency. A first step to-
wards this goal is to allow multiple levels of consis-
tency to coexist [19, 34, 35]: some operations can be exe-
cuted optimistically, without synchronizing with concur-
rent actions at other sites, while others require a stronger
consistency level and thus require cross-site synchroniza-

tion. However, this places a high burden on the developer
of the service, who must decide which operations to as-
sign which consistency levels. This requires reasoning
about the consistency semantics of the overall system to
ensure that the behaviors that are allowed by the different
consistency levels satisfy the specification of the system.

In this paper we make the following three contribu-
tions to address this tension.

1. We propose a novel consistency definition called Red-
Blue consistency. The intuition behind RedBlue con-
sistency is that blue operations execute locally and
are lazily replicated in an eventually consistent man-
ner [9, 25, 38, 26, 12, 33, 34]. Red operations, in con-
trast, are serialized with respect to each other and re-
quire immediate cross-site coordination. RedBlue con-
sistency preserves causality by ensuring that depen-
dencies established when an operation is invoked at its
primary site are preserved as the operation is incorpo-
rated at other sites.

2. We identify the conditions under which operations
must be colored red and may be colored blue in order
to ensure that application invariants are never violated
and that all replicas converge on the same final state.
Intuitively, operations that commute with all other op-
erations and do not impact invariants may be blue.

3. We observe that the commutativity requirement lim-
its the space of potentially blue operations. To address
this, we decompose operations into two components:
(1) a generator operation that identifies the changes the
original operation should make, but has no side effects
itself, and (2) a shadow operation that performs the
identified changes and is replicated to all sites. Only
shadow operations are colored red or blue. This al-
lows for a fine-grained classification of operations and
broadens the space of potentially blue operations.
We built a system called Gemini that coordinates

RedBlue replication, and use it to extend three applica-
tions to be RedBlue consistent: the TPC-W and RUBiS
benchmarks and the Quoddy social network. Our evalu-
ation using microbenchmarks and the three applications
shows that RedBlue consistency provides substantial la-
tency and throughput benefits. Furthermore, our expe-
rience with modifying these applications indicates that
shadow operations can be created with modest effort.

The rest of the paper is organized as follows: we po-

1



266 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Consistency
level Example systems

Immediate
response

State
convergence

Single
value

General
operations

Stable
histories

Classification
strategy

Strong RSM [20, 31] no yes yes yes yes N/A
Timeline/snapshot PNUTS [8], Megastore [3] reads only yes yes yes yes N/A

Fork SUNDR [24] all ops no yes yes yes N/A

Eventual
Bayou [38], Depot [26] all ops yes no yes yes N/A
Sporc [12], CRDT [33] all ops yes yes no yes N/A
Zeno [34], COPS [25] weak/all ops yes yes yes no no / N/A

Multi PSI [35] cset yes yes partial yes no
lazy repl. [19], Horus [39] immed./causal ops yes yes yes yes no

RedBlue Gemini Blue ops yes yes yes yes yes

Table 1: Tradeoffs in geo-replicated systems and various consistency levels.

sition our work in comparison to existing proposals in §2.
We define RedBlue consistency and introduce shadow
operations along with a set of principles of how to use
them in §4 and §5. We describe our prototype system in
§6, and report on the experience transitioning three ap-
plication benchmarks to be RedBlue consistent in §7. We
analyze experimental results in §8 and conclude in §9.

2 Background and related work
Target end-to-end properties. To frame the discussion
of existing systems that may be used for geo-replicat-
ion, we start by informally stating some desirable proper-
ties that such solutions should support. The first property
consists of ensuring a good user experience by provid-
ing low latency access to the service [32]. Providing low
latency access implies that operations should proceed af-
ter contacting a small number of replicas, but this is at
odds with other requirements that are often sacrificed by
consistency models that privilege low latency. The first
such requirement is preserving causality, both in terms
of the monotonicity of user requests within a session and
preserving causality across clients, which is key to en-
abling natural semantics [28]. Second, it is important that
all replicas that have executed the same set of operations
are in the same state, i.e., that they exhibit state conver-
gence. Third, we want to avoid marked deviations from
the conventional, single server semantics. In particular,
operations should return a single value, precluding solu-
tions that return a set of values corresponding to the out-
come of multiple concurrent updates; the system should
provide a set of stable histories, meaning that user ac-
tions cannot be undone; and it should provide support for
general operations, not restricting the type of operations
that can be executed. Fourth, the behavior of the system
must obey its specification. This specification may be de-
fined as a set of invariants that must be preserved, e.g.,
that no two users receive the same user id when regis-
tering. Finally, and orthogonally to the tension between
low latency and user semantics, it is important for all op-
erations executed at one replica to be propagated to all
remaining replicas, a property we call eventual propa-
gation.

Table 1 summarizes several proposals of consistency
definitions, which strike different balances between the

requirements mentioned above. While other consistency
definitions exist, we focus on the ones most closely re-
lated to the problem of offering fast and consistent re-
sponses in geo-replicated systems.
Strong vs. weak consistency. On the strong consistency
side of the spectrum there are definitions like lineariz-
ability [17], where the replicated system behaves like a
single server that serializes all operations. This, however,
requires coordination among replicas to agree on the or-
der in which operations are executed, with the corre-
sponding overheads that are amplified in geo-replication
scenarios. Somewhat more efficient are timeline consis-
tency in PNUTS [8] and snapshot consistency in Megas-
tore [3]. These systems ensure that there is a total order
for updates to the service state, but give the option of
reading a consistent but dated view of the service. Sim-
ilarly, Facebook has a primary site that handles updates
and a secondary site that acts as a read-only copy [23].
This allows for fast reads executed at the closest site but
writes still pay a penalty for serialization. Fork consis-
tency [24, 27] relaxes strong consistency by allowing
users to observe distinct causal histories. The primary
drawback of fork consistency is that once replicas have
forked, they can never be reconciled. Such approach is
useful when building secure systems but is not appropri-
ate in the context of geo-replication.

Eventual consistency [38] is on the other end of the
spectrum. Eventual consistency is a catch-all phrase that
covers any system where replicas may diverge in the
short term as long as the divergence is eventually re-
paired and may or may not include causality. (See Saito
and Shapiro [30] for a survey.) In practice, as shown
in Table 1, systems that embrace eventual consistency
have limitations. Some systems waive the stable his-
tory property, either by rolling back operations and re-
executing them in a different order at some of the repli-
cas [34], or by resorting to a last writer wins strategy,
which often results in loss of one of the concurrent up-
dates [25]. Other systems expose multiple values from
divergent branches in operations replies either directly
to the client [26, 9] or to an application-specific conflict
resolution procedure [38]. Finally, some systems restrict
operations by assuming that all operations in the system
commute [12, 33], which might require the programmer

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 267

to rewrite or avoid using some operations.
Coexistence of multiple consistency levels. The solu-
tion we propose for addressing the tension between low
latency and strongly consistent responses is to allow dif-
ferent operations to run with different consistency lev-
els. Existing systems that used a similar approach in-
clude Horus [39], lazy replication [19], Zeno [34], and
PSI [35]. However, none of these proposals guide the ser-
vice developer in choosing between the available consis-
tency levels. In particular, developers must reason about
whether their choice leads to the desired service behav-
ior, namely by ensuring that invariants are preserved and
that replica state does not diverge. This can be challeng-
ing due to difficulties in identifying behaviors allowed by
a specific consistency level and understanding the inter-
play between operations running at different levels. Our
research addresses this challenge, namely by defining a
set of conditions that precisely determine the appropriate
consistency level for each operation.
Other related work. Consistency rationing [18] allows
consistency guarantees to be associated with data instead
of operations, and the consistency level to be automati-
cally switched at runtime between weak consistency and
serializability based on specified policies. TACT [41]
consistency bounds the amount of inconsistency of data
items in an application-specific manner, using the follow-
ing metrics: numerical error, order error and staleness. In
contrast to these models, the focus of our work is not on
adapting the consistency levels of particular data items
at runtime, but instead on systematically partitioning the
space of operations according to their actions and the de-
sired system semantics.

One of the central aspects of our work is the notion of
shadow operations, which increase operation commuta-
tivity by decoupling the decision of the side effects from
their application to the state. This enables applications to
make more use of fast operations. Some prior work also
aims at increasing operation commutativity: Weihl ex-
ploited commutativity-based concurrency control for ab-
stract data types [40]; operational transformation [10, 12]
extends non-commutative operations with a transforma-
tion that makes them commute; Conflict-free Replicated
Data Types (CRDTs) [33] design operations that com-
mute by construction; Gray [15] proposed an open nested
transaction model that uses commutative compensating
transactions to revert the effects of aborted transactions
without rolling back the transactions that have seen their
results and already committed; delta transactions [36] di-
vide a transaction into smaller pieces that commute with
each other to reduce the serializability requirements. Our
proposal of shadow operations can be seen as an ex-
tension to these concepts, providing a different way of
broadening the scope of potentially commutative opera-
tions. There exist other proposals that also decouple the

execution into two parts, namely two-tier replication [16]
and CRDT downstreams [33]. In contrast to these pro-
posals, for each operation, we may generate different
shadow operations based on the specifics of the execu-
tion. Also, shadow operations can run under different
consistency levels, which is important because commuta-
tivity is not always sufficient to ensure safe weakly con-
sistent operation.

3 System model

We assume a distributed system with state fully rep-
licated across k sites denoted site0 . . .sitek−1. We follow
the traditional deterministic state machine model, where
there is a set of possible states S and a set of possible op-
erations O, each replica holds a copy of the current sys-
tem state, and upon applying an operation each replica
deterministically transitions to the next state and possi-
bly outputs a corresponding reply.

In our notation, S ∈ S denotes a system state, and
u,v ∈ O denote operations. We assume there exists an
initial state S0. If operation u is applied against a system
state S, it produces another system state S′; we will also
denote this by S′ = S+u. We say that a pair of operations
u and v commute if ∀S ∈ S ,S+u+v= S+v+u. The sys-
tem maintains a set of application-specific invariants. We
say that state S is valid if it satisfies all these invariants.
Each operation u is initially submitted at one site which
we call u’s primary site and denote site(u); the system
then later replicates u to the other sites.

4 RedBlue consistency

In this section we introduce RedBlue consistency,
which allows replicated systems to be fast as possible
and consistent when necessary. “Fast” is an easy concept
to understand—it equates to providing low latency re-
sponses to user requests. “Consistent” is more nuanced—
consistency models technically restrict the state that op-
erations can observe, which can be translated to an or-
der that operations can be applied to a system. Eventual
consistency [25, 38, 26, 12], for example, permits oper-
ations to be partially ordered and enables fast systems—
sites can process requests locally without coordinating
with each other—but sacrifices the intuitive semantics of
serializing updates. In contrast, linearizability [17] or se-
rializability [5] provide strong consistency and allow for
systems with intuitive semantics—in effect, all sites pro-
cess operations in the same order—but require signifi-
cant coordination between sites, precluding fast opera-
tion. RedBlue consistency is based on an explicit divi-
sion of operations into blue operations whose order of
execution can vary from site to site, and red operations
that must be executed in the same order at all sites.

3



268 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Alice in EU Bob in US

b3

b1

b2

a3

a1

b4

a2

(a) RedBlue order O of operations

b1

b2

a2

a3

b3

b4

a1

S0

S1

S2

S3

S4

S5

S6

S7

a1

b2

b3

a2

a3

b4

b1

S0

S1'

S2'

S3'

S4'

S5'

S6'

S7'

Alice in EU Bob in US

(b) Causal serializations of O
Figure 1: RedBlue order and causal serializations for a
system spanning two sites. Operations marked with� are
red; operations marked with � are blue. Dotted arrows
in (a) indicate dependencies between operations.

4.1 Defining RedBlue consistency
The definition of RedBlue consistency has two com-

ponents: (1) A RedBlue order, which defines a partial
order of operations, and (2) a set of local causal serial-
izations, which define site-specific total orders in which
the operations are locally applied.

Definition 1 (RedBlue order). Given a set of operations
U = B∪R, where B∩R = /0, a RedBlue order is a partial
order O = (U,≺) with the restriction that ∀u,v ∈ R such
that u �= v, u ≺ v or v ≺ u (i.e., red operations are totally
ordered).

Recall that each site is a deterministic state machine
that processes operations in a serial order. The serial or-
der executed by site i is a causal serialization if it is
compatible with the global RedBlue order and ensures
causality for all operations initially executed at site i. A
replicated system with k sites is then RedBlue consis-
tent if every site applies a causal serialization of the same
global RedBlue order O.

Definition 2 (Causal serialization). Given a site i, Oi =
(U,<) is an i-causal serialization (or short, a causal se-
rialization) of RedBlue order O = (U,≺) if (a) Oi is a

1 float balance, interest = 0.05;
2 func deposit( float money ):
3 balance = balance + money;
4 func withdraw ( float money ):
5 if ( balance - money >= 0 ) then:
6 balance = balance - money;
7 else print "failure";
8 func accrueinterest():
9 float delta = balance × interest;

10 balance = balance + delta;

Figure 2: Pseudocode for the bank example.

linear extension of O (i.e., < is a total order compatible
with the partial order ≺), and (b) for any two operations
u,v ∈U, if site(v) = i and u < v in Oi, then u ≺ v.

Definition 3 (RedBlue consistency). A replicated system
is O-RedBlue consistent (or short, RedBlue consistent) if
each site i applies operations according to an i-causal
serialization of RedBlue order O.

Figure 1 shows a RedBlue order and a pair of causal
serializations of that RedBlue order. In systems where
every operation is labeled red, RedBlue consistency is
equivalent to serializability [5]; in systems where every
operation is labeled blue, RedBlue consistency allows
the same set of behaviors as eventual consistency [38,
25, 26]. It is important to note that while RedBlue consis-
tency constrains possible orderings of operations at each
site and thus the states the system can reach, it does not
ensure a priori that the system achieves all the end-to-
end properties identified in §2, in particular, state con-
vergence and invariant preservation, as discussed next.

4.2 State convergence and a RedBlue bank
In order to understand RedBlue consistency it is in-

structive to look at a concrete example. For this exam-
ple, consider a simple bank with two users: Alice in the
EU and Bob in the US. Alice and Bob share a single
bank account where they can deposit or withdraw funds
and where a local bank branch can accrue interest on the
account (pseudocode for the operations can be found in
Figure 2). Let the deposit and accrueinterest opera-
tions be blue. Figure 3 shows a RedBlue order of deposits
and interest accruals made by Alice and Bob and causal
serializations applied at both branches of the bank.

State convergence is important for replicated sys-
tems. Intuitively a pair of replicas is state convergent if,
after processing the same set of operations, they are in
the same state. In the context of RedBlue consistency we
formalize state convergence as follows:

Definition 4 (State convergence). A RedBlue consistent
system is state convergent if all causal serializations of
the underlying RedBlue order O reach the same state S.

The bank example as described is not state conver-
gent. The root cause is not surprising: RedBlue consis-
tency allows sites to execute blue operations in differ-
ent orders but two blue operations in the example corre-
spond to non-commutative operations—addition (dep-

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 269

Alice in EU Bob in US

accrueinterest()deposit(20)

(a) RedBlue order O of operations issued by Alice and Bob

deposit(20)accrueinterest()

¹

deposit(20)
balance:100

accrueinterest()

Alice in EU Bob in US

balance:100

balance:120 balance:105

balance:126 balance:125

(b) Causal serializations of O leading to diverged state

Figure 3: A RedBlue consistent account with initial bal-
ance of $100.

osit) and multiplication (accrueinterest). A suffi-
cient condition to guarantee state convergence in a Red-
Blue consistent system is that every blue operation is
globally commutative, i.e., it commutes with all other op-
erations, blue or red.

Theorem 1. Given a RedBlue order O, if all blue op-
erations are globally commutative, then any O-RedBlue
consistent system is state convergent.1

The banking example and Theorem 1 highlight an
important tension inherent to RedBlue consistency. On
the one hand, low latency requires an abundance of blue
operations. On the other hand, state convergence requires
that blue operations commute with all other operations,
blue or red. In the next section we introduce a method
for addressing this tension by increasing commutativity.

5 Replicating side effects
In this section, we observe that while operations

themselves may not be commutative, we can often make
the changes they induce on the system state commute.
Let us illustrate this issue within the context of the Red-
Blue bank from §4.2. We can make the deposit and
accrueinterest operations commute by first comput-
ing the amount of interested accrued and then treating
that value as a deposit.

5.1 Defining shadow operations
The key idea is to split each original application op-

eration u into two components: a generator operation
gu with no side effects, which is executed only at the
primary site against some system state S and produces
a shadow operation hu(S), which is executed at every
site (including the primary site). The generator operation
decides which state transitions should be made while the
shadow operation applies the transitions in a state-indep-
endent manner.

The implementation of generator and shadow oper-
ations must obey some basic correctness requirements.
Generator operations, as mentioned, must not have any

1All proofs can be found in a separate technical report [22].

side effects. Furthermore, shadow operations must pro-
duce the same effects as the corresponding original oper-
ation when executed against the original state S used as
an argument in the creation of the shadow operation.

Definition 5 (Correct generator / shadow operations).
The decomposition of operation u into generator and sh-
adow operations is correct if for all states S, the genera-
tor operation gu has no effect and the generated shadow
operation hu(S) has the same effect as u, i.e., for any
state S: S+gu = S and S+hu(S) = S+u.

Note that a trivial decomposition of an original oper-
ation u into generator and shadow operations is to let gu
be a no-op and let hu(S) = u for all S.

In practice, as exemplified in §7, separating the de-
cision of which transition to make from the act of ap-
plying the transition allows many objects and their as-
sociated usage in shadow operations to form an abelian
group and thus dramatically increase the number of com-
mutative (i.e., blue) operations in the system. Unlike pre-
vious approaches [16, 33], for a given original operation,
our solution allows its generator operation to generate
state-specific shadow operations with different proper-
ties, which can then be assigned different colors in the
RedBlue consistency model.

5.2 Revisiting RedBlue consistency
Decomposing operations into generator and shadow

components requires us to revisit the foundations of Red-
Blue consistency. In particular, only shadow operations
are included in a RedBlue order while the causal serial-
ization for site i additionally includes the generator oper-
ations initially executed at site i. The causal serialization
must ensure that generator operations see the same state
that is associated with the generated shadow operation
and that shadow operations appropriately inherit all de-
pendencies from their generator operation.

We capture these subtleties in the following revised
definition of causal serializations. Let U be the set of
shadow operations executed by the system and Vi be the
generator operations executed at site i.

Definition 6 (Causal serialization–revised). Given a site
i, Oi = (U ∪Vi,<) is an i-causal serialization of RedBlue
order O = (U,≺) if
• Oi is a total order;
• (U,<) is a linear extension of O;
• For any hv(S) ∈U generated by gv ∈ Vi, S is the state

obtained after applying the sequence of shadow oper-
ations preceding gv in Oi;

• For any gv ∈ Vi and hu(S) ∈ U, hu(S) < gv in Oi iff
hu(S)≺ hv(S′) in O.

Note that shadow operations appear in every causal
serialization, while generator operations appear only in
the causal serialization of the initially executing site.

5



270 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

1 func deposit’ ( float money ):
2 balance = balance + money;
3 func withdrawAck’ ( float money ):
4 balance = balance - money;
5 func withdrawFail’ ():
6 /* no-op */
7 func accrueinterest’ ( float delta ):
8 balance = balance + delta;

Figure 4: Pseudocode for shadow bank operations.
Alice in EU Bob in US

accrueinterest’(5)

withdrawAck’(60)

deposit’(20)

withdrawAck’(70)

(a) RedBlue order O of banking shadow operations

withdrawAck’(60)

withdrawAck’(60)

withdrawAck’(70)

withdrawAck’(70)

balance:125

Alice in EU Bob in US

balance:125

balance:55 balance:65

balance:-5 balance:-5

withdraw(70) withdraw(60)

(b) Invalid but convergent causal serializations of O

Figure 5: A RedBlue consistent bank with only blue op-
erations. The starting balance of $125 is the result of
applying shadow operations above the solid line to an
initial balance of $100. Loops indicate generator opera-
tions.
5.3 Shadow banking and invariants

Figure 4 shows the shadow operations for the bank-
ing example. Note that the withdraw operation maps to
two distinct shadow operations that may be labeled as
blue or red independently—withdrawAck’ and with-
drawFail’.

Figure 5 illustrates that shadow operations make it
possible for all operations to commute, provided that we
can identify the underlying abelian group. This does not
mean, however, that it is safe to label all operations blue.

In this example, such a labeling would allow Alice
and Bob to successfully withdraw $70 and $60 at their
local branches, thus ending up with a final balance of
$-5. This violates the fundamental invariant that a bank
balance should never be negative.

To determine which operations can be safely labeled
blue, we begin by defining that a shadow operation is
invariant safe if, when applied to a valid state, it always
transitions the system into another valid state.

Definition 7 (Invariant safe). Shadow operation hu(S) is
invariant safe if for all valid states S and S′, the state
S′+hu(S) is also valid.

The following theorem states that in a RedBlue con-
sistent system with appropriate labeling, each replica
transitions only through valid states.

Theorem 2. If all shadow operations are correct and all
blue shadow operations are invariant safe and globally

Alice in EU Bob in US

despoit’(10)

accrueinterest’(5)

withdrawAck’(60)

withdrawAck’(40)

deposit’(20)

withdrawAck’(30)

withdrawFail’()

(a) RedBlue order O of banking shadow operations

withdrawAck’(30)

withdrawAck’(40)

deposit’(10)

withdrawFail’()

withdrawAck’(60)

accrueinterest’(5)

deposit’(20)
balance:100

Alice in EU

balance:125

withdrawAck’(30)

withdrawAck’(40)

withdrawFail’()

deposit’(10)

withdrawAck’(60)

deposit’(20)

accrueinterest’(5)

Bob in US

balance:100

balance:125

balance:120 balance:105

balance:65 balance:65

balance:65 balance:75

balance:75 balance:75

balance:35 balance:35

balance:5 balance:5

deposit(20)

withdraw(70)

withdraw(30)

deposit(10)

accrueinterest()

withdraw(40)

withdraw(60)

(b) Convergent and invariant preserving causal serializations of O

Figure 6: A RedBlue consistent bank with correctly la-
beled shadow operations and initial balance of $100.

commutative, then for any execution of that system that
is RedBlue consistent, no site is ever in an invalid state.

What can be blue? What must be red? The combina-
tion of Theorems 1 and 2 leads to the following proce-
dure for deciding which shadow operations can be blue
or must be red if a RedBlue consistent system is to pro-
vide both state convergence and invariant preservation:

1. For any pair of non-commutative shadow operations u
and v, label both u and v red.

2. For any shadow operation u that may result in an in-
variant being violated, label u red.

3. Label all non-red shadow operations blue.
Applying this decision process to the bank example

leads to a labeling where withdrawAck’ is red and the
remaining shadow operations are blue. Figure 6 shows a
RedBlue order with appropriately labeled shadow opera-
tions and causal serializations for the two sites.

5.4 Discussion
Shadow operations introduce some surprising

anomalies to a user experience. Notably, while the effect
of every user action is applied at every site, the final
system state is not guaranteed to match the state resulting
from a serial ordering of the original operations. The
important thing to keep in mind is that the decisions

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 271

made always make sense in the context of the local view
of the system: when Alice accrues interest in the EU,
the amount of interest accrued is based on the balance
that Alice observes at that moment. If Bob concurrently
makes a deposit in the US and subsequently observes
that interest has been accrued, the amount of interest will
not match the amount that Bob would accrue based on
the balance as he currently observes it.

Shadow operations always provide for a coherent se-
quence of state transitions that reflects the effects de-
manded by user activity; while this sequence of state
transitions is coherent (and convergent), the state tran-
sitions are chosen based on the locally observable state
when/where the user activity initiated and not the system
state when they are applied.

6 Gemini design & implementation
We implemented the Gemini storage system to pro-

vide RedBlue consistency. The prototype consists of 10K
lines of java code and uses MySQL as its storage back-
end. Each Gemini site consists of four components: a
storage engine, a proxy server, a concurrency coordina-
tor, and a data writer. A multi-site deployment is con-
structed by replicating the single site components across
multiple sites.

The basic flow of user requests through the system
is straightforward. A user issues requests to a proxy
server located at the closest site. The proxy server pro-
cesses a request by executing an appropriate application
transaction, which is implemented as a single Gemini
operation, comprising multiple data accesses; individ-
ual data accesses within a generator operation execute in
a temporary private scratchpad, providing a virtual pri-
vate copy of the service state. The original data lies in
a storage engine, which provides a standard storage in-
terface. In our implementation, the storage engine is a
relational database, and scratchpad operations are exe-
cuted against a temporary table. Upon completion of the
generator operation, the proxy server sends the produced
shadow operation on to the concurrency coordinator to
admit or reject this operation according to RedBlue con-
sistency. The concurrency coordinator notifies the proxy
server if the operation is accepted or rejected. Addition-
ally, accepted shadow operations are appended to the end
of the local causal serialization and propagated to remote
sites and to the local data writer for execution against
the storage engine. When a shadow operation is rejected,
the proxy server re-executes the generator operation and
restarts the process.

6.1 Optimistic concurrency control
Gemini relies on optimistic concurrency control

(OCC) [5] to run generator operations without blocking.
Gemini uses timestamps to determine if opera-

tions can complete successfully. Timestamps are logical

clocks [20] of the form 〈〈b0,b1, . . . ,bk−1〉,r〉, where bi
is the local count of shadow operations initially executed
by site i and r is the global count of red shadow oper-
ations. To ensure that different sites do not choose the
same red sequence number (i.e., all red operations are
totally-ordered) we use a simple token passing scheme:
only the coordinator in possession of a unique red token
is allowed to increase the counter r and approve red oper-
ations. In the current prototype, a coordinator holds onto
the red token for up to 1 second before passing it along.

When a generator operation completes, the coordina-
tor must determine if the operation (a) reads a coherent
system snapshot and (b) obeys the ordering constraints
of a causal serialization, as described in §5. To do this,
the coordinator checks the timestamps of the data items
readd and written by the completing operation, and com-
pares them to the timestamps associated with operations
completing concurrently and the remote shadow opera-
tions that were being applied simultaneously at that site.

Upon successful completion of a generator operation
the coordinator assigns the corresponding shadow oper-
ation a timestamp that is component-wise equal to the
latest operation that was incorporated at its site, and in-
crements its blue and, if this shadow operations is red,
the red component of the logical timestamp. This times-
tamp determines the position of the shadow operation in
the RedBlue order, with the normal rules that determine
that two operations are partially ordered if one is equal
to or dominates the other in all components. It also al-
lows sites to know when it is safe to incorporate remote
shadow operations: they must wait until all shadow op-
erations with smaller timestamps have already been in-
corporated in the local state of the site. When a remote
shadow operation is applied at a site, it is assigned a new
timestamp that is the entry-wise max of the timestamp
assigned to the shadow operation in the initial site and
the local timestamps of accessed data objects. This cap-
tures dependencies that span local and remote operations.

Read-only shadow operations. As a performance op-
timization, a subset of blue shadow operations can be
marked read-only. Read-only shadow operations receive
special treatment from the coordinator: once the genera-
tor operation passes the coherence and causality checks,
the proxy is notified that the shadow operation has been
accepted but the shadow operation is not incorporated
into the local serialization or global RedBlue order.

6.2 Failure handling
The current Gemini prototype is designed to demon-

strate the performance potential of RedBlue consistency
in geo-replicated environments and as such is not imple-
mented to tolerate faults of either a local (i.e., within a
site) or catastrophic (i.e., of an entire site) nature. Ad-
dressing these concerns is orthogonal to the primary con-

7



272 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

tributions of this paper, nonetheless we briefly sketch
mechanisms that could be employed to handle faults.
Isolated component failure. The Gemini architecture
consists of four main components at each site, each rep-
resenting a single point of failure. Standard state machine
replication techniques [20, 31] can be employed to make
each component robust to failures.
Site failure. Our Gemini prototype relies on a simple to-
ken exchange for coordinating red epochs. To avoid halt-
ing the system upon a site failure, a fault tolerant con-
sensus protocol like Paxos [21] can regulate red tokens.

Operation propagation. Gemini relies on each site to
propagate its own local operations to all remote sites. A
pair-wise network outage or failure of a site following the
replication of a operation to some but not all of the sites
could prevent sites from exchanging operations that de-
pend on the partially replicated operation. This can be ad-
dressed using standard techniques for exchanging causal
logs [26, 2, 38, 28] or reliable multicast [13].

Cross-session monotonicity. The proxy that each user
connects to enforces the monotonicity of user requests
within a session [37]. However, a failure of that proxy,
or the user connecting to a different site may result in a
subset of that user’s operations not carrying over. This
can be addressed by allowing the user to specify a “last-
read” version when starting a new session or requiring
the user to cache all relevant requests [26] in order to
replay them when connecting to a new site.

7 Case studies
In this section we report on our experience in modi-

fying three existing applications—the TPC-W shopping
cart benchmark [7], the RUBiS auction benchmark [11],
and the Quoddy social networking application [14]—to
work with RedBlue consistency. The two main tasks to
fulfill this goal are (1) decomposing the application into
generator and shadow operations and (2) labeling the
shadow operations appropriately.

Writing generator and shadow operations. Each of
the three case study applications executes MySQL data-
base transactions as part of processing user requests, gen-
erally one transaction per request. We map these applica-
tion level transactions to the original operations and they
also serve as a starting point for the generator operations.
For shadow operations, we turn each execution path in
the original operation into a distinct shadow operation;
an execution path that does not modify system state is ex-
plicitly encoded as a no-op shadow operation.When the
shadow operations are in place, the generator operation
is augmented to invoke the appropriate shadow operation
at each path.

Labeling shadow operations. Table 2 reports the num-
ber of transactions in the TPC-W, RUBiS, and Quoddy,

the number of blue and red shadow operations we iden-
tified using the labeling rules in §5.3, and the application
changes measured in lines of code. Note that read-only
transactions always map to blue no-op shadow opera-
tions. In the rest of this section we expand on the lessons
learned from making applicaations RedBlue consistent.

7.1 TPC-W
TPC-W [7] models an online bookstore. The appli-

cation server handles 14 different user requests such as
browsing, searching, adding products to a shopping cart,
or placing an order. Each user request generates between
one and four transactions that access state stored across
eight different tables. We extend an open source imple-
mentation of the benchmark [29] to allow a shopping cart
to be shared by multiple users across multiple sessions.
Writing TPC-W generator and shadow operations.
Of the twenty TPC-W transactions, thirteen are read-
only and admit no-op shadow operations. The remain-
ing seven update transactions translate to one or more
shadow operations according to the number of distinct
execution paths in the original operation .

We now give an example transaction, doBuyConf-
irm, which completes a user purchase. The pseudocode
for the original transaction is shown in Figure 7(a).

The doBuyConfirm transaction removes all items
from a shopping cart, computes the total cost of the
purchase, and updates the stock value for the purchased
items. If the stock would drop below a minimum thresh-
old, then the transaction also replenishes the stock. The
key challenge in implementing shadow operations for
doBuyConfirm is that the original transaction does not
commute with itself or any transaction that modifies the
contents of a shopping cart. Naively treating the origi-
nal transaction as a shadow operation would force every
shadow operation to be red.

Figure 7(b) shows the generator operation of doBuy-
Confirm, and Figures 7(c) and 7(d) depict the corre-
sponding pair of shadow operations: doBuyConfirmI-
ncre’ and doBuyConfirmDecre’. The former shadow
operation is generated when the stock falls below the
minimum threshold and must be replenished; the latter
is generated when the purchase does not drive the stock
below the minimum threshold and consequently does not
trigger the replenishment path. In both cases, the gener-
ator operation is used to determine the number of items
purchased and total cost as well the shadow operation
that corresponds to the initial execution. At the end of
the execution of the generator operation these param-
eters and the chosen shadow operation are then propa-
gated to other replicas.
Labeling TPC-W shadow operations. For 29 shadow
operations in TPC-W, we find that 27 can be blue and
only two must be red. To label shadow operations, we

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 273

Application
Original RedBlue consistent extension

user
requests

transactions
LOC

shadow operations LOC
changedtotal read-only update blue no-op blue update red LOC

TPC-W 14 20 13 7 9k 13 14 2 2.8k 429
RUBiS 26 16 11 5 9.4k 11 7 2 1k 180
Quoddy 13 15 11 4 15.5k 11 4 0 495 251

Table 2: Original applications and the changes needed to make them RedBlue consistent.

1 doBuyConfirm(cartId){
2 beginTxn();
3 cart = exec(SELECT * FROM cartTb WHERE cId=cartId);
4 cost = computeCost(cart);
5 orderId = getUniqueId();
6 exec(INSERT INTO orderTb VALUES(orderId,cart.item.id,cart.item.qty

,cost));
7 item =exec(SELECT * FROM itemTb WHERE id=cart.item.id);
8 if item.stock− cart.item.qty < 10 then:
9 delta = item.stock− cart.item.qty+21;

10 if delta > 0 then:
11 exec(UPDATE itemTb SET item.stock+= delta);
12 else rollback();
13 else exec(UPDATE itemTb SET item.stock−= cart.item.qty);
14 exec(DELETE FROM cartContentTb WHERE cId=cartId AND id=

cart.item.id);
15 commit();}

(a) Original transaction that commits changes to database.

1 doBuyConfirmGenerator(cartId){
2 sp = getScratchpad();
3 sp.beginT xn();
4 cart = sp.exec(SELECT * FROM cartTb WHERE cId=cartId);
5 cost = computeCost(cart);
6 orderId = getUniqueId();
7 sp.exec(INSERT INTO orderTb VALUES (orderId,cart.item.id,

cart.item.qty,cost));
8 item = sp.exec(SELECT * FROM itemTb WHERE id=cart.item.id);
9 if item.stock− cart.item.qty < 10 then:

10 delta = item.stock− cart.item.qty+21;
11 if delta > 0 sp.exec(UPDATE itemTb SET item.stock+= delta);
12 else sp.discard(); return;
13 else sp.exec(UPDATE itemTb SET item.stock−= cart.item.qty);
14 sp.exec(DELETE FROM cartTb WHERE cId=cartId AND id=cart.item.id);
15 L T S = getCommitOrder();
16 sp.discard();
17 if replenished return (doBuyConfirmIncre’(orderId,cartId,

cart.item.id,cart.item.qty,cost,delta,L T S));
18 else return (doBuyConfirmDecre’(orderId,cartId,cart.item.Id,

cart.item.qty,cost,L T S));}

(b) Generator operation that manipulates data via a private scratchpad.

1 doBuyConfirmIncre’(orderId,cartId,itId,qty,cost,delta,L T S){
2 exec(INSERT INTO orderTb VALUES(orderId,itId,qty,cost,L T S));
3 exec(UPDATE itemTb SET item.stock+= delta);
4 exec(UPDATE itemTb SET item.l ts = L T S WHERE item.l ts < L T S);
5 exec(UPDATE cartContentTb SET f lag = T RUE WHERE id = itId AND

cid = cartId AND l ts <= L T S);}

(c) Shadow doBuyConfirmIncre’ (Blue) that replenishes the stock value.

1 doBuyConfirmDecre’(orderId,cartId,itId,qty,cost,L T S){
2 exec(INSERT INTO orderTb VALUES(orderId,itId,qty,cost,L T S));
3 exec(UPDATE itemTb SET item.stock−= qty);
4 exec(UPDATE itemTb SET item.l ts = L T S WHERE item.l ts < L T S);
5 exec(UPDATE cartContentTb SET f lag = T RUE WHERE id = itId AND

cid = cartId AND l ts <= L T S);}

(d) Shadow doBuyConfirmDecre’ (Red) that decrements the stock value.

Figure 7: Pseudocode for the product purchase transaction in TPC-W. For simplicity the pseudocode assumes that the
corresponding shopping cart only contains a single type of item.

identified two key invariants that the system must main-
tain. First, the number of in-stock items can never fall
below zero. Second, the identifiers generated by the sys-
tem (e.g., for items or shopping carts) must be unique.

The first invariant is easy to maintain by labeling
doBuyConfirmDecre’ (Figure 7(d)) and its close variant
doBuyConfirmAddrDecre’ red. We observe that they
are the only shadow operations in the system that de-
crease the stock value, and as such are the only shadow
operations that can possibly invalidate the first invariant.
Note that the companion shadow operation doBuyCon-
firmIncre’ (Figure 7(c)) increases the stock level, and
can never drive the stock count below zero, so it can be
blue.

The second invariant is more subtle. TPC-W gener-
ates IDs for objects (e.g., shopping carts, items, etc.)
as they are created by the system. These IDs are used
as keys for item lookups and consequently must them-
selves be unique. To preserve this invariant, we have to
label many shadow operations red. This problem is well-
known in database replication [6] and was circumvented
by modifying the ID generation code, so that IDs become
a pair

〈

appproxy id , seqnumber
〉

, which makes these

operations trivially blue.

7.2 RUBiS
RUBiS [11] emulates an online auction website mod-

eled after eBay [1]. RUBiS defines a set of 26 requests
that users can issue ranging from selling, browsing for,
bidding on, or buying items directly, to consulting a
personal profile that lists outstanding auctions and bids.
These 26 user requests are backed by a set of 16 transac-
tions that access the storage backend.

Of these 16 transactions, 11 are read-only, and there-
fore trivially commutative. For the remaining 5 update
transactions, we construct shadow operations to make
them commute, similarly to TPC-W. Each of these trans-
actions leads to between 1 and 3 shadow operations.

Through an analysis of the application logic, we de-
termined three invariants. First, that identifiers assigned
by the system are unique. Second, that nicknames chosen
by users are unique. Third, that item stock cannot fall be-
low zero. Again, we preserve the first invariant using the
global id generation strategy described in §7.1. The sec-
ond and third invariants require both RegisterUser’,
checking if a name submitted by a user was already cho-
sen, and storeBuyNow’, which decreases stock, to be

9



274 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

labeled as red.

7.3 Quoddy
Quoddy [14] is an open source Facebook-like so-

cial networking site. Despite being under development,
Quoddy already implements the most important features
of a social networking site, such as searching for a user,
browsing user profiles, adding friends, posting a mes-
sage, etc. These main features define 13 user requests
corresponding to 15 different transactions. Of these 15
transactions, 11 are read-only transactions, thus requir-
ing trivial no-op shadow operations.

Writing and labeling shadow operations for the 4
remaining transactions in Quoddy was straightforward.
Besides reusing the recipe for unique identifiers, we only
had to handle an automatic conversion of dates to the lo-
cal timezone (performed by default by the database) by
storing dates in UTC in all sites. In the social network we
did not find system invariants to speak of; we found that
all shadow operations could be labeled blue.

7.4 Experience and discussion
Our experience showed that writing shadow opera-

tions is easy; it took us about one week to understand the
code, and implement and label shadow operations for all
applications. We also found that the strategy of generat-
ing a different shadow operation for each distinct execu-
tion path is beneficial for two reasons. First, it leads to
a simple logic for shadow operations that can be based
on operations that are intrinsically commutative, e.g., in-
crement/decrement, insertion/removal. Second, it leads
to a fine-grained classification of operations, with more
execution paths leading to blue operations. Finally, we
found that it was useful in more than one application to
make use of a standard last-writer-wins strategy to make
operations that overwrite part of the state commute.

8 Evaluation
We evaluate Gemini and RedBlue consistency using

microbenchmarks and our three case study applications.
The primary goal of our evaluation is to determine if
RedBlue consistency can improve latency and through-
put in geo-replicated systems.

8.1 Experimental setup
We run experiments on Amazon EC2 using extra

large virtual machine instances located in five sites: US
east (UE), US west (UW), Ireland (IE), Brazil (BR),
and Singapore (SG). Table 3 shows the average round
trip latency and observed bandwidth between every pair
of sites. For experiments with fewer than 5 sites, new
sites are added in the following order: UE, UW, IE, BR,
SG. Unless otherwise noted, users are evenly distributed
across all sites. Each VM has 8 virtual cores and 15GB
of RAM. VMs run Debian 6 (Squeeze) 64 bit, MySQL

UE UW IE BR SG

UE 0.4 ms 85 ms 92 ms 150 ms 252 ms
994 Mbps 164 Mbps 242 Mbps 53 Mbps 86 Mbps

UW 0.3 ms 155 ms 207 ms 181 ms
975 Mbps 84 Mbps 35 Mbps 126 Mbps

IE 0.4 ms 235 ms 350 ms
996 Mbps 54 Mbps 52 Mbps

BR 0.3 ms 380 ms
993 Mbps 65 Mbps

SG 0.3 ms
993 Mbps

Table 3: Average round trip latency and bandwidth be-
tween Amazon sites.
5.5.18, Tomcat 6.0.35, and Sun Java SDK 1.6. Each ex-
perimental run lasts for 10 minutes.

8.2 Microbenchmark
We begin the evaluation with a simple microbench-

mark designed to stress the costs and benefits of parti-
tioning operations into red and blue sets. Each user is-
sues requests accessing a random record from a MySQL
database. Each request maps to a single shadow opera-
tion; we say a request is blue if it maps to a blue shadow
operation and red otherwise. The offered workload is var-
ied by adjusting the number of outstanding requests per
user and the ratio of red and blue requests.

We run the microbenchmark experiments with a
dataset consisting of 10 tables, each initialized with
1,000,000 records; each record has 1 text and 4 integer
attributes. The total size of the dataset is 1.0 GB.
8.2.1 User observed latency

The primary benefit of using Gemini across multiple
sites is the decrease in latency from avoiding the inter-
continental round-trips as much as possible. As a result,
we first explore the impact of RedBlue consistency on
user experienced latency. In the following experiments
each user issues a single outstanding request at a time.

Figure 8(a) shows that the average latency for blue re-
quests is dominated by the latency between the user and
the closest site; as expected, average latency decreases
as additional sites appear close to the user. Figure 8(b)
shows that this trend also holds for red requests. The av-
erage latency and standard deviation, however, are higher
for red requests than for blue requests. To understand this
effect, we plot in Figures 8(c) and 8(d) the CDFs of ob-
served latencies for blue and red requests, respectively,
from the perspective of users located in Singapore. The
observed latency for blue requests tracks closely with the
round-trip latency to the closest site. For red requests, in
the k = 2 through k = 4 site configurations, four requests
from a user in Singapore are processed at the closest site
during the one second in which the closest site holds the
red token; every fifth request must wait k − 1 seconds
for the token to return. In the 5 site configuration, the
local site also becomes a replica of the service and there-
fore a much larger number of requests (more than 300)
can be processed while the local site holds the red token.
This changes the format of the curve, since there is now

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 275

 0

 100

 200

 300

2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(a) Blue request latency for all users as number of sites increases

 0

 1000

 2000

2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(b) Red request latency for all users as number of sites increases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

Pr
ob

ab
ili

ty

Latency (ms)

2-site
3-site
4-site
5-site

(c) Blue latency CDF for Singapore users as number of sites increases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

Pr
ob

ab
ili

ty

Latency (ms)

2-site
3-site
4-site
5-site

(d) Red latency CDF for Singapore users as number of sites increases

Figure 8: (a) and (b) show the average latency and standard deviation for blue and red requests issued by users in
different locales as the number of sites is increased, respectively. (c) and (d) show the CDF of latencies for blue and
red requests issued by users in Singapore as the number of sites is increased, respectively.

a much smaller fraction of requests that need to wait four
seconds for the token to return.

8.2.2 Peak throughput

We now shift our attention to the throughput im-
plications of RedBlue consistency. Figure 9 shows a
throughput-latency graph for a 2 site configuration and
three workloads: 100% blue, 100% red, and a 70%
blue/30% red mix. The different points in each curve
are obtained by increasing the offered workload, which
is achieved by increasing the number of outstanding re-
quests per user. For the mixed workload, users are par-
titioned into blue and red sets responsible for issuing re-
quests of the specified color and the ratio is a result of
this configuration.

The results in Figure 9 show that increasing the ratio
of red requests degrades both latency and throughput. In
particular, the two-fold increase in throughput for the all
blue workload in comparison to the all red workload is a
direct consequence of the coordination (not) required to
process red (blue) requests: while red requests can only
be executed by the site holding the red token to process,
every site may independently process blue requests. The
peak throughput of the mixed workload is proportionally
situated between the two pure workloads.

8.3 Case studies: TPC-W and RUBiS
Our microbenchmark experiments indicate that Red-

Blue consistency instantiated with Gemini offers latency
and throughput benefits in geo-replicated systems with
sufficient blue shadow operations. Next, we evaluate
Gemini using TPC-W and RUBiS.

 0

 20

 40

 60

 0  1000  2000  3000  4000  5000

La
te

nc
y 

(m
s)

Throughput (request/s)

100Blue/0Red
70Blue/30Red
0Blue/100Red

Figure 9: Throughput versus latency graph for a 2 site
configuration with varying red-blue workload mixes.

8.3.1 Configuration and workloads

In all case studies experiments a single site configu-
ration corresponds to the original unmodified code with
users distributed amongst all five sites. Two through five
site configurations correspond to the modified RedBlue
consistent systems running on top of Gemini. When nec-
essary, we modified the provided user emulators so that
each user maintains k outstanding requests and issues the
next request as soon as a response is received.

TPC-W. TPC-W [7] defines three workload mixes dif-
ferentiated by the percentage of client requests related to
making purchases: browsing (5%), shopping (20%), or-
dering (50%). The dataset is generated with the following
TPC-W parameters: 50 EBS and 10,000 items.

RUBiS. RUBiS defines two workload mixes: browsing,
exclusively comprised of read-only interactions, and bid-
ding, where 15% of user interactions are updates. We
evaluate only the bidding mix. The RUBiS database con-
tains 33,000 items for sale, 1 million users, 500,000 old
items and is 2.1 GB in total.

11



276 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(a) TPC-W doCart

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(b) TPC-W doBuyConfirm

 0

 500

 1000

1-site 2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(c) RUBiS StoreBid

 0

 2000

 4000

1-site 2-site 3-site 4-site 5-site

La
te

nc
y 

(m
s)

US-East
US-West

Ireland
Brazil

Singapore

(d) RUBiS StoreBuyNow

Figure 10: Average latency for selected TPC-W and RUBiS user interactions. Shadow operations for doCart and
StoreBid are always blue; for doBuyConfirm and StoreBuyNow they are red 98% and 99% of the time respectively.

Blue Red read-only update

TPC-W shop 99.2 0.8 85 15
TPC-W browse 99.5 0.5 96 4
TPC-W order 93.6 6.4 63 37
RUBiS bid 97.4 2.6 85 15

Table 4: Proportion of blue and red shadow operations
and read-only and update requests in TPC-W and RUBiS
workloads at runtime.

8.3.2 Prevalence of blue and red shadow operations
Table 4 shows the distribution of blue and red shadow

operations during execution of the TPC-W and RUBiS
workloads. The results show that TPC-W and RUBiS ex-
hibit sufficient blue shadow operations for it to be likely
that we can exploit the potential of RedBlue consistency.

8.3.3 User observed latency
We first explore the per request latency for a set of

exemplar red and blue requests from TPC-W and RUBiS.
For this round of experiments, each site hosts a single
user issuing one outstanding request to the closest site.

From TPC-W we select doBuyConfirm (discussed in
detail in §7.1) as an exemplar for red requests and doCart
(responsible for adding/removing items to/from a shop-
ping cart) as an exemplar for blue requests; from RUBiS
we identify StoreBuyNow (responsible for purchasing an
item at the buyout price) as an exemplar for red requests
and StoreBid (responsible for placing a bid on an item)
as an exemplar for blue requests. Note that doBuyCon-
firm and StoreBid can produce either red or blue shadow
operations; in our experience they produce red shadow
operations 98% and 99% of the time respectively.

Figures 10(a) and 10(c) show that the latency trends
for blue shadow operations are consistent with the results
from the microbenchmark—observed latency is directly

proportional to the latency to the closest site. The raw la-
tency values are higher than the round-trip time from the
user to the nearest site because processing each request
involves sending one or more images to the user.

For red requests, Figures 10(b) and 10(d) show that
llatency and standard deviation both increase with the
number of sites. The increase in standard deviation is an
expected side effect of the simple scheme that Gemini
uses to exchange the red token and is consistent with the
microbenchmark results. Similarly, the increase in aver-
age latency is due to the fact that the time for a token ro-
tation increases, together with the fact that red requests
are not frequent enough that several cannot be slipped
in during the same token holding interval. We note that
the token passing scheme used by Gemini is simple and
additional work is needed to identify an optimal strategy
for regulating red shadow operations.
8.3.4 Peak throughput

We now shift our attention to the throughput afforded
by our RedBlue consistent versions of TPC-W and RU-
BiS, and how it scales with the number of sites. For
these experiments we vary the workload by increasing
the number of outstanding requests maintained by each
user. Throughput is measured according to interactions
per second, a metric defined by TPC-W to correspond to
user requests per second.

Figure 11 shows throughput and latency for the TPC-
W shopping mix and RUBiS bidding mix as we vary the
number of sites. In both systems, increasing the number
of sites increases peak throughput and decreases aver-
age latency. The decreased latency results from situating
users closer to the site processing their requests. The in-
crease in throughput is due to processing blue and read-
only operations at multiple sites, given that processing

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 277

 0

 40

 80

 120

 160

 0  400  800  1200  1600

La
te

nc
y 

(m
s)

Throughput (interaction/s)

1-site 2-site 3-site 4-site 5-site

(a) TPC-W shopping mix

 0

 40

 80

 120

 160

 0  400  800  1200  1600

La
te

nc
y 

(m
s)

Throughput (interaction/s)

1-site 2-site 3-site 4-site 5-site

(b) RUBiS bidding mix

Figure 11: Throughput versus latency for the TPC-W shopping mix and RUBiS bidding mix. The 1-site line corre-
sponds to the original code; the 2/3/4/5-site lines correspond to the RedBlue consistent system variants.

 0

 40

 80

 120

 160

 200

 0  400  800  1200  1600

La
te

nc
y 

(m
s)

Throughput (interaction/s)

Browsing mix
Shopping mix
Ordering mix

Figure 12: TPC-W: Throughput vs. latency graph for
TPC-W with Gemini spanning two sites when running
the three workload mixes.
their side effects is relatively inexpensive. The speedup
for a 5 site Gemini deployment of TPC-W is 3.7x against
the original code for the shopping mix; the 5 site Gemini
deployment of RUBiS shows a speedup of 2.3x.

Figure 12 shows the throughput and latency graph for
a two site configuration running the TPC-W browsing,
shopping, and ordering mixes. As expected, the browsing
mix, which has the highest percentage of blue and read-
only requests, exhibits the highest peak throughput, and
the ordering mix, with the lowest percentage of blue and
read-only requests, exhibits the lowest peak throughput.

8.4 Case study: Quoddy
Quoddy differs from TPC-W and RUBiS in one cru-

cial way: it has no red shadow operations. We use Quod-
dy to show the full power of RedBlue geo-replication.

Quoddy does not define a benchmark workload for
testing purposes. Thus we design a social networking
workload generator based on the measurement study of
Benevenuto et al. [4]. In this workload, 85% of the in-
teractions are read-only page loads and 15% of the inter-
actions include updates, e.g., request friendship, confirm
friendship, or update status. Our test database contains
200,000 users and is 2.6 GB in total size.

In a departure from previous experiments, we run
only two configurations. The first is the original Quoddy
code in a single site. The second is our Gemini based
RedBlue consistent version replicated across 5 sites. In
both configurations, users are distributed in all 5 regions.

Figure 13 shows the CDF of user experienced laten-
cies for the addFriend operation. All Gemini users expe-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

Pr
ob

ab
ili

ty
 (%

)

Latency (ms)

UE (1-site)
UW (1-site)

IE (1-site)
BR (1-site)
SG (1-site)

Gemini (5-site)

Figure 13: User latencies CDF for the addFriend request
in single site Quoddy and 5-site Gemini deployments.

TPC-W shopping RUBiS biding
Original Gemini Original Gemini

Thput. (inter/s) 409 386 450 370
Avg. latency 14 ms 15 ms 6 ms 7 ms

Table 5: Performance comparison between the original
code and the Gemini version for both TPC-W and RUBiS
within a single site.

rience latency comparable to the local users in the orig-
inal Quoddy deployment; a dramatic improvement for
users not based in the US East region. The significantly
higher latencies for remote regions are associated with
the images and javascripts that Quoddy distributes as part
of processing the addFriend request.

8.5 Gemini overheads
Gemini is a middleware layer that interposes between

the applications that leverage RedBlue consistency and a
set of database systems where data is stored. We evaluate
the performance overhead imposed by our prototype by
comparing the performance of a single site Gemini de-
ployment with the unmodified TPC-W and RUBiS sys-
tems directly accessing a database. For this experiment
we locate all users in the same site as the service.

Table 5 presents the peak throughput and average
latency for the TPC-W shopping and RUBiS bidding
mixes. The peak throughput of a single site Gemini de-
ployment is between 82% and 94% of the original and
Gemini increases latency by 1ms per request.

9 Conclusion
In this paper, we presented a principled approach to

building geo-replicated systems that are fast as possible

13



278 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

and consistent when needed. Our approach is based on
our novel notion of RedBlue consistency allowing both
strongly consistent (red) operations and eventually con-
sistent (blue) operations to coexist, a concept of shadow
operation enabling the maximum usage of blue opera-
tions, and a labeling methodology for precisely deter-
mining which operations to be assigned which consis-
tency level. Experimental results from running bench-
marks with our system Gemini show that RedBlue con-
sistency significantly improves the performance of geo-
replicated systems.

Acknowledgments
We sincerely thank Edmund Wong, Rose Hoberman,

Lorenzo Alvisi, our shepherd Jinyang Li, and the anony-
mous reviewers for their insightful comments and sug-
gestions. The research of R. Rodrigues has received
funding from the European Research Council under an
ERC starting grant. J. Gehrke was supported by the Na-
tional Science Foundation under Grant IIS-1012593, the
iAd Project funded by the Research Council of Nor-
way, a gift from amazon.com, and a Humboldt Research
Award from the Alexander von Humboldt Foundation. N.
Preguiça is supported by FCT/MCT projects PEst-OE/E-
EI/UI0527/2011 and PTDC/EIA-EIA/108963/2008.

References
[1] Ebay website. http://www.ebay.com/, 2012.
[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. Hutto. Causal

memory: Definitions, implementation and programming. Tech-
nical report, Georgia Institute of Technology, 1994.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services.
In CIDR, 2011.

[4] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Charac-
terizing user behavior in online social networks. In IMC, 2009.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
control and recovery in database systems. 1987.

[6] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based
database replication: the gaps between theory and practice. In
SIGMOD, 2008.

[7] T. consortium. Tpc benchmark-w specification v. 1.8. http:
//www.tpc.org/tpcw/spec/tpcw_v1.8.pdf, 2002.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. In VLDB,
2008.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available key-value store. In
SOSP, 2007.

[10] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In SIGMOD, 1989.

[11] C. Emmanuel and M. Julie. Rubis: Rice university bidding sys-
tem. http://rubis.ow2.org/, 2009.

[12] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
Sporc: group collaboration using untrusted cloud resources. In
OSDI, 2010.

[13] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A
reliable multicast framework for light-weight sessions and appli-
cation level framing. IEEE/ACM Trans. Netw., 1997.

[14] Fogbeam Labs. Quoddy code repository, 2012. http://code.
google.com/p/quoddy/.

[15] J. Gray. The transaction concept: Virtues and limitations. In
VLDB, 1981.

[16] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD, 1996.

[17] M. P. Herlihy and J. M. Wing. Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang. Syst.,
1990.

[18] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consis-
tency rationing in the cloud: pay only when it matters. In VLDB,
2009.

[19] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM Trans. Comput. Syst.,
1992.

[20] L. Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 1978.

[21] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 1998.

[22] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Ro-
drigues. Making geo-replicated systems fast as possible, con-
sistent when necessary. Technical report, MPI-SWS. http:
//www.mpi-sws.org/chengli/rbTR.pdf, 2012.

[23] H. Li. Practical consistency tradeoffs. In PODC, 2012.
[24] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted

data repository (sundr). In OSDI, 2004.
[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

Don’t settle for eventual: scalable causal consistency for wide-
area storage with cops. In SOSP, 2011.

[26] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: cloud storage with minimal trust. In
OSDI, 2010.

[27] D. Mazières and D. Shasha. Building secure file systems out of
byzantine storage. In PODC, 2002.

[28] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and
A. J. Demers. Flexible update propagation for weakly consistent
replication. In SOSP, 1997.

[29] A. Rito da Silva et al. Project fenix applications and information
systems of instituto superior tcnico. https://fenix-cvs.ist.
utl.pt, 2012.

[30] Y. Saito and M. Shapiro. Optimistic replication. ACM Comput.
Surv., 2005.

[31] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. Surv., 1990.

[32] E. Schurman and J. Brutlag. Performance relatedchanges and
their user impact. Presented at velocity web performance and op-
erations conference, 2009.

[33] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In SSS, 2011.

[34] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Mani-
atis. Zeno: eventually consistent byzantine-fault tolerance. In
NSDI, 2009.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, 2011.

[36] D. Stocker. Delta transactions. http://collectiveweb.
wordpress.com/2010/03/01/delta-transactions/, 2010.

[37] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer,
and B. W. Welch. Session guarantees for weakly consistent repli-
cated data. In PDIS, 1994.

[38] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In SOSP, 1995.

[39] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. Commun. ACM, 1996.

[40] W. E. Weihl. Commutativity-based concurrency control for ab-
stract data types. IEEE Trans. Comput., 1988.

[41] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In OSDI, 2000.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 279

SymDrive: Testing Drivers without Devices

Matthew J. Renzelmann, Asim Kadav and Michael M. Swift
Computer Sciences Department, University of Wisconsin–Madison

{mjr,kadav,swift}@cs.wisc.edu

Abstract
Device-driver development and testing is a complex and
error-prone undertaking. For example, testing error-
handling code requires simulating faulty inputs from the
device. A single driver may support dozens of devices,
and a developer may not have access to any of them. Con-
sequently, many Linux driver patches include the com-
ment “compile tested only.”

SymDrive is a system for testing Linux and FreeBSD
drivers without their devices present. The system uses
symbolic execution to remove the need for hardware, and
extends past tools with three new features. First, Sym-
Drive uses static-analysis and source-to-source transfor-
mation to greatly reduce the effort of testing a new driver.
Second, SymDrive checkers are ordinary C code and ex-
ecute in the kernel, where they have full access to kernel
and driver state. Finally, SymDrive provides an execution-
tracing tool to identify how a patch changes I/O to the
device and to compare device-driver implementations. In
applying SymDrive to 21 Linux drivers and 5 FreeBSD
drivers, we found 39 bugs.

1 Introduction
Device drivers are critical to operating-system reliability,
yet are difficult to test and debug. They run in kernel
mode, which prohibits the use of many runtime program-
analysis tools available for user-mode code, such as Val-
grind [34]. Their need for hardware can prevent testing
altogether: over two dozen driver Linux and FreeBSD
patches include the comment “compile tested only,” in-
dicating that the developer was unable or unwilling to run
the driver. Even with hardware, it is difficult to test error-
handling code that runs in response to a device error or
malfunction. Thorough testing of failure-handling code
is time consuming and requires exhaustive fault-injection
tests with a range of faulty inputs.

Complicating matters, a single driver may support
dozens of devices with different code paths. For exam-
ple, one of the 18 supported medium access controllers
in the E1000 network driver requires an additional EEP-
ROM read operation while configuring flow-control and
link settings. Testing error handling in this driver requires
the specific device, and consideration of its specific failure

modes.
Static analysis tools such as Coverity [17] and Mi-

crosoft’s Static Driver Verifier [31] can find many bugs
quickly. However, these tools are tuned for fast, rela-
tively shallow analysis of large amounts of code and there-
fore only approximate the behavior of some code features,
such as pointers. Furthermore, they have difficulty with
bugs that span multiple invocations of the driver. Hence,
static analysis misses large aspects of driver behavior.

We address these challenges using symbolic execution
to test device drivers. This approach executes driver code
on all possible device inputs, allows driver code to execute
without the device present, and provides more thorough
coverage of driver code, including error handling code.
DDT [26] and S2E [14, 15] previously applied symbolic
execution to driver testing, but these systems require sub-
stantial developer effort to test new classes of drivers and,
in many cases, even specific new drivers.

This paper presents SymDrive, a system to test Linux
and FreeBSD drivers without devices. SymDrive uses
static analysis to identify key features of the driver code,
such as entry-point functions and loops. With this analy-
sis, SymDrive produces an instrumented driver with call-
outs to test code that allows many drivers to be tested with
no modifications. The remaining drivers require a few
annotations to assist symbolic execution at locations that
SymDrive identifies.

We designed SymDrive for three purposes. First, a
driver developer can use SymDrive to test driver patches
by thoroughly executing all branches affected by the code
changes. Second, a developer can use SymDrive as a de-
bugging tool to compare the behavior of a functioning
driver against a non-functioning driver. Third, SymDrive
can serve as a general-purpose bug-finding tool and per-
form broad testing of many drivers with little developer
input.

SymDrive is built with the S2E system by Chipounov
et al. [14, 15] , which can make any data within a vir-
tual machine symbolic and explore its effect. SymDrive
makes device inputs to the driver symbolic, thereby elim-
inating the need for the device and allowing execution on
the complete range of device inputs. In addition, S2E en-
ables SymDrive to further enhance code coverage by mak-



280 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

ing other inputs to the driver symbolic, such as data from
the applications and the kernel. When it detects a failure,
either through an invalid operation or an explicit check,
SymDrive reports the failure location and inputs that trig-
ger the failure.

SymDrive extends S2E with three major components.
First, SymDrive uses SymGen, a static-analysis and code
transformation tool, to analyze and instrument driver code
before testing. SymGen automatically performs nearly
all the tasks previous systems left for developers, such as
identifying the driver/kernel interface, and also provides
hints to S2E to speed testing. Consequently, little effort
is needed to apply SymDrive to additional drivers, driver
classes, or buses. As evidence, we have applied SymDrive
to eleven classes of drivers on five buses in two operating
systems.

Second, SymDrive provides a test framework that al-
lows checkers that validate driver behavior to be writ-
ten as ordinary C code and execute in the kernel. These
checkers have access to kernel state and the parameters
and results of calls between the driver and the kernel. A
checker can make pre- and post-condition assertions over
driver behavior, and raise an error if the driver misbe-
haves. Using bugs and kernel programming requirements
culled from code, documentation, and mailing lists, we
wrote 49 checkers comprising 564 lines of code to en-
force rules that maintainers commonly check during code
reviews, such as matched allocation/free calls across entry
points, no memory leaks, and proper use of kernel APIs.

Finally, SymDrive provides an execution-tracing mech-
anism for logging the path of driver execution, including
the instruction pointer and stack trace of every I/O op-
eration. These traces can be used to compare execution
across different driver revisions and implementations. For
example, a developer can debug where a buggy driver di-
verges in behavior from a previous working one. We have
also used this facility to compare driver implementations
across operating systems.

We demonstrate SymDrive’s value by applying it to 26
drivers, and find 39 bugs, including two security vulner-
abilities. We also find two driver/device interface viola-
tions when comparing Linux and FreeBSD drivers. To the
best of our knowledge, no symbolic execution tool has ex-
amined as many drivers. In addition, SymDrive achieved
over 80% code coverage in most drivers, and is largely
limited by the ability of user-mode tests to invoke driver
entry points. When we use SymDrive to execute code
changed by driver patches, SymDrive achieves over 95%
coverage on 12 patches in 3 drivers.

2 Motivation
The goal of our work is to improve driver quality through
thorough testing and validation. To be successful, Sym-
Drive must demonstrate (i) usefulness, (ii) simplicity, and

(iii) efficiency. First, SymDrive must be able to find bugs
that are hard to find using other mechanisms, such as nor-
mal testing or static analysis tools. Second, SymDrive
must require low developer effort to test a new driver and
therefore support many device classes, buses, and operat-
ing systems. Finally, SymDrive must be fast enough to
apply to every patch.

2.1 Symbolic Execution

SymDrive uses symbolic execution to execute device-
driver code without the device being present. Symbolic
execution allows a program’s input to be replaced with a
symbolic value, which represents all possible values the
data may have. A symbolic-execution engine runs the
code and tracks which values are symbolic and which
have concrete (i.e., fully defined) values, such as initial-
ized variables. When the program compares a symbolic
value, the engine forks execution into multiple paths, one
for each outcome of the comparison. It then executes each
path with the symbolic value constrained by the chosen
outcome of the comparison. For example, the predicate
x > 5 forks execution by copying the running program. In
one copy, the code executes the path where x ≤ 5 and the
other executes the path where x > 5. Subsequent com-
parisons can further constrain a value. In places where
specific values are needed, such as printing a value, the
engine can concretize data by producing a single value
that satisfies all constraints over the data.

Symbolic execution detects bugs either through ille-
gal operations, such as dereferencing a null pointer, or
through explicit assertions over behavior, and can show
the state of the executing path at the failure site.

Symbolic execution with S2E. SymDrive is built on a
modified version of the S2E symbolic execution frame-
work. S2E executes a complete virtual machine as the
program under test. Thus, symbolic data can be used any-
where in the operating system, including drivers and ap-
plications. S2E is a virtual machine monitor (VMM) that
tracks the use of symbolic data within an executing virtual
machine. The VMM tracks each executing path within the
VM, and schedules CPU time between paths. Each path
is treated like a thread, and the scheduler selects which
path to execute and when to switch execution to a differ-
ent path.

S2E supports plug-ins, which are modules loaded into
the VMM that can be invoked to record information or to
modify execution. SymDrive uses plugins to implement
symbolic hardware, path scheduling, and code-coverage
monitoring.

2.2 Why Symbolic Execution?

Symbolic execution is often used to achieve high cover-
age of code by testing on all possible inputs. For device
drivers, symbolic execution provides an additional bene-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 281

fit: executing without the device. Unlike most code, driver
code can not be loaded and executed without its device
present. Furthermore, it is difficult to force the device to
generate specific inputs, which makes it difficult to thor-
oughly test error handling.

Symbolic execution eliminates the hardware require-
ment, because it can use symbolic data for all device in-
put. An alternate approach is to code a software model
of the device [33], which allows more accurate testing but
greatly increases the effort required. In contrast, symbolic
execution uses the driver itself as a model of device be-
havior: any device behavior used by the driver will be
exposed as symbolic data.

Symbolic execution may provide inputs that correctly
functioning devices may not. However, because hardware
can provide unexpected or faulty driver input [25], this un-
constrained device behavior is reasonable: drivers should
not crash simply because the device provided an errant
value.

In comparison to static analysis tools, symbolic execu-
tion provides several benefits. First, it uses existing ker-
nel code as a model of kernel behavior rather than requir-
ing a programmer-written model. Second, because driver
and kernel code actually execute, it can reuse kernel de-
bugging facilities, such as deadlock detection, and exist-
ing test suites. Thus, many bugs can be found without
any explicit description of correct driver behavior. Third,
symbolic execution can invoke a sequence of driver entry
points, which allows it to find bugs that span invocations,
such as resource leaks. In contrast, most static analysis
tools concentrate on bugs occurring within a single entry
point.

2.3 Why not Symbolic Execution?

While symbolic execution has previously been applied to
drivers with DDT and S2E, there remain open problems
that preclude its widespread use:

Efficiency. The engine creates a new path for every
comparison, and branchy code may create hundreds or
thousands of paths, called path explosion. This explosion
can be reduced by distinguishing and prioritizing paths
that complete successfully. This approach enables execut-
ing deeper into the driver: if driver initialization fails, the
operating system could not otherwise invoke most driver
entry points. S2E and DDT require complex, manually
written annotations to provide this information. These an-
notations depend on kernel function names and behavioral
details, which are difficult for programmers to provide.
For example, the annotations often examine kernel func-
tion parameters, and modify the memory of the current
path on the basis of the parameters. The path-scheduling
strategies in DDT and S2E favor exploring new code, but
may not execute far enough down a path to test all func-
tionality.

Simplicity. Existing symbolic testing tools require ex-
tensive developer effort to test a single class of drivers,
plus additional effort to test each individual driver.
For example, supporting Windows NDIS drivers in
S2E requires over 1,000 lines of code specific to this
driver class. For example, the S2E wrapper for the
NdisReadConfiguration Windows function consists
of code to (a) read all of the call’s parameters, which is
not trivial because the code is running outside the ker-
nel, (b) fork additional paths for different possible sym-
bolic return codes, (c) bypass the call to the function
along these additional paths, and (d) register a separate
wrapper function, of comparable complexity, to execute
when this call returns. Since developers need to imple-
ment similarly complex code for many other functions in
the driver/kernel interface, testing many drivers becomes
impractical in these systems. Thus, these tools have only
been applied to a few driver classes and drivers. Expand-
ing testing to many more drivers requires new techniques
to automate the testing effort.

Specification. Finally, symbolic execution by itself
does not provide any specification of correct behavior: a
“hello world” driver does nothing wrong, nor does it do
anything right, such as registering a device with the ker-
nel. In existing tools, tests must be coded like debugger
extensions, with calls to read and write remote addresses,
rather than as normal test code. Allowing developers to
write tests in the familiar kernel environment simplifies
the specification of correct behavior.

Thus, our work focuses on improving the state of the art
to greatly simplify the use of symbolic execution for test-
ing, and to broaden its applicability to almost any driver
in any class on any bus.

3 Design
The SymDrive architecture focuses on thorough testing
of drivers to ensure the code does not incorrectly use the
kernel/driver interface, crash, or hang. We target test sit-
uations where the driver code is available, and use that
code to simplify testing with a combination of symbolic
execution, static code analysis and transformation, and an
extensible test frameworkexecuting in the kernel.

The design of SymDrive is shown in Figure 1. The OS
kernel and driver under test, as well as user-mode test pro-
grams, execute in a virtual machine. The symbolic ex-
ecution engine provides symbolic devices for the driver.
SymDrive provides stubs that invoke checkers on every
call into or out of the driver. A test framework tracks exe-
cution state and passes information to plugins running in
the engine to speed testing and improve test coverage.

During the development of SymDrive, we considered
a more limited design in which symbolic execution was
limited to driver code. In this model, exploring multiple
paths through the kernel was not possible; callbacks to



282 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Symbolic  
Device Plugins

Symbolic Execution Engine (S2E)

Virtual 
Machine

Test 
Framework 
+ Support 

Library

OSCheckers
Stubs

Transformed 
device driver

Test Programs

Figure 1: The SymDrive architecture. A developer produces
the transformed driver with SymGen and can write checkers
and test programs to verify correctness.

Component LoC
Changes to S2E 1,954
SymGen 2,681
Test framework 3,002
Checkers 564
Support Library 1,579
Linux kernel changes 153
FreeBSD kernel changes 81

Table 1: Implementation size of SymDrive.

the kernel instead required a model of kernel behavior to
allow them to execute on multiple branches. After imple-
menting a prototype of this design, we concluded that full-
system symbolic execution is preferable because it greatly
reduces the effort to test drivers by using real kernel code
rather than a kernel model.

We implemented SymDrive for Linux and FreeBSD, as
these kernels provide a large number of drivers to test.
Only the test framework code running in the kernel is spe-
cialized to the OS. We made small, conditionally com-
piled changes to both kernels to print failures and stack
traces to the S2E log and to register the module under test
with S2E. The breakdown of SymDrive code is shown in
Table 1.

SymDrive consists of five components: (i) a modified
version of the S2E symbolic-execution engine, which con-
sists of a SymDrive-specific plugin plus changes to S2E;
(ii) symbolic devices to provide symbolic hardware in-
put to the driver; (iii) a test framework executing within
the kernel that guides symbolic execution; (iv) the Sym-
Gen static-analysis and code transformation tool to ana-
lyze and prepare drivers for testing; and (v) a set of OS-
specific checkers that interpose on the driver/kernel inter-
face for verifying and validating driver behavior.

3.1 Virtual Machine

SymDrive uses S2E [15] version 1.1-10.09.2011, itself
based on QEMU [7] and KLEE [10], for symbolic ex-
ecution. S2E provides the execution environment, path
forking, and constraint solving capability necessary for
symbolic execution. All driver and kernel code, including

the test framework, executes within an S2E VM. Changes
to S2E fall into two categories: (i) improved support for
symbolic hardware, and (ii) the SymDrive path-selection
mechanism, which is an S2E plugin.

SymDrive uses invalid x86 opcodes for communication
with the VMM and S2E plugins to provide additional con-
trol over the executing code. We augment S2E with new
opcodes for the test framework that pass information into
our extensions. These opcodes are inserted into driver
code by SymGen and also invoked directly by the test
framework.

The purpose of the opcodes is to communicate source-
level information to the SymDrive plugins, which uses the
information to guide the driver’s execution. The opcodes
(i) control whether memory regions are symbolic, as when
mapping data for DMA; (ii) influence path scheduling by
adjusting priority, search strategy, or killing other paths;
and (iii) support tracing by turning it on/off and providing
stack information.

3.2 Symbolic Devices

Drivers interact with devices according to well-defined,
narrow interfaces. For PCI device drivers, this interface is
comprised of I/O memory accessed via normal loads and
stores, port I/O instructions, bus operations, DMA mem-
ory, and interrupts. Drivers using other buses, such as SPI
and I2C, use functions provided by the bus for similar op-
erations.

SymDrive provides a symbolic device for the driver un-
der test, while at the same time emulating the other de-
vices in the system. A symbolic device provides three
key behaviors. First, it can be discovered, so the kernel
loads the appropriate driver. Second, it provides methods
to read from and write to the device and return symbolic
data from reads. Third, it supports interrupts and DMA, if
needed. SymDrive currently supports 5 buses on Linux:
PCI (and its variants), I2C (including SMBus), Serial Pe-
ripheral Interface (SPI), General Purpose I/O (GPIO), and
Platform;1 and the PCI bus on FreeBSD.

Device Discovery. When possible, SymDrive creates
symbolic devices in the S2E virtual machine and lets ex-
isting bus code discover the new device and load the ap-
propriate driver. For some buses, such as I2C, the kernel
or another driver normally creates a statically configured
device object during initialization. For such devices, we
created a small kernel module, consisting of 715 lines of
code, that creates the desired symbolic device.

SymDrive can make the device configuration space
symbolic after loading the driver by returning sym-
bolic data from PCI bus functions with the test frame-

1The “platform bus” is a Linux-specific term that encompasses many
embedded devices. Linux’s ARM implementation, for example, sup-
ports a variety of SoCs, each with its own set of integrated devices. The
drivers for these devices are often of the “platform” type.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 283

work(similar to S2E’s NDIS driver support). PCI devices
use this region of I/O memory for plug-and-play informa-
tion, such as the vendor and device identifiers. If this data
is symbolic, the device ID will be symbolic and cause the
driver to execute different paths for each of its supported
devices. Other buses have similar configuration data, such
as “platform data” on the SPI bus. A developer can copy
this data from the kernel source and provide it when cre-
ating the device object, or make it symbolic for additional
code coverage.

Symbolic I/O. Most Linux and FreeBSD drivers do
a mix of programmed I/O and DMA. SymDrive sup-
ports two forms of programmed I/O. For drivers that per-
form I/O through hardware instructions, such as inb, or
through memory-mapped I/O, SymDrive directs S2E to
ignore write operations, because they do not return val-
ues that influence driver execution, and to return symbolic
data from reads. The test framework overrides bus I/O
functions, such as those used in I2C drivers, to function
analogously.

Symbolic Interrupts. After a driver registers an inter-
rupt handler, the test framework invokes the interrupt han-
dler on every transition from the driver into the kernel.
This model represents a trade-off between realism and
simplicity: it ensures the interrupt handler is called of-
ten enough to keep the driver executing successfully, but
may generate spurious interrupts when the driver does not
expect them.

Symbolic DMA. When a driver invokes a DMA map-
ping function, such as dma alloc coherent, the test
framework uses a new S2E opcode to make the memory
act like a memory-mapped I/O region: each read returns a
new symbolic value and writes have no effect. Discarding
writes to DMA memory reflects the ability of the device
to write the data via DMA at any time. The driver should
not assume that data written here will be available sub-
sequently. When the driver unmaps the memory, the test
framework directs S2E to revert the region to normal sym-
bolic data, so writes are seen by subsequent reads.

3.3 Test Framework

The test framework is a kernel module executing with
the virtual machine that assists symbolic execution and
executes checkers. SymDrive relies on the test frame-
work to guide and monitor symbolic execution in three
ways. First, the test framework implements policy regard-
ing which paths to prioritize or deprioritize. Second, the
test framework may inject additional symbolic data to in-
crease code coverage. As mentioned above, it implements
symbolic I/O interfaces for some device classes. Finally,
it provides the VMM with a stack trace for execution trac-
ing, which produces a trace of the driver’s I/O operations.

The test framework supports several load-time param-

eters for controlling its behavior. When loading the test
framework with insmod or FreeBSD’s kldload, de-
velopers can direct the test framework to enable high-
coverage mode (described in Section 3.3.1), tracing, or
a specific symbolic device. To configure the device, de-
velopers pass the device’s I/O capabilities and name as
parameters. Thus, developers can script the creation of
symbolic devices to automate testing.

SymDrive has to address two conflicting goals in test-
ing drivers: (i) executing as far as possible along a path to
complete initialization and expose the rest of the driver’s
functionality; and (ii) executing as much code as possible
within each function for thoroughness.

3.3.1 Reaching Deeply

A key challenge in fully testing drivers is symbolically
executing branch-heavy code, such as loops and initializa-
tion code that probes hardware. SymDrive relies on two
techniques to limit path explosion in these cases: favor-
success scheduling and loop elision. These techniques al-
low developers to execute further into a driver, and test
functionality that is only available after initialization.

Favor-success scheduling. Executing past driver ini-
tialization is difficult because the code often has many
conditionals to support multiple chips and configurations.
Initializing a sound driver, for example, may execute more
than 1,000 branches on hardware-specific details. Each
branch creates additional paths to explore.

SymDrive mitigates this problem with a favor-success
path-selection algorithm that prioritizes successfully exe-
cuting paths, making it a form of best-first search. Noti-
fications from the test framework increase the priority of
the current path at every successful function return, both
within the driver and at the driver/kernel interface. Higher
priority causes the current path to be explored further be-
fore switching to another path. This strategy works best
for small functions, where a successful path through the
function is short.

At every function exit, the test framework notifies S2E
of whether the function completed successfully, which en-
ables the VMM to prioritize successful paths to facilitate
deeper exploration of code. The test framework deter-
mines success based on the function’s return value. For
functions returning integers, the test framework detects
success when the function returns a value other than an
errno, which are standard Linux and FreeBSD error val-
ues. On success, the test framework will notify the VMM
to prioritize the current path. If the developer wishes to
prioritize paths using another heuristic, he/she can add an
annotation prioritizing any piece of code. We use this
approach in some network drivers to select paths where
the carrier is on, which enables execution of the driver’s
packet transmission code.

In order to focus symbolic execution on the driver, the



284 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

test framework prunes paths when control returns to the
kernel successfully. It kills all other paths still executing
in the driver and uses an opcode to concretize all data in
the virtual machine, so the kernel executes on real values
and will not fork new paths. This ensures that a single
path runs in the kernel and allows developers to interact
with the system and run user-mode tests.

Loop elision. Loops are challenging for symbolic exe-
cution because each iteration may fork new paths. S2E
provides an “EdgeKiller” plugin that a developer may use
to terminate complex loops early, but requires developers
to identify each loop’s offset in the driver binary [15] and
hence incur substantial developer effort.

SymDrive addresses loops explicitly by prioritizing
paths that exit the loop quickly. Suppose an execution
path A enters a loop, executes it once, and during this it-
eration more paths are created. If path A does not exit
the loop after one iteration, SymDrive executes it for a
second iteration and, unless it breaks out early, depriori-
tizes the second iteration because it appears stuck in the
loop. SymDrive then selects some other path B that path
A forked, and executes it. SymDrive repeats this process
until it finds a path that exits the loop. If no paths exit
the loop promptly, SymDrive selects some path arbitrarily
and prioritizes it on each subsequent iteration, in the hope
that it will exit the loop eventually. If this path still does
not exit the loop within 20 iterations, SymDrive prints a
warning about excessive path forking as there is no evi-
dent way to execute the loop efficiently without manual
annotation.

This approach executes hardware polling loops effi-
ciently and automatically, and warns developers when
loops cause performance problems. However, this ap-
proach may fail if a loop is present in uninstrumented ker-
nel code. It can also result in worse coverage of code that
executes only if a polling loop times out. Moreover, loops
that produce a value, such as a checksum calculation,
cannot exit early without stopping the driver’s progress.
However, we have not found these problems to be signifi-
cant.

SymDrive’s approach extends the EdgeKiller plugin in
two directions. First, it allows developers to annotate
driver source rather than having to parse compiled code.
Second, source annotations persist across driver revisions,
whereas the binary offsets used in the EdgeKiller plugin
need updating each time the driver changes.

Annotating code manually to improve its execution per-
formance does reduce SymDrive’s ability to find bugs
in that code. Wherever annotations were needed in the
drivers we examined, we strove to write them in such a
way as to execute the problematic loop at least once before
terminating early. For example, after a checksum loop,
we would add a line to return a symbolic checksum value,
which could then be compared against a correct one.

3.3.2 Increasing Coverage

SymDrive provides a high-coverage mode for testing spe-
cific functions, for example those modified by a patch.
This mode changes the path-prioritization policy and the
behavior of kernel functions. When the developer loads
the test framework module, he/she can specify any driver
function to execute in this mode.

When execution enters the specified function, the test
framework notifies S2E to favor unexecuted code (the de-
fault S2E policy) rather than favoring successful paths.
The test framework terminates all paths that return to the
kernel in order to focus execution within the driver. In ad-
dition, when the driver invokes a kernel function, the test
framework makes the return value symbolic. This mode is
similar to the local consistency mode in S2E [15], but re-
quires no developer-provided annotations or plugins, and
supports all kernel functions that return standard error val-
ues. For example, kmalloc returns a symbolic value con-
strained to be either NULL or a valid address, which tests
error handling in the driver.

For the small number of kernel functions that return
non-standard values, SymGen has a list of exceptions and
how to treat their return values. The full list of excep-
tions for Linux currently contains 100 functions across all
supported drivers. Of these, 64 are hardware-access func-
tions, such as inb and readl, that always return sym-
bolic data. A further 14 are arithmetic operations, such as
div32. The remaining 22 functions return negative num-
bers in successful cases, or are used by the compiler to
trigger a compilation failure when used incorrectly, such
as bad percpu size.

SymDrive also improves code coverage by introduc-
ing additional symbolic data in order to execute code that
requires specific inputs from the kernel or applications.
SymDrive can automatically make a Linux driver’s mod-
ule parameters symbolic, executes the driver with all pos-
sible parameters. Checkers can also make parameters to
the driver symbolic, such as ioctl command values. This
allows all ioctl code to be tested with a single invoca-
tion of the driver, because each comparison of the com-
mand will fork execution. In addition, S2E allows using
symbolic data anywhere in the virtual machine, so a user-
mode test can pass symbolic data to the driver.

3.3.3 Execution Tracing

The test framework can generate execution traces, which
are helpful to compare the execution of two versions of
a driver. For example, when a driver patch introduces
new bugs, the traces can be used to compare its behavior
against previous versions. In addition, developers can use
other implementations of the driver, even from another
operating system, to find discrepancies that may signify
incorrect interaction with the hardware.

A developer can enable tracing via a command-line tool



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 285

that uses a custom opcode to notify SymDrive to begin
recording. In this mode, an S2E plugin records every
driver I/O operation, including reads and writes to port,
MMIO, and DMA memory, and the driver stack at the op-
eration. The test framework passes the current stack to
S2E on every function call.

The traces are stored as a trie (prefix tree) to repre-
sent multiple paths through the code compactly, and can
be compared using the diff utility. SymDrive annotates
each trace entry with the driver call stack at the I/O op-
eration. This facilitates analysis of specific functions and
comparing drivers function-by-function, which is useful
since traces are subject to timing variations and different
thread interleavings.

3.4 SymGen

All features of the test framework that interact with code,
such as favor-success scheduling, loop prioritization, and
making kernel return values symbolic are handled auto-
matically via static analysis and code generation. The
SymGen tool analyzes driver code to identify code rel-
evant to testing, such as function boundaries and loops,
and instruments code with calls to the test framework and
checkers. SymGen is built using CIL [32].

Stubs. SymDrive interposes on all calls into and out
of the driver with stubs that call the test framework and
checkers. For each function in the driver, SymGen gener-
ates two stubs: a preamble, invoked at the top of the func-
tion, and a postscript, invoked at the end. The generated
code passes the function’s parameters and return value to
these stubs to be used by checkers. For each kernel func-
tion the driver imports, SymGen generates a stub function
with the same signature that wraps the function.

To support pre- and post-condition assertions, stubs
invoke checkers when the kernel calls into the driver
or the driver calls into the kernel. Checkers associ-
ated with a specific function function x are named
function x check. On the first execution of a stub, the
test framework looks for a corresponding checker in the
kernel symbol table. If such a function exists, the stub
records its address for future invocations. While targeted
at functions in the kernel interface, this mechanism can
invoke checkers for any driver function.

Stubs employ a second lookup to find checkers as-
sociated with a function pointer passed from the driver
to the kernel, such as a PCI probe function. Kernel
stubs, when passed a function pointer, record the function
pointer and its purpose in a table. For example, the Linux
pci register driver function associates the address
of each function in the pci driver parameter with the
name of the structure and the field containing the function.
The stub for the probe method of a pci driver struc-
ture is thus named pci driver probe check. FreeBSD
drivers use a similar technique.

s2e_loop_before(__LINE__, loop_id); 
while(work--) { 
  tmp___17 = readb(cp->regs + 55); 
  if(!(tmp___17 & 16)) goto return_label; 
  stub_schedule_timeout_uninterruptible(10L); 
  s2e_loop_body(__LINE__, loop_id); 
} 
s2e_loop_after(__LINE__, loop_id); 

Figure 2: SymGen instruments the start, end, and body of
loops automatically. This code, from the 8139cp driver, was
modified slightly since SymGen produces preprocessed out-
put.

Stubs detect that execution enters the driver by track-
ing the depth of the call stack. The first function in the
driver notifies the test framework at its entry that driver
execution is starting, and at its exit notifies the test frame-
work that control is returning to the kernel. Stubs also
communicate this information to the VMM so that it can
make path-scheduling decisions based on function return
values.

Instrumentation. The underlying principle behind
SymGen’s instrumentation is to inform the VMM of
source level information as it executes the driver so it can
make better decisions about which paths to execute. Sym-
Gen instruments the start and end of each driver function
with a call into the stubs. As part of the rewriting, it con-
verts functions to have a single exit point. It generates
the same instrumentation for inline functions, which are
commonly used in the Linux and FreeBSD kernel/driver
interfaces.

SymGen also instruments the start, end, and body
of each loop with calls to short functions that execute
SymDrive-specific opcodes. These opcodes direct the
VMM to prioritize and deprioritize paths depending on
whether they exit the loop quickly. This instrumentation
replaces most of the per-driver effort required by S2E to
identify loops, as well as the per-class effort of writing a
consistency model for every function in the driver/kernel
interface. SymGen also inserts loop opcodes into the
driver, as shown in Figure 2, to tell S2E which paths exit
the loop, and should receive a priority boost.2

For complex code that slows testing, SymGen supports
programmer-supplied annotations to simplify or disable
the code temporarily. Short loops and those that do not
generate states require no manual developer effort. Only
loops that must execute for many iterations and gener-
ate new paths on each iteration need manual annotation,
which we implement through C #ifdef statements. For
example, the E1000 network driver verifies a checksum
over EEPROM, and we modified it to accept any check-
sum value. We have found these cases to be rare.

2One interesting alternative is to prioritize paths that execute loops
in their entirety. The problem with this approach is that it may generate
many states in the process, and slow testing.



286 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

3.5 Limitations

SymDrive is neither sound nor complete. The false posi-
tives we have experienced fall into two major categories.
First, symbolic execution is slow, which may cause the
kernel to print timing warnings and cause driver timers
to fire at the wrong time. Second, our initial checkers
were imprecise and disallowed (bizarre) behavior the ker-
nel considers legal. We have since fixed the checkers, and
have not seen them generate false positives.

Although we have observed no false negatives among
the checkers we wrote, SymDrive cannot check for all
kinds of bugs. Of 11 common security vulnerabili-
ties [12], SymDrive cannot detect integer overflows and
data races between threads, though support for overflow
detection is possible in principle because the underlying
VMM interprets code rather than executing it directly. In
addition, SymDrive cannot achieve full path coverage for
all drivers because SymDrive’s aggressive path pruning
may terminate paths that lead to bugs. SymDrive may
also miss race conditions, such as those requiring the in-
terrupt handler to interleave with another thread in a spe-
cific way.

4 Checkers
SymDrive detects driver/kernel interface violations with
checkers, which are functions interposing on control
transfer between the driver and kernel that verify and vali-
date driver behavior. Each function in the driver/kernel in-
terface can, but need not, have its own checker. Drivers in-
voke the checkers from stubs, described above, which call
separate checkers at every function in the driver/kernel in-
terface. Since checkers run in the VM alongside the sym-
bolically executing driver, they can verify runtime proper-
ties along each tested path.

The checkers use a support library that simplifies their
development by providing much of their functionality.
The library provides state variables to track the state of
the driver and current thread, such as whether it has regis-
tered itself successfully and whether it can be rescheduled.
The library also provides an object tracker to record kernel
objects currently in use in the driver. This object tracker
provides an easy mechanism to track whether locks have
been initialized and to discover memory leaks. Finally, the
library provides generic checkers for common classes of
kernel objects, such as locks and allocators. The generic
checkers encode the semantics of these objects, and thus
do much of the work. For example, checkers for a mutex
lock and a spin lock use the same generic checker, as they
share semantics.

Writing a checker requires implementing checks within
a call-out function. We have implemented 49 checkers
comprising 564 lines of code for a variety of common
device-driver bugs using the library API. Test #1 in Fig-
ure 3 shows an example call-out for pci register -

/* Test #1 */ void __pci_register_driver_check(...) { 
  if (precondition) { 
    assert (state.registered == NOT_CALLED); 
    set_state (&state.registered, IN_PROGRESS); 
    set_driver_bus (DRIVER_PCI); 
  } else /* postcondition */ { 
    if (retval == 0) set_state (&state.registered, OK); 
    else set_state (&state.registered, FAILED); 
  } 
} 
 
/* Test #2 */ void __kmalloc_check 
  (..., void *retval, size_t size, gfp_t flags) { 
  if (precondition) 
    mem_flags_test(GFP_ATOMIC, GFP_KERNEL, flags); 
  else /* postcondition */ 
    generic_allocator(retval, size, ORIGIN_KMALLOC); 
} 
 
/* Test #3 */ void _spin_lock_irqsave_check 
  (..., void *lock) { 
  // generic_lock_state supports pre/post-conditions 
  generic_lock_state(lock, 
    ORIGIN_SPIN_LOCK, SPIN_LOCK_IRQSAVE, 1); 
} 

Figure 3: Example checkers. The first checker ensures
that PCI drivers are registered exactly once. The second
verifies that a driver allocates memory with the appropri-
ate mem flags parameter. The third ensures lock/unlock
functions are properly matched. Unlike Static Driver Veri-
fier checkers [31], these checkers can track any path-specific
run-time state expressible in C.

driver. The driver-function stub invokes the checker
function with the parameters and return value of the ker-
nel function and sets a precondition flag to indicate
whether the checker was called before or after the func-
tion. In addition, the library provides the global state
variable that a checker can use to record information about
the driver’s activity. As shown in this example, a checker
can verify that the state is correct as a precondition, and
update the state based on the result of the call. Checkers
have access to the runtime state of the driver and can store
arbitrary data, so they can find interprocedural, pointer-
specific bugs that span multiple driver invocations.

Not every behavior requirement needs a checker. Sym-
bolic execution leverages the extensive checks already in-
cluded as kernel debug options, such as for memory cor-
ruption and locking. Most of these checks execute within
functions called from the driver, and thus will be invoked
on multiple paths. In addition, any bug that causes a ker-
nel crash or panic will be detected by the operating system
and therefore requires no checker.

We next describe a few of the 49 checkers we have im-
plemented with SymDrive.

Execution Context. Linux prohibits the calling of func-
tions that block when executing in an interrupt handler or
while holding a spinlock. The execution-context checker
verifies that flags passed to memory-allocation functions
such as kmalloc are valid in the context of the currently



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 287

executing code. The support library provides a state ma-
chine to track the driver’s current context using a stack.
When entering the driver, the library updates the context
based on the entry point. The library also supports locks
and interrupt management. When the driver acquires or
releases a spinlock, for example, the library pushes or
pops the necessary context.

Kernel API Misuse. The kernel requires that drivers
follow the proper protocol for kernel APIs, and errors
can lead to a non-functioning driver or a resource leak.
The support library state variables provide context for
these tests. For example, a checker can track the suc-
cess and failure of significant driver entry points, such as
the init module and PCI probe functions, and ensure
that if the driver is registered on initialization, it is prop-
erly unregistered on shutdown. Test #1 in Figure 3 shows
a use of these states to ensure that a driver only invokes
pci register driver once.

Collateral Evolutions. Collateral evolutions occur
when a small change to a kernel interface necessitates
changes in many drivers simultaneously. A developer can
use SymDrive to verify that collateral evolutions [35] are
correctly applied by ensuring that patched drivers do not
regress on any tests.

SymDrive can also ensure that the desired effect of a
patch is reflected in the driver’s execution. For exam-
ple, recent kernels no longer require that network drivers
update the net device->trans start variable in their
start xmit functions. We wrote a checker to verify that
trans start is constant across start xmit calls.

Memory Leaks. The leak checker uses the support li-
brary’s object tracker to store an allocation’s address and
length. We implemented checkers to verify allocation and
free requests from 19 pairs of functions, and ensure that
an object’s allocation and freeing use paired routines.

The API library simplifies writing checkers for addi-
tional allocators down to a few lines of code. Test #2 in
Figure 3 shows the generic allocator call to the li-
brary used when checking kmalloc, which records that
kmalloc allocated the returned memory. A correspond-
ing checker for kfree verifies that kmalloc allocated the
supplied address.

5 Evaluation
The purpose of the evaluation is to verify that SymDrive
achieves its goals: (i) usefulness, (ii) simplicity, and (iii)
efficiency.

5.1 Methodology

As shown in Table 2, we tested SymDrive on 26 drivers in
11 classes from several Linux kernel revisions (13 drivers
from 2.6.29, 4 from 3.1.1, and 4 that normally run only on
Android-based phones) and from FreeBSD 9 (5 drivers).

Of the 26 drivers, we chose 19 as examples of a specific
bus or class and the remaining 7 because we found fre-
quent patches to them and thus expected to find bugs.

All tests took place on a machine running Ubuntu 10.10
x64 equipped with a quad-core Intel 2.50GHz Intel Q9300
CPU and 8GB of memory. All results are obtained while
running SymDrive in a single-threaded mode, as Sym-
Drive does not presently work with S2E’s multicore sup-
port.3

To test each driver, we carry out the following opera-
tions:

1. Run SymGen over the driver and compile the output.
2. Define a virtual hardware device with the desired pa-

rameters and boot the SymDrive virtual machine.
3. Load the driver with insmod and wait for initializa-

tion to complete successfully. Completing this step
entails executing at least one successful path and re-
turning success, though it is likely that other failed
paths also run and are subsequently discarded.

4. Execute a workload (optional). We ensure all net-
work drivers attempt to transmit and that sound
drivers attempt to play a sound.

5. Unload the driver.
If SymDrive reports warnings about too many paths

from complex loops, we annotate the driver code and re-
peat the operations. For most drivers, we run SymGen
over only the driver code. For drivers that have fine-
grained interactions with a library, such as sound drivers
and the pluto2 media driver, we run SymGen over both
the library and the driver code. We annotated each driver
at locations SymDrive specified, and tested each Linux
driver with 49 checkers for a variety of common bugs.
For FreeBSD drivers, we only used the operating system’s
built-in test functionality.

5.2 Bug Finding

Across the 26 drivers listed in Table 2, we found the 39
distinct bugs described in Table 3. Of these bugs, S2E
detected 17 via a kernel warning or crash, and the check-
ers caught the remaining 22. Although these bugs do not
necessarily result in driver crashes, they all represent is-
sues that need addressing and are difficult to find without
visibility into driver/kernel interactions.

These results show the value of symbolic execution.
Of the 39 bugs, 56% spanned multiple driver invoca-
tions. For example, the akm8975 compass driver calls
request irq before it is ready to service interrupts. If an
interrupt occurs immediately after this call, the driver will
crash, since the interrupt handler dereferences a pointer

3This limitation is an engineering issue and prevents SymDrive from
exploring multiple paths simultaneously. However, because SymDrive’s
favor-success scheduling often explores a single path deeply rather than
many paths at once, S2E’s multi-threaded mode would have little per-
formance benefit.



288 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Driver Class Bugs LoC Ann Load Unld.
akm8975* Compass 4 629 0 0:22 0:08
mmc31xx* Compass 3 398 0 0:10 0:04
tle62x0* Control 2 260 0 0:06 0:05
me4000 Data Ac. 1 5,394 2 1:17 1:04
phantom Haptic 0 436 0 0:16 0:13
lp5523* LED Ctl. 2 828 0 2:26 0:19
apds9802* Light 0 256 1 0:31 0:21
8139cp Net 0 1,610 1 1:51 0:37
8139too Net 2 1,904 3 3:28 0:35
be2net Net 7 3,352 2 4:49 1:39
dl2k Net 1 1,985 5 2:52 0:35
e1000 Net 3 13,971 2 4:29 2:01
et131x Net 2 8,122 7 6:14 0:47
forcedeth Net 1 5,064 2 4:28 0:51
ks8851* Net 3 1,229 0 2:05 0:13
pcnet32 Net 1 2,342 1 2:34 0:27
smc91x* Net 0 2,256 0 10:41 0:22
pluto2 Media 2 591 3 1:45 1:01
econet Proto. 2 818 0 0:11 0:11
ens1371 Sound 0 2,112 5 27:07 4:48
a1026* Voice 1 1,116 1 0:34 0:03
ed Net 0 5,014 0 0:49 0:13
re Net 0 3,440 3 16:11 0:21
rl Net 0 2,152 1 2:00 0:08
es137x Sound 1 1,688 2 57:30 0:09
maestro Sound 1 1,789 2 17:51 0:27

Table 2: Drivers tested. Those in italics run on Android-
based phones, those followed by an asterisk are for embed-
ded systems and do not use the PCI bus. Drivers above the
line are for Linux and below the line are for FreeBSD. Line
counts come from CLOC [1]. Times are in minute:second
format, and are an average of three runs.

Kernel / Cross
Bug Type Bugs Checker EntPt Paths Ptrs
Hardware Dep. 7 6 / 1 4 6 6
API Misuse 15 7 / 8 6 5 1
Race 3 3 / 0 3 2 3
Alloc. Mismatch 3 0 / 3 3 0 3
Leak 7 0 / 7 6 1 7
Driver Interface 3 0 / 3 0 2 0
Bad pointer 1 1 / 0 0 0 1
Totals 39 17 / 22 22 16 21

Table 3: Summary of bugs found. For each category, we
present the number of bugs found by kernel crash/warning
or a checker and the number that crossed driver entry points
(“Cross EntPt”), occurred only on specific paths, or required
tracking pointer usage.

that is not yet initialized. In addition, 41% of the bugs
occurred on a unique path through a driver other than
one that returns success, and 54% involved pointers and
pointer properties that may be difficult to detect statically.

Bug Validation. Of the 39 bugs found, at least 17 were
fixed between the 2.6.29 and 3.1.1 kernels, which indi-
cates they were significant enough to be addressed. We
were unable to establish the current status of 7 others be-
cause of significant driver changes. We have submitted
bug reports for 5 unfixed bugs in mainline Linux drivers,
all of which have been confirmed as genuine by kernel de-
velopers. The remaining bugs are from drivers outside the
main Linux kernel that we have not yet reported.

5.3 Developer Effort

One of the goals of SymDrive is to minimize the effort
to test a driver. The effort of testing comes from three
sources: (i) annotations to prepare the driver for testing,
(ii) testing time, and (iii) updating code as kernel inter-
faces change.

To measure the effort of applying SymDrive to a new
driver, we tested the phantom haptic driver from scratch.
The total time to complete testing was 1h:45m, despite
having no prior experience with the driver and not having
the hardware. In this time, we configured the symbolic
hardware, wrote a user-mode test program that passes
symbolic data to the driver’s entry points, and executed
the driver four times in different configurations. Of this
time, the overhead of SymDrive compared to testing with
a real device was an additional pass during compilation
to run SymGen, which takes less than a minute, and 38
minutes to execute. Although not a large driver, this test
demonstrates SymDrive’s usability from the developer’s
perspective.

Annotations. The only per-driver coding SymDrive re-
quires is annotations on loops that slow testing and anno-
tations that prioritize specific paths. Table 2 lists the num-
ber of annotation sites for each driver. Of the 26 drivers,
only 6 required more than two annotations, and 9 required
no annotations. In all cases, SymDrive printed a warning
indicating where an annotation would benefit testing.

Testing time. Symbolic execution can be much slower
than normal execution. Hence, we expect it to be used
near the end of development, before submitting a patch,
or on periodic scans through driver code. We report the
time to load, initialize, and unload a driver (needed for
detecting resource leaks) in Table 2. Initialization time is
the minimum time for testing, and thus presents a lower
bound.

Overall, the time to initialize a driver is roughly pro-
portional to the size of the driver. Most drivers initialize
in 5 minutes or less, although the ens1371 sound driver
required 27 minutes, and the corresponding FreeBSD
es137x driver required 58 minutes. These two results
stem from the large amount of device interaction these
drivers perform during initialization. Excluding these re-
sults, execution is fast enough to be performed for every
patch, and with a cluster could be performed on every
driver affected by a collateral evolution [35].

Kernel evolution. Near the end of development, we up-
graded SymDrive from Linux 2.6.29 to Linux 3.1.1. If
much of the code in SymDrive was specific to the ker-
nel interface, porting SymDrive would be a large effort.
However, SymDrive’s use of static analysis and code gen-
eration minimized the effort to maintain tests as the ker-
nel evolves: the only changes needed were to update a



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 289

Touched Time
Driver Funcs. Coverage CPU Latency
8139too 93% 83% 2h36m 1h00m
a1026 95% 80% 15m 13m
apds9802 85% 90% 14m 7m
econet 51% 61% 42m 26m
ens1371 74% 60% *8h23m *2h16m
lp5523 95% 83% 21m 5m
me4000 82% 68% *26h57m *10h25m
mmc31xx 100% 83% 14m 26m
phantom 86% 84% 38m 32m
pluto2 78% 90% 19m 6m
tle62x0 100% 85% 16m 12m
es137x 97% 70% 1h22m 58m
rl 84% 71% 13m 10m

Table 4: Code coverage.

few checkers whose corresponding kernel functions had
changed. The remainder of the system, including Sym-
Gen and the test framework, were unchanged. The num-
ber of lines of code changed was less than 100.

Furthermore, porting SymDrive to a new operating sys-
tem is not difficult. We also ported the SymDrive infras-
tructure, checkers excluded, to FreeBSD 9. The entire
process took three person-weeks. The FreeBSD imple-
mentation largely shares the same code base as the Linux
version, with just a few OS-specific sections. This result
confirms that the techniques SymDrive uses are compati-
ble across operating systems.

5.4 Coverage

While SymDrive primarily uses symbolic execution to
simulate the device, a second benefit is higher code cov-
erage than standard testing. Table 4 shows coverage re-
sults for one driver of each class, and gives the fraction of
functions executed (“Touched Funcs.”) and the fraction
of basic blocks within those functions (“Coverage”).4 In
addition, the table gives the total CPU time to run the tests
on a single machine (CPU) and the latency of the longest
run if multiple machines are used (Latency). In all cases,
we ran drivers multiple times and merged the coverage
results. We terminated each run once it reached a steady
state and stopped testing the driver once coverage did not
meaningfully improve between runs.

Overall, SymDrive executed a large majority (80%) of
driver functions in most drivers, and had high coverage
(80% of basic blocks) in those functions. These results are
below 100% for two reasons. First, we could not invoke
all entry points in some drivers. For example, econet
requires user-mode software to trigger additional driver
entry points that SymDrive is unable to call on its own.
In other cases, we simply did not spend enough time un-
derstanding how to invoke all of a driver’s code, as some
functionality requires the driver to be in a specific state
that is difficult to realize, even with symbolic execution.

4* Drivers with an asterisk ran unattended, and their total execution
time is not representative of the minimum.

Touched Time
Driver Funcs. Coverage Serial Parallel
8139too 100% 96% 9m 5m
ks8851 100% 100% 16m 8m
lp5523 100% 97% 12m 12m

Table 5: Patched code coverage.

Second, of the functions SymDrive did execute, additional
inputs or symbolic data from the kernel were needed to
test all paths. Following S2E’s relaxed consistency model
by making more of the kernel API symbolic could help
improve coverage.

As a comparison, we tested the 8139too driver on a
real network card using gcov to measure coverage with
the same set of tests. We loaded and unloaded the driver,
and ensured that transmit, receive, and all ethtool func-
tions executed. Overall, these tests executed 77% of driver
functions, and covered 75% of the lines in the functions
that were touched, as compared to 93% of functions and
83% of code for SymDrive. Although not directly compa-
rable to the other coverage results due to differing method-
ologies, this result shows that SymDrive can provide cov-
erage better than running the driver on real hardware.

5.5 Patch Testing

The second major use of SymDrive is to verify driver
patches similar to a code reviewer. For this use, we seek
high coverage in every function modified by the patch in
addition to the testing described previously. We evaluate
SymDrive’s support for patch testing by applying all the
patches between the 3.1.1 and 3.4-rc6 kernel releases that
applied to the 8139too (net), ks8851 (net) and lp5523

(LED controller) drivers, of which there were 4, 2, and 6,
respectively. The other drivers lacked recent patches, had
only trivial patches, or required upgrading the kernel, so
we did not consider them.

In order to test the functions affected by a patch, we
used favor-success scheduling to fast-forward execution
to a patched function and then enabled high coverage
mode. The results, shown in Table 5, demonstrate that
SymDrive is able to quickly test patches as they are ap-
plied to the kernel, by allowing developers to test nearly
all the changed code without any device hardware. Sym-
Drive was able to execute 100% of the functions touched
by all 12 patches across the 3 drivers, and an average of
98% of the code in each function touched by the patch.
In addition, tests took an average of only 12 minutes to
complete.

Execution tracing. Execution tracing provides an alter-
nate means to verify patches by comparing the behav-
ior of a driver before and after applying the patch. We
used tracing to verify that SymDrive can distinguish be-
tween patches that change the driver/device interactions
and those that do not, such as a collateral evolution. We
tested five patches to the 8139too network driver that



290 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

refactor the code, add a feature, or change the driver’s
interaction with the hardware. We executed the original
and patched drivers and record the hardware interactions.
Comparing the traces of the before and after-patch drivers,
differing I/O operations clearly identify the patches that
added a feature or changed driver/device interactions, in-
cluding which functions changed. As expected, there
were no differences in the refactoring patches.

We also apply tracing to compare the behavior of
drivers for the same device across operating systems.
Traces of the Linux 8139too driver and the FreeBSD rl

driver show differences in how these devices interact with
the same hardware that could lead to incorrect behavior.
In one case, the Linux 8139too driver incorrectly treats
one register as 4 bytes instead of 1 byte, while in the other,
the rl FreeBSD driver uses incorrect register offsets for a
particular supported chipset. Developers fixed the Linux
bug independently after we discovered it, and we vali-
dated the FreeBSD bug with a FreeBSD kernel developer.
We do not include these bugs in the previous results as
they were not identified automatically by SymDrive.

These bugs demonstrate a new capability to find
hardware-specific bugs by comparing independent driver
implementations. While we manually compared the
traces, it may be possible to automate this process.

5.6 Comparison to other tools.

We compare SymDrive against other driver testing/bug-
finding tools to demonstrate its usefulness, simplicity, and
efficiency.

S2E. In order to demonstrate the value of SymDrive’s
additions to S2E, we executed the 8139too driver with
only annotations to the driver source guiding path explo-
ration but without the test framework or SymGen to pri-
oritize relevant paths. In this configuration, S2E executes
using strict consistency, wherein the only source of sym-
bolic data is the hardware, and maximizes coverage with
the MaxTbSearcher plugin. This mode is the default when
a developer does not write API-specific plugins; results
improve greatly when these plugins are available [15].
We ran S2E until it ran out of memory to store paths and
started thrashing after 23 minutes.

During this test, only 33% of the functions in the driver
were executed, with an average coverage of 69%. In com-
parison, SymDrive executed 93% of functions with an av-
erage coverage of 83% in 2½ hours. With S2E alone, the
driver did not complete initialization and did not attempt
to transmit packets. In addition, S2E’s annotations could
not be made on the driver source, but must be made on
the binary instead. Thus, annotations must be regenerated
every time a driver is compiled.

Adding more RAM and running the driver longer
would likely have allowed the driver to finish executing
the initialization routine. However, many uninteresting

paths would remain, as S2E has no automatic way to prune
them. Thus, the developer would still have considerable
difficulty invoking other driver entry points, since S2E
would continue to execute failing execution paths.

In order for S2E to achieve higher coverage in this
driver, we would need a plugin to implement a relaxed
consistency model. However, the 8139too driver (v3.1.1)
calls 73 distinct kernel functions, which would require de-
veloper effort to code corresponding functions in the plu-
gin.

Static-analysis tools. Static analysis tools are able to
find many driver bugs, but require a large effort to im-
plement a model of operating system behavior. For ex-
ample, Microsoft’s Static Driver Verifier (SDV) requires
39,170 lines of C code to implement an operating sys-
tem model [31]. SymDrive instead relies on models only
for the I/O bus implementations, which together account
for 715 lines of code for 5 buses. SymDrive supports
FreeBSD with only 491 lines of OS-specific code, primar-
ily for the test framework, and can check drivers with the
debugging facilities already included in the OS.

In addition, SDV achieves much of its speed through
simplifying its analysis, and consequently its checkers are
unable to represent arbitrary state. Thus, it is difficult to
check complex properties such as whether a variable has
matched allocation/free calls across different entry points.

Kernel debug support. Most kernels provide debug-
ging to aid kernel developers, such as tools to detect dead-
lock, track memory leaks, or uncover memory corruption.
Some of the test framework checkers are similar to debug
functionality built into Linux. Compared to the Linux leak
checker, kmemleak, the test framework allows testing a
single driver for leaks, which can be drowned out when
looking at a list of leaks across the entire kernel. Further-
more, writing checkers for SymDrive is much simpler: the
Linux 3.1.1 kmemleak module is 1,113 lines, while, the
test framework object tracker, including a complete hash
table implementation, is only 722 lines yet provides more
precise results.

6 Related Work
SymDrive draws on past work in a variety of areas, in-
cluding symbolic execution, static and dynamic analysis,
test frameworks, and formal specification.

DDT and S2E. The DDT and S2E systems have been
used for finding bugs in binary drivers [14, 15, 26]. Sym-
Drive is built upon S2E but significantly extends its ca-
pabilities in three ways by leveraging driver source code.
First and most important, SymDrive automatically detects
the driver/kernel interface and generates code to interpose
checkers at that interface. In contrast, S2E requires pro-
grammers to identify the interface manually and write plu-
gins that execute outside the kernel, where kernel symbols



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 291

are not available, though S2E and SymDrive both sup-
port re-using existing testing tools. Second, SymDrive
automatically detects and annotates loops, which in S2E
must be identified manually and specified as virtual ad-
dresses. As a result, the effort to test a driver is much
reduced compared to S2E. Third, checkers in SymDrive
are implemented as standard C code executing in the ker-
nel, making them easy to write, and are only necessary
for kernel functions of interest. When the kernel interface
changes, only the checkers affected by interface changes
must be modified. In contrast, checkers in S2E are written
as plugins outside the kernel, and the consistency model
plugins must be updated for all changed functions in the
driver interface, not just those relevant to checks.

Symbolic testing. There are numerous prior approaches
to symbolic execution [9, 10, 13, 20, 26, 39, 40, 43, 45].
However, most apply to standalone programs with lim-
ited environmental interaction. Drivers, in contrast, exe-
cute as a library and make frequent calls into the kernel.
BitBlaze supports environment interaction but not I/O or
drivers [37].

To limit symbolic execution to a manageable amount of
state, previous work limited the set of symbolically exe-
cuted paths by applying smarter search heuristics and/or
by limiting program inputs [11, 21, 26, 27, 28, 44], which
is similar to SymDrive’s path pruning and prioritization.

Other systems combine static analysis with symbolic
execution [16, 18, 19, 36]. SymDrive uses static analy-
sis to insert checkers and to dynamically guide the path
selection policy from code features such as loops and re-
turn values. In contrast, these systems use the output of
static analysis directly within the symbolic execution en-
gine to select paths. Execution Synthesis [45] combines
symbolic execution with static analysis, but is designed
to reproduce existing bug reports with stack traces, and is
thus complementary to SymDrive.

Static analysis tools. Static analysis tools can find spe-
cific kinds of bugs common to large classes of drivers,
such as misuses of the driver/kernel [3, 4, 5, 31, 35] or
driver/device interface [25] and ignored error codes [23,
41]. Static bug-finding tools are often faster and more
scalable than symbolic execution [8].

We see three key advantages of testing drivers with
symbolic execution. First, symbolic execution is better
able to find bugs that arise from multiple invocations of
the driver, such as when state is corrupted during one
call and accessed during another. It also has a low false-
positive rate because it makes few approximations. Sec-
ond, symbolic execution has full access to driver and ker-
nel state, which facilitates checking driver behavior. Fur-
thermore, checkers that verify behavior can be written as
ordinary C, which simplifies their development, and can
track arbitrary runtime state such as pointers and driver

data. Symbolic execution also supports the full function-
ality of C including pointer arithmetic, aliasing, inline as-
sembly code, and casts. In contrast, most static analysis
tools operate on a restricted subset of the language. Thus,
symbolic execution often leads to fewer false positives.
Finally, static tools require a model of kernel behavior,
which in Linux changes regularly [22]. In contrast, Sym-
Drive executes checkers written in C and has no need for
an operating system model, since it executes kernel code
symbolically. Instead, SymDrive relies only on models
for each I/O bus, which are much simpler and shorter to
write.

Test frameworks. Test frameworks such as the Linux
Test Project (LTP) [24] and Microsoft’s Driver Verifier
(DV) [29, 30] can invoke drivers and verify their behavior,
but require the device be present. In addition, LTP tests at
the system-call level and thus cannot verify properties of
individual driver entry points. SymDrive can use these
frameworks, either as checkers, in the case of DV, or as a
test program, in the case of LTP.

Formal specifications for drivers. Formal specifica-
tions express a device’s or a driver’s operational require-
ments. Once specified, other parts of the system can ver-
ify that a driver operates correctly [6, 38, 42]. However,
specifications must be created for each driver or device.
Amani et al. argue that the existing driver architecture is
too complicated to be formally specified, and propose a
new architecture to simplify verification [2]. Many of the
challenges to static verification also complicate symbolic
testing, and hence their architecture would address many
of the issues solved by SymDrive.

7 Conclusions
SymDrive uses symbolic execution combined with a test
framework and static analysis to test Linux and FreeBSD
driver code without access to the corresponding device.
Our results show that SymDrive can find bugs in mature
driver code of a variety of types, and allow developers to
test driver patches deeply. Hopefully, SymDrive will en-
able more developers to patch driver code by lowering the
barriers to testing. In the future, we plan to implement
an automated testing service for driver patches that sup-
plements manual code reviews, and investigate applying
SymDrive’s techniques to other kernel subsystems.

Acknowledgments
This work is supported by the National Science Founda-
tion grants CNS-0745517 and CNS-0915363 and by a gift
from Google. We would like to thank the many review-
ers who provided detailed feedback on our work, and for
early feedback from Gilles Muller and Julia Lawall. We
would also like to thank the S2E developers, who provided
us a great platform to build on. Swift has a significant fi-



292 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

nancial interest in Microsoft.

References
[1] Al Danial. CLOC: Count lines of code. http://cloc.

sourceforge.net/, 2010.

[2] S. Amani, L. Ryzhyk, A. Donaldson, G. Heiser, A. Legg, and
Y. Zhu. Static analysis of device drivers: We can do better! In
Proceedings of the 2nd ACM SIGOPS Asia-Pacific Workshop on
Systems, 2011.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, et al.
Thorough static analysis of device drivers. In EuroSys, 2006.

[4] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model
checking with SLAM. In Commun. of the ACM, volume 54, July
2011.

[5] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In POPL, 2002.

[6] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: The Spec# experi-
ence. In Commun. of the ACM, volume 54, June 2011.

[7] F. Bellard. QEMU, a fast and portable dynamic translator. In
USENIX ATC, 2005.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: Using static analysis to find bugs in the
real world. Commun. ACM, 53:66–75, February 2010.

[9] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT—A formal
system for testing and debugging programs by symbolic execution.
In Intl. Conf. on Reliable Software, 1975.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams. In OSDI, 2008.

[11] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE:
Automatically generating inputs of death. In ACM Transactions
on Information and System Security, 2008.

[12] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses
and open problems. In Proceedings of the 2nd ACM SIGOPS Asia-
Pacific Workshop on Systems, 2011.

[13] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective
symbolic execution. In HotDep, 2009.

[14] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In ASPLOS, 2011.

[15] V. Chipounov, V. Kuznetsov, and G. Candea. The S2E platform:
Design, implementation, and applications. ACM Trans. Comput.
Syst., 30(1):2:1–2:49, Feb. 2012.

[16] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection
of vulnerabilities in x86 executables. In ACSAC, 2006.

[17] Coverity. Analysis of the Linux kernel, 2004. Available at http:
//www.coverity.com.

[18] O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking a new
balance between program instrumentation and debugging time. In
EuroSys, 2011.

[19] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler exten-
sions. In OSDI, 2000.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI, 2005.

[21] P. Godefroid, M. Levin, D. Molnar, et al. Automated whitebox
fuzz testing. In NDSS, 2008.

[22] Greg Kroah-Hartman. The Linux kernel driver inter-
face. http://www.kernel.org/doc/Documentation/
stable_api_nonsense.txt, 2011.

[23] H. Gunawi, C. Rubio-González, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, and B. Liblit. EIO: Error handling is occasionally cor-
rect. In 6th USENIX FAST, 2008.

[24] IBM. Linux test project. http://ltp.sourceforge.net/,
May 2010.

[25] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating hard-
ware device failures in software. In SOSP, 2009.

[26] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source
binary device drivers with DDT. In USENIX ATC, 2010.

[27] E. Larson and T. Austin. High coverage detection of input-related
security facults. In USENIX Security, 2003.

[28] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, 2007.
[29] Microsoft. Windows device testing framework design guide.

http://msdn.microsoft.com/en-us/library/
windows/hardware/ff539645%28v=vs.85%29.aspx,
2011.

[30] Microsoft Corporation. How to use driver verifier to troubleshoot
windows drivers. http://support.microsoft.com/kb/
q244617/, Jan. 2005. Knowledge Base Article Q244617.

[31] Microsoft Corporation. Static Driver Verifier. http://www.
microsoft.com/whdc/devtools/tools/sdv.mspx,
May 2010.

[32] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: In-
termediate language and tools for analysis and transformation of C
programs. In Intl. Conf. on Compiler Constr., 2002.

[33] S. Nelson and P. Waskiewicz. Virtualization: Writing (and testing)
device drivers without hardware. www.linuxplumbersconf.
org/2011/ocw/sessions/243. In Linux Plumbers Confer-
ence, 2011.

[34] N. Nethercode and J. Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In PLDI, 2007.

[35] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Document-
ing and automating collateral evolutions in Linux device drivers.
In EuroSys, 2008.

[36] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incre-
mental symbolic execution. In PLDI 2011, 2011.

[37] C. S. Pǎsǎreanu et al. Combining unit-level symbolic execution
and system-level concrete execution for testing NASA software.
In ISSTA, 2008.

[38] L. Ryzhyk, I. Kuz, and G. Heiser. Formalising device driver inter-
faces. In Workshop on Programming Languages and Systems, Oct.
2007.

[39] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In ESEC/FSE-13, 2005.

[40] D. Song et al. BitBlaze: A new approach to computer security via
binary analysis. In ICISS, 2008.

[41] M. Susskraut and C. Fetzer. Automatically finding and patching
bad error handling. In DSN, 2006.

[42] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schnei-
der. Device driver safety through a reference validation mecha-
nism. In OSDI, 2008.

[43] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A frame-
work for generating object-oriented unit tests using symbolic exe-
cution. In TACAS, 2005.

[44] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automat-
ically generating malicious disks using symbolic execution. In
IEEE Symp. on Security and Privacy, 2006. IEEE Computer Soci-
ety.

[45] C. Zamfir and G. Candea. Execution synthesis: A technique for
automated software debugging. In EuroSys, 2010.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 293

Be Conservative: Enhancing Failure Diagnosis with Proactive Logging
Ding Yuan†∗, Soyeon Park∗, Peng Huang∗, Yang Liu∗, Michael M. Lee∗, Xiaoming Tang∗,

Yuanyuan Zhou∗, Stefan Savage∗
∗University of California, San Diego, †University of Illinois at Urbana-Champaign

{diyuan,soyeon,ryanhuang,yal036,mmlee,x2tang,yyzhou,savage}@cs.ucsd.edu

Abstract
When systems fail in the field, logged error or warning
messages are frequently the only evidence available for
assessing and diagnosing the underlying cause. Conse-
quently, the efficacy of such logging—how often and how
well error causes can be determined via postmortem log
messages—is a matter of significant practical importance.
However, there is little empirical data about how well ex-
isting logging practices work and how they can yet be im-
proved. We describe a comprehensive study characteriz-
ing the efficacy of logging practices across five large and
widely used software systems. Across 250 randomly sam-
pled reported failures, we first identify that more than half
of the failures could not be diagnosed well using exist-
ing log data. Surprisingly, we find that majority of these
unreported failures are manifested via a common set of
generic error patterns (e.g., system call return errors) that,
if logged, can significantly ease the diagnosis of these un-
reported failure cases. We further mechanize this knowl-
edge in a tool called Errlog , that proactively adds appro-
priate logging statements into source code while adding
only 1.4% performance overhead. A controlled user study
suggests that Errlog can reduce diagnosis time by 60.7%.

1 Introduction
Real systems inevitably experience failure—whether due
to hardware faults, misconfigurations or software bugs.
However, resolving why such a failure has occurred can
be extremely time-consuming, a problem that is further
exacerbated for failures in the field. Indeed, failures in
production systems are the bête noire of debugging; they
simultaneously require immediate resolution and yet pro-
vide the least instrumented and most complex operational
environment for doing so. Even worse, when a system
fails at a customer site, product support engineers may not
be given access to the failed system or its data—a situation
referred to colloquially as “debugging in the dark”.

This paper addresses a simple, yet critical, question:
why is it so difficult to debug production software sys-
tems? We examine 250 randomly sampled user-reported
failures from five software systems (Apache, squid,
PostgreSQL, SVN, and Coreutils) 1 and identify both
the source of the failure and the particular information that
would have been critical for its diagnosis. Surprisingly, we

1The data we used can be found at: http://opera.ucsd.edu/errlog.htm

show that the majority (77%) of these failures manifest
through a small number of concrete error patterns (e.g.,
error return codes, switch statement “fall-throughs”, etc.).
Unfortunately, more than half (57%) of the 250 exam-
ined failures did not log these detectable errors, and their
empirical “time to debug” suffers dramatically as a result
(taking 2.2X longer to resolve on average in our study).

Driven by this result, we further show that it is possible
to fully automate the insertion of such proactive logging
statements parsimoniously, yet capturing the key informa-
tion needed for postmortem debugging. We describe the
design and implementation of our tool, Errlog , and show
that it automatically inserts messages that cover 84% of
the error cases manually logged by programmers across 10
diverse software projects. Further, the error conditions au-
tomatically logged by Errlog capture 79% of failure con-
ditions in the 250 real-world failures we studied. Finally,
using a controlled user study with 20 programmers, we
demonstrate that the error messages inserted by Errlog can
cut failure diagnosis time by 60.7%.

2 Background

While there have been significant advances in post-
mortem debugging technology, the production environ-
ment imposes requirements—low overhead and privacy
sensitivity—that are challenging to overcome in commer-
cial settings.

For example, while in principal, deterministic replay—
widely explored by the research community [3, 11, 29,
31]—allows a precise postmortem reproduction of the ex-
ecution leading to a failure, in practice it faces a range
of deployment hurdles including high overhead (such sys-
tems must log most non-deterministic events), privacy
concerns (by definition, the replay trace should contain
all input) and integration complexity (particularly in dis-
tributed environments with a range of vendors).

By contrast, the other major postmortem debugging ad-
vance, cooperative debugging, has broader commercial
deployment, but is less useful for debugging individual
failures. In this approach, exemplified by systems such
as Windows Error Reporting [15] and the Mozilla Quality
Feedback Agent [23], failure reports are collected (typi-
cally in the form of limited memory dumps due to privacy
concerns) and statistically aggregated across large num-
bers of system installations, providing great utility in triag-

1



294 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 1: A real world example from Apache on the absence
of error log message. After diagnosing this failure, the developer
released a patch that only adds an error-logging statement.

Figure 2: A real world example from squid to demonstrate
the challenge of failure diagnosis in the absence of error mes-
sages, one that resulted in a long series of exchanges (45 rounds)
between the user and developers.

ing which failures are most widely experienced (and thus
should be more carefully debugged by the vendor). Un-
fortunately, since memory dumps do not capture dynamic
execution state, they offer limited fidelity for exploring the
root cause of any individual failure. Finally, sites with sen-
sitive customer information can be reticent to share arbi-
trary memory contents with a vendor.

The key role of logging

Consequently, software engineers continue to rely on tra-
ditional system logs (e.g., syslog) as a principal tool for
troubleshooting failures in the field. What makes these
logs so valuable is their ubiquity and commercial accep-
tance. It is an industry-standard practice to request logs
when a customer reports a failure and, since their data typ-
ically focuses narrowly on issues of system health, logs
are generally considered far less sensitive than other data
sources. Moreover, since system logs are typically human-
readable, they can be inspected by a customer to estab-
lish their acceptability. Indeed, large-scale system vendors
such as Network Appliance, EMC, Cisco and Dell report
that such logs are available from the majority of their cus-
tomers and many even allow logs to be transmitted auto-
matically and without review [10].

Even though log messages may not directly pinpoint the
root cause (e.g. hardware errors, misconfigurations, soft-
ware bugs) of a failure, they provide useful clues to narrow
down the diagnosis search space. As this paper will show
later, failures in the field with error messages have much
shorter diagnosis time than those without.

Remembering to log
However, the utility of logging is ultimately predicated on
what gets logged; how well have developers anticipated
the failure modes that occur in practice? As we will show
in this paper, there is significant room for improvement.

Figure 1 shows one real world failure from the Apache
web server. The root cause was a user’s misconfiguration
causing Apache to access an invalid file. While the er-
ror (a failed open in ap pcfg openfile) was explicitly
checked by developers themselves, they neglected to log
the event and thus there was no easy way to discern the
cause postmortem. After many exchanges with the user,
the developer added a new error message to record the er-
ror, finally allowing the problem to be quickly diagnosed.

Figure 2 shows another real world failure example from
the squid web proxy. A user reported that the server ran-
domly exhausted the set of available file descriptors with-
out any error message. In order to discern the root cause,
squid developers worked hard to gather diagnostic infor-
mation (including 45 rounds of back-and-forth discussion
with the user), but the information (e.g., debug messages,
configuration setting, etc.) was not sufficient to resolve the
issue. Finally, after adding a statement to log the checked
error case in which squid was unable to connect to a
DNS server (i.e., status != COMM OK), they were able
to quickly pinpoint the right root cause—the original code
did not correctly cleanup state after such an error.

In both cases, the programs themselves already explic-
itly checked the error cases, but the programmer neglected
to include a statement to log the error event, resulting in a
long and painful diagnosis.

One of the main objectives of this paper is to provide
empirical evidence concerning the value of error logging.
However, while we hope our results will indeed motivate
developers to improve this aspect of their coding, we also
recognize that automated tools can play an important role
in reducing this burden.

Log automation vs log enhancement
Recently, Yuan et. al [37, 36] have studied how developers
modify logging statements over time and proposed meth-
ods and tools to improve the quality of existing log mes-
sages by automatically collecting additional diagnostic in-
formation in each message. Unfortunately, while such ap-
proaches provide clear enhancements to the fidelity pro-
vided by a given log message, they cannot help with the
all too common cases (such as seen above) when there are
no log messages at all.

However, the problem of inserting entirely new log
messages is significantly more challenging than mere log
enhancement. In particular, there are two new challenges
posed by this problem:

• Shooting blind : Prior to a software release, it is hard
to predict what failures will occur in the field, mak-

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 295

Fault Errors Failure

root cause
(s/w bug, h/w fault,
 mis-configuration)

start to 
misbehave

affect service/results,
visible to users 

Figure 3: Classic Fault-Error-Failure model.

ing it difficult to know in advance where to insert log
messages to best diagnose future failures.

• Overhead concerns: Blindly adding new log mes-
sages can add significant, unacceptable performance
overhead to software’s normal execution.

Fundamentally, any attempt to add new log messages
needs to balance utility and overhead. To reach this goal,
our work is heavily informed by practical experience. Just
as system builders routinely design around the constraints
of technology and cost, so too must they consider the role
of cultural acceptance when engineering a given solution.
Thus, rather than trying to create an entirely new logging
technique that must then vie for industry acceptance, we
focus instead on how to improve the quality and utility of
the system logs that are already being used in practice. For
similar reasons, we also choose to work “bottom-up”—
trying to understand, and then improve, how existing log-
ging practice interacts with found failures—rather than at-
tempting to impose a “top-down” coding practice on soft-
ware developers.

3 Where to Log?
Before we decide where to add log points, it is useful to
understand how a failure happens. In his seminal work
two decades ago, J.C. Laprie decomposed the structural
elements of system failures—fault, error and failure—into
a model that is widely used today [20]. As shown in Fig-
ure 3, a fault is a root cause, which can be a software bug, a
hardware malfunction, or a misconfiguration. A fault can
produce abnormal behaviors referred to as errors. How-
ever, some of these errors will have no user-perceivable
side-effects or may be transparently handled by the sys-
tem. It is only the subset of remaining errors which further
propagate and become visible to users that are referred to
as failures, such as crash, hang, incorrect result, incom-
plete functionality, etc.

To further inform our choice of where to place log state-
ments, we divide errors into two categories:
(i) Detected errors (i.e., exceptions): Some errors are
checked and caught by a program itself. For example, it
is a commonly accepted best practice to check library or
system call return values for possible errors.
(ii) Undetected errors : Many errors, such as incorrect
variable values, may be more challenging to detect mech-
anistically. Developers may not know in advance what
should be a normal value for a variable. Therefore, some
errors will always remain latent and undetected until they
eventually produce a failure.

Appl. LOC #Default log points*
Total Err+Warn

Apache 249K 1160 1102 (95%)
Squid 121K 1132 1052 (92%)
Postgres 825K 6234 6179 (99%)
SVN 288K 1836 1806 (98%)
Coreutils 69K 1086 1080 (99%)

Table 1: Applications used in our study and the number of log
points (i.e. logging statements). *: the number of log points
under the default verbosity mode. “Err+Warn”: number of log
points with warning, error, or fatal verbosities.

Appl. #Failures
population* sampled with logs

Apache 838 65 24 (37%)
Squid 680 50 20 (40%)
Postgres 195 45 24 (53%)
SVN 321 45 25 (56%)
Coreutils 212 45 15 (33%)
Total 2246 250 108 (43%)

Table 2: The number of sampled failures and the subset with
failure-related log messages. A failure is classified as “with logs”
if any log point exists on the execution path between the fault to
the symptom. *: the total number of valid failures that have been
fixed in the recent five years in the Bugzilla.

To dive in one step further, detected errors can be han-
dled in three different ways: (i) Early termination: a pro-
gram can simply exit when encountering an error. (ii) Cor-
rect error handling: a program recovers from an error ap-
propriately, and continues execution. (iii) Incorrect error
handling: a program does not handle the error correctly
and results in an unexpected failure.

These distinctions provide a framework for considering
the best program points for logging. In particular, detected
errors are naturally “log-worthy” points. Obviously, if a
program is about to terminate then there is a clear causal
relation between the error and the eventual failure. More-
over, even when a program attempts to handle an error, its
exception handlers are frequently buggy themselves since
they are rarely well tested [30, 17, 16]. Consequently, log-
ging is appropriate in most cases where a program detects
an error explicitly—as long as such logging does not in-
troduce undue overhead. Moreover, logging such errors
has no runtime overhead in the common (no error) case.

4 Learning from Real World Failures
This section describes our empirical study of how effec-
tive existing logging practices are in diagnosis. To drive
our study, we randomly sampled 250 real world failures
reported in five popular systems, including four servers
(Apache httpd, squid, PostgreSQL, and SVN) and a
utility toolset (GNU Coreutils), as shown in Table 1.

The failure sample sets for each system are shown in
Table 2. These samples were from the corresponding
Bugzilla databases (or mailing lists if Bugzilla was not

3



296 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

available). The reporting of a distinct failure and its
follow-up discussions between the users and developers
are documented under the same ticket. If a failure is a
duplicate of another, developers will close the ticket by
marking it as a “duplicate”. Once a failure got fixed, de-
velopers will often close the ticket as “fixed” and post
the patch of the fix. We randomly sampled those non-
duplicate, fixed failures that were reported within the re-
cent five years. We carefully studied the reports, discus-
sions, related source code and patches to understand the
root cause and its propagation leading to each failure.

In our study, we focus primarily on the presence of a
failure-related log message, and do not look more deeply
into the content of the messages themselves. Indeed, the
log message first needs to be present before we consider
the quality of its content, and it is also not easy to objec-
tively measure the usefulness of log content. Moreover,
Yuan et. al.’s recent LogEnhancer work shows promise
in automatically enhancing each existing log message by
recording the values of causally-related variables [37].
Threats to Validity: As with all characterization stud-
ies, there is an inherent risk that our findings may be spe-
cific to the programs studied and may not apply to other
software. While we cannot establish representativeness
categorically, we took care to select diverse programs—
written for both server and client environments, in both
concurrent and sequential styles. At the very least these
software are widely used; each ranks first or second in
market share for its product’s category. However, there
are some commonalities to our programs as all are written
in C/C++ and all are open source software. Should log-
ging practice be significantly different in “closed source”
development environments or in software written in other
languages then our results may not apply.

Another potential source of bias is in the selection of
failures. Quantity-wise we are on a firmer ground, as un-
der standard assumptions, the Central Limit Theorem pre-
dicts a 6% margin of error at the 95% confidence level
for our 250 random samples [28]. However, certain fail-
ures might not be reported to Bugzilla. Both Apache and
Postgres have separate mailing lists for security issues;
Configuration errors (including performance tunings) are
usually reported to the user-discussion forums. Therefore
our study might be biased towards software bugs. How-
ever, before a failure is resolved, it can be hard for users to
determine the nature of the cause, therefore our study still
cover many configuration errors and security bugs.

Another concern is that we might miss those very hard
failures that never got fixed. However, as the studied ap-
plications are well maintained, severity is the determining
factor of the likelyhood for a failure to be fixed. High
severity failures, regardless of its diagnosis difficulty, are
likely to be diagnosed and fixed. Therefore the failures
that we miss are likely those not-so-severe ones.

Finally, there is the possibility of observer error in the
qualitative aspects of our study. To minimize such ef-
fects, two inspectors separately investigated every failure
and compared their understandings with each other. Our
failure study took 4 inspectors 4 months of time.

4.1 Failure Characterization
Across each program we extract its embedded log mes-
sages and then analyze how these messages relate to the
failures we identified manually. We decompose these re-
sults through a series of findings for particular aspects of
logging behavior.
• Finding 1: Under the default verbosity mode2, almost
all (97%) logging statements in our examined software are
error and warning messages (including fatal ones). This
result is shown in Table 1. Verbose or bookkeeping mes-
sages are usually not enabled under the default verbosity
mode due to overhead concerns. This supports our expec-
tation that error/warning messages are frequently the only
evidence for diagnosing a system failure in the field.

 0
 50

 100
 150
 200
 250
 300 2.3X

1.4X 3.0X

H
ou

rs

Apache Squid Postgres

w/ log
w/o log

Figure 4: Benefit of logging on
diagnosis time (median).

• Finding 2: Log mes-
sages produce a sub-
stantial benefit, reduc-
ing median diagnosis
time between 1.4 and
3 times (on average
2.2X faster), as shown
in Figure 4, supporting
our motivating hypothesis about the importance of appro-
priate logging. This result is computed by measuring each
failure’s “duration” (i.e., the duration from the time the
failure is reported to the time a correct patch is provided).
We then divide the failure set into two groups: (1) those
with failure-related log messages reported and (2) those
without, and compare the median diagnosis time between
the two groups. Obviously, some failures might be eas-
ier to diagnose than the others, but since our sample set
is relatively large we believe our results will reflect any
gross qualitative patterns (note, our results may be biased
if the difficulty of logging is strongly correlated with the
future difficulty of diagnosis, although we are unaware of
any data or anecdotes supporting this hypothesis).
• Finding 3: the majority (57%) of failures do not have
failure-related log messages, leaving support engineers
and developers to search for root causes “in the dark”.
This result is shown in Table 2. Next, we further zoom in
to understand why those cases did not have log messages
and whether it is hard to log them in advance.
• Finding 4: Surprisingly, the programs themselves have
caught early error-manifestations in the majority (61%) of
the cases. The remaining 39% are undetected until the fi-
nal failure point. This is documented in Figure 5, which

2Throughout the entire paper, we assume the default verbosity mode
(i.e., no verbosity), which is the typical setting for production runs.

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 297

Handle to 
surviveFault

Failures

give up

154(61%)

96(39%)

113(45%)
Log: 102

41(16%)
Log: 6

113(45%), Log: 102

96(39%)
Log: 0

 7(=0+7)(3%), Log: 0

 12(=2+10)(5%), Log: 2

16(=9+7)(6%), Log: 1

69(=21+48)(28%), L: 2

19(=3+16)(8%), Log: 0

14(=6+8)(6%), Log: 1

Early termination

Crash

Hang

Incorrect results

Incompl. results

Unneces. results

Resource leakincorrect

Detected
Errors

Undetected
Errors

Figure 5: Fault manifestation for our sampled failures. (=x+y):
x failures from detected errors and y failures from undetected
errors. “Log: N”: N cases have failure-related log messages.

Appl.
Detected Error Undetected Error

Early Handle Generic Semantic
terminat. incorrect. except. except.

Apache 23 18 9 15
Squid 23 9 10 8
Postgres 24 4 5 12
SVN 26 0 7 12
Coreutils 17 10 8 10

Total 113(73%) 41(27%) 39(41%) 57(59%)
154 96

Table 3: Error manifestation characteristics of examined soft-
ware. All detected errors were caught by generic exception
checks such as those in Table 5. Some undetected errors could
have been detected in the same way.

Appl. Early Termination Handle Incorrectly
no log w/ log no log w/ log

Apache 3 20 14 4
Squid 4 19 8 1
Postgres 0 24 4 0
SVN 1 25 0 0
Coreutils 3 14 9 1
Total 11(10%) 102(90%) 35(85%) 6(15%)
Detected 113 41

Table 4: Logging practices when general errors are detected.

shows how our sampled failures map to the error manifes-
tation model presented in Section 3. Table 3 breaks them
down by application, where the behavior is generally con-
sistent. This indicates that programmers did reasonably
well in anticipating many possible errors in advance.

However, as shown in Figure 5 programmers do not
comprehensively log these detected errors. Fortunately,
the result also indicates that log automation can be a
rescue—at least 61% of failures manifest themselves
through explicitly detected exceptions, which provide nat-
ural places to log the errors for postmortem diagnosis.

Further drilling down, we consider two categories of
failures for which programmers themselves detected er-
rors along the fault propagation path: early termination
and incorrect handling. As shown in Table 4, the vast ma-
jority (90%) of the first category log the errors appropri-
ately (10% miss this easy opportunity and impose unnec-

Generic Exception Conditions Detected Errors
total w/ logs

Function return errors 69 (45%) 50 (72%)
Exception signals(e.g., SIGSEGV) 22 (14%) 22 (100%)
Unexpected cases falling into default 27 (18%) 12 (44%)
Resource leak 1 (1%) 1 (100%)
Failed input validity check 17 (11%) 8 (47%)
Failed memory safety check 7 (4%) 7 (100%)
Abnormal exit/abort from execution 11 (7%) 8 (73%)
Total 154 108 (70%)

Table 5: Logging practices for common exceptions.

essary obstacles to debugging; Figure 1 documents one
such omission in Apache). Logging overhead is not a big
concern since the programs subsequently terminate.

For the second category (i.e., those failure cases where
programs decided to tolerate the errors but unfortunately
did so incorrectly), the majority of the cases did not log
the detected errors.

Table 4 also shows that Postgres and SVN are much
more conservative in surviving detected errors. Among
their 54 detected errors, developers chose early termina-
tion in 93% (50/54) of the detected errors. In compari-
son, for the other three applications, only 63% of the de-
tected errors terminate the executions. We surmise this
is because data integrity is the first class requirement for
Postgres and SVN—when errors occur, they seldom al-
low executions to continue at the risk of data damaging.
• Finding 5: 41 of the 250 randomly sampled failures are
caused by incorrect or incomplete error handling. Un-
fortunately, most (85%) of them do not have logs. This
indicates that developers should be conservative in error
handling code: at least log the detected errors since error
handling code is often buggy. The squid example shown
in Figure 2 documents such an example.

Adding together the two categories, there are a total of
46 cases that did not log detected errors. In addition, there
are also 39 failures shown in Table 3 in which the pro-
grams could have detected the error via generic checks
(e.g., system call error returns). Therefore we have:
• Finding 6: Among the 142 failures without log mes-
sages, there were obvious logging opportunities for 60%
(85) of them. In particular, 54% (46) of them already did
such checks, but did not log the detected errors.
Logging Practice Recommendation: Overall, these find-
ings suggest that it is worthwhile to conservatively log de-
tected errors, regardless of whether there is error-handling
code to survive or tolerate the errors.

4.2 Logging Generic Exceptions
Table 5 documents these generic exception patterns, many
of which are checked by the studied programs but are not
logged. We explain some of them and highlight good prac-
tices that we encountered.

5



298 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Figure 6: SVN’s good logging practices for checking and log-
ging function return errors.

static void reaper(...) {            
  while((pid = waitpid(-1, &s,..)) > 0) {
     ereport( (%d) was terminated by
    signal %d , pid, WTERMSIG(s)); 
     }
} /* Postgresql, postmaster.c */

void death(int sig) {
  if (sig == SIGBUS)
    fprintf(log, "Recv Bus Error.\n");
     ...  
  else
    fprintf(log, "Recv Sig %d\n", sig);
  PrintCPUusage();                           
 dumpMallocStatus();                  
  #ifdef STACK_TRACE
                                                 
  #endif 
 } /* Squid, main.c */

(b) Bad logging practice (c) Good logging practice 

void hash_lookup(Hash_t *table, ..){
   *bucket = table->bucket +  ; 

/* coreutils, hash.c */

 NO context info

(a) NO signal handler: OS prints segf.

can be NULL

  Context 
info

Figure 7: Logging practices for exception signals.

(1) Function return errors: It is a common practice to
check for function (e.g., system call) return errors. In our
study, 45% of detected errors were caught via function re-
turn values as shown on Table 5. However, a significant
percentage (28%) of them did not log such errors.

Good practice: SVN uniformly logs function return er-
rors. First, as shown in Figure 6, almost all SVN function
calls are made through a special macro SVN ERR, which
checks for error return. Second, if a function returns an
error to its caller, it prepares an error message in a buffer,
err->message. Every error is eventually returned back
to main through the call path via SVN ERR and then main
prints out the error message. Consequently, as shown in
Table 4, almost all exceptions detected by SVN are logged
before early termination.

(2) Exception signals: In general, many server programs
register their own signal handlers to catch fatal signals
(e.g., SIGSEGV, SIGTERM). In our study, about 14% of
detected errors were caught by the programs’ own signal
handlers, and fortunately all were logged.

However, all examined software (except for squid)
only logs signal names. Figure 7 compares the logging
practices in three of them: (a) Coreutils does not have
a signal handler. OS prints a generic “segmentation fault”
message. (b) Postgres’s log does not provide much bet-
ter information than the default OS’s signal handler. (c)
Good practice: squid logs system status and context in-
formation such as CPU and memory usage, as well as the
stack frames, when catching exception signals.

Statement cov.* 10 (18%) Decision cov. 12 (21%)
Condition cov. 2 (4%) Weak mutation 4 (7%)
Mult. cond. cov. 2 (4%) Loop cov. 1 (2%)
Concurr. cov. 1 (2%) Perf. profiling 1 (2%)
Functional cov. 34 (60%) Total failures 57

Table 6: The number of hard-to-check failures that could have
been caught during testing, assuming 100% test coverage with
each criteria. *: can also be detected by decision coverage test.

(3) Unexpected cases falling through into default: Some-
times when programs fail to enumerate all possible cases
in a switch statement, the execution may unexpectedly fall
through into the base “default” case, and lead to a failure.
In our study, 18% of detected errors belong to this cate-
gory, but only 44% of them are logged.
(4) Other exceptions: Programs also perform other types
of generic exception checks such as bound-checks, input
vadility checks, resource leak checks, etc., (Table 5) but
they often forget to log detected errors, losing opportuni-
ties to gather evidences for postmortem diagnosis.

4.3 Logging for Hard-to-check Failures
As shown earlier in Table 3, 57 failures are hard to de-
tect via generic exception checks. We refer them as hard-
to-check errors. When a production failure occurs, it is
usually due to an unusual input or environment triggering
some code paths that are not covered during in-house test-
ing. Table 6 shows that 21% of the 57 hard-to-check fail-
ure cases execute some branch edges that we surmise have
never been executed during testing (otherwise, the bugs on
those edges would definitely have been exposed)3. There-
fore, if we log on those branch decisions that have not been
covered during testing, i.e., cold paths, it would be useful
for diagnosis. Of course, special care needs to be taken if
some cold paths show up too frequently during runtime.
• Finding 7: Logging for untested code paths would col-
lect diagnostic information for some of them.

5 Errlog: A Practical Logging Tool
Driven by the findings in our study, we further build an
automatic logging tool called Errlog , which analyzes the
source code to identify potential unlogged exceptions (ab-
normal or unusual conditions), and then inserts log state-
ments. Therefore, Errlog can automatically enforce good
logging practices. We implement our source code analysis
algorithms using the Saturn [2] static analysis framework.

Errlog faces three major challenges: (1) Where are such
potential exceptions? (2) Has the program itself checked
for the exception? If so, has the program logged it after
checking it? (3) Since not every potential exception may
be terminal (either because the program has mechanisms
to survive it or it is not a true exception at all), how do we

3Due to software’s complexity, cost of testing, and time-to-market
pressure, complex systems can rarely achieve 100% test coverage.

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 299

Exception Pattern How to identify in source code

DE

Function return error
Mechanically search for libc/system calls. If a libc/system call’s error return value is not
checked by the program, Errlog injects new error checking code. Such a check won’t incur
too much overhead as it is masked by the overhead of a function call.

Failed memory safety
check

Search for checks for null pointer dereference and out-of-bound array index. If no such safety
check exists, Errlog does NOT add any check due to false positive concerns.

Abnormal exit/abort Search for “abort, exit, exit”. The constraint EC for this pattern is “true”.
Exception signals Intercept and log abnormal signals. Our logging code uses memory buffer and is re-entrant.

LE

Unexpected cases
falling into default

Search for the “default” in a switch statement or a switch-like logic, such as if.. else
if.. else..., where at least the same variable is tested in each if condition.

Invalid input check
Search for text inputs, using a simple heuristic to look for string comparisons (e.g., strcmp).
The exception is the condition that these functions return “not-matched” status. In our study,
47% of the “invalid input checks” are from these standard string matching functions.

AG Resource leak Errlog monitors resource (memory and file descriptor) usage and logs them with context
information. Errlog uses exponential-based sampling to reduce the overhead (Section 5.3).

Table 7: Generic exception patterns searched by Errlog. These patterns are directly from our findings in Table 5 in Section 4.

avoid significant performance overhead without missing
important diagnostic information?

To address the first challenge, Errlog follows the obser-
vations from our characterization study. It identifies po-
tential exceptions by mechanically searching in the source
code for the seven generic exception patterns in Table 5. In
addition, since many other exception conditions are pro-
gram specific, Errlog further “learns” these exceptions by
identifying the frequently logged conditions in the target
program. Moreover, it also optionally identifies untested
code area after in-house testing.

For the second challenge, Errlog checks if the exception
check already exists, and if so, whether a log statement
also exists. Based on the results, Errlog decides whether
to insert appropriate code to log the exception.

To address the third challenge, Errlog provides three
logging modes for developers to choose from, based on
their preferences for balancing the amount of log messages
versus performance overhead: Errlog-DE for logging def-
inite exceptions, Errlog-LE for logging definite and likely
exceptions, and Errlog-AG for aggressive logging. More-
over, Errlog’s runtime logging library uses dynamic sam-
pling to further reduce the overhead of logging without
losing too much logging information.
Usage Users of Errlog only need to provide the name of
the default logging functions used in each software. For
example, the following command is to use Errlog on the
CVS version control system:
Errlog --logfunc="error" path-to-CVS-src

where error is the logging library used by CVS. Errlog
then automatically analyzes the code and modifies it to
insert new log statements. Errlog can also be used as a
tool that recommends where to log (e.g., a plug-in to the
IDE) to the developers, allowing them to insert logging
code to make the message more meaningful.

5.1 Exception Identification
In this step, Errlog scans the code and generates the fol-
lowing predicate: exception(program point P, constraint

EC), where P is the program location of an exception
check, and EC is the constraint that causes the exception to
happen. In the example shown in Figure 2, P is the source
code location of “if (status!=COMM OK)”, and EC is
status!=COMM OK. EC is used later to determine under
which condition we should log the exception and whether
the developer has already logged the exception.
Search for generic exceptions Table 7 shows the generic
exception patterns Errlog automatically identifies, which
are directly from the findings in our characterization study.

5.1.1 Learning Program-Specific Exceptions
Errlog-LE further attempts to automatically identify
program-specific exceptionswithout any program-specific
knowledge. If a certain condition is frequently logged
by programmers in multiple code locations, it is likely
to be “log-worthy”. For example, the condition
status!=COMM OK in Figure 2 is a squid-specific excep-
tion that is frequently followed by an error message. Simi-
lar to previous work [12] that statically learns program in-
variants for bug detection, Errlog-LE automatically learns
the conditions that programmers log on more than two oc-
casions. To avoid false positives, Errlog also checks that
the logged occasions outnumber the unlogged ones.
The need for control and data flow analysis It is
non-trivial to correctly identify log-worthy conditions.








Figure 8: Example
showing the need of con-
trol & data flow analysis.

For example, the exception
condition in Figure 8 is that
pcre malloc returns NULL,
not tmp==NULL. Errlog first an-
alyzes the control-flow to iden-
tify the condition that immedi-
ately leads to an error message.
It then analyzes the data-flow,
in a backward manner, on each
variable involved in this condition to identify its source.
However, such data-flow analysis cannot be carried ar-
bitrarily deep as doing so will likely miss the actual
exception source. For each variable a, Errlog’s data-

7



300 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

flow analysis stops when it finds a live-in variable as its
source, i.e., a function parameter, a global variable, a
constant, or a function return value. In Figure 8, Er-
rlog first identifies the condition that leads to the er-
ror message being tmp==NULL. By analyzing the data-
flow of tmp, Errlog further finds its source being the re-
turn value of pcre malloc. Finally, it replaces the tmp
with pcre malloc() and derives the correct error con-
dition, pcre malloc()==NULL. Similarly, the condition
status!=COMM OK in Figure 2 is learnt because status
is a formal parameter of the function.
Identifying helper logging functions Errlog only re-
quires developers to provide the name of the default log-
ging function. However, in all the large software we stud-
ied, there are also many helper logging functions that sim-
ply wrap around the default ones. Errlog identifies them
by recursively analyzing each function in the bottom-up
order along the call graph. If a function F prints a log
message under the condition true, F is added to the set
of logging functions.
Explicitly specified exceptions (optional) Errlog also
allows developers to explicitly specify domain-specific ex-
ception conditions in the form of code comments right be-
fore the exception condition check. Our experiments are
conducted without this option.

5.1.2 Identifying Untested Code Area (optional)
Errlog-AG further inserts log points for code regions not
covered by in-house testing. We use the test coverage tool
GNU gcov [14] and the branch decision coverage criteria.
For each untested branch decision, Errlog instruments a
log point. For multiple nested branches, Errlog only in-
serts a log point at the top level. This option is not enabled
in our experiments unless otherwise specified.

5.2 Log Printing Statement Insertion
Filter the exceptions already logged by a program This
is to avoid redundant logging, which can result in overhead
and redundant messages. Determining if an exception E
has already been logged by a log point L is challenging.
First, L may not be in the basic block immediately after
E . For example, in Figure 8, the exception check and its
corresponding log point are far apart. Therefore, simply
searching for L within the basic block following E is not
enough. Second, E might be logged by the caller function
via an error return code. Third, even if L is executed when
E occurs, it might not indicate that E is logged since L
may be printed regardless of whether E occurs or not.

Errlog uses precise path sensitive analysis to determine
whether an exception has been logged. For each identified
exception(P,EC), Errlog first checks whether there is a
log point L within the same function F that: i) will execute
if EC occurs, and ii) there is a path reaching P but not L
(which implies that L is not always executed regardless of
EC). If such an L exists, then EC has already been logged.

To check for these two conditions, Errlog first captures
the path-sensitive conditions to reach P and L as CP and
CL respectively. It then turns the checking of the above
two conditions into a satisfiability problem by checking
the following using a SAT solver:

1. CP ∧EC∧¬CL is not satisfiable.
2. CP ∧¬CL is satisfiable.

The first condition is equivalent to i), while the second
condition is equivalent to ii).

If no such log point exists, Errlog further checks if the
exception is propagated to the caller via return code. It
checks if there is a return statement associated with EC in
a similar way as it checks for a log point. It remembers
the return value, and then analyzes the caller function to
check if this return value is logged or further propagated.
Such analysis is recursively repeated in every function.
Log placement If no logging statement is found for an
exception E from the analysis above, Errlog inserts its
own logging library function, “Elog(logID)”, into the
basic block after the exception check. If no such check
exists, Errlog also adds the check.

Each logging statement records (i) a log ID unique to
each log point, (ii) the call stack, (iii) casually-related vari-
able values identified using LogEnhancer [37] 4, (iv) a
global counter that is incremented with each occurrence
of any log point, to help postmortem reconstruction of
the message order. For each system-call return error, the
errno is also recorded. No static text string is printed at
runtime. Errlog will compose a postmortem text message
by mapping the log ID and errno to a text string describ-
ing the exception. For example, Errlog would print the
following message for an open system-call error: “open
system call error: No such file or directory: ./filepath ...”.
5.3 Run-time Logging Library
Due to the lack of run-time information and domain
knowledge during our static analysis, Errlog may also log
non-exception cases, especially with Errlog-LE and Er-
rlog-AG. If these cases occur frequently at run time, the
time/space overhead becomes a concern.

To address this issue, Errlog’s run-time logging library
borrows the idea of adaptive sampling [19]. It exponen-
tially decreases the logging rate when a log point L is
reached from the same calling context many times. The
rationale is that frequently occurred conditions are less
likely to be important exceptions; and even if they are, it
is probably useful enough to only record its 2nth dynamic
occurrences. To reduce the possibility of missing true ex-
ceptions, we also consider the whole context (i.e., the call
stack) instead of just each individual log point. For each
calling context reaching each L we log its 2nth dynamic
occurrences. We further differentiate system call return er-
rors by the value of errno. For efficiency, Errlog logs into

4LogEnhancer [37] is a static analysis tool to identify useful variable
values that should be logged with each existing log message.

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 301

App.
Errlog-DE Errlog-LE Errlog-AG

func. mem. abno. sig- Total switch- input learned Total res. Totalret. safe. exit nals default check errors leak
Apache 30 41 9 22 102 (0.09X) 117 389 360 968 (0.83X) 24 992 (0.86X)
Squid 393 112 29 3 537 (0.47X) 116 147 17 817 (0.72X) 26 843 (0.74X)
Postgres 619 166 28 9 822 (0.13X) 432 7 1442 2703 (0.43X) 65 2768 (0.44X)
SVN 33 6 1 3 43 (0.02X) 53 1 8 105 (0.06X) 31 136 (0.07X)
Coreutil cp 34 4 9 2 49 (0.73X) 13 5 0 67 (1.00X) 4 71 (1.06X)
CVS 1109 360 23 3 1495 (1.30X) 52 49 645 2241 (1.95X) 32 2273 (1.97X)
OpenSSH 714 31 26 3 774 (0.32X) 112 31 63 980 (0.40X) 23 1003 (0.41X)
lighttpd 171 16 30 3 220 (0.27X) 67 27 6 320 (0.39X) 37 357 (0.44X)
gzip 45 3 32 3 83 (0.85X) 40 3 16 142 (1.45X) 14 156 (1.59X)
make 339 6 16 3 364 (2.72X) 29 12 10 415 (3.10X) 6 421 (3.14X)
Total 3487 745 203 54 4489 (0.30X) 1031 671 2567 8758 (0.58X) 262 9020 (0.60X)

Table 8: Additional log points added by Errlog. The “total” of LE and AG include DE and DE+LE, respectively, and are compared
to the number of existing log points (Table 1 and 9). Note that most of these log points are not executed during normal execution.

in-memory buffers and flushes them to disk when they be-
come full, execution terminates, and when receiving user
defined signals.

Note that comparing with other buffering mechanisms
such as “log only the first/last N occurrences”, adaptive
sampling offers a unique advantage: the printed log points
can be postmortem ranked in the reverse order of their
occurrence frequencies, with the intuition that frequently
logged ones are less likely true errors.

6 In-lab Experiment
We evaluate Errlog using both in-lab experiments and a
controlled user study. This section presents the in-lab
experiments. In addition to the applications we used in
our characterization study, we also evaluate Errlog with 5
more applications as shown in Table 9.

6.1 Coverage of Existing Log Points
It is hard to objectively evaluate the usefulness of log mes-
sages added by Errlog without domain knowledge. How-
ever, one objective evaluation is to measure how many
of the existing log points, added manually by developers,
can be added by Errlog automatically. Such measurement
could evaluate how much Errlog matches domain experts’
logging practice.

Note that while our Section 4 suggests that the current
logging practices miss many logging opportunities, we do
not imply that existing log points are unnecessary. On the
contrary, existing error messages are often quite helpful

App. description LOC #Default Log Points
Total Err+Warn

CVS version cont. sys. 111K 1151 1139 (99%)
OpenSSH secure connection 81K 2421 2384 (98%)
lighttpd web server 54K 813 792 (97%)
gzip comp/decom. files 22K 98 95 (97%)
make builds programs 29K 134 129 (96%)

Table 9: The new software projects used to evaluate Errlog, in
addition to the five examined in our characterization study.

0 %

20 %

40 %

60 %

80 %

100 %

C
o
v
er

ag
e

apache

squid

postgres

svn
cp cvs

openssh

lighttpd

gzip
m

ake

DE LE frequent pattern

Figure 9: Coverage of existing log points by Errlog. For Er-
rlog-LE, we break down the coverages into log points identified
by generic exceptions and those learned by frequent logging pat-
terns. AG has similar coverages as LE.

in failure diagnosis as they were added by domain ex-
perts, and many of them were added in the form of after-
thoughts. This is confirmed by our Finding 2: existing
log messages would reduce the diagnosis time by 2.2X.
Therefore, comparing with existing log points provides an
objective measurement on the effectiveness of Errlog.

Figure 9 shows that Errlog , especially with Errlog-LE,
can automatically cover an average of 84% of existing log
points across all evaluated software. In comparison, Er-
rlog-DE logs only definite errors and achieves an average
of 52% coverage, still quite reasonable since on average it
adds less than 1% overhead.

6.2 Additional Log Points
In addition to the existing log points, Errlog also adds
new log points, shown in Table 8. Even though Errlog-LE
adds 0.06X–3.10X additional log points, they only cause
an average of 1.4% overhead (Section 6.3) because most
of them are not triggered when the execution is normal.
Logging for untested branch decision Table 10 shows
Errlog-AG’s optional logging for untested branch deci-
sions, which is not included in the results above. For
Apache, Postgres, SVN and Coreutils, we used the
test cases released together with the software.

9



302 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

App. Uncovered decisions # log points
Apache 57.0% (2915) 655
Postgres 51.7% (51396) 11810

SVN 53.7% (14858) 4051
Coreutils 62.3% (9238) 2293

Table 10: Optional logging for untested branch decisions.

Software Adaptive sampling* No sampling
DE LE AG DE LE

Apache <1% <1% 2.7% <1% <1%
Squid <1% 1.8% 2.1% 4.3% 9.6%
Postgres 1.5% 1.9% 2.0% 12.6% 40.1%
SVN <1% <1% <1% <1% <1%
cp <1% <1% <1% 6.3% 6.3%
CVS <1% <1% <1% <1% 2.3%
Openssh scp 2.0% 4.6% 4.8% 5.2% 27.1%
lighttpd <1% <1% 2.2% <1% <1%
gzip <1% <1% <1% <1% <1%
make 3.9% 4.0% 4.8% 4.2% 6.8%
Average 1.1% 1.4% 2.1% 3.5% 9.4%

Table 11: The performance overhead added by Errlog’s log-
ging. *: By default, Errlog uses adaptive sampling. We also
show the overhead without using sampling only to demonstrate
the effect of adaptive sampling.

func. mem. switch input learned Totalret. safe. default check errors
Log pts. 5 8 5 7 10 35

Table 12: Noisy log points exercised during correct executions.

6.3 Performance Overhead
We evaluate Errlog’s logging overhead during the soft-
ware’s normal execution. Server performance is mea-
sured in peak-throughput. Web servers including Apache
httpd, squid, and lighttpd are measured with ab [4];
Postgres is evaluated with pgbench [24] using the
select-only workload; SVN and CVS with a combination
of check-out, merge, copy, etc.; OpenSSH’s scp with re-
peatedly transferring files; gzip and cp with processing
large files; make with compiling PostgreSQL.

Table 11 shows Errlog’s logging overhead during the
normal execution. For all evaluated software, the default
Errlog-LE imposes an average of 1.4% run-time overhead,
with a maximum of 4.6% for scp. The most aggressive
mode, Errlog-AG, introduces an average of 2.1% over-
head and a maximum of 4.8%. The maximum runtime
memory footprint imposed by Errlog is less than 1MB.
scp and make have larger overhead than others in Ta-

ble 11. It is because scp is relatively CPU intensive
(lots of encryptions) and also has a short execution time.
Compared to I/O intensive workloads, the relative log-
ging overhead added by Errlog becomes more significant
in CPU intensive workloads. Moreover, short execution
time may not allow Errlog to adapt the sampling rate ef-
fectively. make also has relatively short execution time.
Noisy messages More log messages are not always better.
However, it is hard to evaluate whether each log point cap-

App. Tot. w/ exist- Errlog-
fails ing logs DE LE AG

Apache 58 18 (31%) 28 (48%) 43 (74%) 48 (83%)
Squid 45 15 (33%) 23 (51%) 37 (82%) 37 (82%)
Postgres 45 24 (53%) 26 (58%) 32 (71%) 34 (76%)
SVN 45 25 (56%) 30 (67%) 33 (73%) 33 (73%)
Coreutils 45 15 (33%) 28 (62%) 34 (76%) 37 (82%)
Total 238* 97 (41%) 135 (57%) 179 (75%) 189 (79%)

Table 13: Errlog’s effect on the randomly sampled 238 real-
world failure cases. *: 12 of our 250 examined failure cases
cannot be evaluated since the associated code segments are for
different platforms incompatible with our compiler.

tures a true error since doing so requires domain expertise.
Therefore we simply treat the log points that are executed
during our performance testing as noisy messages as we
are not aware of any failures in our performance testing.
Among the five applications we used in our failure study,
only a total of 35 log points (out of 405 error condition
checks) are executed, between 3-12 for each application.
Table 12 breaks down these 35 log points by different pat-
terns. Examples of these include using the error return of
stat system call to verify a file’s non-existence in normal
executions. Since we use adaptive sampling, the size of
run-time log is small (less than 1MB).
Sampling overhead comparison We also evaluate the
efficiency of adaptive sampling by comparing it with “no
sampling” in Table 11. “No sampling” logging records ev-
ery occurrence of executed log points into memory buffer
and flushes it to disk when it becomes full. We do not eval-
uate “no sampling” on Errlog-AG as it is more reasonable
to use sampling to monitor resource usage.

Adaptive sampling effectively reduces Errlog-LE’s
overhead from no-sampling’s 9.4% to 1.4%. The majority
of the overhead is caused by a few log points on an ex-
ecution’s critical paths. For example, in Postgres, the
index-reading function, where a lock is held, contains a
log point. By decreasing the logging rate, adaptive sam-
pling successfully reduces no-sampling’s 40.1% overhead
to 1.9%. In comparison, the effect of sampling is less ob-
vious for make, where its short execution time is not suf-
ficient for adaptive sampling to adjust its sampling rate.
Analysis time Since Errlog is used off-line to add log
statements prior to software release, the analysis time is
less critical. Errlog takes less than 41 minutes to analyze
each evaluated software except for postgres, which took
3.8 hours to analyze since it has 1 million LOC. Since Er-
rlog scans the source code in one-pass, its analysis time
roughly scales linearly with the increase of the code size.
6.4 Real World Failures
Table 13 shows Errlog’s effect to the real-world failures
we studied in Section 4. In this experiment we turn on the
logging for untested code region in Errlog-AG. Originally,
41% of the failures had log messages. With Errlog , 75%
and 79% of the failures (with Errlog-LE and AG, respec-

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 303

Name Repro Description
apache
crash

� A configuration error triggered a NULL
pointer dereference.

apache
no-file

� The name of the group-file contains a typo
in the configuration file.

chmod × fail silently on dangling symbolic link.
cp � fail to copy the content of /proc/cpuinfo.
squid × when using Active Directory as authentica-

tion server, incorrectly denies user’s authen-
tication due to truncation on security token.

Table 14: Real-world failures used in our user study.

tively) have failure-related log messages.
Effectiveness of Errlog for Diagnosis We evaluate the
usefulness of the added log messages in diagnosis using
SherLog [35], a log-inference engine. Given log mes-
sages related to a failure, SherLog reconstructs the exe-
cution paths must/may have taken to lead to the failure.
Our evaluation shows that 80% of the new messages can
help SherLog to successfully infer the root causes.

7 User Study
We conduct a controlled user study to measure the effec-
tiveness of Errlog . Table 14 shows the five real-world pro-
duction failures we used. Except for “apache crash”, the
other four failed silently. Failures are selected to cover
diverse root causes (bugs and misconfigurations), symp-
toms, and reproducibilities. We test on 20 programmers
(no co-author of this paper is included), who indicated that
they have extensive and recent experience in C/C++.

Each participant is asked to fix the 5 failures as best as
she/he could. They are provided a controlled Linux work-
station and a full suite of debugging tools, including GDB.
Each failure is given to a randomly chosen 50% of the pro-
grammers with Errlog inserted logs, and the other 50%
without Errlog logs. All participants are given the expla-
nation of the symptom, the source tree, and instructions
on how to reproduce the three reproducible failures–this is
actually biased against Errlog since it makes the no-Errlog
cases easier (it took us hours to understand how to repro-
duce the two Apache failures). The criteria of a successful
diagnosis is for the users to fix the failure. Further, there is
a 40 minutes time limit per failure; failing to fix the fail-
ure is recorded as using the full limit. 40 minutes is a best
estimation of the maximum time needed.

Note that this is a best-effort user study. The potential
biases should be considered when interpreting our results.
Below we discuss some of the potential biases and how we
addressed them in our user study:
Bias in case selection: We did not select some very hard-
to-diagnose failures and only chose two unreproducible
ones, since diagnosis can easily take hours of time. This
bias, however, is likely against Errlog since our result
shows that Errlog is more effective on failures with a
larger diagnosis time.

 10
 20
 30
 40

apache
crash

apache
no-file

chmod squid cp

Ti
m

e 
(m

in
ut

es
)

Overall

Errlog
No Errlog

Figure 10: User study result, with error bars showing 95% con-
fidence interval.

Bias in user selection: The participants might not rep-
resent the real programmers of these software. Only four
users indicated familiarities with the code of these soft-
ware. However, we do provide each user a brief tutorial
of the relevant code. Moreover, studies [34] have shown
that many programmers fixing real-world production fail-
ures are also not familiar with the code to be fixed because
many companies rely on sustaining engineers to do the fix.
Sustaining engineers are usually not the developers who
wrote the code in the first place.
Bias in methodology: As our experiment is a single-
blind trial (where we, the experimenters, know the ground
truth), there is a risk that the subjects are influenced by the
interaction. Therefore we give the users written instruc-
tions for each failure, with the only difference being the
presence/absence of the log message; we also minimize
our interactions with the user during the trial.
Results Figure 10 shows our study result. On average
programmers took 60.7% less time diagnosing these fail-
ures when they were provided with the logs added by Er-
rlog (10.37±2.18 minutes versus 25.72±3.75 minutes, at
95% confidence interval). An unpaired T-test shows that
the hypothesis “Errlog saves diagnosis time” is true with a
probability of 99.9999999% (p=5.47×10−10), indicating
the data strongly supports this hypothesis.

Overall, since factors such as individuals’ capability are
amortized among a number of participants, the only con-
stant difference between the two control groups is the ex-
istence of the log messages provided by Errlog. Therefore
we believe the results reflect Errlog’s effectiveness.

Less formally, all the participants reported that they
found the additional error messages provided by Errlog
significantly helped them diagnose the failures. In partic-
ular, many participants reported that “(Errlog added) logs
are in particular helpful for debugging more complex sys-
tems or unfamiliar code where it required a great deal of
time in isolating the buggy code path.”

However, for one failure, “apache crash”, the benefit of
Errlog is not statistically significant. The crash is caused
by a NULL pointer dereference. Errlog’s log message is
printed simply because SIGSEGV is received. Since users
could reproduce the crash and use GDB, they could rela-
tively quickly diagnose it even without the log.

In comparison, Errlog achieves maximum diagnosis
time reduction in two cases: “squid” (by 72.3%) and

11



304 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

“apache no-file” (by 73.7%). The squid bug is a tricky
one: due to the complexity in setting up the environ-
ment and user privacy concerns, it is not reproducible by
the participants. Without logs, most of the control group
took time-consuming goose chases through the compli-
cated code. In contrast, the error message from Errlog,
caused by the abnormal return of snprintf, guided most
of the users from the other group to quickly spot the unsafe
use of snprintf that truncated a long security token.

In the “apache no-file” case (the one shown in Fig-
ure 1), apache cannot open a file due to a typo in the
configuration file. Without any error message, some pro-
grammers did not even realize this was caused by a mis-
configuration and started to debug the code. In contrast,
the error message provided by Errlog clearly indicates the
open system call cannot find the file, allowing most pro-
grammers in this group to quickly locate and fix the typo.

8 Limitations and Discussions
(1) What failures cannot benefit from Errlog? Not all the
failures can be successfully diagnosed with Errlog . First,
Errlog fails to insert log messages for 21% of the ran-
domly sampled failures (Table 13). The error conditions
of these failures are subtle, domain-specific, or are caused
by underlying systems whose errors are not even properly
propagated to the upper level applications [26]. Errlog
could be further used with low-overhead run-time invari-
ants checking [13] to log the violations to the invariants.

Second, while log messages provide clues to narrow
down the search, they may not pinpoint the root cause.
Section 6.4 shows that for 20% of the failures, the added
log messages are not sufficient for the diagnosis. Such
examples include (i) concurrency bugs where the thread-
interleaving information is required and (ii) failures where
key execution states are already lost at the log point. Note
that a majority (> 98%) of failures in the real world are
caused by semantic bugs, misconfigurations, and hard-
ware errors but not by concurrency bugs [27].

However, this does not mean Errlog can only help di-
agnosing easy failures. Log messages collect more diag-
nostic information, not to pinpoint the exact root cause.
Evidences provided by logs along the fault propagation
chain, despite how complicated this chain is, will likely
help narrowing down the search space. Therefore even
for concurrency bugs, an error message is still likely to be
useful to reduce the diagnosis search space.
(2) What is the trade-off of using adaptive sampling?
Adaptive sampling might limit the usage of log messages.
If the program has already exercised a log point, it is possi-
ble that this log will not be recorded for a subsequent error.
Long running programs such as servers are especially vul-
nerable to this limitation. To alleviate this limitation, we
differentiate messages by runtime execution contexts in-
cluding stack frames and errno. We can also periodically

reset the sampling rate for long running programs.
In addition, adaptive sampling might preclude some

useful forms of reasoning for a developer. For instance,
the absence of a log message no longer guarantees that
the program did not take the path containing the log point
(assuming the log message has already appeared once).
Moreover, even with the global order of each printed mes-
sage, it would be harder to postmortem correlate them
given the absence of some log occurrences.

To address this limitation, programmers can first use
adaptive sampling on every log point during the test-
ing and beta-release runs. Provided with the logs
printed during normal executions, they can later switch to
non-sampling logging for those not-exercised log points
(which more likely capture true errors), while keep using
sampling on those exercised ones for overhead concerns.
(3) Can Errlog completely replace developers in logging?
The semantics of the auto-generated log messages are still
not comparable to those written by developers. The mes-
sage semantic is especially important for support engi-
neers or end users who usually do not have access to the
source code. Errlog can be integrated into the program-
ming IDE, suggesting logging code as developers program
and allowing them to improve inserted log messages and
assign proper verbosity levels.
(4) How about verbose log messages? This paper only
studies log messages under the default verbosity mode,
which is the typical production setting due to overhead
concerns [36]. Indeed, verbose logs can also help debug-
ging production failures as developers might ask user to
reproduce the failure with the verbose logging enabled.
However, such repeated failure reproduction itself is un-
desirable for the users in the first place. How to effectively
insert verbose messages remains as our future work.
(5) What is the impact of the imprecisions of the static
analysis? Such imprecisions, mainly caused by pointer
aliasing in C/C++, might result in redundant logging and
insufficient logging. However, given that Saturn’s intra-
procedural analysis precisely tracks pointer aliases [2],
such impact is limited only to the inter-procedural anal-
ysis (where the error is propagated via return code to the
callers to log). In practice, however, we found program-
mers seldom use aliases on an error return code.

9 Related Work
Log enhancement and analysis Some recent proposals
characterize, improve, and analyze existing log messages
for failure diagnosis [36, 37, 35, 32]. LogEnhancer [37]
adds variables into each existing log message to col-
lect more diagnostic information; Our previous work [36]
studied developers’ modifications to existing logging code
and found that they often cannot get the logging right at
the first attempt. SherLog [35] is a postmortem debugger
that combines runtime logs and source code to reconstruct

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 305

the partial execution path occurred in the failed execution.
However, all of these studies only deal with existing log

messages, and do not address the challenge of where to
add new logs as discussed in Section 2.

The different objective makes our techniques very dif-
ferent from the systems listed above. For example, both
SherLog and LogEnhancer start from an existing log mes-
sage to backtrack the execution paths. In comparison, Er-
rlog scans the entire source code to identify different ex-
ception patterns. Errlog also learns the program-specific
errors, identifies the untested code areas, checks whether
exceptions are already logged, and logs with adaptive sam-
pling at runtime. All these techniques are unique to Errlog
for its objective.
Detecting bugs in exception handling code Many
systems aim to expose bugs in the exception handling
code [17, 26, 22, 16, 33], including two [17, 26] that stat-
ically detect the unchecked errors in file-system code. Er-
rlog is different and complementary to these systems. Er-
rlog has a different goal: easing the postmortem failure
diagnosis, instead of detecting bugs. Therefore we need to
empirically study the weakness in logging practices, and
build a tool to automatically add logging statements. Only
our exception identification part (Section 5.1) shares some
similarities with [17, 26]. In addition, some exception pat-
terns such as fall-through in switch statements, signal han-
dling, and domain-specific errors are not checked by prior
systems. These additional exceptions detected by Errlog
might benefit the prior systems for detecting more bugs in
the corresponding error handling code.
Bug-type specific diagnostic information collection
Some studies [5, 19, 6, 38] proposed to collect runtime
information for specific types of bugs. For example,
DCop [38] collects runtime lock/unlock trace for diagnos-
ing deadlocks. These systems are more powerful but are
limited to debugging only specific types of fault, whereas
Errlog applies to various fault types but may log only the
erroneous manifestations (instead of root causes).
Logging for deterministic replay Other systems [31, 3,
11, 29] aim at deterministically replaying the failure exe-
cution, which generally requires recording all the inputs or
impose high run-time logging overhead. Castro et al. pro-
pose replacing private information while preserving diag-
nosis power [8], but they require replaying the execution
at the user’s site. Errlog is complementary and targets the
failures where reproduction is difficult due to privacy con-
cerns, unavailability of execution environments, etc.
Tracing for failure diagnosis Execution trace monitor-
ing [21, 18, 25, 1] has been used to collect diagnostic in-
formation, where both normal and abnormal executions
are monitored. Errlog logs only exceptions so its runtime
overhead is small during normal executions.
Static analysis Errlog uses the Saturn [2] symbolic exe-
cution framework. Similar static analysis [7, 9] was used

for other purposes, such as bug detection. Errlog uses
code analysis for a different objective: log insertion for
future postmortem diagnosis. Therefore many design as-
pects are unique to Errlog , such as checking whether the
exception is logged, learning domain-specific errors, etc.

10 Conclusions
This paper answers a critical question: where is the proper
location to print a log message that will best help post-
mortem failure diagnosis, without undue logging over-
head? We comprehensively investigated 250 randomly
sampled failure reports, and found a number of exception
patterns that, if logged, could help diagnosis. We further
developed Errlog , a tool that adds proactive logging code
with only 1.4% logging overhead. Our controlled user
study shows that the logs added by Errlog can speed up
the failure diagnosis by 60.7%.

Acknowledgements
We greatly appreciate anonymous reviewers and our shep-
herd, Florentina I. Popovici, for their insightful feedback.
We are also grateful to the Opera group, Alex Rasmussen,
and the UCSD System and Networking group for the use-
ful discussions and paper proof-reading. We also thank
all of the volunteers in the user study for their time spent
in debugging. This research is supported by NSF CNS-
0720743 grant, NSF CSR Small 1017784 grant and Ne-
tApp Gift grant.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In Proc. of the 19th ACM Sympo-
sium on Operating Systems Principles, pages 74–89, 2003.

[2] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and
P. Hawkins. An overview of the saturn project. In Pro-
ceedings of the Workshop on Program Analysis for Soft-
ware Tools and Engineering, pages 43–48, 2007.

[3] G. Altekar and I. Stoica. ODR: output-deterministic replay
for multicore debugging. In Proc. of the ACM 22nd Symp.
on Operating Systems Principles, pages 193–206, 2009.

[4] ab - Apache HTTP server benchmarking tool. http://
goo.gl/NLAqZ.

[5] M. D. Bond and K. S. McKinley. Bell: bit-encoding online
memory leak detection. In Proc. of the 12th International
Conference on on Architectural Support for Programming
Languages and Operating Systems, pages 61–72, 2006.

[6] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and
K. S. McKinley. Tracking bad apples: reporting the ori-
gin of null and undefined value errors. In Proc. of the
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications, pages 405–422, 2007.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In Proceedings of the 8th USENIX

13



306 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Conference on Operating Systems Design and Implemen-
tation, pages 209–224, 2008.

[8] M. Castro, M. Costa, and J.-P. Martin. Better bug report-
ing with better privacy. SIGARCH Comput. Archit. News,
36(1):319–328, Mar. 2008.

[9] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a plat-
form for in-vivo multi-path analysis of software systems.
In Proceedings of the 16th Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 265–278, 2011.

[10] Dell. Streamlined Troubleshooting with the Dell system
E-Support tool. Dell Power Solutions, 2008.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replay. In Proc. of the Symp. on Op-
erating Systems Design & Implementation, 2002.

[12] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code. In Proc. of the 18th ACM Sympo-
sium on Operating Systems Principles, pages 57–72, 2001.

[13] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In Proceed-
ings of the 22nd International Conference on Software En-
gineering, pages 449–458, 2000.

[14] gcov – a test coverage program. http://goo.gl/
R9PoN.

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Or-
govan, G. Nichols, D. Grant, G. Loihle, and G. Hunt. De-
bugging in the (very) large: ten years of implementation
and experience. In Proc. of the ACM 22nd Symposium on
Operating Systems Principles, pages 103–116, 2009.

[16] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,
A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and
D. Borthakur. FATE and DESTINI: a framework for cloud
recovery testing. In Proc. of the Symp. on Networked Sys-
tems Design & Implementation, pages 239–252, 2011.

[17] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dussea, and B. Liblit. EIO: error handling is
occasionally correct. In Proc. of the USENIX Conference
on File and Storage Technologies, pages 207–222, 2008.

[18] Z. Guo, D. Zhou, H. Lin, M. Yang, F. Long, C. Deng,
C. Liu, and L. Zhou. G2: a graph processing system for
diagnosing distributed systems. In Proc. of the USENIX
Annual Technical Conference, pages 299–312, 2011.

[19] M. Hauswirth and T. M. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In Pro-
ceedings of the 11th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 156–164, 2004.

[20] J.-C. Laprie. Dependable computing: concepts, limits,
challenges. In Proceedings of the 25th International Con-
ference on Fault-tolerant Computing, pages 42–54, 1995.

[21] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In Proc. of the
ACM SIGPLAN 2003 conference on Programming Lan-
guage Design and Implementation, pages 141–154, 2003.

[22] P. D. Marinescu and G. Candea. Efficient testing of recov-
ery code using fault injection. ACM Trans. Comput. Syst.,
29(4):11:1–11:38, Dec. 2011.

[23] Mozilla quality feedback agent. http://goo.gl/
V9zl2.

[24] pgbench - PostgreSQL wiki. goo.gl/GKhms.
[25] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.

Shah, and A. Vahdat. Pip: detecting the unexpected in dis-
tributed systems. In Proc. of the 3rd Symp. on Networked
Systems Design & Implementation, pages 115–128, 2006.

[26] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-
Dusseau, and A. C. Arpaci-Dusseau. Error propagation
analysis for file systems. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 270–280, 2009.

[27] S. K. Sahoo, J. Criswell, and V. S. Adve. An empirical
study of reported bugs in server software with implications
for automated bug diagnosis. In Proc. of the 32nd Intl.
Conf. on Software Engineering, pages 485–494, 2010.

[28] C. Spatz. Basic statistics, 1981.
[29] D. Subhraveti and J. Nieh. Record and transplay: partial

checkpointing for replay debugging across heterogeneous
systems. In Proceedings of the ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of
Computer Systems, pages 109–120, 2011.

[30] M. Sullivan and R. Chillarege. Software defects and their
impact on system availability-a study of field failures in
operating systems. In Fault-Tolerant Computing, 1991.
FTCS-21. Digest of Papers., 21st International Symposium,
pages 2–9, 1991.

[31] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.
Chen, J. Flinn, and S. Narayanasamy. Doubleplay: par-
allelizing sequential logging and replay. In Proceedings
of the 16th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 15–26, 2011.

[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. In Proc. of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pages 117–132, 2009.

[33] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. ACM
Trans. Comput. Syst., 24(4):393–423, Nov. 2006.

[34] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairava-
sundaram. How do fixes become bugs? In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering,
pages 26–36, 2011.

[35] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-
pathy. SherLog: error diagnosis by connecting clues from
run-time logs. In Proceedings of the 15th edition of ASP-
LOS on Architectural Support for Programming Languages
and Operating Systems, pages 143–154, 2010.

[36] D. Yuan, S. Park, and Y. Zhou. Characterizing logging
practices in open-source software. In Proc. of the Intl. Conf.
on Software Engineering, pages 102–112, 2012.

[37] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage.
Improving software diagnosability via log enhancement.
ACM Trans. Comput. Syst., 30(1):4:1–4:28, Feb. 2012.

[38] C. Zamfir and G. Candea. Low-overhead bug fingerprinting
for fast debugging. In Proceedings of the 1st International
Conference on Runtime Verification, pages 460–468, 2010.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 307

X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production
Software

Mona Attariyan†∗, Michael Chow†, and Jason Flinn†

University of Michigan† Google, Inc.∗

Abstract
Troubleshooting the performance of production software
is challenging. Most existing tools, such as profiling,
tracing, and logging systems, reveal what events oc-
curred during performance anomalies. However, users of
such tools must infer why these events occurred; e.g., that
their execution was due to a root cause such as a specific
input request or configuration setting. Such inference of-
ten requires source code and detailed application knowl-
edge that is beyond system administrators and end users.

This paper introduces performance summarization, a
technique for automatically diagnosing the root causes
of performance problems. Performance summarization
instruments binaries as applications execute. It first at-
tributes performance costs to each basic block. It then
uses dynamic information flow tracking to estimate the
likelihood that a block was executed due to each poten-
tial root cause. Finally, it summarizes the overall cost of
each potential root cause by summing the per-block cost
multiplied by the cause-specific likelihood over all ba-
sic blocks. Performance summarization can also be per-
formed differentially to explain performance differences
between two similar activities. X-ray is a tool that im-
plements performance summarization. Our results show
that X-ray accurately diagnoses 17 performance issues in
Apache, lighttpd, Postfix, and PostgreSQL, while adding
2.3% average runtime overhead.

1 Introduction
Understanding and troubleshooting performance

problems in complex software systems is notoriously
challenging. When a system does not perform as ex-
pected, system administrators and end users have few
options. Explicit error messages are often absent or
misleading [58]. Profiling and monitoring tools may
reveal symptoms such as heavy usage of a bottleneck
resource, but they do not link symptoms to root causes.
Interpretation of application logs often requires detailed
knowledge of source code or application behavior that
is beyond a casual user. Thus, it is unsurprising that up
to 20% of misconfigurations submitted for developer
support are those that result in severe performance
degradation [58] (the authors of this study speculate that
even this number is an underestimate).

∗This work was done when Mona Attariyan attended Michigan.

Why is troubleshooting so challenging for users? The
most important reason is that current tools only solve half
the problem. Troubleshooting a performance anomaly
requires determining why certain events, such as high
latency or resource usage, happened in a system. Yet,
most current tools, such as profilers and logging, only
determine what events happened during a performance
anomaly. Users must manually infer the root cause from
observed events based upon their expertise and knowl-
edge of the software. For instance, a logging tool may
detect that a certain low-level routine is called often dur-
ing periods of high request latency, but the user must then
infer that the routine is called more often due to a specific
configuration setting. For administrators and end users
who do not have intimate knowledge of the source code,
log entries may be meaningless and the inference to root
causes may be infeasible.

In this paper, we introduce a new tool, called X-ray,
that helps users troubleshoot software systems without
relying on developer support. X-ray focuses on attribut-
ing performance issues to root causes under a user’s
control, specifically configuration settings and program
inputs. Why these causes? Numerous studies have re-
ported that configuration and similar human errors are
the largest source of errors in deployed systems [10, 11,
24, 25, 30, 32, 34, 58], eclipsing both software bugs and
hardware faults. Further, errors such as software bugs
cannot be fixed by end users alone.

X-ray does not require source code, nor does it require
specific application log messages or test workloads. In-
stead, it employs binary instrumentation to monitor ap-
plications as they execute. It uses one of several metrics
(request latency, CPU utilization, file system activity, or
network usage) to measure performance costs and out-
puts a list of root causes ordered by the likelihood that
each cause has contributed to poor performance during
the monitored execution. Our results show that X-ray of-
ten pinpoints the true root cause by ranking it first out of
10s or 100s of possibilities. This is ideal for casual users
and system administrators, who can now focus their trou-
bleshooting efforts on correcting the specific input and
parameters identified by X-ray.

X-ray introduces the technique of performance sum-
marization. This technique first attributes performance
costs to very fine-grained events, namely user-level in-
structions and system calls executed by the application.

1



308 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Then, it uses dynamic information flow analysis to asso-
ciate each such events with a ranked list of probable root
causes. Finally, it summarizes the cost of each root cause
over all events by adding the products of the per-event
cost and an estimate of the likelihood that the event was
caused by the root cause in question. The result is a list
of root causes ordered by performance costs.

As described so far, performance summarization re-
veals which root causes are most costly during an en-
tire application execution. For severe performance is-
sues, such root causes are likely the culprit. However,
some performance issues are more nuanced: they may
occur only during specific time periods or affect some
application operations but not others. Hence, X-ray pro-
vides several scoping options. Users may analyze perfor-
mance during specific time periods, or they may look at
a causal path such as a server’s processing of a request.

X-ray also supports nuanced analysis via two ad-
ditional summarization modes. In differential perfor-
mance summarization, X-ray compares the execution of
two similar operations and explains why their perfor-
mance differs. For example, one can understand why
two requests to a Web server took different amounts of
time to complete even though the requested operations
were identical. Differential performance analysis identi-
fies branches where the execution paths of the requests
diverge and assigns the performance difference between
the two branch outcomes to the root causes affecting the
branch conditionals. Multi-input differential summariza-
tion compares a potentially large number of similar op-
erations via differential analysis and outputs the result as
either a ranked list or a graphical explanation.

X-ray is designed to run in production environments.
It leverages prior work in deterministic replay to offload
the heavyweight analysis from the production system
and execute it later on another computer. X-ray splits its
functionality by capturing timing data during recording
so that the data are not perturbed by heavyweight anal-
ysis. X-ray’s replay implementation is flexible: it allows
insertion of dynamic analysis into the replayed execu-
tion via the popular Pin tool [28], but it also enables low-
overhead recording by not requiring the use of Pin or in-
strumentation code during recording.

Thus, this paper contributes the following:
• A demonstration that one can understand why per-

formance issues are occurring in production soft-
ware without source code, error and log messages,
controlled workloads, or developer support.

• The technique of performance summarization,
which attributes performance costs to root causes.

• The technique of differential performance summa-
rization for understanding why two or more similar
events have different performance.

• A deterministic replay implementation that enables
both low-overhead recording and use of Pin binary

instrumentation during replay.
Our evaluation reproduces and analyzes performance

issues in Apache, lighttpd, Postfix, and PostgreSQL. In
16 of 17 cases, X-ray identifies a true root cause as the
largest contributor to the performance problem; in the re-
maining case, X-ray ranks one false positive higher than
the true root causes. X-ray adds only an average over-
head of 2.3% on the production system because the bulk
of its analysis is performed offline on other computers.

2 Related work
Broadly speaking, troubleshooting has three steps: de-

tecting the problem, identifying the root cause(s), and
solving the problem. X-ray addresses the second step.

Profilers [8, 13, 29, 35, 42, 45, 53], help detect a per-
formance problem (the first step) and identify symptoms
associated with the problem (which assists with the sec-
ond step). They reveal what events (e.g., functions) incur
substantial performance costs, but their users must man-
ually infer why those events executed. Unlike X-ray, they
do not associate events with root causes.

Similarly, most tools that target the second step (iden-
tifying the root cause) identify events associated with
performance anomalies but do not explain why those
events occur. Many such tools observe events in multi-
ple components or protocol layers and use the observed
causal relationships to propagate and merge performance
data. X-trace [22] observes network activities across pro-
tocols and layers. SNAP [59] profiles TCP statistics and
socket-call logs and correlates data across a data center.
Aguilera et al. [1] infer causal paths between applica-
tion components and attribute delays to specific nodes.
Pinpoint [15, 16] traces communication between mid-
dleware components to infer which components cause
faults and the causal paths that link black-box compo-
nents. These tools share X-ray’s observation that causal-
ity is a powerful tool for explaining performance events.
However, X-ray distinguishes itself by observing causal-
ity within application components using dynamic binary
instrumentation. This lets X-ray observe the relationship
between component inputs and outputs. In contrast, the
above tools only observe causality external to application
components unless developers annotate code.

Other tools build or use a model of application per-
formance. Magpie [7] extracts the component control
flow and resource consumption of each request to build
a workload model for performance prediction. Magpie’s
per-request profiling can help diagnose potential perfor-
mance problems. Even though Magpie provides detailed
performance information to manually infer root causes,
it still does not automatically diagnose why the observed
performance anomalies occur. Magpie uses schemas to
determine which requests are being executed by high-
level components; X-ray uses data and control flow anal-
ysis to map requests to lower-level events (instructions

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 309

and system calls) without needing schemas from its user.
Cohen et al. [19] build models that correlate system-

level metrics and threshold values with performance
states. Their technique is similar to profiling in that it cor-
relates symptoms and performance anomalies but does
not tie anomalies to root causes.

Many systems [14, 20, 60, 61] tune performance by
injecting artificial traffic and using machine learning to
correlate observed performance with specific configura-
tion options. Unlike X-ray, these tools limit the num-
ber of options analyzed to deal with an exponential
state space. Spectroscope [46] diagnoses performance
changes by comparing request flows between two execu-
tions of the same workload. Kasick et al. [26] compare
similar requests to diagnose performance bugs in paral-
lel file systems. All of the above systems do not monitor
causality within a request, so they must hold all but a
single variable constant to learn how that variable affects
performance. In practice, this is difficult because minor
perturbations in hardware, workload, etc. add too much
noise. In contrast, X-ray can identify root causes even
when requests are dissimilar because it observes how re-
quests diverge at the basic-block level.

Several systems are holistic or address the third step
(fixing the problem). PeerPressure [54] and Strider [55]
compare Windows registry state on different machines.
They rely on the most common configuration states being
correct since they cannot infer why a particular configu-
ration fails. Chronus [56] compares configuration states
of the same computer across time. AutoBash [50] allows
users to safely try many potential configuration fixes.

X-ray uses a taint tracking [33] implementation pro-
vided by ConfAid [6] to identify root causes. ConfAid
was originally designed to debug program failures by
attributing those failures to erroneous configuration op-
tions. X-ray re-purposes ConfAid to tackle performance
analysis. X-ray might instead have used other methods
for inferring causality such as symbolic execution [12].
For instance, S2E [17] presented a case study in which
symbolic execution was used to learn the relationship be-
tween inputs and low-level events such as page faults and
instruction counts. Our decision to use taint tracking was
driven both by performance considerations and our de-
sire to work on COTS (common-off-the-shelf) binaries.

X-ray uses deterministic record and replay. While
many software systems provide this functionality [2,
18, 21, 23, 36, 49, 52], X-ray’s implementation has the
unique ability to cheaply record an uninstrumented exe-
cution and later replay the execution with Pin.

3 X-ray overview
X-ray pinpoints why a performance anomaly, such as

high request latency or resource usage, occurred. X-ray
targets system administrators and other end users, though
its automated inference should also prove useful to devel-

opers. Most of our experience to date comes from trou-
bleshooting network servers, but X-ray’s design is not
limited to such applications.

X-ray does not require source code because it uses
Pin [28] to instrument x86 binaries. X-ray users spec-
ify which files should be treated as configuration or in-
put sources for an application. X-ray also treats any data
read from an external network socket as an input source.
As data from such sources are processed, X-ray recog-
nizes configuration tokens and other root causes through
a limited form of binary symbolic execution.

An X-ray user first records an interval of software
execution. Section 6.5 shows that X-ray has an average
recording overhead of 2.3%. Thus, a user can leave X-
ray running on production systems to capture rare and
hard-to-reproduce performance issues. Alternatively, X-
ray can be used only when performance issues exhibit.
X-ray defers heavyweight analysis to later, deterministi-
cally equivalent re-executions. This also allows analysis
to be offloaded from a production system. Because X-ray
analysis is 2–3 orders of magnitude slower than logging,
we envision that only the portions of logs during which
performance anomalies were observed will be analyzed.

For each application, an X-ray user must specify con-
figuration sources such as files and directories, as well as
a filter that determines when a new request begins.

For each analysis, an X-ray user selects a cost metric.
X-ray currently supports four metrics: execution latency,
CPU utilization, file system usage, and network use. X-
ray also has a flexible interface that allows the creation
of new metrics that depends on either observed timings
or the instructions and system calls executed.

A user also specifies which interval of execution X-
ray should analyze. The simplest method is to specify
the entire recorded execution. In this case, X-ray returns
a list of root causes ordered by the magnitude of their
effect on the chosen cost metric. In our experience with
severe performance issues, examining the entire execu-
tion interval typically generates excellent results.

However, some performance issues are nuanced. An
issue may only occur during specific portions of a pro-
gram’s execution, or the problem may affect the process-
ing of some inputs but not others. Therefore, X-ray al-
lows its users to target the analysis scope. For instance, a
user can specify a specific time interval for analysis, such
as a period of high disk usage.

Alternatively, X-ray can analyze an application as it
handles one specific input, such as a network request. X-
ray uses both causal propagation through IPC channels
and flow analysis to understand which basic blocks in
different threads and processes are processing the input.
It performs its analysis on only those basic blocks.

A user may also choose to compare the processing of
two different inputs. In this case, X-ray does a differen-
tial performance summarization in which it first identi-
fies the branches where the processing of the inputs di-

3



310 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

verged and then calculates the difference in performance
caused by each divergence. We expect users to typically
select two similar inputs that differ substantially in per-
formance. However, our results show that X-ray provides
useful data even when selected inputs are very dissimilar.

Finally, a user may select multiple inputs or all inputs
received in a time period and perform an n-way differen-
tial analysis. In this case, X-ray can either return a ranked
list of the root causes of pairwise divergences over all
such inputs, or it can display the cost of divergences as a
flow graph. We have found this execution mode to be a
useful aid for selecting two specific requests over which
to perform a more focused differential analysis.

Executions recorded by X-ray can be replayed and an-
alyzed multiple times. Thus, X-ray users do not need to
know which cost metrics and analysis scopes they will
use when they record an execution.

4 Building blocks
X-ray builds on two areas of prior work: dynamic in-

formation flow analysis and deterministic record and re-
play. For each building block, we first describe the sys-
tem on which we built and then highlight the most sub-
stantial modifications we have made to support X-ray.

4.1 Dynamic information flow analysis
4.1.1 Background

X-ray uses taint tracking [33], a form of dynamic
information flow analysis, to determine potential root
causes for specific events during program execution. It
uses ConfAid [6] for this purpose.

ConfAid reports the potential root cause of a program
failure such as a crash or incorrect output. It assigns a
unique taint identifier to registers and memory addresses
when data is read into the program from configuration
files. It identifies specific configuration tokens through
a rudimentary symbolic execution that only considers
string data and common (glibc) functions that compare
string values. For instance, if data read from a configura-
tion file is compared to “FOO”, then ConfAid associates
that data with token FOO.

As the program executes, ConfAid propagates taint
identifiers to other locations in the process’s address
space according to dependencies introduced via data and
control flow. ConfAid analyzes both direct control flow
(values modified by instructions on the taken path of a
branch depend on the branch conditional) and implicit
control flow (values that would have been modified by in-
structions on paths not taken also depend on the branch
conditional). Rather than track taint as a binary value,
ConfAid associates a weight with each taint identifier
that represents the strength of the causal relationship be-
tween the tainted value and the root cause. When Conf-
Aid observes the failure event (e.g., a bad output), it out-
puts all root causes on which the current program con-

trol flow depends, ordered by the weight of that depen-
dence. ConfAid employs a number of heuristics to esti-
mate and limit causality propagation. For instance, data
flow propagation is stronger than direct control flow, and
both are stronger than indirect control flow. Also, control
flow taint is aged gradually (details are in [6]).
4.1.2 Modifications for X-Ray

One of the most important insights that led to the de-
sign of X-ray is that the marginal effort of determining
the root cause of all or many events in a program execu-
tion is not substantially greater than the effort of deter-
mining the root cause of a single event. Because a taint
tracking system does not know a-priori which interme-
diate values will be needed to calculate the taint of an
output, it must calculate taints for all intermediate val-
ues. Leveraging this insight, X-ray differs from ConfAid
in that it calculates the control flow taint for the execu-
tion of every basic block. This taint is essentially a list of
root causes that express which, if any, input and configu-
ration values caused the block to be executed; each root
cause has a weight, which is a measure of confidence.

We modified ConfAid to analyze multithreaded pro-
grams. To limit the scope of analysis, when X-ray eval-
uates implicit control flow, it only considers alternative
paths within a single thread. This is consistent with Conf-
Aid’s prior approach of bounding the length of alternate
paths to limit exponential growth in analysis time. We
also modified ConfAid to taint data read from external
sources such as network sockets in addition to data read
from configuration files. Finally, we modified ConfAid
to run on either a live or recorded execution.

X-ray uses the same weights and heuristics for taint
propagation that are used by ConfAid. We performed a
sensitivity analysis, described in Section 6.4, on the ef-
fect of varying the taint propagation weights—the results
showed that the precise choice of weights has little effect
on X-ray, but the default ConfAid weights led to slightly
more accurate results than other weights we examined.

4.2 Deterministic record and replay
X-ray requires deterministic record and replay for two

reasons. First, by executing time-consuming analysis on
a recording rather than a live execution, the performance
overhead on a production system can be reduced to a few
percent. Second, analysis perturbs the timing of applica-
tion events to such a large degree that performance mea-
surements are essentially meaningless. With determinis-
tic replay, X-ray monitors timing during recording when
such measurements are not perturbed by analysis, but it
can still use the timing measurements for analysis during
replay because the record and the replay are guaranteed
to execute the same instructions and system calls.
4.2.1 Background

Deterministic replay is well-studied; many systems
record the initial state of an execution and log all non-

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 311

deterministic events that occur [2, 9, 21, 36, 49, 52, 57].
They reproduce the same execution, possibly on another
computer [18], by restoring the initial state and supplying
logged values for all non-deterministic events.

X-ray implements deterministic record and replay by
modifying the Linux kernel and glibc library. It can
record and replay multiple processes running on one or
more computers. For each process, X-ray logs the order
of and values returned by system calls and synchroniza-
tion operations. It also records the timing of signals.

To record and replay multithreaded programs, one
must also reproduce the order of all data races [44]. X-
ray uses profiling to detect and instrument racing instruc-
tions. We execute an offline data race detector [51] on
recorded executions. This race detector follows the de-
sign of DJIT+ [41]; it reports all pairs of instructions that
raced during a recorded execution without false positives
or false negatives. X-ray logs the order of the racing in-
structions during later recordings of the application. If
no new data races are encountered after profiling, deter-
ministic replay of subsequent executions is guaranteed.
In the rare case where a new race is encountered, we
add the racing instructions to the set of instrumented in-
structions on subsequent runs. Since the vast majority of
data races do not change the order or result of logged
operations [51], X-ray can often analyze executions with
previously unknown data races. X-ray could also poten-
tially search for an execution that matches observed out-
put [2, 36].
4.2.2 Modifications for X-ray

X-ray has a custom replay implementation because of
our desire to use Pin to insert binary instrumentation into
replayed executions. The simplest strategy would have
been to implement record and replay with Pin itself [37].
However, we found Pin overhead too high; even with
zero instrumentation, just running applications under Pin
added a 20% throughput overhead for our benchmarks.

To reduce overhead, X-ray implements record and re-
play in the Linux kernel and glibc. Thus, Pin is only used
during offline replay. This implementation faces a sub-
stantial challenge: from the point of view of the replay
system, the replayed execution is not the same as the
recorded execution because it contains additional binary
instrumentation not present during recording. While Pin
is transparent to the application being instrumented, it is
not transparent to lower layers such as the OS.

X-ray’s replay system is instrumentation-aware; it
compensates for the divergences in replayed execution
caused by dynamic instrumentation. Pin makes many
system calls, so X-ray allocates a memory area that al-
lows analysis tools run by Pin to inform the replay kernel
which system calls are initiated by the application (and
should be replayed from the log) and which are initiated
by Pin or the analysis tool (and should execute normally).

X-ray also compensates for interference between re-

sources requested by the recorded application and re-
sources requested by Pin or an analysis tool. For in-
stance, Pin might request that the kernel mmap a free
region of memory. If the kernel grants Pin an arbitrary
region, it might later be unable to reproduce the effects
of a recorded application mmap that returns the same re-
gion. X-ray avoids this trap by initially scanning the re-
play log to identify all regions that will be requested by
the recorded application and pre-allocating them so that
Pin does not ask for them and the kernel does not return
them. X-ray also avoids conflicts for signal handlers, file
handles, and System V shared memory identifiers.

Finally, the replay system must avoid deadlock. The
replay system adds synchronization to reproduce the
same order of system calls, synchronization events, and
racing instructions seen during recording. Pin adds syn-
chronization to ensure that application operations such
as memory allocation are executed atomically with the
Pin code that monitors those events. X-ray initially dead-
locked because it was unaware of Pin locking. To com-
pensate, X-ray now only blocks threads when it knows
Pin is not holding a lock; e.g., rather than block threads
executing a system call, it blocks them prior to the in-
struction that follows the system call.

5 Design and implementation
X-ray divides its execution into online and offline

phases. The offline phase is composed of multiple re-
played executions. This design simplifies development
by making it easy to compose X-ray analysis tools out
of modular parts.

5.1 Online phase
Since the online phase of X-ray analysis runs on a pro-

duction system, X-ray uses deterministic record and re-
play to move any activity with substantial performance
overhead to a subsequent, offline phase. The only on-
line activities are gathering performance data and log-
ging system calls, synchronization operations and known
data races.

X-ray records timestamps at the entry and exit of
system calls and synchronization operations. It mini-
mizes overhead by using the x86 timestamp counter and
writing timestamps to the same log used to store non-
deterministic events. The number of bytes read or written
during I/O is returned by system calls and hence captured
as a result of recording sources of non-determinism.

5.2 First offline pass: Scoping
The first offline pass maps the scope of the analysis

selected by an X-ray user to a set of application events.
While X-ray monitors events at the granularity of user-
level instructions and system calls, it is sufficient to iden-
tify only the basic blocks that contain those events since
the execution of a basic block implies the execution of
all events within that block.

5



312 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

A user may scope analysis to a time interval or to the
processing of one of more inputs. If the user specifies a
time interval, X-ray includes all basic blocks executed
by any thread or process within that interval. If the user
scopes the analysis to one or more inputs, X-ray identi-
fies the set of basic blocks that correspond to the process-
ing of each input via request extraction.
5.2.1 Request extraction

Request extraction identifies the basic block during
which each request (program input) was processed. For
the applications we have examined to date, inputs are re-
quests received over network sockets. However, the prin-
ciples described below apply to other inputs, such as
those received via UI events.

Since the notion of a request is application-dependent,
X-ray requires a filter that specifies the boundaries of in-
coming requests. The filter is a regular expression that X-
ray applies to all data read from external sockets, which
we define to be those sockets for which the other end
point is not a process monitored by X-ray. For instance,
the Postfix filter looks for the string HELO to identify in-
coming mail. Only one filter must be created for each
protocol (e.g., for SMTP or HTTP).

Request extraction identifies the causal path of each
request from the point in application execution when the
request is received to the point when the request ends
(e.g., when a response is sent). X-ray supports two meth-
ods to determine the causal path of a request within pro-
cess execution. These methods offer a tradeoff between
generality and performance. Both are implemented as
Pin tools that are dynamically inserted into binaries.

The first method is designed for simple applications
and multi-process servers. It assumes that a process han-
dles a single request at a time, but it allows multiple
processes to concurrently handle different requests (e.g.,
different workers might simultaneously process different
requests). When a new request is received from an ex-
ternal socket, X-ray taints the receiving process with a
unique identifier that corresponds to the request. X-ray
assumes that the process is handling that request until the
process receives a message that corresponds to a different
request or until the request ends (e.g., when the applica-
tion closes the communcation socket). A new taint may
come either from an external source (in which case, it
is detected by the input data matching the request filter),
or it may come from an internal source (another process
monitored by X-ray), in which case the request taint is
propagated via the IPC mechanism described below.

The second method directly tracks data and control
flow taint. When a request is received from an external
socket, X-ray taints the return codes and data modified
by the receiving system call with the request identifier.
X-ray propagates taint within an address space as a pro-
cess executes. It assigns each basic block executed by the
process to at most one request based on the control flow

taint of the thread at the time the basic block is executed.
Untainted blocks are not assigned to a request. A block
tainted by a single identifier is assigned to request cor-
responding to that identifier. A block tainted by multiple
identifiers is assigned to the request whose taint identi-
fier has the highest weight; if multiple identifiers have
the same weight, the block is assigned to the request that
was received most recently.

Comparing the two methods, the first method has
good performance and works well for multi-process
servers such as Postfix and PostgreSQL. However, it is
incapable of correctly inferring causal paths for mul-
tithreaded applications and event-based applications in
which a single process handles multiple requests concur-
rently. The second method handles all application types
well but runs slower than the first method. X-ray uses the
second method by default, but users may select the first
method for applications known to be appropriate.

Request extraction outputs a list of the basic blocks
executed by each request. Each block is denoted by a
<id, address, count> tuple. The id is the Linux iden-
tifier of the thread/process during recording, address is
the first instruction of the block in the executable, and
count is the number of instructions executed by the pro-
cess prior to the first instruction of the basic block. Thus,
count differentiates among multiple dynamic executions
of a static basic block. Since deterministic replay exe-
cutes exactly the same sequence of application instruc-
tions, the count of each block matches precisely across
multiple replays and, thus, serves as a unique identifier
for the block during subsequent passes.
5.2.2 Inter-process communication

Replayed processes read recorded data from logs
rather than from actual IPC channels. X-ray establishes
separate mechanisms, called side channels, to communi-
cate taint between processes and enforce the same causal
ordering on replayed processes that was observed dur-
ing the original recording. For instance, a process that
blocked to receive a message on a socket during record-
ing will block on the side channel during replay to re-
ceive the taint associated with the message.

Side channels propagate taint from one address space
to another. X-ray supports several IPC mechanisms in-
cluding network and local sockets, files, pipes, signals,
fork, exit, and System V semaphores. During replay,
when a recorded system call writes bytes to one of these
mechanisms, X-ray writes the data flow taint of those
bytes to the side channel. X-ray merges that taint with
the control flow taint of the writing thread. Even mecha-
nisms that do not transfer data (e.g., signals) still transfer
control flow taint (e.g., the control flow of the signal han-
dler is tainted with the control flow taint of the signaler).

When replay is distributed, one computer acts as the
replay master. Processes running on other computers reg-
ister with the master; this allows each replay process to

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 313







 












































Figure 1. Example of performance summarization

determine which sockets are external and which connect
to other replay processes. For simplicity, all side chan-
nels pass through the master, so replay processes on other
computers read to and write from side channels by mak-
ing RPCs to a server running on the master.
5.2.3 Attributing performance costs

During the first pass, X-ray also attributes perfor-
mance costs to all events (application instructions and
system calls executed) within the chosen scope. As a per-
formance optimization, all events within a single basic
block are attributed en masse because all are executed if
the block is executed.

Recall that X-ray users may currently choose latency,
CPU utilization, file system use, or network throughput
as cost metrics. The latency of each system call and syn-
chronization operation is recorded during online execu-
tion. X-ray attributes the remaining latency to user-level
instructions. From the recorded timestamps in the log, it
determines the time elapsed between each pair of sys-
tem calls and/or synchronization events. X-ray dynamic
instrumentation counts the number of user-level instruc-
tions executed in each time period. It divides the two val-
ues to estimate the latency of each instruction.

To calculate CPU utilization, X-ray counts the in-
structions executed by each basic block. To calculate file
system and network usage, it observes replayed execu-
tion to identify file descriptors associated with the re-
source being analyzed. When a system call accesses such
descriptors, X-ray attributes the cost of the I/O operation
to the basic block that made the system call.

5.3 Second pass: performance summarization
Performance summarization, in which costs are at-

tributed to root causes, is performed during the second
execution pass. X-ray currently supports three modes: (1)
basic summarization, which computes the dominant root
causes over some set of input basic blocks, (2) differen-
tial summarization, which determines why the process-
ing of one input had a different cost than the processing

of another input, and (3) multi-request differential sum-
marization, which computes the differential cost across
three or more inputs.
5.3.1 Basic performance summarization

Basic performance summarization individually ana-
lyzes the per-cause performance cost and root cause of
all events. It then sums the per-event costs to calculate
how much each root cause has affected application per-
formance.

Figure 1 shows how basic performance summariza-
tion works. In the first pass, X-ray determines which ba-
sic blocks are within the analysis scope and assigns a per-
formance cost to the events in each block. In the second
pass, X-ray uses taint tracking to calculate a set of possi-
ble root causes for the execution of each such block. Es-
sentially, this step answers the question: “how likely is it
that changing a configuration option or receiving a differ-
ent input would have prevented this block from execut-
ing?” X-ray uses ConfAid to track taints as weights that
show how strongly a particular root cause affects why a
byte has its current value (data flow) or why a thread is
executing the current instruction (control flow).

X-ray next attributes a per-block cost to each root
cause. This attribution is complicated by the fact that
ConfAid returns only an ordered list of potential root
causes. Weights associated with causes are relative met-
rics and do not reflect the actual probability that each
cause led to the execution of a block. We considered sev-
eral strategies for attribution:

• Absolute weight. The simplest strategy multiplies
each per-cause weight by the per-block perfor-
mance cost. This is an intuitive strategy since X-
ray, like ConfAid, aims only to achieve a relative
ranking of causes.

• Normalized weight. The weights for a block are
normalized to sum to one before they are multi-
plied by the performance cost. This strategy tries
to calculate an absolute performance cost for each
cause. However, it may strongly attribute a block to

7



314 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

a root cause in cases where the block’s execution is
likely not due to any root cause.

• Winner-take-all. The entire per-block cost is at-
tributed to the highest ranking cause (or equally
shared in the case of ties).

• Learned weights. Based on earlier ConfAid re-
sults [6], we calculate the probability that a cause
ranked 1st, 2nd, 3rd, etc. is the correct root cause.
We use these probabilities to weight the causes
for each block according to their relative rankings.
Note that the benchmarks used for deciding these
weights are completely disjoint from the bench-
marks used in this paper.

Based on the sensitivity study reported in Section 6.4,
we concluded that X-ray results are robust across all at-
tribution strategies that consider more than just the top-
ranked root cause. X-ray uses the absolute weight strat-
egy by default because it is simple and it had slightly
better results in the study.

X-ray calculates the total cost for each root cause by
summing the per-block costs for that cause over all basic
blocks within the analysis scope; e.g., in Figure 1, the
per-block costs of option2 are 20 and 40, so its total cost
is 60). X-ray outputs potential root causes as a ranked list
ordered by cost; each list item shows the token string,
the config file or input source, the line number within the
file/source, and the total cost.
5.3.2 Differential performance summarization

Differential performance summarization compares
any two executions of an application activity, such as the
processing of two Web requests. Such activities have a
common starting point (e.g., the instruction receiving the
request), but their execution paths may later diverge.

Figure 2 shows an example of differential perfor-
mance summarization. X-ray compares two activities by
first identifying all points where the paths of the two
executions diverge and merge using longest common
sub-sequence matching [31]. In the figure, the execution
paths of the activities are shown by the solid and dashed
lines, and the conditional branches where the paths di-
verge are denoted as C1 and C2.

X-ray represents the basic blocks that processed each
request as a string where each static basic block is a
unique symbol. Recorded system calls and synchroniza-
tion operations give a partial order over blocks executed
by multiple threads and processes. Any blocks not so or-
dered executed concurrently; they do not contain racing
instructions. X-ray uses a fixed thread ordering to gen-
erate a total order over all blocks (the string) that obeys
the recorded partial order. The matching algorithm then
identifies divergence and merge points.

X-ray uses taint tracking to evaluate why each diver-
gence occurred. It calculates the taint of the branch con-
ditional at each divergence point. Note that since X-ray
uses dynamic analysis, loops are simply treated as a se-





 
 

















 

 






Figure 2. Differential performance summarization

ries of branch conditionals (that happen to be the same
instruction). The cost of a divergence is the difference
between the performance cost of all basic blocks on the
divergent path taken by the first execution and the cost
of all blocks on the path taken by the second execu-
tion. As in the previous section, X-ray uses the absolute
weight method by default. Finally, X-ray sums the per-
cause costs over all divergences and outputs a list of root
causes ordered by differential cost. In Figure 2, option2
is output before option1 because its total cost is greater.
5.3.3 Multi-input differential summarization

Pairwise differential summarization is a powerful
tool, but it is most useful if an X-ray user can identify two
similar inputs that have markedly different performance.
To aid the user in this task, X-ray has a third performance
summarization mode that can graphically or numerically
compare a large number of inputs.

Multi-input summarization compares inputs that
match the same filter. The processing path of these in-
puts begins at the same basic block (containing the sys-
tem call that receives the matching data). The subsequent
processing paths of the various inputs split and merge.
Typically, the paths terminate at the same basic block
(e.g., the one closing a connection). If they do not, X-
ray inserts an artificial termination block that follows the
last block of each input. This allows the collection of in-
put paths to be viewed as a lattice, as shown in Figure 3
for an example with three unique paths.

X-ray discovers this lattice by first representing each
input path as a string (as it does for pairwise differen-
tial analysis). It then executes a greedy longest common
sub-sequence matching algorithm [31] in which it first
merges the two strings with the smallest edit distance
to form a common path representation, then merges the
closest remaining input string with the common repre-
sentation, etc. The common representation is a graph

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 315

 

 

 
 
























Figure 3. Multi-input differential summarization

where each vertex is a branch at which input paths di-
verged or a merge point at which input paths converged.
Each edge is a sub-path consisting of the basic blocks
executed for all inputs that took a common sub-path be-
tween two vertexes.

Next, X-ray determines the cost of all divergences. In-
tuitively, the cost (or benefit) of taking a particular branch
should be the difference between the lowest-cost execu-
tion that can be achieved by the path taken subtracted
from the lowest-cost execution that can be achieved by
the path not taken. The weight of a graph edge is the sum
of the costs for each block along the edge averaged over
all requests that executed the blocks in that edge (e.g.,
this might be calculated by summing the average latency
for each block). X-ray calculates the shortest path on the
reverse graph from the termination node to every diver-
gence node for each possible branch. At each branch
where paths diverged, X-ray calculates the cost of tak-
ing a particular branch to be the difference between the
shortest path if that branch is taken and the shortest path
from any branch available at that node. For instance, in
Figure 3, the cost of conditional branch C2 is 3 (sub-
tracting the cost of the right branch from the left). For
C1, the cost is 2 because the shortest path taking the left
branch is 8 and the shortest path taking the right branch
is 6. The per-divergence cost is then merged with the per-
root-cause taints of the branch conditional.

X-ray offers two modes for displaying this data. The
first is a numerical summarization that integrates the per-
cause costs over all divergences in the graph and displays
all root causes in order of total cost. The second method
shows the lattice graph, with each divergence node dis-
playing the cost and reasons for the divergence, and the
width of each edge representing the number of inputs that
traversed the particular sub-path. An X-ray user can use

this graph to identify the most surprising or costly di-
vergences, then select two representative inputs that took
opposite branches at that point for a more detailed pair-
wise comparison. The simpler ordered list is appropriate
for casual users. The richer graphical output may be best
for power users (or possibly developers).

Multi-path analysis sometimes produced erroneous
results due to infeasible shortest paths. These paths arise
because X-ray uses taint tracking rather than symbolic
analysis. Consider two divergences points that test the
same condition. If the true outcome has the shortest
path after the first test and the false outcome has the
shortest path after the second test, the shortest path is in-
feasible because the same condition cannot evaluate to
two different values. X-ray uses a statistical analysis to
infer infeasible paths. Given a sufficient set of input path
samples that pass through two divergence vertexes, if the
partition generated by the branch each path took at the
first vertex is isomorphic to the partition generated by
the branch each took at the second vertex, X-ray infers
that the two divergences depend on the same condition
and does not allow a shortest path that takes a conflicting
path through the two vertexes.

5.4 Fast forward
For long-running applications, replaying days of exe-

cution to reach a period of problematic performance may
be infeasible. Periodic checkpointing of application state
is insufficient because most applications read configura-
tion files at the start of their execution. Thus, the execu-
tion after a checkpoint is missing data needed to trace
problems back to configuration root causes.

X-ray uses a fast forward heuristic to solve this prob-
lem. After configuration data is read, X-ray associates
dirty bits with each taint to monitor the amount of taint
changing during request handling. When less than n% of
taint values have been changed by the first n requests af-
ter reading a taint source, X-ray considers configuration
processing to have quiesced. It saves the current taint val-
ues and fast forwards execution to a point that is at least
n requests prior to the period of execution being inves-
tigated (or to the next opening of a configuration file).
It restores saved taints into the address space(s) of the
application and resumes instrumented execution.

Use of the fast forward heuristic is optional because it
may lead to incorrect results when configuration values
are modified as a result of processing requests unmoni-
tored by X-ray. However, we have not seen this behavior
in any application to date.

6 Evaluation
Our evaluation answers the following questions:
• How accurately does X-ray identify root causes?
• How fast can X-ray troubleshoot problems?
• How much overhead does X-ray add?

9



316 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Application Test Description of performance test cases
1 The number of requests that can be handled in one TCP connection is set too low. Reestablishing connections delays some requests [5].
2 Directory access permissions are based on the domain name of the client sending the request, leading to extra DNS lookups [4].

Apache 3 Logging the host names of clients sending requests to specific directories causes extra DNS requests for files in those directories [4].
4 Authentication for some directories causes high CPU usage peaks when files in those directories are accessed [3].

5 Apache can be configured to generate content-MD5 headers calculated using the message body. This header provides an end-to-end message
integrity with high confidence. However, for larger files, the calculation of the digests causes high CPU usage [27].

6 By default, Apache sends eTags in the header of HTTP responses that can be used by clients to avoid resending data in the future if file contents
have not changed. However, many mobile phone libraries do not correctly support this option [43].

1 Logging more information for a list of specific hosts causes excessive disk activity when one host is the computer running Postfix [38].

Postfix 2 Postfix can be configured to examine the body of the messages against a list of regular expressions known to be from spammers or viruses.
This setting can significantly increase the CPU usage for handling a received message if there are many expression patterns [40].

3 Postfix can be configured to reject requests from blacklisted domains. Based on the operators specified, Postfix performs extra DNS calls,
which significantly increases message handling latency [39].

1 PostgreSQL tries to identify the correct time zone of the system for displaying and interpreting time stamps if the time zone is not specified in
the configuration file. This increases the startup time of PostgreSQL by a factor of five.

PostgreSQL 2 PostgreSQL can be configured to synchronously commit the write-ahead logs to disk before sending the end of the transaction message to the
client. This setting can cause extra delays in processing transactions if the system is under a large load [48].

3 The frequency of taking checkpoints from the write-ahead log can be configured in the PostgreSQL configuration file. More frequent check-
points decrease crash recovery time but significantly increase disk activity for busy databases [47].

4 Setting the delay between activity rounds for the write-ahead log writer process causes excessive CPU usage [47].
5 A background process aggressively collects database statistics, causing inordinate CPU usage [47].

1 Equivalent to Apache bug 1.
lighttpd 2 Equivalent to Apache bug 4.

3 Equivalent to Apache bug 6.

Table 1. Description of the performance test cases used for evaluation

6.1 Experimental Setup
We used X-ray to diagnose performance problems

in four servers with diverse concurrency models: the
Apache Web server version 2.2.14, the Postfix mail
server version 2.7, the PostgreSQL database version
9.0.4, and the lighttpd Web server version 1.4.30. Apache
is multithreaded; new connections are received by a lis-
tener thread and processed by worker threads. In Postfix,
multiple utility processes handle each part of a request;
on average, a request is handled by 5 processes. In Post-
greSQL, each request is handled by one main process,
but work is offloaded in batch to utility processes such
as a write-ahead log writer. The lighttpd Web server is
event-driven; one thread multiplexes handling of multi-
ple concurrent requests using asynchronous I/O. We ran
all experiments on a Dell OptiPlex 980 with a 3.47 GHz
Intel Core i5 Dual Core processor and 4 GB of memory,
running a Linux 2.6.26 kernel modified to support deter-
ministic replay.

6.2 Root cause identification
We evaluated X-ray by reproducing 16 performance

issues (described in Table 1) culled from the cited perfor-
mance tuning and troubleshooting books, Web documen-
tation, forums, and blog posts. To recreate each issue, we
either modified configuration settings or sent a problem-
atic sequence of requests to the server while we recorded
server execution. We also used X-ray to troubleshoot an
unreported performance issue (described below) that was
hampering our evaluation.

For each test, Table 2 shows the scope and metric used
for X-ray analysis. The metric was either suggested by

the problem description or a bottleneck resource iden-
tified by tools such as top and iostat. The next col-
umn shows where true root cause(s) of the problem were
ranked by X-ray. X-ray considered on average 120 pos-
sible root causes for the Apache tests, 54 for Postfix, 54
for PostgreSQL, and 48 for lighttpd (these are the aver-
age number of tokens parsed from input and configura-
tion files). The last column shows how long X-ray offline
analysis took. The reported results do not use the fast-
forward heuristic—however, X-ray achieves the same re-
sults when fast-forward is enabled.

Our overall results were very positive. X-ray ranked
the true root cause(s) first in 16 out of 17 tests. In several
cases, multiple root causes contribute to the problem, and
X-ray ranked all of them before other causes. In two of
the above cases, the true root cause is tied with one or
two false positives. In the remaining test, X-ray ranked
one false positive higher than the true root causes. Fur-
ther, the analysis time is quite reasonable when compared
to the time and effort of manual analysis: X-ray took 2
minutes and 4 seconds on average to identify the root
cause, and no test required more than 9 minutes of anal-
ysis time. We next describe a few tests in more detail.
6.2.1 Apache

Apache test 1 shows the power of differential anal-
ysis. The threshold for the number of requests that can
reuse the same TCP connection is set too low, and re-
establishing connections causes a few requests to exhibit
higher latency. To investigate, we sent 100 various re-
quests to the Apache server using the ab benchmarking
tool. The requests used different HTTP methods (GET

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 317

Application Test Analysis scope Analysis metric Correct root cause(s) (rank) Analysis time
1 Differential Latency MaxKeepAliveRequests (1st) 0m 44s
2 Differential Latency Allow (t-1st), domain (t-1st) 0m 40s

Apache 3 Differential Latency On (1st), HostNameLookups (2nd) 0m 43s
4 Request CPU AuthUserFile (1st) 0m 43s
5 Differential CPU On (1st), ContentDigest (2nd) 0m 44s
6 Differential Network Input(eTag) (t-1st) 0m 42s
1 Request File system debug peer list (t-1st), domain (t-1st) 8m 10s

Postfix 2 Request CPU body checks (1st) 2m 38s
3 Request Latency reject rbl client (1st) 2m 18s
1 Time interval CPU timezone (1st) 6m 59s
2 Request Latency wal sync method (2nd), synchronous commit (3rd) 2m 04s

PostgreSQL 3 Time interval File system checkpoint timeout (1st) 3m 06s
4 Time interval CPU wal writer delay (1st) 2m 33s
5 Time interval CPU track counts (1st) 1m 51s
1 Differential Latency auth.backend.htpasswd.userfile (1st), 0m 34s

lighttpd 2 Request CPU Input(eTag) (t-1st), 0m 24s
3 Differential Network server.max-keep-alive-requests (1st), 0m 24s

This table shows the type of X-ray analysis performed, the ranking of all true root causes in the ordered list returned by X-ray and
X-rayʼs execution time. The notation, t-1st, shows that the cause was tied for first.

Table 2. X-ray results

and POST) and asked for files of different sizes.
We used X-ray to perform a differential summa-

rization of two similar requests (HTTP GETs of dif-
ferent small files), one of which had a small latency
and one of which had a high latency. X-ray identified
the MaxKeepAliveRequests configuration token as the
highest-ranked contributor out of 120 tokens. Based on
this information, an end user would increase the thresh-
old specified by that parameter; we verified that this in-
deed eliminates the observed latency spikes. In the next
section, we vary the requests compared for this test to ex-
amine how the accuracy of differential analysis depends
on the similarity of inputs.

In Apache test 6, the root cause of high network us-
age is the client’s failure to use the HTTP conditional
eTag header. A recent study [43] found that many smart-
phone HTTP libraries do not support this option, causing
redundant network traffic. X-ray identifies this problem
via differential analysis, showing that it can sometimes
identify bad client behavior via analysis of servers. We
verified that correct eTag support substantially reduces
network load.
6.2.2 Postfix

The first Postfix test reproduces a problem reported in
a user’s blog [38]—emails with attachments sent from
his account transferred very slowly, while everything
else, including mail received by IMAP services, had no
performance issues. Using iotop, the user observed that
one child process was generating a lot of disk activity.
He poured through the server logs and saw that the child
process was logging large amounts of data. Finally, he
scanned his configuration file and eventually realized that
the debug peer list, which specifies a list of hosts
that trigger logging, included his own IP address. Like
many configuration problems, the issue is obvious once
explained, yet even an experienced user still spent hours
identifying the problem. Further, this level of analysis is

beyond inexperienced users.
In contrast, X-ray quickly and accurately pinpoints

the root cause. We simply analyzed requests dur-
ing a period of high disk usage. X-ray identified the
debug peer list parameter and a token correspond-
ing to our network domain as the top root causes. Since
changing either parameter fixes the problem, the user
described above could have saved much time with this
important clue. Also, no manual analysis such as read-
ing log files was required, so even an inexperienced user
could benefit from these results.
6.2.3 PostgreSQL

The first PostgreSQL test is from our own experience.
Our evaluation started and stopped PostgreSQL many
times. We noticed that our scripts ran slowly due to appli-
cation start-up delay, so we used X-ray to improve per-
formance. Since top showed 100% CPU usage, we per-
formed an X-ray CPU analysis for the interval prior to
PostgreSQL receiving the first request.

Unexpectedly, X-ray identified the timezone config-
uration token as the top root cause. In the configuration
file, we had set the timezone option to unknown, caus-
ing PostgreSQL to expend a surprising amount of effort
to identify the correct time zone. Based on this clue, we
specified our correct time zone; we were pleased to see
PostgreSQL startup time decrease by over 80%. Admit-
tedly, this problem was esoteric (most users do not start
and stop PostgreSQL repeatedly), but we were happy that
X-ray helped solve an unexpected performance issue.

In PostgreSQL test 2, X-ray ranked the
shared buffers configuration token higher than
both true root causes. Manual analysis showed that this
token controls the number of database buffers and hence
is tested repeatedly by the loop that initializes those
buffers. This adds a control flow taint to all database
buffers that does not age rapidly due to the large number
of such buffers. Such taint could be eliminated by

11



318 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

specifically identifying initialization logic, but we have
yet to determine a sound method for doing so.
6.2.4 lighttpd

We chose to evaluate lighttpd to stress X-ray’s flow
analysis with an event based server in which one thread
handles many concurrent requests. Three of the bugs
that we examined for Apache have no clear analog in
lighttpd. For the remaining three bugs, we introduced
similar problems in lighttpd by modifying its configu-
ration file and/or sending erroneous input. X-ray ranked
the true root cause first in two tests; in the remaining test,
the true root cause was tied for first with two other pa-
rameters. From this, we conclude that the flow-based re-
quest identification works well with both multithreaded
(Apache) and event-based (lighttpd) programs.

6.3 Differential analysis
Experimental methods for analyzing differential per-

formance [14, 26, 46] often require that inputs be identi-
cal except for the variable being examined. Unlike these
prior methods, X-ray’s differential analysis analyzes ap-
plication control flow and determines the root cause for
each divergence between processing paths. Our hypoth-
esis is that this will enable X-ray to generate meaningful
results even for inputs that have substantial differences.

To validate this hypothesis, we repeated the first
Apache test. Instead of selecting similar requests, we se-
lected the pair of requests that were most different: a
small HTTP POST that failed and a very large HTTP
GET that succeeded. Somewhat surprisingly, X-ray still
reported MaxKeepAliveRequests as the top root cause.
The reason was a bit fortuitous: in our benchmark, the
MaxKeepAliveRequests option happened to increase
the latency of the small request, so the latency due to
the misconfiguration exhibited as a performance degra-
dation, while the difference in request input exhibited as
a performance improvement.

We verified this by reversing the order of the two
requests so that the large request was slowed by con-
nection re-establishment rather than the small request.
In this case, X-ray reported differences in the input re-
quest data as the largest reason why the processing of
the large request is slower. It incorrectly ranked the
DocumentRoot parameter second because the root is ap-
pended to the input file name before data is read from
disk. MaxKeepAliveRequests ranked third.

We conclude that differential analysis does not always
require that two requests be substantially similar in order
to identify root causes of performance anomalies. Differ-
ences in input will of course rise to the top of the ranked
list. However, after filtering these causes out, the true root
cause was still ranked very near the top in our experi-
ment, so a user would not have had to scan very far.

Finally, we applied multi-request differential anal-
ysis to this test by sending 100 requests of varying

Strategy False positives True cause
0 1 2 3+ unranked

Absolute 21 2 0 0 0
Normalized 20 0 3 0 0
Winner-take-all 15 3 1 2 2
Learning 20 2 1 0 0

For each strategy, this shows the number of false positives
ranked above each of the 23 true root causes from Table 2. The
winner-take-all strategy failed to identify 2 true root causes.

Table 3. Accuracy of attribution strategies

types (GET and POST), sizes, and success/failure out-
comes. When we compared all 100 requests and fil-
tered out input-related causes, the true root cause was
ranked second (behind the ServerRoot token). For an
end user, this mode is especially convenient because the
user need not identify specific requests to compare. For
power users and developers, the graphical version of the
multi-path output shows the specific requests for which
MaxKeepAliveRequests causes path divergences.

6.4 Sensitivity analysis
Section 5.3.1 described four strategies for attributing

performance to root causes. Table 3 summarizes the re-
sults of running all tests in Section 6.2 with each strategy.
There are 23 true root causes in the 17 tests. The second
column shows the number of these for which no false
positive is higher in the final X-ray rankings. The next
column shows the number for which 1 false positive is
ranked higher, etc. The final column shows true causes
that did not appear at all in X-ray’s rankings.

The winner-take-all strategy is substantially worse
than the other strategies because the true root cause ranks
second or third for many basic blocks, and so its impact
is underestimated. All other strategies are roughly equiv-
alent, with the absolute strategy being slightly more ac-
curate than the other two. We conclude that the X-ray
algorithm is not very sensitive to the particular attribu-
tion algorithm as long as that algorithm considers more
than just the top cause for each basic block.

As described in Section 4.1, X-ray uses ConfAid’s
taint aging heuristics: control flow taint is multiplied by
a weight of 0.5 when it is merged with data flow taint or
when a new tainted conditional branch is executed. We
performed a sensitivity analysis, shown in Table 4, that
examined the effect of changing this weight. Note that a
weight of 0 is equivalent to the winner-take-all strategy,
and a weight of 1 does not age taint at all. While the de-
fault weight of 0.5 produced slightly better results than
other weights, all values within the range 0.125–0.875
had roughly equivalent results in our experiments.

6.5 X-ray online overhead
We measured online overhead by comparing the

throughput and latency of applications when they are

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 319

Weight False positives True cause
0 1 2 3+ unranked

0 15 3 1 2 2
0.125 19 2 2 0 0
0.25 20 3 0 0 0
0.5 21 2 0 0 0
0.75 20 0 1 2 0
0.875 20 0 1 2 0
1 8 3 2 10 0

For each weight, this shows the number of false positives ranked
above each of the 23 true root causes from Table 2.

Table 4. Accuracy when using different weights

recorded by X-ray to results when the applications run
on default Linux without recording. For Apache and
lighttpd, we used ab to send 5000 requests for a 35 KB
static Web page with a concurrency of 50 requests at
a time over an isolated network. For Postfix, we used
smtp-source to send 1000 64 KB mail messages. For
PostgreSQL, we used pgbench to measure the number
of transactions completed in 60 seconds with a concur-
rency of 10 transactions at a time. Each transaction has
one SELECT, three UPDATEs, and one INSERT command.

Figure 4 shows X-ray adds an average of 2.3%
throughput overhead: 0.1% for Apache, 4.7% for Post-
fix, 3.5% for PostgreSQL, and 0.8% for lighttpd. These
values include the cost of logging data races previ-
ously detected by our offline data race detector. This
overhead is consistent with similar deterministic replay
approaches [18]. Latency overheads for Apache, Post-
greSQL, and lighttpd are equivalent to the respective
throughput overheads; Postfix has no meaningful la-
tency measure since its processing is asynchronous. The
recording log sizes were 2.8 MB for Apache, 1.6 MB for
lighttpd, 321 MB for PostgreSQL, and 15 MB for Post-
fix. Apache and lighttpd have smaller logs because they
use sendfile to avoid copying data.

6.6 Discussion
X-ray’s accuracy has exceeded our expectations. One

reason for this is that many performance issues, like the
Postfix example in Section 6.2.2, are obvious once ex-
plained. Without explanation, however, searching for the
root cause is a frustrating, “needle-in-a-haystack” pro-
cess. Performance summarization is essentially a brute-
force method for searching through that haystack. The
obvious-once-explained nature of many performance
problems has another nice property: X-ray’s accuracy is
not very sensitive to the exact heuristics it employs, so
many reasonable choices lead to good results.

X-ray’s most significant limitation is that it does not
track taint inside the OS so it cannot observe causal de-
pendencies among system calls. For instance, X-ray can-
not determine when one thread blocks on a kernel queue
waiting for other threads or kernel resources. In addition,

Apache Postfix PostgreSQL lighttpd
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Without X-ray
With X-ray

Each dataset shows server throughput with and without X-ray
recording, normalized to the number of requests per second
without X-ray. Higher values are better. Each result is the mean
of at least 10 trials; error bars are 95% confidence intervals.

Figure 4. X-ray online overhead

system call parameter values often affect the amount of
work performed by the kernel. X-ray currently addresses
this on an ad-hoc basis; e.g., it attributes amount of the
work performed by read and write system calls to the
size input parameter for each call. However, X-ray cur-
rently only supports a small number of system call pa-
rameters in this fashion. We hope to address these limita-
tions more thoroughly, either by instrumenting the ker-
nel or by creating more detailed performance models
that observe system calls, parameters, and selected ker-
nel events to infer such dependencies.

X-ray only considers configuration settings and pro-
gram inputs as possible root causes. If the true root cause
is a program bug or any other cause not considered by X-
ray, X-ray cannot diagnose the problem. X-ray will pro-
duce an ordered list of possible causes, all of which will
be incorrect. Thus, one potential improvement is to re-
quire a minimal level of confidence before X-ray adds a
root cause to the ordered list—this may enable X-ray to
better identify situations where the true root cause is not
in its domain of observation.

While X-ray adds only a small overhead on the pro-
duction system, its offline analysis runs 2–3 orders of
magnitude slower than the original execution. Thus,
while logging may be continuously enabled, we envision
that only portions of the log will be analyzed offline.

7 Conclusion
Diagnosing performance problems is challenging. X-

ray helps users and administrators by identifying the root
cause of observed performance problems. Our results
show that X-ray accurately identifies the root cause of
many real-world performance problems, while imposing
only 2.3% average overhead on a production system.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Dejan

Kostić, for comments that improved this paper. This research was sup-
ported by NSF award CNS-1017148. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing NSF, Michigan, Google, or the U.S. government.

13



320 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND

MUTHITACHAROEN, A. Performance debugging for distributed systems of
black boxes. In Proc. SOSP (October 2003), pp. 74–89.

[2] ALTEKAR, G., AND STOICA, I. ODR: Output-deterministic replay for
multicore debugging. In Proc. SOSP (October 2009), pp. 193–206.

[3] Apache HTTP server version 2.4 documentation: Authentication, autho-
rization, and access control. http://httpd.apache.org/docs/2.2/
howto/autho.html.

[4] Apache HTTP server version 2.4 documentation: Apache perfor-
mance tuning. http://httpd.apache.org/docs/current/misc/
perf-tuning.html.

[5] Apache performance tuning. http://perlcode.org/tutorials/
apache/tuning.html.

[6] ATTARIYAN, M., AND FLINN, J. Automating configuration troubleshoot-
ing with dynamic information flow analysis. In Proc. OSDI (October 2010).

[7] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Using
Magpie for request extraction and workload modelling. In Proc. OSDI (De-
cember 2004), pp. 259–272.

[8] BHATIA, S., KUMAR, A., FIUCZYNSKI, M. E., AND PETERSON, L.
Lightweight, high-resolution monitoring for troubleshooting production
systems. In Proc. OSDI (December 2008), pp. 103–116.

[9] BRESSOUD, T. C., AND SCHNEIDER, F. B. Hypervisor-based fault toler-
ance. ACM TOCS 14, 1 (February 1996), 80–107.

[10] BROWN, A. B., AND PATTERSON, D. A. To err is human. In DSN Work-
shop on Evaluating and Architecting System Dependability (July 2001).

[11] BROWN, A. B., AND PATTERSON, D. A. Undo for operators: Building an
undoable e-mail store. In Proc. USENIX ATC (June 2003).

[12] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems programs.
In Proc. OSDI (December 2008), pp. 209–224.

[13] CANTRILL, B. M., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dynamic
instrumentation of production systems. In Proc. USENIX ATC (June 2004),
pp. 15–28.

[14] CHEN, H., JIANG, G., ZHANG, H., AND YOSHIHIRA, K. Boosting the
performance of computing systems through adaptive configuration tuning.
In Proc. SAC (March 2009), pp. 1045–1049.

[15] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PATTERSON, D.,
FOX, A., AND BREWER, E. Path-based failure and evolution management.
In Proc. NSDI (March 2004).

[16] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER, E.
Pinpoint: Problem determination in large, dynamic Internet services. In
Proc. DSN (June 2002), pp. 595–604.

[17] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A platform for
in vivo multi-path analysis of software systems. In Proc. ASPLOS (March
2011).

[18] CHOW, J., GARFINKEL, T., AND CHEN, P. M. Decoupling dynamic pro-
gram analysis from execution in virtual environments. In Proc. USENIX
ATC (June 2008), pp. 1–14.

[19] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND CHASE, J.
Correlating instrumentation data to system states: A building block for au-
tomated diagnosis and control. In Proc. OSDI (December 2004), pp. 231–
244.

[20] DIAO, Y., HELLERSTEIN, J. L., PAREKH, S., AND BIGUS, J. P. Managing
Web Server Performance with AutoTune Agent. IBM Systems Journal 42,
1 (January 2003), 136–149.

[21] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND CHEN,
P. M. ReVirt: Enabling intrusion analysis through virtual-machine logging
and replay. In Proc. OSDI (December 2002), pp. 211–224.

[22] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STOICA,
I. X-trace: A pervasive network tracing framework. In Proc. NSDI (April
2007), pp. 271–284.

[23] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Replay de-
bugging for distributed applications. In Proc. USENIX ATC (June 2006).

[24] GRAY, J. Why do computers stop and what can be done about it? In Proc.
Symp. Rel. Dist. Sofrware and DB Syst. (1986).

[25] JUNQUEIRA, F., SONG, Y. J., AND REED, B. BFT for the skeptics. In
Proc. SOSP: WIP Session (October 2009).

[26] KASICK, M. P., TAN, J., GANDHI, R., AND NARASIMHAN, P. Black-box
problem diagnosis in parallel file systems. In Proc. FAST (February 2010).

[27] LAURIE, B., AND LAURIE, P. Apache: The Definitive Guide, 3rd Edition.
O’Reilly Media, Inc., December 2002.

[28] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY,
G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proc.
PLDI (June 2005), pp. 190–200.

[29] http://msdn.microsoft.com/en-us/library/bb968803(v=VS.85).aspx.
[30] MURPHY, B., AND GENT, T. Measuring system and software reliability

using an automated data collection process. Quality and Reliability Engi-
neering International 11, 5 (1995).

[31] MYERS, E. W. An O(ND) difference algorithm and its variations. Alo-
gorithmica 1, 1–4 (1986), 251–266.

[32] NAGARAJA, K., OLIVERIA, F., BIANCHINI, R., MARTIN, R. P., AND
NGUYEN, T. Understanding and dealing with operator mistakes in Internet
services. In Proc. OSDI (December 2004), pp. 61–76.

[33] NEWSOME, J., AND SONG, D. Dynamic taint analysis: Automatic detec-
tion, analysis, and signature generation of exploit attacks on commodity
software. In Proc. NDSS (February 2005).

[34] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A. Why do
Internet services fail, and what can be done about it? In Proc. USITS (March
2003).

[35] http://oprofile.sourceforge.net/.
[36] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE, K. H.,

AND LU, S. PRES: Probabilistic replay with execution sketching on multi-
processors. In Proc. SOSP (October 2009), pp. 177–191.

[37] PATIL, H., PEREIRA, C., STALLCUP, M., LUECK, G., AND COWNIE, J.
PinPlay: A framework for determinisrtic replay and reproducible analysis
of parallel programs. In Proc. CGO (March 2010).

[38] http://www.karoltomala.com/blog/?p=576.
[39] Postfix stress-dependent configuration. http://www.postfix.org/

STRESS README.html.
[40] Postfix tuning guide. http://www.postfix.org/TUNING README.

html.
[41] POZNIANSKY, E., AND SCHUSTER, A. Efficient on-the-fly data race detec-

tion in multithreaded C++ programs. In Proc. PPoPP (June 2003), pp. 179–
190.

[42] PRASAD, V., COHEN, W., EIGLER, F. C., HUNT, M., KENISTON, J., AND
CHEN, B. Locating system problems using dynamic instrumentation. In
Proceedings of the Linux Symposium (July 2005), pp. 49–64.

[43] QIAN, F., QUAH, K. S., HUANG, J., ERMAN, J., GERBER, A., MAO,
Z. M., SEN, S., AND SPATSCHECK, O. Web caching on smartphones:
Ideal vs. reality. In Proc. MobiSys (June 2012).

[44] RONSSE, M., AND DE BOSSCHERE, K. RecPlay: A fully integrated prac-
tical record/replay system. ACM TOCS 17, 2 (May 1999), 133–152.

[45] RUAN, Y., AND PAI, V. Making the ”box” transparent: System call perfor-
mance as a first-class result. In Proc. USENIX ATC (June 2004), pp. 1–14.

[46] SAMBASIVAN, R. R., ZHENG, A. X., ROSA, M. D., KREVAT, E., WHIT-
MAN, S., STROUCKEN, M., WANG, W., XU, L., AND GANGER, G. R.
Diagnosing performance changes by comparing request flows. In Proc.
NSDI (March 2011), pp. 43–56.

[47] SMITH, G. PostgreSQL 9.0 High Performance. October 2010.
[48] SMITH, G., TREAT, R., AND BROWNE, C. Tuning your post-

gresql server. http://wiki.postgresql.org/wiki/Tuning Your
PostgreSQL Server.

[49] SRINIVASAN, S., ANDREWS, C., KANDULA, S., AND ZHOU, Y. Flash-
back: A light-weight extension for rollback and deterministic replay for
software debugging. In Proc. USENIX ATC (June 2004), pp. 29–44.

[50] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. AutoBash: Improving con-
figuration management with operating system causality analysis. In Proc.
SOSP (October 2007), pp. 237–250.

[51] VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND NARAYANASAMY,
S. Detecting and surviving data races using complementary schedules. In
Proc. SOSP (October 2011).

[52] VEERARAGHAVAN, K., LEE, D., WESTER, B., OUYANG, J., CHEN,
P. M., FLINN, J., AND NARAYANASAMY, S. DoublePlay: Parallelizing
sequential logging and replay. In Proc. ASPLOS (March 2011).

[53] http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/.
[54] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND WANG, Y.-M.

Automatic misconfiguration troubleshooting with PeerPressure. In Proc.
OSDI (December 2004), pp. 245–257.

[55] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y., WANG, H. J.,
YUAN, C., AND ZHANG, Z. STRIDER: A black-box, state-based approach
to change and configuration management and support. In Proc. LISA (Oc-
tober 2003), pp. 159–172.

[56] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configuration debug-
ging as search: Finding the needle in the haystack. In Proc. OSDI (Decem-
ber 2004), pp. 77–90.

[57] XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM, G., AND
WEISSMAN, B. ReTrace: Collecting execution trace with virtual machine
deterministic replay. In Proc. MoBS (June 2007).

[58] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUNDARAM, L., AND
PASUPATHY, S. An emprirical study on configuration errors in commerica l
and open source systems. In Proc. SOSP (October 2011).

[59] YU, M., GREENBERG, A., MALTZ, D., REXFORD, J., YUAN, L., KAN-
DULA, S., AND KIM, C. Profiling network performance for multi-tier data
center applications. In Proc. NSDI (March 2011), pp. 57–70.

[60] ZHENG, W., BIANCHINI, R., JANAKIRAMAN, G. J., SANTOS, J. R., AND
TURNER, Y. JustRunIt: Experiment-based management of virtualized data
centers. In Proc. USENIX ATC (June 2009).

[61] ZHENG, W., BIANCHINI, R., AND NGUYEN, T. D. Automatic configura-
tion of Internet services. In Proc. EuroSys (March 2007), pp. 219–229.

14



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 321

Pasture: Secure Offline Data Access Using Commodity Trusted Hardware

Ramakrishna Kotla
Microsoft Research

Silicon Valley

Tom Rodeheffer
Microsoft Research

Silicon Valley

Indrajit Roy∗

HP Labs
Palo Alto

Patrick Stuedi∗

IBM Research
Zurich

Benjamin Wester∗

Facebook
Menlo Park

Abstract
This paper presents Pasture, a secure messaging and

logging library that enables rich mobile experiences
by providing secure offline data access. Without trust-
ing users, applications, operating systems, or hyper-
visors, Pasture leverages commodity trusted hardware
to provide two important safety properties: access-
undeniability (a user cannot deny any offline data ac-
cess obtained by his device without failing an audit) and
verifiable-revocation (a user who generates a verifiable
proof of revocation of unaccessed data can never access
that data in the future).

For practical viability, Pasture moves costly trusted
hardware operations from common data access actions
to uncommon recovery and checkpoint actions. We used
Pasture to augment three applications with secure offline
data access to provide high availability, rich functional-
ity, and improved consistency. Our evaluation suggests
that Pasture overheads are acceptable for these applica-
tions.

1 Introduction
Mobile experiences are enriched by applications that

support offline data access. Decentralized databases [50],
file systems [24], storage systems [31], and email appli-
cations [36] support disconnected operation to provide
better mobility and availability. With the increasing use
of mobile devices—such as laptops, tablets, and smart
phones—it is important that a user has access to data de-
spite being disconnected.

However, support for disconnected operation is at odds
with security when the user is not trusted. A disconnected
untrusted user (assumed to be in full control of the user
device) could perform arbitrary actions on whatever data
was available and subsequently lie about it. This tension
between mobility and security limits the use of discon-
nected operation in many potentially useful scenarios, for
example:
• Offline video rental services: Most web-based video

rental services require users to be online to watch
a streaming video. Some allow users to download
movies and watch them offline but the movies must be

∗Work done while at Microsoft Research, Silicon Valley.

purchased ahead of time, with no refund possible for
unwatched movies. It would be useful if a user could
rent some movies, download them when online (for ex-
ample, in an airport), selectively watch some of them
offline (on the plane), delete the unwatched movies,
and then get a refund later (when back online after
landing). Similar offline services could be provided for
electronic books.

• Offline logging and revocation: Secure logging of off-
line accesses is required by law in some cases. For ex-
ample, HIPAA [48] mandates that (offline) accesses to
confidential patient information be logged securely to
enable security audits so as to detect and report privacy
violations due to unauthorized accesses. Furthermore,
accidental disclosures [23] to unauthorized entities are
not exempt from civil penalties under HIPAA. Hence,
it is also important to enable verifiable revocation of
(unread) data from an unintended receiver’s device in
order to mitigate liability arising out of accidental dis-
closures.
Support for secure offline data access raises two im-

portant security problems: How do you know that an un-
trusted user is not lying about what data was accessed
while offline? And, if the user claims data has been
deleted, how do you know that he did not secretly keep a
copy for later access?

These problems cannot be solved simply by using en-
cryption because the untrusted user must be able to get
offline access to the decryption keys in order to read the
data. Rather, it is an issue of (1) securely detecting and
logging access to the decryption keys when data is ac-
cessed and (2) securely retracting unused keys to prevent
future access when unaccessed data is deleted. These
problems are hard because the untrusted user is discon-
nected when he makes offline accesses and he is in full
physical control of his device.

Indeed, these problems limit application functionality
and deployability. Consequently, as observed above, cur-
rent online services provide restricted offline functional-
ity that does not allow a refund for downloaded but (al-
legedly) unaccessed movies or books.

Fortunately, recent advances have resulted in wide-
spread availability of commodity trusted hardware in the



322 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

form of Trusted Platform Modules (TPMs) [51] and se-
cure execution mode (SEM) extensions (Intel’s TXT [22]
and AMD’s SVM [1] technology) in many modern day
laptops, tablets, and PCs [17].

Secure offline data access using trusted hardware.
We present Pasture, a secure messaging and logging
library, that leverages commodity trusted hardware to
overcome the above problems by providing following
safety properties:
• Access undeniability: If a user obtains access to data

received from a correct sender, the user cannot lie
about it without failing an audit. (Destruction or loss
of the user device automatically fails an audit.)

• Verifiable revocation: If a user revokes access to unac-
cessed data received from a correct sender and gener-
ates a verifiable proof of revocation, then the user did
not and cannot ever access the data.
Pasture uses a simple yet powerful bound key TPM

primitive to provide its safety properties. This primitive
ensures access undeniability by releasing the data de-
cryption key only after the access operation is logged
in the TPM. It provides verifiable revocation by perma-
nently destroying access to the decryption key and gener-
ating a verifiable proof of revocation if a delete operation
is logged in the TPM instead.

Making secure offline data access practical.
Flicker [34] and Memoir [37] have demonstrated the
use of TPMs and SEM to run trusted application code
on untrusted devices in isolation from the OS and hy-
pervisor. However, using SEM requires disabling inter-
rupts and suspending all but one core, which can result in
poor user responsiveness, resource underutilization, and
higher overhead. Furthermore, these systems are vulner-
able to memory and bus snooping attacks [16, 21]. Pas-
ture avoids these drawbacks by carefully using trusted
hardware operations to ensure practicality without com-
promising on safety.

First, unlike Flicker and Memoir, Pasture does not use
SEM for the common case data access operations, and
thus provides better user interaction and improved con-
currency by enabling interrupts and cores. Perhaps sur-
prisingly, we found that Pasture could maintain its safety
properties even though SEM is limited to the uncommon
operations of recovery and checkpoint.

Second, similar to Memoir, we significantly reduce
overhead and improve durability by limiting NVRAM
and non-volatile monotonic counter update operations
(which are as slow as 500 ms and have limited lifetime
write cycles [37]) to uncommon routines and not using
them during the regular data access operations.

Contributions. We make two key contributions in this
paper. First, we present the design and implementation
of Pasture, providing secure and practical offline data

access using commodity trusted hardware. We wrote a
formal specification [40] of Pasture and its safety proofs
in TLA+, checked the specification with the TLC model
checker [27], and mechanically verified the proofs using
the TLA+ proof system. Our evaluation of a Pasture pro-
totype shows that common case Pasture operations such
as offline data access takes about 470 ms (mainly due to
the TPM decryption overhead) while offline revocation
can be as fast as 20 ms.

Second, we demonstrate the benefits of Pasture by (a)
providing rich offline experiences in video/book rental
services, (b) providing secure logging and revocation in
healthcare applications to better handle offline accesses
to sensitive patient health information, and (c) improving
consistency in decentralized data sharing applications [2,
31, 50] by preventing read-denial attacks.

2 Overview and Approach
The goal of Pasture is to improve mobility, availabil-

ity, and functionality in applications and services by al-
lowing untrusted users to download data when online
and make secure offline accesses to data. In this section,
we state our requirements, review features of commodity
trusted hardware, define our adversary, and present our
approach.

2.1 Requirements
(1) Access undeniability. The access-undeniability

property prevents an untrusted node1 from lying about
offline accesses to data sent by correct nodes. It is be-
yond the scope of this paper to address a more general
problem of detecting or preventing data exchanges be-
tween colluding, malicious nodes. (For example, a mali-
cious user could leak data to another malicious user dur-
ing an unmonitored phone conversation.)

(2) Verifiable revocation. While access undeniability
prevents users from lying about past data accesses, the
verifiable-revocation property allows a user to perma-
nently revoke access to unaccessed data. Furthermore,
the user can supply a proof that its access was indeed
securely revoked. The user will not be able to decrypt
and read the data at a later time even if he keeps a secret
copy of the encrypted data.

(3) Minimal trusted computing base (TCB). To de-
fend against an adversary who has full physical access
to the device when offline, we want to have a small TCB.
Hence, we do not trust the hypervisor, OS, or the appli-
cation to provide Pasture’s safety properties. We do not
want to trust the bus or memory to not leak any informa-
tion as hardware snooping attacks [16,21] are possible in
our setting. However, we have to trust something, since
it is impossible to track a user’s offline actions without
trusting anything on the receiver device.

1We use the terms “node” and “user” interchangeably to refer to an
untrusted entity that takes higher level actions on data.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 323

(4) Low cost. We want to keep the costs low by using
only commodity hardware components.

2.2 Commodity trusted hardware
Pasture exploits commodity trusted hardware to meet

its requirements. Here we explain some of the key fea-
tures we use and refer readers to the textbook [5] for
details. TPMs [51] are commodity cryptographic co-
processors already shipped in more than 200 million
PCs, tablets and laptops [17]. TPMs are designed to
be tamper-resistant and cannot be compromised with-
out employing sophisticated and costly hardware attacks.
TPMs are currently used for secure disk encryption [4]
and secure boot [8] in commodity OS.

Keys and security. Each TPM has a unique identity and
a certificate from the manufacturer (Infineon for exam-
ple) that binds the identity of the TPM to the public part
of a unique endorsement key (EK). The private part of
EK is securely stored within the TPM and never released
outside. For privacy, TPMs use internally generated At-
testation Identity Keys (AIKs) for attestations and AIKs
are certified by trusted privacy CAs after confirming that
they are generated by valid TPMs with proper EK cer-
tificates. It is cryptographically impossible to spoof hard-
ware TPM attestations and emulate it in software. TPMs
can securely generate and store other keys, make attes-
tations of internal state, sign messages, and decrypt and
encrypt data.

Registers and remote attestation. TPMs have volatile
registers called Platform Configuration Registers (PCRs)
which can be updated only via the TPM Extend opera-
tion, which concatenates a value to the current value, and
then overwrites the PCR with a SHA1 hash of the con-
catenated value. Intuitively, a PCR serves as a chained
SHA1 hash of events in a log. TPMs also support remote
attestation using a TPM Quote operation which returns
the signed contents of one or more PCRs along with a
specified nonce. TPMs (v1.2) typically have 24 PCRs
and we refer interested readers to other sources [5, 51]
for details.

Bound keys. TPMs provide a TPM CreateWrapkey
operation that creates a bound public-private key pair.
The encryption key can be used anywhere but the cor-
responding decryption key is shielded and can be used
only in the TPM when specified PCRs contain specified
values.

Transport sessions. TPMs support a form of attested
execution using TPM transport sessions. Operations
within a transport session are logged and signed so that
a verifier can securely verify that a given TPM executed
a specified sequence of TPM operations with specified
inputs and outputs.

Non-volatile memory and counters. TPMs provide
a limited amount of non-volatile memory (NVRAM)
which can be used to persist state across reboots. A re-

gion of NVRAM can be allocated and protected so that it
can be accessed only when specified PCRs contain spec-
ified values. TPMs also provide non-volatile monotonic
counters which can be updated only by an increment op-
eration (TPM IncrementCounter).

Secure Execution Mode (SEM). AMD and Intel pro-
cessors provide special processor instructions to securely
launch and run trusted code in isolation from DMA de-
vices, the hypervisor and the OS. Roughly speaking, the
processor sets DMA memory protection so that DMA de-
vices cannot access the trusted code, disables interrupts
and other cores to prevent other software from taking
control or accessing the trusted code, resets and extends
a special PCRSEM register with the SHA1 hash of the
trusted code, and then starts executing the trusted code.

The AMD and Intel details are different, but in each
case the reset of PCRSEM produces a value that is not the
same as the initial value produced by a reboot, and hence
the result obtained by extending PCRSEM by the SHA1
hash of the trusted code is cryptographically impossible
to produce in any other way. This PCR value can be spec-
ified to restrict access to secrets (that are encrypted by
bound keys) or NVRAM locations to the trusted code
only.

When the trusted application finishes its execution,
the SEM exit code extends PCRSEM to yield access
privileges, scrubs memory of any secrets it wants to
hide, then reenables DMA, interrupts, and other cores.
Flicker [34] demonstrated how to use SEM to execute
arbitrary trusted code.

2.3 Adversary model
The adversary’s goal is to violate safety. We do not

consider violations of liveness, since the adversary could
always conduct a denial-of-service attack by simply de-
stroying the device. Violating safety means to violate ei-
ther access undeniability or verifiable revocation. The ad-
versary wins if he can obtain access to data from a cor-
rect sender and then subsequently survive an audit while
claiming that access was never obtained. The adversary
also wins if he can produce a valid, verifiable proof of
revocation for data from a correct sender and yet at some
time, either before or after producing the proof, obtain
access to the data.

The adversary can run arbitrary code in the OS, hyper-
visor, or application. The adversary controls power to the
device and consequently can cause reboots at arbitrary
points in time, even when the processor is executing in
secure execution mode. As opposed to Memoir [37], we
assume that the adversary can perform hardware snoop-
ing attacks on the main memory [16] or CPU-memory
bus [21] to deduce the contents of main memory at any
time. We also assume that the adversary can snoop on the
CPU-TPM bus.

However, we assume that the adversary cannot extract



324 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

secrets from or violate the tamper-resistant TPM and
compromise the processor’s SEM functionality. We also
assume that the adversary cannot break cryptographic
secrets or find collisions or preimages of cryptographic
hashes. We assume the correctness of processor’s CPU
and the trusted Pasture code that runs in SEM.

In Pasture, we ensure that a sender’s data is accessed
securely on a receiver node, and it is not our goal to keep
track of who accessed the data or for what purpose. Other
techniques [33, 34, 55] can be used to provide isolation
across various entities on the receiver node based on the
receiver’s trust assumptions. Pasture’s safety guarantees
are for the sender and are independent of the receiver’s
trust assumptions.

Since an audit is possible only when the receiver is
online, the adversary can prevent an audit by disconnect-
ing or destroying the device. We let applications decide
how to deal with long disconnections and device failures.
In the offline video rental scenario, for example, the fact
that a node might have been disconnected for a long time
is irrelevant, because the user has already paid for the
movies and can get refunds only by providing verifiable
proofs of revocation.

To be conservative, an application cannot assume that
data has been destroyed in a device failure or lost dur-
ing a long network disconnection. In such situations it is
impossible to tell comprehensively what data has been
accessed. In spite of this, we guarantee that if there is a
valid, verifiable proof of revocation of data received from
a correct sender, then the adversary can never access that
data.

2.4 Pasture’s approach
We carefully use TPM and SEM operations to provide

secure offline data access to meet Pasture’s requirements.
(1) Summary log state in a PCR. Pasture uses a Plat-

form Configuration Register PCRAPP to capture a cryp-
tographic summary of all decisions to obtain access or re-
voke access to data. Since a PCR can be updated only via
the TPM Extend operation, it is cryptographically im-
possible to produce a specified value in a PCR in any
other way than by a specified sequence of extensions.

(2) Minimal use of SEM and NV operations. By care-
fully mapping the process of obtaining and revoking ac-
cess onto TPM primitives, Pasture avoids using SEM or
NV updates during normal operation and limits their use
to bootup and shutdown.

(3) Prevent rollback and hardware snooping attacks.
Since Pasture state is stored in a volatile PCR, an adver-
sary could launch a rollback attack [37] to attempt to re-
tract past offline actions. The rollback attack would pro-
ceed by rebooting the system, which resets PCRAPP to
its initial value, followed by re-extending PCRAPP to a
valid, but older state. The adversary would truncate the
full (untrusted) log to match the state in PCRAPP.

Key generation & signing 

Kpub 
Kpriv 

TPM 

Pasture API 

Untrusted storage 

Create 
bound 

key 
Obtain 
access Audit 

Monotonic 
counter 

Summary 
register 

N
V 

RA
M

 

Revoke 
access 

Tamper-evident  log 

Verify 
bound 

key 

1,2, … 

Figure 1: Pasture architecture.

Memoir prevents this attack by incorporating a se-
cret into each PCR extension. The adversary cannot per-
form re-extensions without knowing the secret, which
is shielded so that it is accessible only to the Memoir
trusted code running in SEM. This is a reasonable ap-
proach in Memoir, which handles general applications
and runs every operation in SEM. But since we grant the
adversary the power to snoop on hardware busses, this
defense is insufficient for Pasture.

Pasture prevents this attack by exploiting the fact that
SEM is not needed for normal operations. Instead of
making the required contents of PCRAPP impossible for
the adversary to reproduce, Pasture conjoins a require-
ment that PCRSEM contain a value that is cryptograph-
ically impossible to produce except by executing Pas-
ture’s trusted reboot recovery routine and verifying that
PCRAPP has been restored to the latest value.

Pasture uses Memoir’s approach of saving the latest
value of PCRAPP in protected NVRAM on shutdown so
that its correct restoration can be verified on the subse-
quent reboot.

3 Pasture Design
Figure 1 shows the high-level architecture of Pasture.

Each node runs a Pasture instance which is uniquely
identified by a public/private key pair securely generated
and certified (using AIK) by its corresponding TPM. All
proofs and messages generated by a Pasture instance are
signed using the private part. Receivers verify signatures
using the public part. Since the private part of the key is
protected inside the TPM, it is impossible for an adver-
sary to spoof Pasture’s proofs or messages.

Each Pasture instance maintains a tamper-evident
append-only log of decisions ∆1,∆2, . . . about offline
decisions to access or revoke a key. The full log is kept
in the node’s untrusted storage and a cryptographic sum-
mary of the log is maintained inside the TPM on a PCR.
The application running on a Pasture instance uses the
Pasture API to Create and Verify bound encryption keys



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 325

Sender Receiver 

1. send:  “getKey”, hM S 

Message: M; 

5. EM  Encrypt(M, E) 
6. send:  “encMsg”, hM, E, EP, EMS 

hM  h(M) 

log state 

4. VerifyBoundKey(hM, E, EP) 

2. E, EP  CreateBoundKey(hM) 
Encrypt key: E 

3. send:   “encKey”, hM, E, EP R 

Lt 

7a. Access: DMObtainAccess(hM, EM) 

7b. Revoke: RPRevokeAccess() 

Lt+1  Lt || hM 

Lt+1  Lt ||  

Decrypted message: DM 

Proof of revocation: RP 

Offline operations on the receiver 

7.  Verify encMsg and store EM     

Online message exchange protocol 

or 

Proof: EP 

Figure 2: Pasture data transfer protocol, offline opera-
tions, and log state. Shaded regions represent TPM op-
erations. Protocol messages are signed by their corre-
sponding message sender (S or R).

during the data transfer protocol, to Obtain and Revoke
access to the corresponding decryption keys based on
offline decisions, and to respond to an Audit.

Many of the following subsections contain implemen-
tation details. Skipping these details on the first reading
may help the reader.

3.1 Data transfer protocol
Figure 2 shows the secure data transfer protocol used

by a sender to transfer encrypted data to a receiver. When
a sender wants to send data M to a receiver, the sender
gets an (asymmetric) encryption key E generated by the
receiver’s TPM and sends the encrypted data EM. The
receiver then can make offline decision to access the data
M by decrypting EM or revoke access to M by perma-
nently deleting access to the decryption key in its TPM
and generating a proof of revocation.

We describe the protocol with a single sender below
and defer discussion of concurrent data transfers from
multiple senders to §3.6. At the beginning of the proto-
col, the receiver’s log state is Lt. We use the subscript t
to indicate the state before creating entry t+1 in the log.
The subscript t+ 1 indicates the next state.

In step 1, the sender provides the cryptographic hash
hM = h(M) when requesting an encryption key.

In step 2, the receiver generates a key pair bound to a
hypothetical future log state Lt||hM, in which the current
log Lt is extended by a decision to obtain access to the
bound decryption key. The cryptographic hash hM rep-
resents this decision. The TPM only permits decryption
using the bound key when the log has the hypothesized
state. Pasture creates a proof EP that the bound key was
generated by the receiver’s TPM in the proper manner
using a transport session.

In step 3 the proof EP and the encryption key E are
returned to the sender in the “encKey” message.

In step 4, The sender checks the proof to verify that
the receiver acted properly. If the “encKey” message is

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 

se
cu

re
 e

xe
cu

tio
n 

m
od

e 

Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 

SE
AL

 
BI

N
DK

EY
 

tr
an

sp
or

t 
se

ss
io

n 
se

cu
re

 e
xe

cu
tio

n 
m

od
e 

tr
an

sp
or

t 
se

ss
io

n 

Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 3: Create and verify bound key operations.

malformed or if the proof is not valid then the sender
aborts the protocol and does not interact further with the
faulty receiver. In this way a correct sender can protect
itself against a malicious receiver.

In step 5, the sender encrypts its message using E.
In step 6, the encrypted data EM is sent to the receiver,
along with the original hash hM, the encryption key E,
and the receiver’s proof EP.

In step 7, after receiving “encMsg” and verifying that
it is properly signed by the sender, the receiver checks
that hM, E, and EP match with the corresponding values
it sent in its “encKey” message. Then the receiver stores
the “encMsg” with the encrypted data EM on its local
storage. The receiver can later make an offline decision
to obtain access to the bound decryption key (and thus
obtain access to the sender’s data) or to revoke access.

In case of communication failures, neither the sender
nor the receiver need to block because they can always
discard their current state and restart.

Implementation details. For simplicity, we described
the protocol as if M is the actual data X but we use the
standard practice [35] of allowing the sender to choose a
nonce symmetric key KSym to encrypt X and then en-
crypting M = 〈KSym, h(X)〉 using the asymmetric key
acquired in this protocol. Securely obtaining or revoking
access to M is equivalent to obtaining or revoking ac-
cess to the actual data X . Note that KSym also acts as
a unique and random nonce to prevent a faulty receiver
from inferring M from the hash hM without decrypting
the message even if the receiver has seen data X in prior
exchanges with this or other senders.

Figure 3 shows the implementation of the Create-
BoundKey and VerifyBoundKey operations. Pasture
exploits the TPM primitive TPM CreateWrapKey, which
creates a key pair in which the decryption key is usable
only when specified PCRs contain specified values. Pas-
ture keeps a cryptographic summary of the log in a PCR
called PCRAPP.
CreateBoundKey reads the current summary value

Rt from PCRAPP, computes what the new summary
value Rt+1 would be if hM were appended to the
log, and then invokes TPM CreateWrapKey to create
a key pair with the decryption key usable only when



326 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 

se
cu

re
 e

xe
cu

tio
n 

m
od

e 

Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 

SE
AL

 
BI

N
DK

EY
 

tr
an

sp
or

t 
se

ss
io

n 
se

cu
re

 e
xe

cu
tio

n 
m

od
e 

tr
an

sp
or

t 
se

ss
io

n 

Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): Figure 4: Obtain and revoke access operations.

PCRAPP contains Rt+1. (The additional constraint that
PCRSEM contains SemHappy is discussed in §3.4.)
TPM CreateWrapKey is invoked inside a TPM trans-
port session, which provides an attestation α signed by
the TPM that the BINDKEY sequence of TPM operations
were performed with the indicated inputs and outputs.

The sender uses VerifyBoundKey to check the con-
tents of the proof EP. Note that there is no need to ver-
ify that Rt is a correct cryptographic summary of the re-
ceiver’s log. The attestation α proves that E is bound to
Rt+1, which is the correct extension from Rt by hM. It
is cryptographically impossible to find any other value
from which an extension by hM would produce Rt+1.

3.2 Secure offline access and revocation
To obtain access, as shown in step 7a of Figure 2, the

receiver irrevocably extends its log by hM. The TPM
now permits decryption using the bound key, and the de-
crypted message DM can be obtained. A faulty sender
could play a bait-and-switch trick by sending an en-
crypted text for a different data than initially referenced
in its “getKey” message, but the receiver can catch this
by noticing that hM �= h(DM). If the sender is faulty, the
receiver can form a proof of misbehavior by exhibiting
DM and the sender’s signed “encMsg” message, which
includes hM, E, EP, and EM. Any correct verifier first
verifies that the receiver is not faulty by checking that
Encrypt(DM, E) = EM. Then the verifier checks that
hM �= h(DM), which proves that the sender is faulty.
In this way a correct receiver can protect itself against a
malicious sender.

To revoke access, in step 7b, the receiver irrevocably
extends its log by δ, a value different from hM. This
makes it cryptographically impossible ever to attain the
state in which the TPM would permit decryption using
the bound key. In effect, the bound decryption key has
been revoked and the receiver will never be able to de-
crypt EM. Pasture constructs a proof RP of this revoca-
tion, which any correct verifier can verify.

Implementation details. Figure 4 shows the imple-
mentation of the ObtainAccess and RevokeAccess
operations. Step 7a calls ObtainAccess to obtain off-
line data access. ObtainAccess appends hM to the full
log on untrusted storage and extends the cryptographic

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 

se
cu

re
 e

xe
cu

tio
n 

m
od

e 

Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 

SE
AL

 
BI

N
DK

EY
 

tr
an

sp
or

t 
se

ss
io

n 
se

cu
re

 e
xe

cu
tio

n 
m

od
e 

tr
an

sp
or

t 
se

ss
io

n 

Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 5: Audit operation.

summary maintained in PCRAPP. Since PCRAPP now
contains the required summary value, the TPM permits
use of the decryption key to decrypt the data, which is
performed via the TPM Unbind primitive.

Step 7b calls RevokeAccess to revoke data access.
RevokeAccess appends δ to the log and extends the
cryptographic summary accordingly. Since δ �= hM, this
produces a summary value R′

t+1 �= Rt+1. Since it is
cryptographically impossible to determine any way of
reaching Rt+1 except extending from Rt by hM, this ren-
ders the decryption key permanently inaccessible. Pas-
ture uses TPM Quote to produce an attestation α that
PCRAPP contains R′

t+1. (The simultaneous attestation
that PCRSEM contains S′

t+1 is discussed in §3.4.) The
exhibit of the prior summary value Rt along with R′

t+1

and the attestation α proves that Rt+1 is unreachable.
There are several ways in which the code in Revoke-

Access can be optimized. First, Pasture can skip the
TPM Read operation by tracking updates to PCRAPP

with the CPU. Second, if the proof of revocation is
not needed immediately, Pasture can delay executing the
TPM Quote until some later time, possibly coalescing it
with a subsequent TPM Quote. A multi-step sequence
of extensions from Rt to the current attested value of
PCRAPP, in which the first step differs from the bound
key value Rt+1, is cryptographically just as valid as a
proof of revocation as a single-step sequence. Coalescing
is a good idea, since TPM Quote involves an attestation
and hence is fairly slow as TPM operations go.

3.3 Audit
A verifier can audit a receiver to determine what de-

cisions the receiver has made. The receiver produces a
copy of its full log along with a proof signed by the TPM
that the copy is current and correct. Hence, a faulty re-
ceiver cannot lie about its past offline actions.

Implementation details. Figure 5 shows the imple-
mentation of the Audit operation, which computes the
response AP to an audit request. AP contains a copy of
the entire log along with an attestation α of the cur-
rent summary value Rt contained in PCRAPP. The at-
testation also includes the nonce sent by the auditor to
guarantee freshness. (The simultaneous attestation that
PCRSEM contains St is discussed in §3.4.) Any correct
verifier can check the attestation and check that Rt is the
correct cryptographic summary value for the purported
log contents, and thereby determine exactly what deci-
sions ∆1,∆2, . . . the audited node has made.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 327

3.4 Dealing with reboots
The main difficulty faced by Pasture is dealing with

reboots. Since decryption keys are bound to the log sum-
mary value contained in PCRAPP, anything that the ad-
versary can do to break Pasture’s guarantees of access
undeniability and verifiable revocation must involve re-
booting the node. Rebooting the node causes the TPM to
reset PCRs to their initial values, which opens the door
to rollback attacks.

Pasture’s solution is inspired by Memoir-Opt [37] and
in §2.4 we outlined the novel aspects of our approach.
Since PCRAPP is volatile, an adversarial reboot will
cause its contents to be lost. So, like Memoir-Opt, Pas-
ture uses a protected module containing a checkpoint
routine that runs in SEM and saves the latest contents of
PCRAPP in a region of TPM NVRAM accessible only
to the protected module. The checkpoint routine is in-
stalled to run during system shutdown and as part of a
UPS or battery interrupt handler [37]. Note that our sys-
tem does not assume correct operation of such mecha-
nisms for safety.

As a node cycles through shutdown, reboot, recovery,
and operation, it is important to keep track of where the
current log summary value is located. During operation,
it lives in PCRAPP. Shutdown moves it from PCRAPP

to Pasture’s protected NVRAM region. Reboot and re-
covery moves it back into PCRAPP. To keep track of
this, Pasture’s protected NVRAM region contains two
fields: R and current. R is used to hold a log summary
value and current is a boolean flag indicating that the
value in R is indeed current.

The checkpoint routine sets current to TRUE after it
has copied PCRAPP into R. On reboot, Pasture recov-
ers by reading the full log ∆1,∆2, . . . and extending
PCRAPP by each entry in turn. Then Pasture uses SEM
to enter its protected module and check that the value
recorded in the NVRAM is indeed current and that it
matches the value contained in PCRAPP. If so, the re-
covery routine sets current to FALSE, indicating that the
current log summary value now lives in PCRAPP.

Observe that failure to run the checkpoint routine be-
fore a reboot will erase PCRAPP but leave current =
FALSE, a state from which recovery is impossible. This
is a violation of liveness, but not of safety.

Implementation details. Figure 6 shows the imple-
mentation of the Recover and Checkpoint operations.
Recover extends PCRAPP with each entry ∆ on the full
log and then enters SEM to check that the saved copy in
NVRAM is current and matches the value in PCRAPP.
If a shutdown happens precisely at the wrong time in the
middle of ObtainAccess or RevokeAccess, it is pos-
sible for the full log to contain one final entry not repre-
sented in the saved log summary value. In this case, that
final decision was not committed and the implementation

Rt  TPM_Read(PCRAPP) 
Rt+1  SHA1(Rt || hM) 

E  TPM_CreateWrapKey({ 
            PCRAPP = Rt+1  && 
            PCRSEM = SemHappy  }) 

append hM to full log 
 TPM_Extend(PCRAPP, hM) 
DM  TPM_Unbind(EM) 

Rt  TPM_Read(PCRAPP) 
append  to full log 
TPM_Extend(PCRAPP, ) 
R’t+1, S’t+1,   TPM_Quote(PCRAPP, PCRSEM) 
RP   “RevokeAccess”, , Rt, R’t+1, S’t+1,   

  
EP   “CreateBoundKey”, hM, Rt, Rt+1, E,   

FOR EACH entry  on full log: TPM_Extend(PCRAPP, ) 
IF nv.current  &&  nv.R = TPM_Read(PCRAPP) 
THEN 
      nv.current  FALSE 
      TPM_Extend(PCRSEM, Happy) 
ELSE 
      TPM_Extend(PCRSEM, Unhappy) 

se
cu

re
 e

xe
cu

tio
n 

m
od

e 

Rt  TPM_Read(PCRAPP) 
St  TPM_Read(PCRSEM) 
Ct  TPM_ReadCounter(CTR) 
TPM_Extend(PCRSEM, Unhappy)   

nv.R  Rt  
IF ValidSEAL(, Rt, St, Ct)  &&  St = SemHappy 
      &&  Ct = TPM_ReadCounter(CTR) 
THEN 
      TPM_IncrementCounter(CTR) 
      nv.current  TRUE 
TPM_Extend(PCRSEM, Unhappy) 

SE
AL

 
BI

N
DK

EY
 

tr
an

sp
or

t 
se

ss
io

n 
se

cu
re

 e
xe

cu
tio

n 
m

od
e 

tr
an

sp
or

t 
se

ss
io

n 

Rt+1 = SHA1(Rt || hM)  &&  ValidBINDKEY(, Rt+1, E) 

CreateBoundKey(hM): 

ObtainAccess(hM, EM): 

RevokeAccess(): 

Recover(): 

Checkpoint(): 

VerifyBoundKey(hM, Rt, Rt+1, E, ): 

Rt, St,   TPM_Quote(PCRAPP, PCRSEM, nonce) 
AP   “Audit”, full log, Rt, St, nonce,   

Audit(nonce): 

Figure 6: Recover and checkpoint operations.

described here will fail to recover. However, it is a sim-
ple matter to add a SEM routine that merely reads nv.R
so that Recover can tell whether or not it should remove
the final entry from the full log. If recovery is successful,
current is set to FALSE, indicating that the current log
summary value now lives in PCRAPP.

However, there is an additional important detail: how
do normal operations know that the current log sum-
mary lives in PCRAPP. These operations do not use
SEM, so they cannot access current. Moreover, check-
ing current is not enough, because they need to know
that PCRAPP was correctly restored on the most recent
reboot. An adversary could mount a rollback attack by
crashing, rebooting and partially re-extending PCRAPP,
which would leave current as FALSE from the prior re-
boot.

Pasture exploits secure execution mode to prevent this
attack. When the CPU enters secure execution mode, the
TPM resets PCRSEM to -1 (different from its reboot re-
set value of 0) and then extends PCRSEM by the cryp-
tographic hash of the protected module. For Pasture’s
protected module, this produces a result SemProtected in
PCRSEM that is cryptographically impossible to produce
in any other way. The constraint that PCRSEM contains
SemProtected is used to control access to Pasture’s pro-
tected TPM NVRAM.The adversary cannot undetectably
modify Pasture’s NVRAM, because TPM DefineSpace
resets the protected NVRAM locations whenever their
access control is changed.

When execution of Pasture’s protected module is fin-
ished, it extends PCRSEM to disable access to the pro-
tected NVRAM. Pasture defines two constants that it
may use for this extension. Happy is used during re-
covery after a reboot if PCRAPP has been correctly re-
stored. Unhappy is used in all other cases. We define



328 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

SemHappy = SHA1(SemProtected||Happy), which is
the value that PCRSEM will contain if the recovery is
correct. Since PCRs are volatile, any adversarial attempt
to reboot the node and reinitialize PCRAPP will also
reinitialize PCRSEM. Pasture maintains the invariant that
whenever PCRSEM = SemHappy, PCRAPP contains
the correct cryptographic summary of the log and deci-
sions to obtain access or revoke access can be made. (Of
course, adversarial entries in the log are permitted, but
they cannot be rolled back.)

Since CreateBoundKey binds the key to require
both PCRAPP = Rt+1 and PCRSEM = SemHappy,
the decryption key will only be useable if PCRAPP

was correctly restored on the most recent reboot.
Since RevokeAccess and Audit include PCRSEM in
their TPM Quote, a verifier can verify that the quoted
PCRAPP could only have been extended from a value
that was correctly restored on the most recent reboot.
Checkpoint uses SEM to save the current value of

PCRAPP in the NVRAM and set current to TRUE.
However, there is a difficulty. Before Checkpoint saves
the current value of PCRAPP, it needs to know that
PCRAPP was correctly restored on the most recent re-
boot; otherwise Checkpoint itself would be vulnera-
ble to a rollback attack. Checkpoint has to perform its
checking and saving activities in SEM, so that the ad-
versary cannot tamper with them. But the way of know-
ing that PCRAPP was correctly restored is to check
PCRSEM = SemHappy, and this information is erased
by entering SEM.

The solution is to get a simultaneous attestation
α of PCRAPP and PCRSEM before entering SEM.
Then, once in SEM, α can be checked, which proves
that PCRAPP contained Rt when PCRSEM contained
SemHappy.

Unfortunately, there is another vulnerability: how do
we know this is the most recent such α, and not some
earlier one from the adversary. In defense, Checkpoint
uses a TPM counter CTR whose value is read into α and
then incremented in SEM once α is accepted as valid and
current. This prevents any earlier α from being accepted.

There is yet a final vulnerability: how do we know that
the adversary did not do anything bad between the time α
was made and SEM was entered. For example, the adver-
sary could make α, then extend PCRAPP to obtain ac-
cess to a decryption key, then crash and reboot, re-extend
PCRAPP back to where it was when α was made, and
then finally enter SEM in Checkpoint. To prevent this,
Checkpoint extends PCRSEM inside α, which erases
SemHappy, which makes PCRAPP useless for any at-
tempt to obtain or revoke access until the next successful
recovery. The above steps are performed in a transport
session in the SEAL subroutine as shown in Figure 6.

3.5 Log truncation
Pasture allows applications to truncate logs in order to

reduce storage, auditing, and recovery overheads. Trun-
cation proceeds in several steps. (1) The subject node re-
quests a trusted auditor to perform an audit and sign a
certificate attesting to the subject node’s current crypto-
graphic log summary. The auditor has to be available at
this time but an application could arrange for any desired
number of trusted auditors. For example, the video ser-
vice provider could act as an auditor for the offline video
application. (2) The certificate is returned to the subject
node, which discards all entries in its full log, creates a
single log entry containing the certificate, and then per-
forms a version of Checkpoint that verifies the certifi-
cate is current and if so saves the cryptographic summary
of the new log in the NVRAM. (3) Then the subject node
reboots to reinitialize PCRAPP.

Observe that truncating the log implicitly revokes ac-
cess to a decryption key whose decision was pending.
However, since in such a case no explicit decision was
made to revoke access, the normal way of obtaining a
proof of revocation is not available. If such proofs are
important to the application, it should make explicit re-
vocation decisions before truncating the log.

3.6 Handling concurrent messages
The basic protocol (§3.1) constrains the receiver to

handle one sender’s message at a time. Here we describe
how to support multiple outstanding messages.

First, it is easy to extend the design to employ multiple
PCRs. Current TPMs support 13 unreserved PCRs that
Pasture can use. The design is modified to track the usage
of these PCRs, allocating a free one in CreateBound-
Key, passing it through the protocol in the “encKey” and
“encMsg” messages, and freeing it after the decision is
made to obtain or revoke access. Logically, a separate
log is used for each PCR. Audit is extended to copy all
the logs and quote all of the PCRs.

Second, in situations where the number of PCRs is in-
sufficient, there is nothing to prevent a receiver from per-
forming steps 2-3 in parallel with any number of senders
using the same PCR, creating keys bound to different val-
ues of the next state. Of course, with the same PCR, only
one sender’s message can be accessed at step 7a. The
other messages effectively are revoked. The receiver can
ask those senders to retry using a new bound key.

Given multiple concurrent “getKey” requests and only
one available PCR, the receiver could form a speculative
decision tree multiple steps into the future. For each mes-
sage, the receiver would generate multiple keys, binding
each key to a different sequence of possible prior deci-
sions. Each sender encrypts its message (actually, just its
message’s symmetric key) with all the keys so that the re-
ceiver can decide offline about access to the messages in
any order it desired. So that the receiver can prove that a



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 329

key was revoked because the receiver failed to follow the
speculated sequence of decisions, each key’s revocation
proof RP would have to show the entire sequence start-
ing from the receiver’s current log state. Of course, the
number of keys per message explode with the number of
pending decisions, so this approach would be viable for
only a very small number of outstanding messages.

3.7 Correctness
Using the TLA+ language and proof system [6,27], we

wrote a formal specification of Pasture and mechanically
verified a proof of correctness [40]. The correctness of
Pasture when there are no reboots is trivial as it follows
from the properties of bound keys and PCRs. Preventing
rollback attacks in the presence of reboots is critical. The
following invariants ensure correctness:
• If PCRSEM = SemHappy then current = FALSE,
PCRAPP contains the current log summary value, and
there exists no acceptable SEAL attestation.

• If current = TRUE then PCRSEM �= SemHappy, the
NVRAM contains the current log summary value, and
there exists no acceptable SEAL attestation.

• There exists at most one acceptable SEAL attestation.
These invariants are maintained by the use of current, the
way PCRSEM is extended, and the reboot counter CTR.

Some comments on our methodology may be illumi-
nating. After formulating a proof sketch to assure our-
selves that Pasture was correct, we wrote a 19-page
TLA+ specification. Several CPU-months spent on a
large many-core server model-checking various config-
urations of this specification found no errors. To increase
our confidence that we would have found errors if there
were any, we then intentionally introduced some bugs
and the resulting safety violations were easily detected.

Armed with confidence in the correctness of the spec-
ification, we then spent about two man-weeks writing a
68-page formal proof. The proof followed the reason-
ing of our original proof sketch, although with excruciat-
ing attention to detail, containing 1505 proof obligations.
The TLA+ proof system checks them in half an hour.

Subsequently, we made a slight optimization to Pas-
ture’s operations, arriving at the version of Pasture de-
scribed in this paper. It took only a few hours to revise the
initial formal specification and proof to account for the
optimization. The hierarchical structure of TLA+ proofs
was a great benefit here, because the proof system high-
lighted precisely those few proof obligations that had to
be revised in order to make the proof go through.

4 Applications
We use Pasture to prototype three applications with

secure offline data access to (a) improve experience in a
video rental service by allowing offline access to down-
loaded movies while enabling refunds for unwatched

movies, (b) provide better security and mobility in a
healthcare setting by allowing secure logging of off-
line accesses as required by HIPAA regulations, and
(c) improve consistency in a decentralized storage sys-
tem [2, 31, 50] by preventing read-denial attacks.

4.1 Video rental and healthcare
For wider deployability, we extended an email client

application with Pasture to provide secure offline data ac-
cess, and used the secure email as a transport and user in-
terface mechanism to implement offline video rental and
healthcare mockup application prototypes on top.

We implemented a generic Pasture add-in for Mi-
crosoft’s Outlook email client [36]. Our video rental and
health care applications are built on top of this secure
email prototype to transfer data opportunistically to re-
ceivers when they are online, allow offline access to data,
and permit remote auditing. The add-in calls the Pasture
API (§3) to interact with the TPM.

The Pasture add-in allows senders to selectively en-
crypt sensitive attachments using the Pasture protocol.
Users can choose messages that need the enhanced secu-
rity properties while not paying overhead for the others.
The add-in internally uses email to exchange Pasture pro-
tocol messages and acquires the encryption key from the
receiver before sending the encrypted message.

On receiving a Pasture encrypted message, the user
is given the option to access the attachment or delete it
without accessing it. The user can use context (for ex-
ample, the movie title, cast and a short description) in-
cluded in the email body to make the decision. We as-
sume that the sender is correct and motivated to include
correct context. This assumption is reasonable for video
rental and healthcare service providers. We also assume
that the emails are signed to prevent spoofing attacks.

The user’s decision to access or delete the attachment
is permanently logged by Pasture. The Pasture add-in
also provides an audit and truncate interface that a trusted
entity can use to audit and truncate user logs

The Pasture-enhanced video rental service works as
follows. When the user surfs the video rental service and
selects movies for offline watching, he receives emails
with encrypted symmetric keys as attachments. The en-
crypted movies are downloaded via https, which avoids
sending the entire movie as an attachment. The user can
watch movies offline by decrypting the attachments to
extract the keys and then decrypting the movies. The
user can revoke any movies not accessed. When the user
comes back online, the video rental service provider au-
dits the Pasture log to determine which movies were re-
voked and refunds the user accordingly.

Regulations [18, 48] in the healthcare industry impose
fines [20] on healthcare providers if they allow unautho-
rized access to sensitive patient health information and
they mandate that all accesses be logged securely. We



330 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

used the Pasture email add-in to provide secure offline
access to medical records, for example, when a nurse
goes for a home visit.

Access undeniability ensures that offline accesses by
the nurse are securely logged. Verifiable revocation al-
lows the nurse to securely delete unaccessed records and
prove it to the hospital. Verifiable revocation also helps
hospitals in assessing and mitigating damages due to ac-
cidental disclosures [13, 23] by allowing them to retract
emails after they are sent to unintended recipients by ask-
ing the receivers to delete the confidential email and send
them back the proof of revocation.

4.2 Decentralized storage systems
Decentralized storage systems (such as Bayou [50]

and Practi [2]) provide high availability by allowing
nodes to perform disconnected update operations on lo-
cal state when they are offline, send updates to other
nodes opportunistically when there is connectivity, and
read received updates from other nodes. Depot [31]
builds upon Practi to provide a storage system that toler-
ates any number of malicious nodes at the cost of weak-
ening the consistency guarantee. One attack Depot can-
not prevent is a read-denial attack, in which a malicious
node denies reading updates from correct nodes before
making its own updates.

We used Pasture to build a decentralized storage sys-
tem that prevents read-denial attacks, and thereby pro-
vides stronger consistency than Depot. Preventing read-
denial is a simple consequence of access undeniability.
In addition, where Depot detects equivocation [7, 28], in
which a malicious node sends conflicting updates, Pas-
ture prevents equivocation by attesting updates using the
Pasture log (the same approach as A2M [7]). Formalizing
our consistency guarantee is an avenue of future work.

5 Evaluation
We implemented Pasture in Windows 7 and evaluated

the system on three different computers: an HP xw4600
3GHz Intel Core2 Duo with a Broadcom TPM, an HP
Z400 2.67GHz Intel Quad Core with an Infineon TPM,
and a Lenovo X300 1.2Ghz Intel Core2 Duo laptop with
an Atmel TPM. We implemented everything except we
were unable to port Flicker [34] and get SEM work on the
HP machines because the HP BIOS disables the SEN-
TER instruction, and we haven’t completely ported Pas-
ture to run on Atmel TPM although we ran some TPM
microbenchmarks on it. Missing functionality of SEM
does not affect our evaluation or conclusions because
SEM is not needed for the common case data access
operations. Furthermore, for the Pasture operations that
would use SEM, as we show later, our measured over-
heads are already significantly greater than the cost of
setting up the SEM environment [34, 37].

System Is
ol

at
io

n
fro

m
m

al
ic

io
us

O
S

C
ra

sh
re

si
lie

nc
e

In
vu

ln
er

ab
le

to
sn

oo
p

at
ta

ck

N
o

di
sa

bl
in

g
of

co
re

s,
in

te
rr

up
ts

pe
ro

pe
ra

tio
n

N
o

N
V

up
da

te
pe

ro
pe

ra
tio

n

P
ro

te
ct

ed
op

er
at

io
ns

Flicker � × × × � general
Memoir � � × × � general
TrInc � � � � × attest

Pasture � � � � �
access
revoke
attest

Table 1: Comparison of trusted hardware based systems.

5.1 Qualitative analysis
Table 1 compares Pasture against some recent sys-

tems that use trusted hardware to protect the execution
of application operations. Flicker [34] and Memoir [37]
use SEM and TPMs to provide protected execution of
trusted modules on untrusted devices. TrInc [28] uses
trusted smart cards to securely attest messages and pre-
vent equivocation attacks in distributed systems. Pas-
ture provides secure offline data access using SEM and
TPMs. (We discuss additional related work in §7.)

All of these systems provide isolation from a mali-
cious OS, hypervisor, or other application code. Flicker
provides a general abstraction but it is vulnerable to
snoop attacks and does not provide crash resilience [37],
and thus fails to ensure state continuity across crashes.
Furthermore, its use of SEM disables cores and inter-
rupts for every operation. Memoir suffers from the same
drawbacks as Flicker except that it is resilient to crashes.
TrInc is crash resilient but provides limited functional-
ity of secure attestation, and it is less durable due to NV
updates on attest operations. Pasture provides offline ac-
cess, revocation, and attestation without needing SEM or
NV writes with each operation while providing crash re-
silience and defending against snoop attacks.

Minimal TCB. Pasture trusts just the Checkpoint
and Recover routines which run during bootup and shut-
down, and it does not trust any software during the com-
mon case data access operations. Pasture achieves this by
exploiting the TPM primitives.

5.2 Pasture microbenchmarks
5.2.1 Computational overhead

Our first experiment measures the computational over-
heads imposed by TPM operations on Infineon, Broad-
com and Atmel TPM chips. Figure 7(a) plots the execu-
tion time of register and NV operations; Figure 7(b) plots
the execution time of TPM cryptographic operations to
create and load a key, sign data, unbind a key, release a
transport session, and quote PCR state; and Figure 7(c)
plots the execution time of Pasture operations that build
upon the TPM operations. We use 1024 bit RSA keys for
our experiments. We make the following observations.

Slow NV updates. Incrementing an NV counter or
writing NVRAM is far slower than reading or extending



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 331

(a)  TPM  register/NV  ops (b)  TPM crypto  ops   (c) Pasture operations  

50
 m

s  
21

 m
s  

34
6 

m
s  

43
6 

m
s  

10
60

 m
s  

58
4 

m
s  

58
9 

m
s  

86
0 

 m
s  

57
2 

m
s  

46
4 

m
s  

47
0 

m
s  

54
3 

m
s  

4.
4 

s 
3.

8 
s  

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Ex
ec

ut
io

n 
tim

e 
(s

ec
) 

Infineon

Broadcom

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Ex
ec

ut
io

n 
tim

e 
(s

ec
) Infineon

Broadcom
Atmel

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n 
tim

e 
(s

ec
) Infineon

Broadcom
Atmel

Figure 7: Computational overhead. Error bars represent one standard deviation of uncertainty over 10 samples.

a PCR. This supports our decision to avoid NV updates
during common case operations.

Data exchange protocol. Creating a key in TPMs is
enormously expensive, and it takes about 2.8 s (Atmel
TPM) to 4 s (Broadcom TPM). This overhead accounts
for almost all of Pasture’s CreateBoundKey execution
time. Key creation also has a huge variance. We study the
impact of this overhead on perceived latencies to the end
user in §5.3.1.

Offline operations. The offline operations to obtain
or revoke access have acceptable performance. Revok-
ing access is fast (21 ms) because it just requires a PCR
extension (using the optimization discussed in §3.2 to de-
fer the proof of revocation). Obtaining access, however,
takes much longer (470 ms) as almost all of its time is
spent in TPM Unbind to decrypt and extract the sym-
metric key, which is fairly slow. We cannot hide this la-
tency because the symmetric key is needed to decrypt the
data. While the latency may be acceptable for an offline
video or email application, our throughput is limited by
these overheads. For some applications, batching can be
used to amortize overheads across multiple data items as
shown in §5.3.2.

Note that we hide the TPM overhead of LoadKey
by loading it in the background while the data is being
fetched from the sender and before the data is accessed
offline.

Checkpoint and recover operations. (Note that our
microbenchmarks do not include the 100 ms to 200 ms
overhead required to set up the SEM environment [34].)
Checkpoint takes about 1600 ms to seal and copy
volatile state to the NVRAM, which is reasonable for a
battery-backup shutdown routine. Recover takes about
600 ms to check the correctness of PCRAPP when the
system is booting up. Furthermore, before correctness
is checked, Recover must read Pasture’s log from the
disk and extend PCRAPP to its pre-shutdown state. Each
TPM Extend takes about 20 ms, so the additional over-
head depends on the number of entries, which can be
kept low by periodically truncating the log. If the log is
truncated every 128 entries, at most 3 s would be spent
extending PCRAPP. While the total overhead may seem

high, modern operating systems already take tens to hun-
dreds of seconds to boot up.

Audit. Pasture takes about 400 ms to generate a proof
of revocation or a response to an audit request. Given that
this operation is usually performed in the background, it
does not much affect the user experience.

5.2.2 Network and storage overheads
Pasture incurs network and storage overhead due to (1)

additional messages exchanged for fetching keys and (2)
inclusion of an attested proof of execution in the proto-
col messages and the log. With 1024 bit encryption keys,
Pasture exchanges about 1732 bytes of additional data in
the data transfer protocol, and stores less than 540 bytes
of data on disk for logging each operation.

Pasture’s proofs contain hashes of messages instead
of raw messages. Hence, network and storage overheads
do not increase with data size. Pasture imposes consid-
erable overhead when the message sizes are smaller but
the overhead becomes insignificant for large messages.

5.3 Pasture applications
Pasture uses various optimizations—that hide latency

and batch operations—to reduce overheads. Here we
evaluate the end-to-end performance of the latency-
oriented (offline video and healthcare) and throughput-
oriented (shared folder application) applications.

5.3.1 Secure email transport
Our offline video rental and health care applications

use Pasture-based secure email to allow secure offline ac-
cesses. For evaluating the overheads added by the Pasture
system, we compare our applications with that of the cor-
responding applications that use regular email transport
mechanism to send data (patient health records or the de-
cryption key of the movie) but without secure offline data
access guarantees.

Our Pasture-based applications incur an additional
overhead in establishing encryption keys (one round trip
delay) and generating keys in the receiver’s TPM. As-
suming there will be some read slack time between when
an email is received in a user’s inbox and when the user
reads it, Pasture hides its latency by executing its pro-



332 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000  100000

C
u
m

u
la

ti
v
e 

F
ra

ct
io

n

Read Slack (seconds)

(a) (b)

All
Working Hours

Figure 8: CDF of email read slack times.
Line (a) shows minimum Pasture overhead of 4s. Line (b) shows the total
overhead of 24s including email server queuing and network delays. Only
emails to the left of the lines are affected by Pasture.

tocol in the background. We evaluated the effectiveness
of this approach via a small scale user study involving 5
users in a corporate setting. We logged the receive time
and read time of the emails received over a period of one
week for these users. To be conservative, we omitted un-
read emails.

Figure 8 shows the cumulative distribution of the read
slack time of all the emails. We also include a separate
line that considers only the emails that are received dur-
ing work hours on a weekday. This removes any bias due
to inactivity after work hours and over the weekend. For
comparison, we measured the latency introduced by Pas-
ture. The average additional latency introduced by Pas-
ture was 24 s, with 4 s spent generating the encryption
key at the receiver and about 20 s of network delay in-
troduced by the processing queues of intermediate mail
servers (the WAN network latencies to the mail servers
was negligible, on the order of 40 ms).

We plot two vertical lines to show what fraction of
emails are affected by the Pasture overhead. The affected
emails are the ones whose recipients would have to wait.
As shown in the figure, about 75% of emails are not af-
fected by the total overhead introduced by Pasture, as
their recipients checked their inbox more than 24 s after
the email arrived. Even in the remaining 25% of emails
which are affected, the Pasture protocol adds a delay of
15 s on average. If the processing and queuing delays at
the mail servers are to be discounted, more than 90%
(and 95% during the work time) of the emails are unaf-
fected, and the rest experience an average delay of only
1 s. We conclude that Pasture can exploit the slack time
of users to effectively hide the additional latency intro-
duced for security. Furthermore, in the video rental ap-
plication, Pasture latencies incurred can also be hidden
while the encrypted movie downloads.

5.3.2 Decentralized storage system
We implemented a shared folder application on top

of the Pasture decentralized storage system. The shared
folder application allows nodes to update files locally

when they are disconnected (similar to other weakly-
connected decentralized storage systems [31,39,50]), at-
test updated files, and share file updates with other peers
opportunistically when they are connected.

Scalable throughput using batching. Given that
nodes are expected to read all the received updates, the
Pasture shared folder application amortizes overheads
by batching and performing secure attestation of up-
dates, message exchange protocol operations, and read
operations on an entire batch of received updates. Pas-
ture scales linearly to about 1000 requests/sec (with a
batch size of 460) because the overheads to attest updates
(430 ms) and read (460 ms) received updates are inde-
pendent of the batch size. This is because Pasture uses
a constant-size hash of the message when performing an
attest or read operation. We conclude that Pasture pro-
vides scalable throughput for applications where nodes
have the opportunity to batch updates. Batching also re-
duces the recovery response time as we amortize the PCR
extensions across multiple updates.

High durability. Pasture does not perform NVRAM
writes or counter increments during common case oper-
ations. Only two NVRAM writes and one counter incre-
ment are required for each reboot cycle. Hence, assum-
ing only one reboot per day, it would take Pasture more
than 130 years to exhaust the 100K lifetime NVRAM and
counter update limit of current TPMs [37]. Conversely,
if a 5 year lifetime is acceptable, Pasture can perform a
reboot cycle on an hourly basis and truncate the log to
reduce audit and recover times.

6 Discussion
Pasture effectively hides and amortizes TPM over-

heads for applications with low concurrency. However,
TPM’s limited resources and high overheads hurt the
scalability of Pasture with increasing concurrent re-
quests. We discuss three key limitations and suggest
improvements through modest enhancements in future
TPMs.

First, Pasture’s concurrency is limited by the number
of available PCRs (13 or fewer) for binding keys. In-
creasing the number of PCRs would improve Pasture’s
ability to bind more keys to PCRs and have more requests
in flight to support applications with high concurrency.

Second, Pasture spends a significant amount of time
in TPM CreateWrapKey to generate keys. This overhead
could be reduced by simply separating key generation
from the operation of key binding. For example, TPMs
could generate keys whenever they are idle (or in paral-
lel with other operations) and store them in an internal
buffer for future use.

Third, TPMs allow storage of only a few keys, and we
have to pay significant overheads to load a key (around
1 s) if it has to be brought from the stable storage ev-



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 333

ery time. Increasing the buffer space to hold more keys
would significantly reduce the overhead for highly con-
current applications.

7 Related work
Pasture builds upon related work in the areas of secure

decentralized systems and trusted hardware.
Custom hardware. Many custom hardware architec-

tures [30, 38, 46, 47, 53] have been proposed to protect
trusted code from untrusted entities. These proposals
have not gained widespread acceptance due to the high
deployment cost and unavailability of custom hardware.

OS and VMM based approaches. A number of
OS [26, 45, 49, 55], microkernel [25, 44] and VMM [11,
56] based approaches improve isolation and security by
significantly reducing the TCB. A recent paper [45] pro-
vides an in depth review of the state of the art in this area.
HiStar [55], Asbestos [52], and Flume [26] provide sys-
temwide data confidentiality and integrity using decen-
tralized information flow control techniques. Nexus [45]
implements NAL logic [42] to provide general trustwor-
thy assurances about the dynamic state of the system.
While these systems provide powerful and general secu-
rity primitives, they are vulnerable to hardware-snooping
physical attacks [16, 21].

Commodity trusted hardware. Flicker [34] spurred
research in secure execution by demonstrating how
TPMs and SEM can be used to run trusted application
code in isolation from the OS or hypervisor. TrustVi-
sor [33] builds upon Flicker to protect sensitive applica-
tion code in a single legacy guest VM. Memoir [37] pre-
vents rollback attacks as described in §2.4. While these
approaches provide strong isolation, they are vulnerable
to hardware snooping attacks and also require frequent
use of SEM, which can result in poor user responsive-
ness, resource underutilization and higher overhead.

Trusted hardware has been used to reduce email
spam [14], in secure databases [32], for reasoning about
network properties [43], for cloaked computation [9] by
malware, and to provide trusted path [57] between a
user’s I/O device and trusted application code with mini-
mal TCB. Recent approaches [3,10] address an orthogo-
nal issue of sharing TPM resources securely across mul-
tiple VMs. It is an avenue for future research to apply
their approach to Pasture to share TPM resources across
multiple receiver applications.

Preventing attacks in decentralized systems. Key-
pad [12] provides a simple online security mechanism
for theft-prone devices by storing decryption keys at a
server that client devices consult on every access attempt.
A2M [7] prevents equivocation attacks [28, 29] by forc-
ing attestation of updates into an append-only log us-
ing trusted hardware. TrInc [28] improves upon A2M by
reducing the TCB to a trusted monotonic counter [41].

PeerReview [15], Nysiad [19], and other log-based repli-
cation systems [29, 31, 54] detect equivocation attacks
without trusted hardware by using witness nodes and
signed message logs. However, these systems do not pre-
vent nor detect offline read-denial attacks.

8 Conclusion
Mobile user experiences are enriched by applications

that support disconnected operations to provide better
mobility, availability, and response time. However, off-
line data access is at odds with security when the user
is not trusted, especially in the case of mobile devices,
which must be assumed to be under the full control of
the user.

Pasture provides secure disconnected access to data,
enabling the untrusted user to obtain or revoke access to
(previously downloaded) data and have his actions se-
curely logged for later auditing. We implement Pasture
using commodity trusted hardware, providing its secu-
rity guarantees with an acceptable overhead using a small
trusted computing base.

Acknowledgements
We thank Doug Terry, Ted Wobber, and Peter Haynes

for providing considerable suggestions to the Pasture
project, and the anonymous OSDI reviewers for their de-
tailed reviews and excellent feedback. We thank Mar-
tin Abadi, Rama Ramasubramanian, Jay Lorch, Dahlia
Malkhi, JP Martin, and Marcos Aguilera for their feed-
back on earlier drafts of this paper. We are grateful to Ste-
fan Thom for helping us with the Windows code base.

References
[1] Advanced Micro Devices. AMD64 virtualization: Secure virtual

machine architecture reference manual, 3.01 edition, 2005.
[2] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,

P. Yalagandula, and J. Zheng. PRACTI replication. In NSDI,
2006.

[3] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. Doorn. vTPM: Virtualizing the trusted platform module. In
USENIX Security, 2006.

[4] BitLocker Drive Encryption Overview. http://windows.microsoft.
com/en-US/windows-vista/BitLocker-Drive-Encryption-Overview.
Aug 31, 2012.

[5] D. Challener, K. Yoder, R. Catherman, D. Safford, and
L. Van Doorn. A Practical Guide to Trusted Computing. IBM
Press, Jan 2008.

[6] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying
safety properties with the TLA+ proof system. In IJCAR, 2010.

[7] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In
SOSP, 2007.

[8] Delivering a secure and fast boot experience with UEFI. http:
//channel9.msdn.com/events/BUILD/BUILD2011/HW-457T. Aug
31, 2012.

[9] A. M. Dunn, O. S. Hofmann, B. Waters, and E. Witchel. Cloak-
ing malware with the trusted platform module. In Proceedings
of the 20th USENIX conference on Security.

[10] P. England and J. Loeser. Para-virtualized TPM sharing. In
TRUST, 2008.



334 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A VM-based platform for trusted computing. In SOSP,
2003.

[12] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M.
Levy. Keypad: An auditing file system for theft-prone devices.
In EuroSys, 2011.

[13] Gmail delivery errors divulge confidential information. http://
news.cnet.com/8301-13880 3-10438580-68.htm. Aug 31, 2012.

[14] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy.
Not-a-Bot: Improving service availability in the face of botnet
attacks. In NSDI, 2009.

[15] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. In SOSP, 2007.

[16] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: Cold boot attacks on encryp-
tion keys. In USENIX Security Symposium, 2008.

[17] T. Hardjono and G. Kazmierczak. Overview of the TPM Key
Management Standard. http://www.trustedcomputinggroup.org/
files/resource files/ABEDDF95-1D09-3519-AD65431FC12992B4/
Kazmierczak20Greg20-20TPM Key Management KMS2008
v003.pdf. Aug 31, 2012.

[18] Health Information Technology for Economic and Clinical
Health Act. http://en.wikipedia.org/wiki/HITECH Act. Aug 31,
2012.

[19] C. Ho, R. van Renesse, M. Bickford, and D. Dolev. Nysiad:
Practical protocol transformation to tolerate Byzantine failures.
In NSDI, 2008.

[20] Hospital fined over privacy breaches in days after deaths of Jack-
son, Fawcett. http://www.phiprivacy.net/?p=2888. Aug 31, 2012.

[21] A. Huang. Hacking the XBOX: An Introduction to Reverse Engi-
neering. No Starch Press, 2003.

[22] Intel Corporation. LaGrande technology preliminary architec-
ture specification., d52212 edition, 2006.

[23] Johns Hopkins University e-mail attachment error exposed per-
sonal info. http://www.phiprivacy.net/?p=4583. Aug 31, 2012.

[24] J. J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. ACM Trans. Comput. Syst., 10:3–25, 1992.

[25] G. Klein et al. seL4: formal verification of an OS kernel. In
SOSP, 2009.

[26] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In SOSP, 2007.

[27] L. Lamport. Specifying Systems: The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[28] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc:
Small trusted hardware for large distributed systems. In NSDI,
2009.

[29] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In OSDI, 2004.

[30] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an un-
trusted operating system on trusted hardware. In SOSP, 2003.

[31] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
OSDI, 2010.

[32] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build a
trusted database system on untrusted storage. In OSDI, 2000.

[33] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB reduction and attestation.
In IEEE Symposium on Security and Privacy, 2010.

[34] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB min-
imization. In EuroSys, 2008.

[35] A. Menezes, P. van Oorschot, and S. Vanstone, editors. Hand-
book of Applied Cryptography (Discrete Mathematics and Its

Applications). CRC Press, Dec. 1996.
[36] Microsoft Outlook 2012. http://office.microsoft.com/en-us/

outlook/. Aug 31, 2012.
[37] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. Mc-

Cune. Memoir: Practical state continuity for protected modules.
In IEEE Symposium on Security and Privacy, 2011.

[38] A. Perrig, S. Smith, D. Song, and J. D. Tygar. SAM: A flexi-
ble and secure auction architecture using trusted hardware. In
IPDPS, 1991.

[39] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat. Cimbiosys:
A platform for content-based partial replication. In NSDI, 2009.

[40] T. L. Rodeheffer and R. Kotla. Pasture node state specification.
Technical Report MSR-TR-2012-84, Microsoft Research, Aug
2012.

[41] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas. Virtual monotonic counters and count-limited
objects using a TPM without a trusted OS. In ACM Workshop on
Scalable Trusted Computing, 2006.

[42] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus authorization
logic (NAL): Design rationale and applications. ACM Trans. Inf.
Syst. Secur., 14(1):8:1–8:28, June 2011.

[43] A. Shieh, E. G. Sirer, and F. B. Schneider. NetQuery: A knowl-
edge plane for reasoning about network properties. SIGCOMM
Comput. Commun. Rev., 41(4):278–289, Aug. 2011.

[44] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing
TCB complexity for security-sensitive applications: Three case
studies. In EuroSys, 2006.

[45] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: an autho-
rization architecture for trustworthy computing. In SOSP, 2011.

[46] S. W. Smith and J. D. Tygar. Security and privacy for partial
order time. In PDCS, 1994.

[47] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design
and implementation of the AEGIS single-chip secure processor.
SIGARCH Comput. Archit. News, 33(2):25–36, 2005.

[48] Summary of the HIPPA Security Rule. http://www.hhs.gov/ocr/
privacy/hipaa/understanding/srsummary.html. Aug 31, 2012.

[49] R. Ta-min, L. Litty, and D. Lie. Splitting interfaces: Making
trust between applications and operating systems configurable.
In OSDI, 2006.

[50] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In SOSP, 1995.

[51] TPM Main Specification Level 2 Version 1.2, Revision
116. http://www.trustedcomputinggroup.org/resources/tpm main
specification. Aug 31, 2012.

[52] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey,
D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières. Labels and
event processes in the Asbestos operating system. ACM Trans.
Comput. Syst., 25(4), Dec. 2007.

[53] B. Yee and J. D. Tygar. Secure coprocessors in electronic com-
merce applications. In USENIX Workshop on Electronic Com-
merce, 1995.

[54] A. R. Yumerefendi and J. S. Chase. Strong accountability for
network storage. IIEEE Trans. on Storage, 3(3), 2007.

[55] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In OSDI, 2006.

[56] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In SOSP, 2011.

[57] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
verifiable trusted path on commodity x86 computers. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, May
2012.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 335

Dune: Safe User-level Access to Privileged CPU Features

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, Christos Kozyrakis
Stanford University

Abstract

Dune is a system that provides applications with direct but
safe access to hardware features such as ring protection,
page tables, and tagged TLBs, while preserving the exist-
ing OS interfaces for processes. Dune uses the virtualiza-
tion hardware in modern processors to provide a process,
rather than a machine abstraction. It consists of a small
kernel module that initializes virtualization hardware and
mediates interactions with the kernel, and a user-level li-
brary that helps applications manage privileged hardware
features. We present the implementation of Dune for 64-
bit x86 Linux. We use Dune to implement three user-
level applications that can benefit from access to privi-
leged hardware: a sandbox for untrusted code, a privilege
separation facility, and a garbage collector. The use of
Dune greatly simplifies the implementation of these appli-
cations and provides significant performance advantages.

1 Introduction

A wide variety of applications stand to benefit from ac-
cess to “kernel-only” hardware features. As one exam-
ple, Azul Systems demonstrates significant speedups to
garbage collection through use of paging hardware [15,
36]. As another example, process migration, though im-
plementable within a user program, can benefit consider-
ably from access to page faults [40] and system calls [32].
In some cases, it might even be appropriate to replace
the kernel entirely to meet the needs of a particular ap-
plication. For example, IBOS improves browser security
by moving browser abstractions into the lowest OS lay-
ers [35].

Such systems require changes in the kernel because
hardware access in userspace is restricted for security and
isolation reasons. Unfortunately, modifying the kernel is
not ideal in practice because kernel changes can be fairly
intrusive and, if done incorrectly, affect whole system sta-
bility. Moreover, if multiple applications require kernel
changes, there is no guarantee that the changes will com-
pose.

Another strategy is to bundle applications into virtual
machine images with specialized kernels [4, 14]. Many
modern CPUs contain virtualization hardware with which
guest operating systems can safely and efficiently access
kernel hardware features. Moreover, virtual machines
provide failure containment similar to that of processes—
i.e., buggy or malicious behavior should not bring down
the entire physical machine.

Unfortunately, virtual machines offer poor integration
with the host operating system. Processes expect to inherit
file descriptors from their parents, spawn other processes,
share a file system and devices with their parents and chil-
dren, and use IPC services such as Unix-domain sock-
ets. Moving a process to a virtual machine for the pur-
poses of, say, speeding up garbage collection is likely to
break many assumptions and may simply not be worth the
hassle. Moreover, producing a kernel for an application-
specific virtual machine is no small task. Production ker-
nels such as Linux are complex and hard to modify. Yet
implementing a special-purpose kernel with a simple vir-
tual memory layer is also challenging. In addition to vir-
tual memory, one must support a file system, a networking
stack, device drivers, and a bootstrap process.

This paper introduces a new approach to application
use of kernel hardware features: using virtualization hard-
ware to provide a process, rather than a machine abstrac-
tion. We have implemented this approach for Linux on
64-bit Intel CPUs in a system called Dune. Dune pro-
vides a loadable kernel module that works with unmodi-
fied Linux kernels. The module allows processes to enter
“Dune mode,” an irreversible transition in which, through
virtualization hardware, safe and fast access to privileged
hardware features is enabled, including privilege modes,
virtual memory registers, page tables, and interrupt, ex-
ception, and system call vectors. We provide a user-level
library, libDune, to facilitate the use of these features.

For applications that fit its paradigm, Dune offers sev-
eral advantages over virtual machines. First, a Dune pro-
cess is a normal Linux process, the only difference be-
ing that it uses the VMCALL instruction to invoke system
calls. This means that Dune processes have full access to
the rest of the system and are an integral part of it, and



336 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

that Dune applications are easy to develop (like applica-
tion programming, not kernel programming). Second, be-
cause the Dune kernel module is not attempting to provide
a machine abstraction, the module can be both simpler
and faster. In particular, the virtualization hardware can
be configured to avoid saving and restoring several pieces
of hardware state that would be required for a virtual ma-
chine.

With Dune we contribute the following:
• We present a design that uses hardware-assisted virtual-

ization to safely and efficiently expose privileged hard-
ware features to user programs while preserving stan-
dard OS abstractions.

• We evaluate three hardware features in detail and show
how they can benefit user programs: exceptions, pag-
ing, and privilege modes.

• We demonstrate the end-to-end utility of Dune by im-
plementing and evaluating three use cases: sandboxing,
privilege separation, and garbage collection.

2 Virtualization and Hardware
In this section, we review the hardware support for virtu-
alization and discuss which privileged hardware features
Dune is able to expose. Throughout the paper, we describe
Dune in terms of x86 CPUs and Intel VT-x. However, this
is not fundamental to our design, and in Section 7, we
broaden our discussion to include other architectures that
could be supported in the future.

2.1 The Intel VT-x Extension
In order to improve virtualization performance and
simplify VMM implementation, Intel has developed
VT-x [37], a virtualization extension to the x86 ISA.
AMD also provides a similar extension with a different
hardware interface called SVM [3].

The simplest method of adapting hardware to support
virtualization is to introduce a mechanism for trapping
each instruction that accesses privileged state so that em-
ulation can be performed by a VMM. VT-x embraces a
more sophisticated approach, inspired by IBM’s interpre-
tive execution architecture [31], where as many instruc-
tions as possible, including most that access privileged
state, are executed directly in hardware without any in-
tervention from the VMM. This is possible because hard-
ware maintains a “shadow copy” of privileged state. The
motivation for this approach is to increase performance,
as traps can be a significant source of overhead.

VT-x adopts a design where the CPU is split into two
operating modes: VMX root and VMX non-root mode.

VMX root mode is generally used to run the VMM and
does not change CPU behavior, except to enable access
to new instructions for managing VT-x. VMX non-root
mode, on the other hand, restricts CPU behavior and is
intended for running virtualized guest OSes.

Transitions between VMX modes are managed by
hardware. When the VMM executes the VMLAUNCH or
VMRESUME instruction, hardware performs a VM entry;
placing the CPU in VMX non-root mode and executing
the guest. Then, when action is required from the VMM,
hardware performs a VM exit, placing the CPU back in
VMX root mode and jumping to a VMM entry point.
Hardware automatically saves and restores most architec-
tural state during both types of transitions. This is ac-
complished by using buffers in a memory resident data
structure called the VM control structure (VMCS).

In addition to storing architectural state, the VMCS
contains a myriad of configuration parameters that allow
the VMM to control execution and specify which type of
events should generate VM exits. This gives the VMM
considerable flexibility in determining which hardware is
exposed to the guest. For example, a VMM could config-
ure the VMCS so that the HLT instruction causes a VM
exit or it could allow the guest to halt the CPU. However,
some hardware interfaces, such as the interrupt descriptor
table (IDT) and privilege modes, are exposed implicitly in
VMX non-root mode and never generate VM exits when
accessed. Moreover, a guest can manually request a VM
exit by using the VMCALL instruction.

Virtual memory is perhaps the most difficult hardware
feature for a VMM to expose safely. A straw man solu-
tion would be to configure the VMCS so that the guest
has access to the page table root register, %CR3. How-
ever, this would place complete trust in the guest because
it would be possible for it to configure the page table to
access any physical memory address, including memory
that belongs to the VMM. Fortunately, VT-x includes a
dedicated hardware mechanism, called the extended page
table (EPT), that can enforce memory isolation on guests
with direct access to virtual memory. It works by applying
a second, underlying, layer of address translation that can
only be configured by the VMM. AMD’s SVM includes
a similar mechanism to the EPT, referred to as a nested
page table (NPT).

2.2 Supported Hardware Features

Dune uses VT-x to provide user programs with full access
to x86 protection hardware. This includes three privileged
hardware features: exceptions, virtual memory, and priv-
ilege modes. Table 1 shows the corresponding privileged



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 337

Mechanism Privileged Instructions
Exceptions LIDT, LTR, IRET, STI, CLI

Virtual Memory MOV CRn, INVLPG, INVPCID

Privilege Modes SYSRET, SYSEXIT, IRET

Segmentation LGDT, LLDT

Table 1: Hardware features exposed by Dune and their
corresponding privileged x86 instructions.

instructions made available for each feature. Dune also
exposes segmentation, but we do not discuss it further, as
it is primarily a legacy mechanism on modern x86 CPUs.

Efficient support for exceptions is important in a vari-
ety of use cases such as emulation, debugging, and per-
formance tracing. Normally, reporting an exception to a
user program requires privilege mode transitions and an
upcall mechanism (e.g., signals). Dune can reduce ex-
ception overhead because it uses VT-x to deliver excep-
tions directly in hardware. This does not, however, allow
a Dune process to monopolize the CPU, as timer inter-
rupts and other exceptions intended for the kernel will still
cause a VM exit. The net result is that software overhead
is eliminated and exception performance is determined by
hardware efficiency alone. As just one example, Dune im-
proves the speed of delivering page fault exceptions, when
compared to SIGSEGV in Linux, by more than 4×. Sev-
eral other types of exceptions are also accelerated, includ-
ing breakpoints, floating point overflow and underflow, di-
vide by zero, and invalid opcodes.

User programs can also benefit from fast and flexible
access to virtual memory [5]. Use cases include check-
pointing, garbage collection (evaluated in this paper),
data-compression paging, and distributed shared memory.
Dune improves virtual memory access by exposing page
table entries to user programs directly, allowing them to
control address translations, access permissions, global
bits, and modified/accessed bits with simple memory ref-
erences. In contrast, even the most efficient OS inter-
faces [17] add extra latency by requiring system calls in
order to perform these operations. Letting applications
write their own page tables does not affect security be-
cause the underlying EPT exposes only the normal pro-
cess address space, which is equally accessible without
Dune.

Dune also gives user programs the ability to manually
control TLB invalidations. As a result, page table updates
can be performed in batches when permitted by the ap-
plication. This is considerably more challenging to sup-
port in the kernel because it is difficult to defer TLB in-
validations when general correctness must be maintained.
In addition, Dune exposes TLB tagging by providing ac-

cess to Intel’s recently added process-context identifier
(PCID) feature. This permits a single user program to
switch between multiple page tables efficiently. All to-
gether, we show that using Dune results in a 7× speedup
over Linux in the Appel and Li user-level virtual memory
benchmarks [5]. This figure includes the use of exception
hardware to reduce page fault latency.

Finally, Dune exposes access to privilege modes. On
x86, the most important privilege modes are ring 0 (su-
pervisor mode) and ring 3 (user mode), although rings 1
and 2 are also available. Two motivating use cases for
privilege modes are privilege separation and sandboxing
of untrusted code, both evaluated in this paper. Dune can
support privilege modes efficiently because VMX non-
root mode maintains its own set of privilege rings. Hence,
Dune allows hardware-enforced protection within a pro-
cess in exactly the way kernels protect themselves from
user processes. The supervisor bit in the page table is
available to control memory isolation. Moreover, system
call instructions trap to the process itself, rather than to
the kernel, which can be used for system call interposi-
tion and to prevent untrusted code from directly accessing
the kernel. Compared to ptrace in Linux, we show that
Dune can intercept a system call with 25× less overhead.

Although the hardware features Dune exposes suffice
in supporting our motivating use cases, several other hard-
ware features, such as cache control, debug registers, and
access to DMA-capable devices, could also be safely ex-
posed through virtualization hardware. We leave these for
future work and discuss their potential in Section 7.

3 Kernel Support for Dune
The core of Dune is a kernel module that manages
VT-x and provides user programs with greater access to
privileged hardware features. We describe this module
here, including a system overview, a threat model, and a
comparison to an ordinary VMM. We then explore three
key aspects of the module’s operation: managing mem-
ory, exposing access to privileged hardware, and preserv-
ing access to kernel interfaces. Finally, we describe the
Dune module we implemented for the Linux kernel.

3.1 System Overview
Figure 1 shows a high-level view of the Dune architecture.
Dune extends the kernel with a module that enables VT-x,
placing the kernel in VMX root mode. Processes using
Dune are granted direct but safe access to privileged hard-
ware by running in VMX non-root mode. The Dune mod-
ule intercepts VM exits, the only means for a Dune pro-



338 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

����������������������

������

�������
���

�����	�������

������	�������

��������������������������

�������

��� ����������������������

��������������������������

��������
���
��

���

Figure 1: The Dune system architecture.

cess to access the kernel, and performs any necessary ac-
tions such as servicing a page fault, calling a system call,
or yielding the CPU after a HLT instruction. Dune also
includes a library, called libDune, to assist with manag-
ing privileged hardware features in userspace, discussed
further in Section 4.

We apply Dune selectively to processes that need it;
processes that do not use Dune are completely unaffected.
A process can enable Dune at any point by initiating a
transition through an ioctl on the /dev/dune device, but
once in Dune mode, a process cannot exit Dune mode.
Whenever a Dune process forks, the child process does
not start in Dune mode, but can re-enter Dune if the use
case requires it.

The Dune module requires VT-x. As a result, it can-
not be used inside a VM unless there is support for nested
VT-x [6]; the performance characteristics of such a con-
figuration are an interesting topic of future consideration.
On the other hand, it is possible to run a VMM on the
same machine as the Dune module, even if the VMM
requires VT-x, because VT-x can be controlled indepen-
dently on each core.

3.2 Threat Model

Dune exposes privileged CPU features without affecting
the existing security model of the underlying OS. Any ex-
ternal effects produced by a Dune-enabled process could
be produced without Dune through the same series of
system calls. However, by exposing hardware privilege
modes, Dune enables additional privilege-separation tech-
niques within a process that would not otherwise be prac-
tical.

We assume that the CPU is free of defects, although we
acknowledge that in rare cases exploitable hardware flaws
have been identified [26, 27].

3.3 Comparing to a VMM

Though all software using VT-x shares a common struc-
ture, Dune’s use of VT-x deviates from that of standard
VMMs. Specifically, Dune exposes a process environ-
ment instead of a machine environment. As a result,
Dune is not capable of supporting a normal guest OS, but
this permits Dune to be lighter weight and more flexible.
Some of the most significant differences are as follows:

• Hypercalls are a common way for VMMs to support
paravirtualization, a technique in which the guest OS
is modified to use interfaces that are more efficient and
less difficult to virtualize. In Dune, by contrast, the hy-
percall mechanism invokes normal Linux system calls.
For example, a VMM might provide a hypercall to reg-
ister an interrupt handler for a virtual network device,
whereas a Dune process would use a hypercall to call
read on a TCP socket.

• Many VMMs emulate physical hardware interfaces in
order to support unmodified guest OSes. In Dune, only
hardware features that can be directly accessed without
VMM intervention are made available; in cases where
this is not possible, a Dune process falls back on the OS.
For example, most VMMs go to great lengths to present
a virtual graphics card interface in order to support a
frame buffer. By contrast, Dune processes employ the
normal OS display service, usually an X server accessed
over a Unix-domain socket and shared memory.

• A typical VMM must save and restore all state that is
necessary to support a guest OS. In Dune, we can limit
the differences in guest and host state because processes
using Dune have a narrower hardware interface. This
results in reductions to the overhead of performing VM
entries and VM exits.

• VMMs place each VM in a separate address space that
emulates flat physical memory. In Dune, we configure
the EPT to reflect process address spaces. As a result,
the memory layout can be sparse and memory can be
coherently shared when two processes map the same
memory segment.

Despite these differences, the Dune module could be
considered a type-2 hypervisor [22] because it runs on top
of an existing OS kernel.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 339

��������������������

�����
��
�
	����

�������������

��	�

��������������

����
��
�
	����

�������������

�����������

��������������

Figure 2: Virtual memory in Dune.

3.4 Memory Management
Memory management is one of the biggest responsibili-
ties of the Dune module. The challenge is to expose direct
page table access to user programs while preventing arbi-
trary access to physical memory. Moreover, our goal is
to provide a normal process memory address space by de-
fault, permitting user programs to add just the functional-
ity they need instead of completely replacing kernel-level
memory management.

Paging translations occur in three separate cases in
Dune, shown in Figure 2. One translation is specified
by the kernel’s standard page table. In virtualization ter-
minology this is the host-virtual to host-physical (i.e.,
raw memory) translation. Host-virtual addresses are or-
dinary virtual addresses, but they are only used by the
kernel and normal processes. For processes using Dune,
a user controlled page table maps guest-virtual addresses
to guest-physical. Then the EPT, managed by the kernel,
performs an additional translation from guest-physical to
host-physical. All memory references made by processes
using Dune can only be guest-virtual, allowing for iso-
lation and correctness to be enforced in the EPT while
application-specific functionality and optimizations can
be applied in the user page table.

Ideally, we would like to match the EPT to the ker-
nel’s page table as closely as possible because of our goal
to give processes using Dune access to the same address
space they would have as normal processes. If it were
permitted by hardware, we would simply point the EPT
and the kernel’s page table to the same page root. Unfor-
tunately, two limitations make this impossible. First, the
EPT requires a different binary format from the standard
x86 page table. Second, Intel x86 processors limit the

address width of guest-physical addresses to be the same
as host-physical addresses. In a standard virtual machine
environment this would not be a concern because any ma-
chine being emulated would have a realistically bounded
amount of RAM. For Dune, however, the problem is that
we want to expose the full host-virtual address space and
yet the guest-physical address space is limited to a smaller
size (e.g., a 36-bit physical limit vs. a 48-bit virtual limit
on many contemporary Intel processors). We note that
this issue is not present when running in 32-bit protected
mode, as physical addresses are at least as large as virtual
addresses.

Our solution to EPT format incompatibility is to query
the kernel for process memory mappings and to manually
update the EPT to reflect them. We start with an empty
EPT. Then, we receive an EPT fault (a type of VM exit)
each time a missing EPT entry is accessed. The fault han-
dler crafts a new EPT entry that reflects an address trans-
lation and permission reported by the kernel’s page fault
handler. Occasionally, address ranges will need to be un-
mapped. In addition, the kernel requires page access in-
formation, to assist with swapping, and page dirty status,
to determine when write-back to disk is necessary. Dune
supports all of these cases by hooking into an MMU no-
tifier chain, the same approach used by KVM [30]. For
example, when an address is unmapped, the Dune module
receives an event. It then evicts affected EPT entries and
sets dirty bits in the appropriate Linux page structures.

We work around the address width issue by allow-
ing only some address ranges to be mapped in the EPT.
Specifically, we only permit addresses from the beginning
of the process (i.e., the heap, code, and data segments),
the mmap region, and the stack. Currently, we limit each
of these regions to 4GB, allowing us to compress the ad-
dress space to fit in the first 12GB of the EPT. Typically
the user’s page table will then expand the addresses to
their original layout. This could result in incompatibilities
in programs that use nonstandard portions of the address
space, though such cases are rare. A more sophisticated
solution might pack each virtual memory area into the
guest-physical address space in arbitrary order and then
provide the user program the additional information re-
quired to remap the segment to the correct guest-virtual
address in its own page table, thus avoiding the possibil-
ity of unaddressable memory regions.

3.5 Exposing Access to Hardware

As discussed previously, Dune exposes access to excep-
tions, virtual memory, and privilege modes. Exceptions
and privilege modes are implicitly available in VMX non-



340 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

root mode and do not require any special configuration.
On the other hand, virtual memory requires access to the
%CR3 register, which can be granted in the VMCS. We
maintain a separate VMCS for each process in order to
allow for per-process configuration of privileged state and
to support context switching more easily and efficiently.

x86 includes a variety of control registers that deter-
mine which hardware features are enabled (e.g., floating
point, SSE, no execute, etc.) Although we could have
permitted Dune processes to configure these directly, we
instead mirror the configuration set by the kernel. This al-
lows us to support a normal process environment; permit-
ting many configuration changes would break compatibil-
ity with user programs. For example, it makes little sense
for a 64-bit process to disable long mode. There are, how-
ever, a couple of important exceptions to this rule. First,
we allow user programs to disable paging because it is the
only method available on x86 to clear global TLB entries.
Second, we give user programs some control over float-
ing point hardware in order to allow for support of lazy
floating point state management.

In some cases, Dune restricts access to hardware reg-
isters for performance reasons. For instance, Dune does
not allow modification to MSRs in order to avoid the rel-
atively high overhead of saving and restoring them during
each system call. The FS and GS base registers are ex-
ceptions because they are not only used frequently but
are also saved and restored by hardware automatically.
MSR LSTAR, which contains the address of the system
call handler, is a special case where Dune allows read-
only access. This allows a user process to map code for
a system call handler at the existing address (by manipu-
lating its page table) instead of changing the register to a
new address and, as a result, harming performance.

Dune exposes raw access to the time stamp counter
(TSC). By contrast, most VMMs virtualize the TSC in or-
der to avoid confusing guest kernels, which tend to make
timing assumptions that could be violated if time spent in
the VMM is made visible.

3.6 Preserving OS Interfaces

In addition to exposing privileged hardware features,
Dune preserves access to OS system calls. Normal system
call invocation instructions will only trap within the pro-
cess itself and do not cause a VM exit. Instead, processes
must use VMCALL, the hypercall instruction, to make sys-
tem calls. The Dune module vectors hypercalls through
the kernel’s system call table. In some cases, it must per-
form extra actions before calling the system call handler.
For example, during an exit system call, Dune performs

cleanup tasks.

Dune completely changes how signal handlers are in-
voked. Some signals are obviated by more efficient di-
rect hardware support. For example, hardware page faults
largely subsume the role of SIGSEGV. For other signals
(e.g., SIGINT), the Dune module injects fake hardware
interrupts into the process. This is not only an efficient
mechanism, but also has the advantage of correctly com-
posing with privilege modes. For example, if a user pro-
cess were running in ring 3 to sandbox untrusted code,
hardware would automatically transition it to ring 0 in or-
der to service the signal securely.

3.7 Implementation

Dune presently supports Linux running on Intel x86 pro-
cessors in 64-bit long mode. Support for AMD CPUs and
32-bit mode are possible future additions. In order to keep
changes to the kernel as unintrusive as possible, we devel-
oped Dune as a dynamically loadable kernel module. Our
implementation is based partially on KVM [30]. Specif-
ically, it shares code for managing low-level VT-x opera-
tions. However, high-level code is not shared with KVM
because Dune operates differently from a VMM. Further-
more, our Dune module is simpler than KVM, consisting
of only 2,509 lines of code.

In Linux, user threads are supported by the kernel, mak-
ing them nearly identical to processes except they have a
shared address space. As a result, it was easiest for us
to create a VMCS for each thread instead of merely each
process. One interesting consequence is that it is possible
for both threads using Dune and threads not using Dune
to belong to the same process.

Our implementation is capable of supporting thousands
of processes at a time. The reason is that processes us-
ing Dune are substantially lighter-weight than full virtual
machines. Efficiency is further improved by using virtual-
processor identifiers (VPIDs). VPIDs enable a unique
TLB tag to be assigned to each Dune process, and, as a re-
sult, hypercalls and context switches do not require TLB
invalidations.

One limitation in our implementation is that we cannot
efficiently detect when EPT pages have been modified or
accessed, which is needed for swapping. Intel recently
added hardware support for this capability, so it should be
easy to rectify this limitation. For now, we take a conser-
vative approach and always report pages as modified and
accessed during MMU notifications in order to ensure cor-
rectness.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 341

4 User-mode Environment

The execution environment of a process using Dune has
some differences from a normal process. Because privi-
lege rings are an exposed hardware feature, one difference
is that user code runs in ring 0. Despite changing the be-
havior of certain instructions, this does not typically result
in any incompatibilities for existing code. Ring 3 is also
available and can optionally be used to confine untrusted
code. Another difference is that system calls must be per-
formed as hypercalls. To simplify supporting this change,
we provide a mechanism that can detect when a system
call is performed from ring 0 and automatically redirect it
to the kernel as a hypercall. This is one of many features
included in libDune.

libDune is a library created to make it easier to build
user programs that make use of Dune. It is completely
untrusted by the kernel and consists of a collection of util-
ities that aid in managing and configuring privileged hard-
ware features. Major components of libDune include a
page table manager, an ELF loader, a simple page allo-
cator, and routines that assist user programs in managing
exceptions and system calls. libDune is currently 5,898
lines of code.

We also provide an optional, modified version of libc
that uses VMCALL instructions instead of SYSCALL in-
structions in order to get a slight performance benefit.

4.1 Bootstrapping

In many ways, transitioning a process into Dune mode
is similar to booting an OS. The first issue is that a valid
page table must be provided before enabling Dune. A sim-
ple identity mapping is insufficient because, although the
goal is to have process addresses remain consistent before
and after the transition, the compressed layout of the EPT
must be taken into account. After a page table is created,
the Dune entry ioctl is called with the page table root as
an argument. The Dune module then switches the pro-
cess to Dune mode and begins executing code, using the
provided page table root as the initial %CR3. From there,
libDune configures privileged registers to set up a reason-
able operating environment. For example, it loads a GDT
to provide basic flat segmentation and loads an IDT so
that hardware exceptions can be captured. It also sets up
a separate stack in the TSS to handle double faults and
configures the GS segment base in order to easily access
per-thread data.

4.2 Limitations

Although we are able to run a wide variety of Linux pro-
grams, libDune is still missing some functionality. First,
we have not fully integrated support for signals despite
the fact that they are reported by the Dune module. Ap-
plications are required to use dune signal whereas a more
compatible solution would override several libc symbols
like signal and sigaction. Second, although we support
pthreads, some utilities in libDune, such as page table
management, are not yet thread-safe. Both of these issues
could be resolved with further implementation.

One unanticipated challenge with working in a Dune
environment is that system call arguments must be valid
host-virtual addresses, regardless of how guest-virtual
mappings are setup. In many ways, this parallels the need
to provide physical addresses to hardware devices that
perform DMA. In most cases we can work around the
issue by having the guest-virtual address space mirror the
host-virtual address space. For situations where this is not
possible, walking the user page table to adjust system call
argument addresses is necessary.

Another challenge introduced by Dune is that by ex-
posing greater access to privileged hardware, user pro-
grams require more architecture-specific code, potentially
reducing portability. libDune currently provides an x86-
centric API, so it is already compatible with AMD ma-
chines. However, it should be possible to modify libDune
to support non-x86 architectures in a fashion that parallels
the construction of many OS kernels. This would require
libDune to provide an efficient architecture independent
interface, a topic worth exploring in future revisions.

5 Applications

Dune is generic enough that it lets us improve on a broad
range of applications. We built two security-related appli-
cations, a sandbox and privilege separation system, and
one performance-related application, a garbage collector.
Our goals were simpler implementations, higher perfor-
mance, and where applicable, improved security.

5.1 Sandboxing

Sandboxing is the process of confining code so as to re-
strict the memory it can access and the interfaces or sys-
tem calls it can use. It is useful for a variety of purposes,
such as running native code in web browsers, creating se-
cure OS containers, and securing mobile phone applica-
tions. In order to explore Dune’s potential for these types



342 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

of applications, we built a sandbox that supports native
64-bit Linux executables.

The sandbox enforces security through privilege modes
by running a trusted sandbox runtime in ring 0 and an un-
trusted binary in ring 3, both operating within a single
address space (on the left of Figure 1, the top and middle
boxes respectively). Memory belonging to the sandbox
runtime is protected by setting the supervisor bit in appro-
priate page table entries. Whenever the untrusted binary
performs an unsafe operation such as trying to access the
kernel through a system call or attempting to modify priv-
ileged state, libDune receives an exception and jumps into
a handler provided by the sandbox runtime. In this way,
the sandbox runtime is able to filter and restrict the behav-
ior of the untrusted binary.

While we rely on the kernel to load the sandbox run-
time, the untrusted binary must be loaded in userspace.
One risk is that it could contain maliciously crafted head-
ers designed to exploit flaws in the ELF loader. We hard-
ened our sandbox against this possibility by using two
separate ELF loaders. First, the sandbox runtime uses a
minimal ELF loader (part of libDune), that only supports
static binaries, to load a second ELF loader into the un-
trusted environment. We choose to use ld-linux.so as our
second ELF loader because it is already used as an inte-
gral and trusted component in Linux. Then, the sandbox
runtime executes the untrusted environment, allowing the
second ELF loader to load an untrusted binary entirely
from ring 3. Thus, even if the untrusted binary is mali-
cious, it does not have a greater opportunity to attack the
sandbox during ELF loading than it would while running
inside the sandbox normally.

So far our sandbox has been applied primarily as a tool
for filtering Linux system calls. However, it could poten-
tially be used for other purposes, including providing a
completely new system call interface. For system call fil-
tering, a large concern is to prevent execution of any sys-
tem call that could corrupt or disable the sandbox runtime.
We protect against this hazard by validating each system
call argument, checking to make sure performing the sys-
tem call would not allow the untrusted binary to access or
modify memory belonging to the sandbox runtime. We
do not yet support all system calls, but we support enough
to run most single-threaded Linux applications. However,
nothing prevents supporting multi-threaded programs in
the future.

We implemented two policies on top of the sandbox.
Firstly, we support a null policy that allows system calls
to pass through but still validates arguments in order to
protect the sandbox runtime. It is intended primarily to
demonstrate raw performance overhead. Secondly, we

support a userspace firewall. It uses system call interpo-
sition to inspect important network system calls, such as
bind and connect, and prevents communication with un-
desirable parties as specified by a policy description.

To further demonstrate the flexibility of our sandbox,
we also implemented a checkpointing system that can se-
rialize an application to disk and then restore execution at
a later time. This includes saving memory, registers, and
system call state (e.g., open file descriptors).

5.2 Wedge

Wedge [10] is a privilege separation system. Its core
abstraction is an sthread which provides fork-like iso-
lation with pthread-like performance. An sthread is a
lightweight process that has access to memory, file de-
scriptors and system calls as specified by a policy. The
idea is to run risky code in an sthread so that any exploits
will be contained within it. In a web server, for exam-
ple, each client request would run in a separate sthread
to guarantee isolation between users. To make this prac-
tical, sthreads need fast creation (e.g., one per request)
and context switch time. Fast creation can be achieved
through sthread recycling. Instead of creating and killing
an sthread each time, an sthread is checkpointed on its
first creation (while still pristine and unexploited) and re-
stored on exit so that it can be safely reused upon the next
creation request. Doing so reduces sthread creation cost
to the (cheaper) cost of restoring memory.

Wedge uses many of Dune’s hardware features. Ring
protection is used to enforce system call policies; page
tables limit what memory sthreads can access; dirty bits
are used to restore memory during sthread recycling; and
the tagged TLB is used for fast context switching.

5.3 Garbage Collection

Garbage collectors (GC) often utilize memory manage-
ment hardware to speed up collection [28]. Appel and
Li [5] explain several techniques that use standard user
level virtual memory protection operations, whereas Azul
Systems [15, 36] went to the extent of modifying the ker-
nel and system call interface. By contrast, Dune provides
a clean and efficient way to access relevant hardware di-
rectly. The features provided by Dune that are of interest
to garbage collectors include:
• Fast faults. GCs often use memory protection and fault

handling to implement read and write barriers.
• Dirty bits. Knowing what memory has been touched

since the last collection enables optimizations and can
be a core part of the algorithm.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 343

• Page table. One optimization in a moving GC is to
free the underlying physical frame without freeing the
virtual page it was backing. This is useful when the
data has been moved but references to the old loca-
tion remain and can still be caught through page faults.
Remapping memory can also be performed to reduce
fragmentation.

• TLB control. GCs often manipulate memory map-
pings at high rates, making control over TLB invalida-
tion very useful. If it can be controlled, mapping ma-
nipulations can be effectively batched, rendering certain
algorithms more feasible.
We modified the Boehm GC [12] to use Dune in or-

der to improve performance. The Boehm GC is a robust
mark-sweep collector that supports parallel and incremen-
tal collection. It is designed either to be used as a conser-
vative collector with C/C++ programs, or by compiler and
run-time backends where the conservativeness can be con-
trolled. It is widely used, including by the Mono project
and GNU Objective C.

An important implementation question for the Boehm
GC is how dirty pages are discovered and managed. The
two original options were (i) utilizing mprotect and signal
handlers to implement its own dirty bit tracking; or (ii)
utilizing OS provided dirty bit read methods such as the
Win32 API call GetWriteWatch. In Dune we support and
improve both methods.

A direct port to Dune already gives a performance im-
provement because mprotect can directly manipulate the
page table and a page fault can be handled directly with-
out needing an expensive SIGSEGV signal. The GC ma-
nipulates single pages 90% of the time, so we were able
to improve performance further by using the INVPLG in-
struction to flush only a single page instead of the entire
TLB. Finally, in Dune, the Boehm GC can access dirty
bits directly without having to emulate this functionality.
Some OSes provide system calls for reading page table
dirty bits. Not all of these interfaces are well matched
to GC—for instance, SunOS examines the entire virtual
address space rather than permit queries for a particular
region. Linux provides no user-level access at all to dirty
bits.

The work done on the Boehm GC represents a straight-
forward application of Dune to a GC. It is worth also
examining the changes made by Azul Systems to Linux
so that they could support their C4 GC [36] and mapping
this to the support provided by Dune:
• Fast faults. Azul modified the Linux memory protec-

tion and mapping primitives to greatly improve perfor-
mance, part of this included allowing hardware excep-
tions to bypass the kernel and be handled directly by

usermode.
• Batched page table. Azul enabled explicit control of

TLB invalidation and a shadow page table to expose a
prepare and commit style API for batching page table
manipulation.

• Shatter/Heal. Azul enabled large pages to be ‘shat-
tered’ into small pages or a group of small pages to be
‘healed’ into a single large page.

• Free physical frames. When the Azul C4 collector
frees an underlying physical frame, it will trap on ac-
cesses to the unmapped virtual pages in order to catch
old references.

All of the above techniques and interfaces can be imple-
mented efficiently on top of Dune, with no need for any
kernel changes other than loading the Dune module.

6 Evaluation
In this section, we evaluate the performance and utility
of Dune. Although using VT-x has an intrinsic cost, in
most cases, Dune’s overhead is relatively minor. On the
other hand, Dune offers significant opportunities to im-
prove security and performance for applications that can
take advantage of access to privileged hardware features.

All tests were performed on a single-socket machine
with an Intel Xeon E3-1230 v2 (a four core Ivy Bridge
CPU clocked at 3.3 GHz) and 16GB of RAM. We in-
stalled a recent 64-bit version of Debian Linux that in-
cludes Linux kernel version 3.2. Power management fea-
tures, such as frequency scaling, were disabled.

6.1 Overhead from Running in Dune
Performance in Dune is impacted by two main sources of
overhead. First, VT-x increases the cost of entering and
exiting the kernel—VM entries and VM exits are more
expensive than fast system call instructions or exceptions.
As a result, both system calls and other types of faults
(e.g., page faults) must pay a fixed cost in Dune. Sec-
ond, using the EPT makes TLB misses more expensive
because, in some cases, the hardware page walker must
traverse two page tables instead of one.

We built synthetic benchmarks to measure both of these
effects. Table 2 shows the overhead of system calls, page
faults, and page table walks. For system calls, we man-
ually performed getpid, an essentially null system call
(worst case for Dune), and measured the round-trip la-
tency. For page faults, we measured the time it took to
fault in a pre-zeroed memory page by the kernel. Finally,
for page table walks, we measured the time spent filling a
TLB miss.



344 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

getpid page fault page walk
Linux 138 2,687 35.8
Dune 895 5,093 86.4

Table 2: Average time (in cycles) of operations that have
overhead in Dune compared to Linux.

Measuring TLB miss overhead required us to build a
simple memory stress tool. It works by performing a ran-
dom page-aligned walk across 216 memory pages. This
models a workload with poor memory locality, as nearly
every memory access results in a last-level TLB miss. We
then divided the total number of cycles spent waiting for
page table walks, as reported by a performance counter,
by the total number of memory references, giving us a cy-
cle cost per page walk.

In general, the overhead Dune adds has only a small
effect on end-to-end performance, as we show in Sec-
tion 6.3. For system calls, the time spent in the kernel
tends to be a larger cost than the fixed VMX mode transi-
tion costs. Page fault overhead is also not much of a con-
cern, as page faults tend to occur infrequently during nor-
mal use, and direct access to exception hardware is avail-
able when higher performance is required. On the other
hand, Dune’s use of the EPT does impact performance in
certain workloads. For applications with good memory
locality or a small working set, it has no impact because
the TLB hit rate is sufficiently high. However, for appli-
cation with poor memory locality or a large working set,
more frequent TLB misses result in a measurable slow-
down. One effective strategy for limiting this overhead is
to use large pages. We explore this possibility further in
section 6.3.1.

6.2 Optimizations Made Possible by Dune

Access to privileged hardware features creates many op-
portunities for optimization. Table 3 shows speedups we
achieved in the following OS workloads:

ptrace is a measure of system call interposition perfor-
mance. This is the cost of a Linux process intercepting a
system call (getpid) with ptrace, forwarding the system
call to the kernel and returning the result. In Dune this
is the cost of intercepting a system call directly using
ring protection in VMX non-root mode, forwarding the
system call through a VMCALL and returning the result.
An additional scenario is where applications wish to
intercept system calls but not forward them to the
kernel and instead just implement them internally.
PTRACE SYSEMU is the most efficient mechanism for

ptrace trap appel1 appel2
Linux 27,317 2,821 701,413 684,909
Dune 1,091 587 94,496 94,854

Table 3: Average time (in cycles) of operations that are
faster in Dune compared to Linux.

doing so since ptrace requires forwarding a call to the
kernel. The latency of intercepting a system call with
PTRACE SYSEMU is 13,592 cycles. In Dune this can
be implemented by handling the hardware system call
trap directly, with a latency of just 180 cycles. This
reveals that most of the Dune ptrace benchmark over-
head was in fact forwarding the getpid system call via a
VMCALL rather than intercepting the system call.

trap indicates the time it takes for a process to get an
exception for a page fault. We compare the latency of
a SIGSEGV signal in Linux with a hardware-generated
page fault in Dune.

appel1 is a measure of user-level virtual memory man-
agement performance. It corresponds to the TRAP,
PROT1, and UNPROT test described in [5], where 100
protected pages are accessed, causing faults. Then, in
the fault handler, the faulting page is unprotected, and a
new page is protected.

appel2 is another measure of user-level virtual mem-
ory management performance. It corresponds to the
PROTN, TRAP, and UNPROT test described in [5],
where 100 pages are protected. Then each is accessed,
with the fault handler unprotecting the faulting page.

6.3 Application Performance
6.3.1 Sandbox

We evaluated the performance of our sandbox by running
two types of workloads. First, we tested compute perfor-
mance by running SPEC2000. Second, we tested IO per-
formance by running lighttpd. The null sandbox policy
was used in both cases.

Figure 3 shows the performance of SPEC2000. In gen-
eral, the sandbox had very low overhead, averaging only
2.9% percent slower than Linux. However, the mcf and
ammp benchmarks were outliers, with 20.9% and 10.1%
slowdowns respectively. This deviation in performance
can be explained by EPT overhead, as we observed a high
TLB miss rate. We also measured SPEC2000 in VMware
Player, and, as expected, EPT overhead resulted in very
similar drops in performance.

We then adjusted the sandbox to avoid EPT overhead
by backing large memory allocations with 2MB large



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 345

  −25

  −20

  −15

  −10

  −5

  0

  5

  10

  15

  20

  25

gzip
vpr

gcc
m

esa

art
m

cf
equake

crafty

am
m

p

parser

eon
perlbm

k

gap
vortex

bzip2

tw
olf

%
 S

lo
w

d
o
w

n

 Sandbox
 Sandbox w/ LGPG
 Linux w/ LGPG

Figure 3: Average SPEC2000 slowdown compared to
Linux for the sandbox, the sandbox using large pages, and
Linux using large pages identically.

1 client 100 clients
Linux 2,236 24,609
Dune sandbox 2,206 24,255
VMware Player 734 5,763

Table 4: Lighttpd performance (in requests per second).

pages, both in the EPT and the user page table. Sup-
porting this optimization was straightforward because we
were able to intercept mmap calls and transparently mod-
ify them to use large pages. Such an approach does not
cause much memory fragmentation because large pages
are only used selectively. In order to perform a direct
comparison, we tested SPEC2000 in a modified Linux en-
vironment that allocates large pages in an identical fash-
ion using libhugetlbfs [1]. When large pages were used
for both, average performance in the sandbox and Linux
was nearly identical (within 0.1%).

Table 4 shows the performance of lighttpd, a single-
threaded, single-process, event-based HTTP server.
Lighttpd exercises the kernel to a much greater extent than
SPEC2000, making frequent system calls and putting load
on the network stack. Lighttpd performance was mea-
sured over Gigabit Ethernet using the Apache ab bench-
marking tool. We configured ab to repeatedly retrieve a
small HTML page over the network with different levels
of concurrency: 1 client for measuring latency and 100
clients for measuring throughput.

We found that the sandbox incurred only a slight slow-
down, less than 2% for both the latency and throughput
test. This slowdown can be explained by Dune’s higher
system call overhead. Using strace, we determined that
lighttpd was performing several system calls per con-
nection, causing frequent VMX transitions. However,

create ctx switch http request
fork 81 0.49 454
Dune sthread 2 0.15 362

Table 5: Wedge benchmarks (times in microseconds).

VMware Player, a conventional VMM, experienced much
greater overhead: 67% for the latency test and 77% for
the throughput test. Although VMware Player pays VMX
transition costs too, the primary reason for the slowdown
is that each network request must traverse two network
stacks, one in the guest and one in the host.

We also found that the sandbox provides an easily ex-
tensible framework that we used to implement check-
pointing and our firewall. The checkpointing implemen-
tation consisted of approximately 450 SLOC with 50 of
those being enhancements to the sandbox loader. Our fire-
wall was around 200 SLOC with half of that being the
firewall rules parser.

6.3.2 Wedge

Wedge has two main benchmarks: sthread creation and
context switch time. These are compared to fork, the
system call used today to implement privilege separation.
As shown in Table 5, sthread creation is faster than fork
because instead of creating a new process each time, an
sthread is reused from a pool and “recycled” by restoring
dirty memory and state. Context switch time in sthreads is
low because TLB flushes are avoided by using the tagged
TLB. In Dune sthreads are created 40× faster than pro-
cesses and the context switch time is 3× faster. In pre-
vious Wedge implementations sthread creation was 12×
faster than fork with no improvement in context switch
time [9]. Dune is faster because it can leverage the tagged
TLB and avoid kernel calls to create sthreads. The last
column of Table 5 shows an application benchmark of a
web server serving a static file on a LAN where each re-
quest runs in a newly forked process or sthread for isola-
tion. Dune sthreads show a 20% improvement here.

The original Wedge implementation consisted of a 700-
line kernel module and a 1,300-line library. A userspace-
only implementation of Wedge exists, though the authors
lamented that POSIX did not offer adequate APIs for
memory and system call protection, hence the result was
a very complicated 5,000-line implementation [9]. Dune
instead exposes the hardware protection features needed
for a simple implementation, consisting of only 750 lines
of user code.



346 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

GCBench LinkedList HashMap XML
Collections 542 33,971 161 10
Memory use (MB)
Allocation 938 15,257 10,352 1,753
Heap 28 1,387 27 1,737
Execution time (ms)
Normal 1,224 15,983 14,160 6,663
Dune 1,176 16,884 13,715 7,930
Dune TLB 933 14,234 11,124 7,474
Dune dirty 888 11,760 8,391 6,675

Table 6: Performance numbers of the GC benchmarks.

6.3.3 Garbage Collector

We implemented three different sets of modifications to
the Boehm GC. The first is the simplest port possible with
no attempt to utilize any advanced features of Dune. This
benefits from Dune’s fast memory protection and fault
handling but suffers from the extra TLB costs. The second
version improves the direct port by carefully controlling
when the TLB is invalidated. The third version avoids
using memory protection altogether, instead it reads the
dirty bits directly. The direct port required changing 52
lines, the TLB optimized version 91 lines, and the dirty
bit version 82 lines.

To test the performance improvements of these changes
we used the following benchmarks:
• GCBench [11]. A microbenchmark written by Hans

Boehm and widely used to test garbage collector per-
formance. In essence, it builds a large binary tree.

• Linked List. A microbenchmark that builds increas-
ingly large linked lists of integers, summing each one
after it is built.

• Hash Map. A microbenchmark that utilizes the Google
sparse hash map library [23] (C version).

• XML Parser. A full application that uses the Mini-
XML library [34] to parse a 150MB XML file contain-
ing medical publications. It then counts the number of
publications each author has using a hash map.
The results for these benchmarks are presented in Ta-

ble 6. The direct port displays mixed results due to the
improvement to memory protection and the fault handler
but slowdown of EPT overhead. As soon as we start using
more hardware features, we see a clear improvement over
the baseline. Other than the XML Parser, the TLB version
improves performance between 10.9% and 23.8%, and the
dirty bit version between 26.4% and 40.7%.

The XML benchmark is interesting as it shows a slow-
down under Dune for all three versions: 19.0%, 12.2%
and 0.2% slower for the direct, TLB and dirty version re-

spectively. This appears to be caused by EPT overhead,
as the benchmark does not create enough garbage to ben-
efit from the modifications we made to the Boehm GC.
This is indicated in Table 6; the total amount of allocation
is nearly equal to the maximum heap size. We verified
this by modifying the benchmark to instead take a list of
XML files, processing each sequentially so that memory
would be recycled. We then saw a linear improvement
in the Dune versions over the baseline as the number of
files was increased. With ten 150MB XML files as input,
the dirty bit version of the Boehm GC showed a 12.8%
improvement in execution time over the baseline.

7 Reflections on Hardware
While developing Dune, we found VT-x to be a surpris-
ingly flexible hardware mechanism. In particular, the fine-
grained control provided by the VMCS allowed us to pre-
cisely direct how hardware was exposed. However, some
hardware changes to VT-x could benefit Dune. One note-
worthy area is the EPT, as we encountered both perfor-
mance overhead and implementation challenges. Hard-
ware modifications have been proposed to mitigate EPT
overhead [2, 8]. In addition, modifying the EPT to support
the same address width as the regular page table would re-
duce the complexity of our implementation and improve
coverage of the process address space. Further reductions
to VM exit and VM entry latency could also benefit Dune.
However, we were able to aggressively optimize hyper-
calls, and VMX transition costs had only a small effect on
the performance of the applications we evaluated.

There are a few hardware features that we have not
yet exposed, despite the fact that they are available in
VT-x and possible to support in Dune. Most seem use-
ful only in special situations. For example, a user pro-
gram might want to have control over caching in order to
prevent information leakage. However, this would only
be effective if CPU affinity could be controlled. As an-
other example, access to efficient polling instructions (i.e.,
MONITOR and MWAIT) could be useful in reducing power
consumption for userspace messaging implementations
that perform cache line polling. Finally, exposing access
to debug registers could allow user programs to more ef-
ficiently set up memory watchpoints.

It may also be useful to provide Dune applications with
direct access to IO devices. Many VT-x systems include
support for an IOMMU, a device that can be used to make
DMA access safe even when it is available to untrusted
software. Thus, Dune could be modified to safely expose
certain hardware devices. A potential benefit could be re-
duced IO latency. The availability of SR-IOV makes this



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 347

possibility more practical because it allows a single phys-
ical device to be partitioned across multiple guests.

Recently, a variety of non-x86 hardware platforms
have gained support for hardware-assisted virtualiza-
tion, including ARM [38], Intel Itanium [25], and IBM
Power [24]. ARM is of particular interest because of its
prevalence in mobile devices, making the ARM Virtu-
alization Extensions an obvious future target for Dune.
ARM’s support for virtualization is similar to VT-x in
some areas. For example, ARM is capable of exposing
direct access to privileged hardware features, including
exceptions, virtual memory, and privilege modes. More-
over, ARM provides a System MMU, which is compara-
ble to the EPT. ARM’s most significant difference is that
it introduces a new deeper privilege mode call Hyp that
runs underneath the guest kernel. In contrast, VT-x pro-
vides separate operating modes for the guest and VMM.
Another difference from VT-x is that ARM does not auto-
matically save and restore architectural state when switch-
ing between a VMM and a guest. Instead, the VMM is
expected to manage state in software, perhaps creating an
opportunity for optimization.

8 Related Work
There have been several efforts to give applications
greater access to hardware. For example, The Exoker-
nel [18] exposes hardware features through a low-level
kernel interface that allows applications to manage hard-
ware resources directly. Another approach, adopted by the
SPIN project [7], is to permit applications to safely load
extensions directly into the kernel. Dune shares many
similarities with these approaches because it also tries to
give applications greater access to hardware. However,
Dune differs because its goal is not extensibility. Rather,
Dune provides access to privileged hardware features so
that they can be used in concert with the OS instead of a
means of modifying or overriding it.

The Fluke project [20] supports a nested process model
in software, allowing OSes to be constructed “vertically.”
Dune complements this approach because it could be used
to efficiently support an extra OS layer between the appli-
cation and the kernel through use of privilege mode hard-
ware. However, the hardware that Dune exposes can only
support a single level instead of the multiple levels avail-
able in Fluke.

A wide range of strategies have been employed to sup-
port sandboxing, such as ptrace [16], dedicated kernel
modifications [16, 21, 33], binary translation [19], and
binary verification [39]. To our knowledge, Dune is the
first system to support sandboxing entirely through user-

level access to hardware protection, improving perfor-
mance and reducing code complexity. For example, Na-
tive Client [39] reports an average SPEC2000 overhead of
5% with a worst case performance of 12%—anecdotally,
we observed higher overheads on modern microarchitec-
tures. By contrast, we were able to achieve nearly zero
average overhead (1.4% worst case) for the same bench-
marks in Dune. Our sandbox is similar to Native Client
in that it creates a secure subdomain within a process.
However, Native Client is more portable than Dune be-
cause it does not require virtualization hardware or kernel
changes.

Like Dune, some previous work has used hardware
virtualization for non-traditional purposes. For example,
VT-x has been suggested as a tool for creating rootk-
its [29] that are challenging to detect. Moreover, IOMMU
hardware has been used to safely isolate malicious device
drivers by running them in Linux processes [13].

9 Conclusion
Dune provides ordinary applications with efficient and
safe access to privileged hardware features that are tra-
ditionally available only to kernels. It does so by leverag-
ing modern virtualization hardware, which enables direct
execution of privileged instructions in unprivileged con-
texts. Our implementation of Dune for Linux uses Intel’s
VT-x virtualization architecture and provides application-
level access to exceptions, virtual memory, and privilege
modes. Our evaluation shows both performance and se-
curity benefits to Dune. For instance, we built a sandbox
that approaches zero overhead, modified a garbage collec-
tor to improve performance by up to 40.7%, and created
a privilege separation system with 3× less context switch
overhead than without Dune.

In an effort to spur adoption, we have structured Dune
as a module that works with unmodified Linux kernels.
We hope the applications described in this paper are just
the first of many uses people will find for the system. The
hardware mechanisms exposed by Dune are at the core of
many operating systems innovations; their new accessibil-
ity from user-level creates opportunities to deploy novel
systems without kernel modifications. Dune is freely
available at http://dune.scs.stanford.edu/.

Acknowledgments
We wish to thank our shepherd, Timothy Roscoe, for his
guidance and valuable suggestions. We would also like
to thank Edouard Bugnion for feedback on several itera-



348 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

tions of this paper and for his valuable discussions dur-
ing the early phases of Dune. Finally, we thank Richard
Uhlig, Jacob Leverich, Ben Serebrin, and our anonymous
reviewers for suggestions that greatly shaped our paper.
This work was funded DARPA CRASH under contract
#N66001-10-2-4088 and by a gift from Google. Adam
Belay is supported by a Stanford Graduate Fellowship.

References
[1] Libhugetlbfs. http://libhugetlbfs.sourceforge.net, Apr.

2012.
[2] J. Ahn, S. Jin, and J. Huh. Revisiting Hardware-Assisted Page Walks for

Virtualized Systems. In Proceedings of the 39th International Symposium
on Computer Architecture, ISCA ’12, pages 476–487, 2012.

[3] AMD. Secure Virtual Machine Architecture Reference Manual.
[4] G. Ammons, D. D. Silva, O. Krieger, D. Grove, B. Rosenburg, R. W. Wis-

niewski, M. Butrico, K. Kawachiya, and E. V. Hensbergen. Libra: A Library
Operating System for a JVM in a Virtualized Execution Environment. In
Proceedings of the 3rd International Conference on Virtual Execution Envi-
ronments, pages 13–15, 2007.

[5] A. Appel and K. Li. Virtual Memory Primitives for User Programs. In
Proceedings of the Fourth International Conference on ASPLOS, pages 96–
107, Apr. 1991.

[6] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour. The Turtles Project:
Design and Implementation of Nested Virtualization. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and Implementation,
2010.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-
mance in the SPIN Operating System. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, pages 267–283,
1995.

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating Two-
Dimensional Page Walks for Virtualized Systems. In Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 26–35, 2008.

[9] A. Bittau. Toward Least-Privilege Isolation for Software. PhD thesis, 2009.
[10] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting Appli-

cations into Reduced-Privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, pages 309–322, 2008.

[11] H. Boehm. GC Bench. http://www.hpl.hp.com/personal/
Hans_Boehm/gc/gc_bench/, Apr. 2012.

[12] H. Boehm, A. Demers, and S. Shenker. Mostly Parallel Garbage Collection.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, PLDI ’91, pages 157–164, 1991.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious Device Drivers in
Linux. In Proceedings of the 2010 USENIX Annual Technical Conference,
USENIXATC’10, pages 9–9, 2010.

[14] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Commodity
Operating Systems on Scalable Multiprocessors. In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, SOSP ’97, pages
143–156, 1997.

[15] C. Click, G. Tene, and M. Wolf. The Pauseless GC Algorithm. In Proceed-
ings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments, VEE ’05, pages 46–56, 2005.

[16] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging Legacy
Code to Deploy Desktop Applications on the Web. In Proceedings of the
8th USENIX Conference on Operating systems Design and Implementation,
OSDI’08, pages 339–354, 2008.

[17] D. R. Engler, S. K. Gupta, and M. F. Kaashoek. AVM: Application-Level
Virtual Memory. In Proceedings of the 5th Workshop on Hot Topics in Op-
erating Systems, pages 72–77, Orcas Island, Washington, May 1995.

[18] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an Operating
System Architecture for Application-level Resource Management. In Pro-

ceedings of the Fifteenth ACM Symposium on Operating Systems Principles,
SOSP ’95, pages 251–266, 1995.

[19] B. Ford and R. Cox. Vx32: Lightweight User-Level Sandboxing on the x86.
In Proceedings of the 2008 USENIX Annual Technical Conference, ATC’08,
pages 293–306, 2008.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Mi-
crokernels Meet Recursive Virtual Machines. In Proceedings of the Sec-
ond USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’96, pages 137–151, 1996.

[21] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interpo-
sition Based Security Tools. In Proceedings of the Network and Distributed
Systems Security Symposium, pages 163–176, 2003.

[22] R. P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD
thesis, Harvard University, Cambridge, MA, 1972.

[23] Google. sparsehash. http://code.google.com/p/sparsehash/,
Apr. 2012.

[24] IBM. Power ISA, Version 2.06 Revision B.
[25] Intel. Intel Virtualization Technology Specification for the Intel Itanium Ar-

chitecture (VT-i).
[26] Intel Corporation. Invalid Instruction Erratum Overview. http:

//www.intel.com/support/processors/pentium/sb/
cs-013151.htm, Apr. 2012.

[27] K. Kaspersky and A. Chang. Remote Code Execution thorugh Intel CPU
Bugs. In Hack In The Box (HITB) 2008 Malaysia Conference.

[28] H. Kermany and E. Petrank. The Compressor: Concurrent, Incremental, and
Parallel Compaction. In Proceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’06, pages
354–363, 2006.

[29] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. SubVirt: Implementing Malware with Virtual Machines. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, SP ’06, pages
314–327, 2006.

[30] A. Kivity. KVM: the Linux Virtual Machine Monitor. In OLS ’07: The 2007
Ottawa Linux Symposium, pages 225–230, July 2007.

[31] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390 Interpretive-
Execution Architecture, Foundation for VM/ESA. IBM Syst. J., 30(1):34–51,
Feb. 1991.

[32] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation
of Zap: A System for Migrating Computing Environments. In Proceedings
of the Fifth Symposium on Operating Systems Design and Implementation,
pages 361–376, 2002.

[33] N. Provos. Improving Host Security with System Call Policies. In Proceed-
ings of the 12th USENIX Security Symposium, SSYM’03, 2003.

[34] M. Sweet. Mini-XML: Lightweight XML Library. http://www.
minixml.org/, Apr. 2012.

[35] S. Tang, H. Mai, and S. T. King. Trust and Protection in the Illinois Browser
Operating System. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’10, pages 1–8, 2010.

[36] G. Tene, B. Iyengar, and M. Wolf. C4: the Continuously Concurrent Com-
pacting Collector. In Proceedings of the International Symposium on Mem-
ory Management, ISMM ’11, pages 79–88, 2011.

[37] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson,
S. Bennett, A. Kagi, F. Leung, and L. Smith. Intel Virtualization Technology.
Computer, 38(5):48 – 56, May 2005.

[38] P. Varanasi and G. Heiser. Hardware-Supported Virtualization on ARM. In
Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11,
pages 11:1–11:5, 2011.

[39] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, pages 79–93, 2009.

[40] E. Zayas. Attacking the Process Migration Bottleneck. In Proceedings of
the eleventh ACM Symposium on Operating Systems Principles, SOSP ’87,
pages 13–24, 1987.



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 349

Performance Isolation and Fairness for
Multi-Tenant Cloud Storage

David Shue�, Michael J. Freedman�, and Anees Shaikh†
�Princeton University, †IBM TJ Watson Research Center

Abstract
Shared storage services enjoy wide adoption in commer-
cial clouds. But most systems today provide weak per-
formance isolation and fairness between tenants, if at
all. Misbehaving or high-demand tenants can overload
the shared service and disrupt other well-behaved tenants,
leading to unpredictable performance and violating SLAs.

This paper presents Pisces, a system for achieving
datacenter-wide per-tenant performance isolation and fair-
ness in shared key-value storage. Today’s approaches for
multi-tenant resource allocation are based either on per-
VM allocations or hard rate limits that assume uniform
workloads to achieve high utilization. Pisces achieves
per-tenant weighted fair shares (or minimal rates) of the
aggregate resources of the shared service, even when dif-
ferent tenants’ partitions are co-located and when demand
for different partitions is skewed, time-varying, or bot-
tlenecked by different server resources. Pisces does so
by decomposing the fair sharing problem into a combina-
tion of four complementary mechanisms—partition place-
ment, weight allocation, replica selection, and weighted
fair queuing—that operate on different time-scales and
combine to provide system-wide max-min fairness.

An evaluation of our Pisces storage prototype achieves
nearly ideal (0.99 Min-Max Ratio) weighted fair sharing,
strong performance isolation, and robustness to skew and
shifts in tenant demand. These properties are achieved
with minimal overhead (<3%), even when running at high
utilization (more than 400,000 requests/second/server for
10B requests).

1. Introduction
An increasing number and variety of enterprises are mov-
ing workloads to cloud platforms. Whether serving exter-
nal customers or internal business units, cloud platforms
typically allow multiple users, or tenants, to share the
same physical server and network infrastructure, as well
as use common platform services. Examples of these
shared, multi-tenant services include key-value stores,
block storage volumes, SQL databases, message queues,
and notification services. These leverage the expertise of
the cloud provider in building, managing, and improving
common services, and enable the statistical multiplexing
of resources between tenants for higher utilization.

Because they rely on shared infrastructure, however,
these services face two key, related issues:
• Multi-tenant interference and unfairness: Tenants

simultaneously accessing shared services contend
for resources and degrade performance.
• Variable and unpredictable performance: Tenants

often experience significant performance variations,
e.g., in response time or throughput, even when they
can achieve their desired mean rate [8, 16, 33, 35].

These issues limit the types of applications that can mi-
grate to multi-tenant clouds and leverage shared services.
They also inhibit cloud providers from offering differ-
entiated service levels, in which some tenants can pay
for performance isolation and predictability, while others
choose standard “best-effort” behavior.

Shared back-end storage services face different chal-
lenges than sharing server resources at the virtual machine
(VM) level. These stores divide tenant workloads into dis-
joint partitions, which are then distributed (and replicated)
across different service instances. Rather than managing
individual storage partitions, cloud tenants want to treat
the entire storage system as a single black box, in which
aggregate storage capacity and request rates can be elasti-
cally scaled on demand. Resource contention arises when
tenants’ partitions are co-located, and the degree of re-
source sharing between tenants may be significant higher
and more fluid than with coarse VM resource allocation.
Particularly, as tenants may use only a small fraction of a
server’s throughput and capacity,1 restricting nodes to a
few tenants may leave them highly underutilized.

To improve predictability for shared storage systems
with a high degree of resource sharing and contention,
we target global max-min fairness with high utilization.
Under max-min fairness, no tenant can gain an unfair
advantage over another when the system is loaded, i.e.,
each tenant will receive its weighted fair share. Moreover,
given its work-conserving nature, when some tenants use
less than their full share, unconsumed resources are di-
vided among the rest to ensure high utilization. While our
mechanisms may be applicable to a range of services with
shared-nothing architectures [31], we focus our design
and evaluation on a replicated key-value storage service,
which we call Pisces (Predictable Shared Cloud Storage).

1Indeed, at today’s Amazon S3 prices, a single server handling
50,000 GET reqs/second would cost $180/hour in request pricing alone.



350 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Providing fair resource allocation and isolation at the
service level is confounded by variable demand to differ-
ent service partitions. Even if tenant objects are uniformly
distributed across their partitions, per-object demand is
often skewed, both in terms of request rate and size of
the corresponding (read or write) operations. Moreover,
different request workloads may stress different server
resources (e.g., small requests may be interrupt limited,
while large requests are bandwidth limited). In short,
simply assuming that each tenant requires the same pro-
portion of resources per partition can lead to unfairness
and inefficiency. To address these issues, Pisces makes a
number of contributions:

(1) Global fairness. To our knowledge, Pisces is the
first system to provide per-tenant fair resource sharing
across all service instances. Further, as total system ca-
pacity is allocated to tenants based on their normalized
weights, such a max-min fair system can also provide min-
imal performance guarantees given sufficient provisioning.
In comparison, recent commercial systems that offer re-
quest rate guarantees (i.e., Amazon DynamoDB [1] do
not provide fairness, assume uniform load distributions
across tenant partitions, and are not work conserving.

(2) Novel mechanism decomposition. Pisces intro-
duces a clean decomposition of the global fairness prob-
lem into four mechanisms. While operating on different
timescales and with different levels of system-wide visibil-
ity, these mechanisms complement one another to ensure
fairness under resource contention and variable demand.

(i) Partition Placement ensures a fair allocation by (re)-
assigning tenant partitions to nodes (long timescale).

(ii) Weight Allocation distributes overall tenant fair
shares across the system by adjusting local per-tenant
weights at each node (medium timescale).

(iii) Replica Selection load-balances requests between
partition replicas in a weight-sensitive manner (real-time).

(iv) Weighted Fair Queuing at service nodes enforces
performance isolation and fairness according to the local
tenant weights (real-time).

(3) Novel algorithms. We introduce several novel al-
gorithms to implement Pisces’s mechanisms. These in-
clude a reciprocal swapping algorithm for weight alloca-
tion that shifts weights when tenant demand for local re-
sources exceed their local share, while maintaining global
fairness. We use a novel application of optimization-
inspired congestion control for replica selection, which
complements weight allocation by distributing load over
partition replicas in response to per-node latencies. Fi-
nally, to manage different resource bottlenecks on con-
tended nodes, we enforce dominant resource fairness [9]
between tenants at the node level, while providing max-
min fairness at the service level. To do so, we extend
traditional deficit-weighted round robin queuing to han-
dle per-tenant multi-resource scheduling.

Tenant A Tenant B Tenant C

Node 2 Node 3

VM VM VM VM VM VM VM VM VM

3

Node 1

RR

wa1 wb1

GET 1101100

wc1

WeightA WeightB WeightC 
Tenant D
VM VM VM

WeightD 

PP
RS

FQ

wd1 wa2 wb2 wc2 wd2 wa3 wb3 wc3 wd3

Controller

WA

tenant partitions

de
m

an
d

wc4 : local weight

Figure 1: Pisces multi-tenant storage architecture.

(4) Low overhead and high utilization. Pisces is de-
signed to support high server utilization, both high request
rates (100,000s requests per second, per server) and full
bandwidth usage (Gbps per server). To do so, its mecha-
nisms must apply at real time without inducing significant
throughput degradation. Through careful system design,
our prototype achieves <3% overhead for 1KB requests
and actually outperforms the unmodified, non-fair version
for small requests. Commercial systems like DynamoDB,
on the other hand, typically target lower rates (e.g., more
than 10,000 reqs/s requires special arrangements [2]).

Through an extensive experimental evaluation, we
demonstrate that Pisces significantly improves the multi-
tenant fairness and isolation properties of our key-value
store, built on Membase [3], across a range of tenant
workloads. We also show that its replica selection and
rebalancing policies optimize system performance, even
as workload patterns shift dynamically. While this paper
frames the partition placement problem and implements
a simple greedy placement algorithm for our evaluation,
we do not fully explore and evaluate its design space.

2. Architecture and Design
We consider multi-tenant cloud services with partitioned
workloads (i.e., data sets), where each partition is disjoint
but may be replicated on different service nodes. Client
requests are routed to the appropriate node based on the
partition mapping, and the replica selection policy in use.
Ultimately, request arbitration for fairness and isolation
between tenants occurs at the service nodes.

Figure 1 shows the high-level architecture of Pisces,
a key-value storage service that provides system-wide,
per-tenant fairness and isolation. Pisces provides the se-
mantics of a persistent map between opaque keys (bit-
strings) and unstructured data values (binary blobs) and
supports simple key lookups (get), modifications (set),
and removals (delete). To partition the workload, the keys
are first hashed into a fixed-size key space, which is then
subdivided into disjoint segments.

Pisces enforces per-tenant fairness at the system-wide
level. As shown in Figure 1, each tenant t is given a

2



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 351

single, global weight wt that determines its fair share of
overall system resources (i.e., throughput). These weights
are generally set according to the tenant’s service-level
objective (SLO). To support service models with rate guar-
antees, the provider can simply convert a specified rate
into a corresponding system resource proportion (weight)
given the current capacity. The service provider can also
adjust the tenant weights, e.g., in response to new tenant
requirements or changes in system capacity.

Pisces allows a cloud service provider to offer a flexible
service model, in which customers pay for their consumed
storage capacity, with an optional additional tiered charge
for an “assured rate” service. Assured service users can
reserve a minimum service throughput—which, when
normalized, translates to a minimum fair share of the
global service throughput—with the price dependent upon
this rate. The system ensures this minimum rate, yet
also allows users to exploit unused capacity (perhaps
while charging an additional “overage” fee). Such multi-
tiered charging is common in many Internet contexts, e.g.,
network transit and CDNs often use burstable billing and
charge differently for rate commitments and overages.

While Pisces’s general mechanisms should extend to
other shared storage systems, our current prototype makes
some simplifying assumptions. It does not support more
advanced queries, such as scans over keys. It is designed
primarily to serve keys out of an in-memory cache for
high throughput, and only asynchronously writes data to
disk (much like Masstree [19] and the MyISAM storage
engine in MySQL). We do not focus on consistency issues,
and assume that a separate protocol keeps the partition
replicas in sync.2 Further, we assume a well-provisioned
network (e.g., one with full bisection bandwidth [5]); we
do not deal explicitly with in-network resource sharing
and contention, which has been considered by comple-
mentary work [26, 27, 28]. Finally, we assume a reason-
ably stable tenant workload distribution. While Pisces can
support highly-skewed demand distributions across par-
titions and can handle short-term fluctuations in demand
for particular keys, we assume that the relative popularity
of entire partitions shifts relatively slowly (e.g., on the or-
der of minutes). This provides the system with sufficient
time to rebalance partition weights when needed.

2.1 Life of a Pisces Request
Before a tenant can read (get) and write (set) data in the
system, a central controller first performs partition place-
ment (PP) to assign its data partitions (and their replicas)
to service nodes. Each tenant has its own key space, but
partitions from different tenants may be co-located on
the same service node. The controller then disseminates

2Our implementation is built on Membase [3], which asyn-
chronously replicates from a partition’s primary copy to its backup(s),
and by default reads only from the primary for strong consistency.

the partition mapping information to each of the request
routers. These request routers can be implemented in
client libraries running on the tenants’ (virtual) machines,
or deployed on intermediate machines (as illustrated in
Figure 1). The controller also translates each tenant’s
global fair-share into local shares at individual storage
nodes through weight allocation (WA).

When a client tenant, C, issues a request to Pisces, the
request router dispatches the request based on its key (e.g.,
1101100) and partition location to an appropriate server.
If enabled, replica selection (RS) allows the request router
to flexibly choose which replica to use (e.g., Nodes 1 or
4). Otherwise, the router directs the request to the primary
partition. Once the replica has been selected, the router
adds the request to a windowed queue of outstanding
operations—one queue per server, per tenant.

Since partitions from multiple tenants may reside on
this node, the tenants’ requests will contend for resources.
To enforce fairness and isolation, the service node applies
fair queuing (FQ) to schedule tenant requests accord-
ing to each tenant’s local weight (wc,4). When a request
reaches the server, the server adds the request to a queue
specific to that tenant (C). Every “round” of execution,
the server allocates tokens to each tenant according to
its local weight (wc,4), which it then consumes when pro-
cessing requests from the tenant queues. If the request
consumes more than the allocated resources, it must com-
plete on a subsequent round after tenant C’s tokens have
been refilled. This guarantees that each tenant will receive
its local fair share in a given round of work, if multiple
tenants are active. Otherwise, tenants can consume excess
resources left idle by the others without penalty.

2.2 System-wide Fair Sharing: Example
The challenge of achieving system-wide fairness can be il-
lustrated with a few scenarios, as shown in Figure 2. From
these, we derive design lessons for how Pisces should (1)
place partitions to enable a fair allocation of resources,
(2) allocate local weights to maintain global fairness, (3)
select replicas to achieve high utilization, and (4) queue re-
quests to enforce fairness. In the examples, two tenants (A
and B) with equal global shares access two Pisces nodes
with equal capacity (100 kreq/s). Each tenant should
receive the same aggregate share of 100 kreq/s.

Partitions should be placed with respect to demand
and node capacity constraints. For per-tenant fairness
to be feasible, there must exist some assignment of tenant
partitions that can satisfy the global tenant shares with-
out violating node capacities. Not all placements lead
to a feasible solution, however, as shown in Figure 2a.
Here, each tenant has the same skewed distribution of
partition demand: 40, 30, 20, and 10. Arbitrary partition
assignment can easily lead to capacity overflow: with A
and B both demanding 60 kreq/s for the partitions on the

3



352 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

first node, each tenant receives 10 kreq/s less than their
global share. If we take partition demand into account and
shuffle tenant B’s partitions between the nodes, then we
can achieve a fair and feasible placement. Although the
skew in this example may be extreme, Internet workloads
often exhibit a power-law (or Zipf) distribution across
keys, which can induce skewed partition demand.

Local weights should give tenants throughput
where they need it most. Even with a feasible fair par-
tition placement, if the local weights simply mirror the
global (uniform: 50 each) weights, as in Figure 2b, global
fairness may still suffer. Although fair queuing allows
tenant B to consume more than its local share (60 > 50) at
the first node when A consumes less (40 < 50), if tenant
A increases its demand, it will consume its remaining
local allocation. This will increase its global share and eat
into tenant B’s global share. However, if we adjust each
tenant’s local weights to match their demand (60/40 and
40/60), we can preserve fairness even under excess load.

Replicas should be selected in a weight-sensitive
manner. When replica selection is enabled, the fairness
problem becomes easier, in general, since each replica
only receives a fraction of the original demand. By spread-
ing partition demand across multiple servers, replica se-
lection produces smoother distributions that makes par-
titions easier to place. Further, once placed, the reduced
per-replica demand is easier to match with local weights.

However, the replica selection policy must be carefully
tuned, otherwise fairness and utilization may still diverge
from the system-wide goals. In Figure 2c, tenant A can
send requests to replicas on either node. However, since
its local weights are skewed to match the resident partition
demand, simple replica-selection policies are insufficient
to exploit the variation between the local weights. For
example, equal-split round robin would lead to a 10 kreq/s
drop in A’s global share. Instead, by adjusting per-tenant
replica selection proportions to reflect the local weights,
we can fully exploit replicated reads for both improving
performance and facilitating fairness.

Request queuing should enforce dominant resource
fairness. Up to this point, our examples have illustrated
multiple tenants with identical weights competing for
identical request rates, which implicitly assumes that all
requests have equivalent cost. In practice, requests may
be of different input or output sizes, and can activate
different bottlenecks in the system (e.g., small requests
may be bottlenecked by server interrupts, while large
requests may be bottlenecked by network bandwidth).
Thus, each tenant’s workload may vary accordingly across
the different resources, as seen in Figure 2d.

Each tenant’s resource profile shows the relative pro-
portion of each resource—bytes in, bytes out, and number
of requests—that the tenant consumes. These resources
are the likely limiting factor for writes, reads, and small

PP

4

50 50 40 40

ShareA = 90 ShareB = 90 ShareA = 100 ShareB = 100

Co-located high demand partitions 
exceed node capacity (100)

place partitions according to 
tenant shares and node capacities

60 40 40 60

tenant partition

de
m

an
d 403020 10Equal fair share = 100

Node capacity = 100
DemandA = DemandB = 100

WeightA = WeightB  

= 1

unfulfilled demand
fulfilled demand

WeightA = WeightB : Equal fair share = 100 

40 40 40 4030 3020 20 2020 30 30

(a) Random partition placement can lead to infeasibility

5

ShareA = 90 ShareB = 110

50 50 40 60 60 40 40 60

WB1

= 40
WA1 

= 60
WB2

= 60
WA2

= 40
WA1 = WB1 = 50

ShareA = 100 ShareB = 100
Tenant B sends 1.5x demand (150)

and consumes extra share

WA2 = WB2 = 50

allocate local weights where 
tenants need it most

WA

(b) Mirrored local weight allocation can impair fairness and performance

RS

ShareA = 90 ShareB = 100 ShareA = 100 ShareB = 100

6

50 40 40 60

RR
50 50

60 40 40 60

60 40

WB1

= 40
WA1 

= 60
WB2

= 60
WA2

= 40
WB1

= 40
WA1 

= 60
WB2

= 60
WA2

= 40

distribute requests according to 
local weights

even request splitting leaves 
capacity unused

(c) Equal split replica selection can degrade fairness and performance

Tenant A
out=50%

Tenant B
req=62. 5%

out

4
0.5 1

4
0.5

3.2

50
12.5

50
62.5

in req

6.3 7.8

outin req

Tenant A
out=55%

Tenant B
req=55%

Different resource bottlenecks 
can lead to unfairness

enforce tenant shares based on 
their dominant resource

ShareA1 = 50 ShareB1 = 62.5 ShareA1= 55 ShareB1= 55

FQ

4
0.5 1

4
0.5

3.2

55
13.8

44 55
6.9 6.9

outin req outin req

(d) Single-resource queuing can violate fairness

Figure 2: Illustrating the difficulty in achieving
system-wide fairness. Both tenants have the same
global weight (equal fair share); Share is the normal-
ized rate actually achieved by each tenant. Left-hand
figures correspond to settings lacking Pisces’s mecha-
nisms; right-hand figures apply its techniques.

requests, correspondingly. Tenant A is read bandwidth
bound, consuming 4% of the out bandwidth for every
1% of request capacity it uses. Tenant B, on the other
hand, is interrupt-bound for its smaller reads, consuming
more request resources (4%) than out bandwidth (3.2%).
Applying fair queuing to a single resource (bytes out)
gives each tenant a fair share of 50%, but also allows

4



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 353

tenant B to receive a larger share (62.5%) of its dominant
resource (requests). Instead, using dominant resource fair-
ness (DRF) [9] ensures that each tenant will receive a fair
share of its dominant resource relative to other tenants:
tenant A receives 55% of out bytes and tenant B receives
55% of requests, while out bytes remains the bottleneck.

3. Pisces Algorithms
Pisces implements four complementary mechanisms ac-
cording to the design lessons discussed above. Each mech-
anism operates on different parts of the system at different
timescales. Together, they deliver system-wide fair ser-
vice allocations with minimal interference to each tenant.

3.1 Partition Placement
The partition placement mechanism ensures the feasibility
of the system-wide fair shares. It assigns partitions so that
the load on each node (the aggregate of the tenants’ per-
partition fair-share demands) does not exceed the node’s
rate capacity. Since our prototype currently only imple-
ments a simple greedy placement scheme, here we only
outline the algorithm without providing details. The cen-
tralized controller first collects the request rate for each
tenant partition, as measured at each server. It then com-
putes the partition demand proportions by normalizing
the rates. Scaling each tenant’s global fair share by these
partition proportions determines the per-partition demand
share that each tenant should receive. Next, the controller
supplies the demand and node capacity constraints into
a bin-packing solver to compute a new partition assign-
ment relative to the existing one. Finally, the controller
migrates any newly (re)assigned partitions and updates
the mapping tables in its request router(s).

Partition placement typically runs on a long timescale
(every few minutes or hours), since we assume that tenant
demand distributions (proportions) are relatively stable,
though demand intensity (load) can fluctuate more fre-
quently. However, it can also be executed in response
to large-scale demand shifts, severe fairness violations,
or the addition or removal of tenants or service nodes.
While the bin-packing problem is NP-hard, simple greedy
heuristics may suffice in many settings, albeit not achieve
as high a utilization. After all, to achieve fairness, we only
need to find a feasible solution, not necessarily an optimal
one. Further, many efficient approximation techniques
can find near-optimal solutions [22, 29]. We intend to
further explore partition placement in future work.

3.2 Weight Allocation
Once the tenant partitions are properly placed, weight
allocation iteratively adjusts the local tenant shares (R)
to match the demand distributions. As sketched in Al-
gorithm 1, the weight-allocation algorithm on the con-

troller (i) detects tenant demand-share mismatch and (ii)
decides which tenant share(s) (weights) to adjust and by
what amount, even while it (iii) maintains the global fair
share. A key insight is that any adjustment to tenant
shares requires a reciprocal swap: if tenant t takes some
rate capacity from a tenant u on some server, t must give
the same capacity back to u on a different server. This
swap allows the tenants to maintain the same aggregate
shares even while local shares change. Each tenant’s local
weight is initially set to its global weight, wt, and then
adapts over time. To adapt to distribution shifts yet allow
replica selection to adjust to the current allocation, weight
allocation runs in the medium timescale (seconds).

Detecting mismatch: While it is difficult to directly
measure tenant demand, the central controller can monitor
the rate each tenant receives at the service nodes. Weight
allocation uses this information (D), together with the
allocated shares (R), to approximate the demand-share
mismatch that each tenant experiences on each node. We
tried both a latency-based cost function using the M/M/1
queuing model of request latency—i.e., ltn = 1 / (Rt

n −Dt
n)

for tenant t on node n—as well as a more direct rate-based
cost. Unfortunately, in a work-conserving system, it can
be difficult to determine how much rate R was actually
allocated to t, as it can vary depending on others’ de-
mand. For example, if a tenant t has weight wt

n=
1
4 on a

node with capacity cn, then its local rate under load is just
R̂t

n =
1
4 cn, even though Rt

n ≥ 1
4 cn if t has excess demand

and other tenants are not fully using their shares. Instead,
by using the difference between the consumed rate and
the configured local share, et

n =
∣∣∣Dt

n − R̂t
n

∣∣∣, we can largely
ignore the variable allocation and instead focus on the ten-
ant’s desired rate under full load (i.e., R̂). Fortunately, the
allocation algorithm can easily accommodate any convex
cost function to approximate demand mismatch.

Determining swap: Since the primary goal of Pisces
is fairness, weight allocation seeks to minimize the max-
imum demand-share mismatch (or cost). However, giv-
ing additional rate capacity to the tenant t that suffers
maximal latency necessarily means taking away capac-
ity from another tenant u at the same node n. If too
large, this rate (weight) swap may cause u’s cost to
exceed the original maximum. To ensure a valid rate
swap, the algorithm uses the linear bisection for latency,
take(t, u, n) =

(
(Ru

n − Du
n) − (Rt

n − Dt
n)
) /

2, or the min of
the differences for rate: min(et

n, e
u
n).

Maintaining fair share: Before committing to a final
swap, weight allocation must first find a reciprocal swap
to maintain the global fair share: if tenant t takes from
tenant u at node n, then it must reciprocate at a different
node. Given a reciprocal node m, the controller computes
the rate swap as the minimum of the take and give swaps,
swap = min

(
take(t, u, n), give(u, t,m)

)
, and translates the

rates into the corresponding local weight settings.

5



354 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

Algorithm 1 Weight Allocation: medium timescale (s)

T : tenants, N: nodes, W: global tenant weights,
R: local tenant resource share

function Controller.AllocateWeights(T,N,W,R)
D← monitor node rates(T,N)
C ← compute cost estimates(D,R)
R← compute weight swap(max(C))
reassign weight allocations(R)

Algorithm 2 Replica Selection: real-time (ms)
j: request/response, t: tenant, M: partition mappings
n: node, qt: per-tenant request queue

function RequestRouter.SendRequest( j, t,M)
p← get partition of( j)
for n ∈ M[t, p] do

if window wt
n > outstanding st

n then
send request( j, n)
st

n ← st
n + 1 return

if not sent then queue request( j, qt)

function RequestRouter.RecvResponse( j, t, n)
lresp,n ← latency of response( j)
st

n ← st
n − 1

update window(wt
n, lresp,n)

SendRequest(dequeue request(qt), t,M)

Algorithm 3 Fair Queuing: real-time (µs)
j: request, t: tenant, r: round, R: local tenant share

function ServiceNode.QueueRequests(R)
while j, t ← dequeue request() do

if t.state = inactive then
t.state← active
allocate tenant tokens(R)

if tokens available for t then
consume request resources( j, t)
if j unfinished then

queue request( j)
else

if resources left for j then
refund unused resources( j,t)

if no requests left for t then
t.state← inactive

else
queue exhausted request( j, t)
t.state← exhausted

if ∃ t ∈ T such that t.state = exhausted then
r ← r + 1 (increment round)
allocate tenant tokens(R)

3.3 Replica Selection
To maintain fairness while balancing load, request routers
distribute tenant requests to partition replicas in propor-
tion to their local shares (i.e., normalized weights). While
the controller (or alternatively, each server) could dissem-
inate the local share information to each request router,
Pisces avoids the need for explicit updates by exploiting
implicit feedback. Explicit updates could be prohibitively

expensive for a system with tens of thousands of tenants,
request routers, and service nodes.

As delineated in Algorithm 2, when a request router (or
client) sends a request, it round-robins between partition
replicas (nodes), consuming slots from their respective
request windows. Once the windows fill up, the request
router locally queues requests until server responses free
additional window slots. Due to per-tenant fair queuing at
the nodes, requests sent to nodes with a larger tenant share
experience lower queuing delay than nodes with a smaller
share. The request router uses the relative response la-
tency between replicas as a proxy for the size differential
between the local rate allocations. It thus adjusts the re-
quest windows according to the FAST-TCP [34] update:

w(m + 1)t
n = (1−α) · w(m)t

n + α ·
(

lbase
lest

)

Each iteration of the algorithm adjusts the window
based on how close the tenant demand is to its local rate
allocation, which is represented by the ratio of a desired
average request latency, lbase, to the smoothed (EWMA)
latency estimate, lest. The α parameter limits the window
step size. Thus, each request router makes proper adjust-
ments in a fully decentralized fashion: it only uses local
request latency measurements to compute the replica pro-
portions. The convergence and stability guarantees for
this approach follow from those given by FAST-TCP.

Because replica selection balances a tenant’s demand
distribution in real-time, the per-tenant demand at each
service node equilibrates before the next iteration of
the weight-allocation algorithm. Weight allocation then
attempts to match the local tenant shares (normalized
weights) to the new demand distribution. The conver-
gence and stability of this interlocking coordinate-ascent
algorithm arises from the convex nature of the problem.

3.4 Fair Queuing
Ultimately, system-wide fairness and isolation comes
down to mediating resource contention between tenants
at the individual storage nodes. To implement fair queu-
ing, Pisces uses the deficit (weighted) round robin [30]
(DWRR) scheduling discipline for its simplicity, low time
complexity, and bounded deviation from the ideal Gener-
alized Processor Sharing model. In DWRR, the basic unit
of work is called a token, which represents a normalized
request or quantum of work. Pisces applies Dominant Re-
source Fairness, as mentioned in Section 2.2, to translate
a token into a tenant-specific resource allocation vector.
Currently, our implementation accounts for the number
of bytes received, bytes sent, and requests (the latter for
request-bound workloads). The queuing algorithm can
also support additional resources like disk IOPs, which
we intend to explore in the future. Multiple tokens may
be needed to serve a large request, or a single token’s
resources may span several small requests. In any given

6



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 355

round of request processing, each tenant can consume up
to its weighted share of the total fixed number of available
tokens. By bounding the number of tokens per round, the
scheduler can ensure fairness within a definite timeframe.

Request processing in DWRR proceeds in rounds. Per
Algorithm 3, on each scheduling round, the scheduler
allocates tokens to each active tenant (those with queued
requests) in proportion to their local weight. As it pro-
cesses requests, the scheduler consumes resources from
the token resource allocation. If a request requires addi-
tional resources, the scheduler adds it back on the request
queue to mitigate head-of-line blocking. Otherwise, it
refunds the tenant with any unconsumed resources. If
a tenant runs out of tokens, the scheduler adds its out-
standing requests to an exhausted queue. The scheduler
advances the round and refreshes tokens only when every
tenant is either inactive (no work) or exhausted (work but
no tokens) and there is work to do in the next round.

To compute the proper Dominant Resource Fair (DRF)
shares, the scheduler on each node tracks the resource con-
sumption of each tenant. Periodically (every half second
in our prototype), it recomputes the resource allocation.
First, the scheduler determines each tenant’s resource
utilization

(
e.g., Ut

bytes-out =
bytes-outt

bytes-outcap
)

and its dominant
resource

(
Ut

dom=maxi(Ut
i )
)
, using the latter to normalize

each utilization. The scheduler computes the limiting
DRF allocation by finding the minimum of the inverse of
the weighted utilization sums: mini

( 1∑
i wtUt

i

)
. Any excess

resources are distributed equally among all tenants.
Despite the fact that Pisces only enforces DRF on a per-

node level, it still provides global max-min fair shares for
each tenant. When two tenants have different dominant
resources at a node, DRF allocates each tenant a larger
local share than it would have received if the tenants had
contended for the same resource. In other words, each
tenant’s share of its dominant resource is lower bounded
by the max-min fair share of a single common resource.
Thus, even if a tenant’s dominant resource varies from
node to node, its aggregate share will still equal or ex-
ceed its max-min fair share (proportion) of total system
resources. This allows Pisces to use a single weight to
represent the per-tenant global and local shares, rather
than a more complicated weight vector.

4. Pisces Optimizations
Pisces’s algorithms and its four part decomposition can
be conceptually derived as a distributed optimization
problem [24]. In designing Pisces, we consider a multi-
timescale decomposition of the fair-sharing problem into
the corresponding Pisces mechanisms. Such a formula-
tion allows us to craft the Pisces algorithms in a princi-
pled way and to make assertions about their feasibility,
optimality, stability, and convergence under the standard

t’

t

t’ → u @ n: 5 t’ → v @ n: 3

u → v @ m: 4

v →u @ o: 4

v → t @ o: 5u → t @ m: 3

vu

Figure 3: Reciprocal weight exchange modeled as a
Maximum Bottleneck Flow problem.

assumptions of convex optimization. In the remainder of
this section, we discuss additional design and implemen-
tation considerations in the Pisces weight allocation and
fair queuing mechanisms.

4.1 Finding Multilateral Weight Swaps
While a bilateral exchange between two tenants (as de-
scribed in Section 3.2) may suffice, a multilateral ex-
change may optimize local shares even further. We model
this exchange as a path through a flow graph, as shown in
Figure 3. Nodes in the graph represent tenants and each
directed edge represents a possible swap with capacity
equal to the swap rate (e.g., tenant u can take rate 4 from
tenant v at server m). The swap rate must be positive,
and it is computed as the maximum over all server nodes
where the edge’s tenants have co-located partitions.

The max latency tenant t is modeled as both the source
t′ and sink of the flow graph, as it must first take rate
to minimize its cost (latency or rate-distance) and then
reciprocate to maintain the global fair-share invariant. In
the example, both bilateral exchanges (t′ → u→ t and
t′ → v→ t) are bottlenecked by the edge with smallest
capacity (i.e., 3). Instead, weight allocation should choose
the multi-hop path (t′→u→v→ t) with bottleneck 4 that
corresponds to the Maximum Bottleneck Flow (MBF).
The MBF not only minimizes the max cost for t by the
greatest extent, but also reduces the cost for u and v.

On each iteration of the weight allocation loop in Al-
gorithm 1, the controller constructs the flow graph from
the collected node latency data and solves the MBF prob-
lem using a variant of Dijkstra’s shortest path algorithm.
Then, just as with bilateral swaps, the algorithm converts
the rates into weights and sets the local tenant shares ac-
cordingly. To avoid oscillations around the optimal point,
both the tenant latencies and the swap rate must exceed
minimal thresholds, in order to ensure that the weight
adjustment results in the desired rate change.

4.2 Getting Fair Queuing Right
Enforce queuing at the appropriate software layer.
Implementing the server DWRR scheduler may seem
straightforward at first, but it presents an engineering
challenge to do so with low overhead. The most natural
approach is simply to place tenant request queues right
after request processing in the application, as in Figure 4b.

7



356 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant data 
partitions

tenant 
connection

per-tenant queue

generic queue
tenant 
request DWRR schedulingWT worker

thread

work stealing

(a) DWRR scheduler legend

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant 
connection

per-tenant queue

generic queue

tenant data 
partitions

tenant 
request FQ schedulingWT worker

thread

(b) Per-request DWRR

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant 
connection

per-tenant queue

generic queue

tenant data 
partitions

tenant 
request FQ schedulingWT worker

thread

(c) Per-connection

WT WT

Per-request DWRR Per-connection DWRR Non-Blocking DWRR

WT WT

Active QueueWT WT

Active Queue

tenant 
connection

per-tenant queue

generic queue

tenant data 
partitions

tenant 
request FQ schedulingWT worker

thread

(d) Non-blocking

Figure 4: Scheduling per-connection (c) instead of
per-request (b) achieves fairness. Decoupling threads
and work-stealing (d) optimizes performance.

The problem, however, is that resources have already
been consumed (to receive bytes and parse the request),
which prevents the scheduler from enforcing fairness and
isolation for certain network I/O bound workloads. Thus,
the Pisces scheduler instead operates prior to application
request handling, as in Figure 4c, and mediates between
connections before any resources are consumed. Now,
however, the scheduler no longer knows how much work
remains in each connection queue. To handle this uncer-
tainty, the DWRR scheduler allocates a fixed number of
tokens from the tenant’s token pool when a connection is
dequeued for processing. As in Algorithm 3, any unused
tokens and resources are refunded back to the tenant.

Avoid queue locking at all costs. Even with the sched-
uler in the right place, we still need to worry about the
queue’s implementation and efficiency. Maintaining a
centralized active queue—per-connection DWRR in Fig-
ure 4c—is a natural design point for fair-queuing. A sin-
gle thread enqueues connections, and separate worker
threads pull tenant connections off this queue one-at-
a-time, servicing them by consuming token resources.
While simple and fair, this design is flawed: whenever
the active queue is empty, the worker threads must wait
on a conditional lock. We found that the overhead of this
conditional waiting and waking can reduce the processing
of small requests by over 30%. To combat this overhead,
Pisces uses a combination of non-blocking per-tenant con-
nection queues [21] and a distributed form of DWRR [18].
In this scheme, each worker thread handles its own set
of tenant connections by sub-allocating tenant tokens for
local use. If a worker thread’s connections have either
quiesced or run out of tokens, it tries to steal work or to-
kens from the other threads. If nothing can be stolen, then
the worker thread can safely advance the round, since all
tenants are either inactive or exhausted.

Eliminate intermediary queuing effects. While this
non-blocking design (Figure 4d) is highly efficient, it

faces one final barrier to max-min fairness: our mea-
surements showed good performance for small requests
bottlenecked by server interrupts, but poor fairness for
bandwidth-bound workloads. This arises for two reasons.
First, if the scheduler does not properly wait for write-
blocked connections (EAGAIN) to finish consuming re-
sources before advancing the round, then high-weight,
bandwidth-bound tenants could see their remaining to-
kens wiped out prematurely. Second, over-sized TCP
send buffers (128 KB) mask network back pressure. On a
1Gbps link with sub-ms delay, the bandwidth delay prod-
uct is on the order of tens of kilobytes. When multiple
tenant connections (>64) contend for output bandwidth,
writes can succeed even when the outbound link is con-
gested, which again causes the scheduler to advance the
round too soon. In response, Pisces uses small connec-
tion send buffers (6 KB), and the scheduler waits for
I/O-bound connections to finish consuming resources be-
fore advancing the round. To prevent worker threads from
excessive idling due to non-local network congestion, the
scheduler uses a short timeout (2 ms) that wakes all I/O
quiescent threads and allows the round to advance.

5. Prototype on Membase
We implemented Pisces on top of the open-source Mem-
base [3] key-value storage system (part of the Couchbase
suite). Built around the popular memcached in-memory
caching engine, Membase adds object persistence, data
replication, and multi-tenancy. Membase relies heavily
on the in-memory key-value cache to serve requests and
dispatches disk-bound requests to a background thread.
Key-value set or delete operations are committed first in
memory and later asynchronously written to disk.

Membase creates even-sized explicit partitions and di-
rectly maps the partitions to server nodes. It can replicate
and migrate partitions for fault tolerance, and synchro-
nizes primary and secondary replicas in an eventually
consistent manner. For evaluation purposes, we replaced
Membase’s uniform partition-placement mechanism with
one based on a simple greedy heuristic, with which we
pre-compute a feasible fair placement based on known
(oracle) tenant demand distributions.

We integrated Pisces’s fairness and isolation mecha-
nisms into Membase using a mix of languages. Imple-
menting the optimized multi-tenant, non-blocking DWRR
scheduler in the core server codebase required an exten-
sive overhaul of the connection threading model in addi-
tion to adding the scheduling and queuing code in C (3000
LOC). Replica selection was implemented in Java (1300
LOC) and integrated directly in the spymemcached [4]
client library. Our centralized controller, which imple-
mented both weight allocation and partition placement,
comprised approximately 5000 LOC of Python.

8



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 357

6. Evaluation
In our evaluation, we consider how the mechanisms in
Pisces build on each other to provide fairness and perfor-
mance isolation by answering the following questions:

• Are each of the four mechanisms (PP, WA, FQ and
RS) necessary to achieve fairness and isolation?
• Can Pisces provide global weighted shares and en-

force local dominant resource fairness?
• How well does Pisces handle demand dynamism?

We quantify fairness as the Min-Max Ratio (MMR) of
the dominant resource (typically throughput) across all
tenants, xmin

xmax . This corresponds directly to a max-min
notion of fairness.

6.1 Experimental Setup
To evaluate Pisces’s fairness properties, we setup a testbed
comprised of 8 clients, 8 servers, and 1 controller host.
Each machine has two 2.4 GHz Intel E5620 quad-core
CPUs with GigE interfaces, 12GB of memory, and run
Ubuntu 11.04. Pisces server instances are configured with
8 threads and two replicas per partition. All machines are
connected directly to a single 1 Gbps top-of-rack switch
to provide full bisection bandwidth and avoid network
contention effects. Similarly, replica selection and request
routing are handled directly in a client-side library to
minimize proxy bottleneck effects.

On the clients, we use the Yahoo Cloud Storage Bench-
mark (YCSB) [7] to generate a Zipf distributed key-value
request workload (α = 0.99). Each client machine runs
multiple YCSB instances, one for each tenant, to mimic a
virtualized environment while avoiding the overhead of
virtualized networking. Each tenant is pre-loaded with a
fully cached data set of 100,000 objects which are hashed
over its key space and divided into 1024 partitions. Object
sizes are set to 1kB unless otherwise noted. Tenant re-
quest workloads include read-only (all GET), read-heavy
(90% GET, 10% SET) and write-heavy (50% GET, 50%
SET). All clients send their requests over TCP.

6.2 Achieving Fairness and Isolation
To understand how Pisces’s mechanisms affect fairness
and isolation, we evaluated each mechanism in turn and
in combination, as shown in Figure 5. Starting with an
unmodified base system (Membase) without fair queu-
ing, we alternately add in partition placement (PP), which
we pre-compute using our simple greedy heuristic, and
replica selection (RS). We then repeat the combination
with fair queuing (FQ) and static (uniform) local weights
and complete the set of permutations with weight allo-
cation (WA + FQ). In each experiment, 8 tenants with
equal global weights attempt to access the 8-node sys-
tem with the same demand. For illustrative purposes, we

first present results for a simple GET workload, and sum-
marize results for more complex workloads in Table 1.
For the 1kB GET workload, the fair share (1.0 MMR) is
bandwidth-limited at 109 kreq/s per node.

Unmodified Membase: The unmodified system pro-
vides poor throughput fairness (0.57 MMR) between ten-
ants. This is largely due to the inherent skew in the tenant
demand distribution which, per Section 2.2, can lead to
an infeasible partition mapping. Figure 6a shows ten-
ants 3 and 7 contending for hot partitions at server 2,
while tenants 2, 4, and 6 collide on server 3 under the de-
fault, demand-oblivious placement. In contrast, Figure 6b
shows how packing the partitions according to demand
resolves the node capacity violations, which improves
fairness. Once replica selection is enabled, though, the
infeasibility issue largely disappears. By splitting request
demand across replicas, RS smoothes out the hot spots.
This relaxes partition bin-packing problem and allows
the system to achieve high fairness both with and with-
out PP (≥ 0.92 MMR). While PP and RS help improve
fairness, without request scheduling, Membase still fails
to provide performance isolation. In the bottom half of
Figure 5a, half the tenants double their demand, which
degrades fairness across the board.

Multi-tenant Weighted FQ: Unsurprisingly, with
weighted dominant resource fair queuing, fairness barely
improves under the default placement due to over-
contention for resources on the servers, as shown in Fig-
ure 5b. Even with PP, fairness fails to improve despite
the feasible placement, since the tenants still access each
server at different rates, as seen in Figure 6b. Although
FQ enforces local (equal) weights, without aligning those
weights to tenant demand, tenants with more weight than
fair partition demand on a given node can still consume
up to their limit and violate the global fair share. How-
ever, despite the need for weight tuning, fair queuing
still proves essential for performance isolation. Where
Membase falls flat under excess demand from the 2x ten-
ants, fair queuing maintains fairness in all conditions.
Unmatched weights may allow tenants to consume more
than their fair share, but the tenants cannot consume more
than their local allocation, which bounds the deviation
from global fairness. Again, by smoothing out hot spots,
replica selection resolves the demand imbalance and im-
proves fairness with or without PP (∼ 99 MMR).

Weight Allocation and FQ: Enabling weight allo-
cation unlocks Pisces’s full potential, especially when
replica selection is disabled (e.g. for consistency). By
adapting to local tenant demands, weight allocation opti-
mizes the system for fairness even when the placement is
infeasible (0.79 MMR), as seen in Figure 5c. However,
since the tenant shares are limited by the over-loaded
nodes, overall throughput diminishes. Under a feasible
placement, weight allocation is able to find the optimal

9



358 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 30
 60
 90

 120
 150
 180 No FQ, No PP, No RS

MMR = 0.57

   
 

No FQ, PP, No RS

MMR = 0.95

   
 

No FQ, No PP, RS

MMR = 0.92

   
 

No FQ, PP, RS

MMR = 0.97

 0
 30
 60
 90

 120
 150

 10  20  30  40  50  60  70

N
o 

Q
ue

ue
 (k

re
q/

s)

MMR = 0.36
 10  20  30  40  50  60  70

   
 

MMR = 0.49
 10  20  30  40  50  60  70

   
 

MMR = 0.75
 10  20  30  40  50  60  70  80

   
 

MMR = 0.68
2x demand
1x demand

(a) Membase (no queuing): Unfair unless partition placement or replica selection are enabled and provides no isolation.

 0
 30
 60
 90

 120
 150
 180

  

FQ, No PP, No RS

MMR = 0.59

   
 

  

FQ, PP, No RS

MMR = 0.60

   
 

  

FQ, No PP, RS

MMR = 0.98

   
 

  

FQ, PP, RS

MMR = 0.98

 0
 30
 60
 90

 120
 150

 10  20  30  40  50  60  70

Fa
ir 

Q
ue

ue
 (k

re
q/

s)

MMR = 0.58
 10  20  30  40  50  60  70

   
 

MMR = 0.61
 10  20  30  40  50  60  70

   
 

MMR = 0.99
 10  20  30  40  50  60  70  80

   
 

MMR = 0.99
2x demand
1x demand

(b) Fair Queuing (equal local weights): Provides strong isolation, but struggles with fairness unless replica selection is enabled.

 0
 30
 60
 90

 120
 150
 180

  

WA, FQ, No PP, No RS

MMR = 0.79

   
 

  

WA, FQ, PP, No RS

MMR = 0.95

   
 

  

WA, FQ, No PP, RS

MMR = 0.98

   
 

  

WA, FQ, PP, RS

MMR = 0.99

 0
 30
 60
 90

 120
 150

 10  20  30  40  50  60  70

W
A 

+ 
FQ

 (k
re

q/
s)

MMR = 0.85
 10  20  30  40  50  60  70

   
 

Time (s)

MMR = 0.97
 10  20  30  40  50  60  70

   
 

  

MMR = 0.99
 10  20  30  40  50  60  70  80

   
 

  

MMR = 0.99
2x demand
1x demand

(c) Weight Allocation + Fair Queuing: Achieves the fairness under all conditions, even under infeasible partition mappings (no PP).

Figure 5: System-wide fairness and isolation under a combination of Pisces mechanisms.

weights for the tenant demand on each server, as de-
picted in Figure 6c, while preserving global fairness (0.95
MMR). Since replica selection balances demand, weight
allocation has little additional affect on fairness, but re-
mains necessary to adapt to demand fluctuations. Excess
demand can actually heighten the awareness of demand
mismatch without PP, though, again, global throughput
suffers. For all other cases, weight allocation tunes fair
queuing to mediate between the tenants, which ensures
high fairness (≥ 0.97 MMR) and performance isolation.

In addition to throughput fairness and isolation, Pisces
also provides a measure of latency isolation as well. The
first two groups in Figure 7 show the average median
latencies for the 1x and 2x demand tenants in the previ-
ous experiments. The max error bar indicates the 95th
percentile, while the min error bar indicates the spread
between the tenants’ median latencies. Without fair queu-
ing, there is little isolation with median latencies for both
1x and 2x tenants hovering around 4 ms. Adding replica

selection improves isolation where the 2x tenants experi-
ence about 1.7 times the median latency as the 1x tenants.
However, the latency spread (3.2 ms) spans the entire gap
between them. With fair queuing, the median latencies
are far more well-behaved. The 2x tenants receive a 2.1
times latency penalty with minimal (<1 ms) spread.

For a more thorough evaluation of Pisces fairness, we
experimented over a range of log-normal distributed ob-
ject sizes, where each tenant has object sizes drawn from
a distribution with the same mean value (1kB or 10B)
and standard deviation (0, 0.5, or 1). We also varied
the workloads between all read-only, all read-heavy, or a
mix of read-only, read-heavy, and write-heavy. Table 1
summarizes these results for Pisces with all mechanisms
enabled. We measured mean bandwidth consumption for
1kB objects and mean request rates for 10B objects, as
well as median request latency (1ms averaged) and aver-
age fairness (in terms of bandwidth consumed or request
rates, respectively). For mixed workloads, values for both

10



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 359

Fixed Size Objects LogNormal 0.5 LogNormal 1.0

1kB Mean BW (Gbps) Lat (ms) MMR MMR ratio BW (Gbps) Lat (ms) MMR MMR ratio BW (Gbps) Lat (ms) MMR MMR ratio
Out/In GET/SET Out/In Out/In Out/In GET/SET Out/In Out/In Out/In GET/SET Out/In Out/In

Read-Only 6.95 2.48 0.99 1.73 6.93 3.67 0.99 1.57 6.94 5.20 0.99 2.15
Read-Heavy 6.87/1.30 2.99/2.15 0.98/0.98 1.56/1.58 6.82/1.32 3.34/2.62 0.99/0.98 1.32/1.29 6.90/1.35 4.70/3.45 0.99/0.99 1.65/1.57
Mixed 6.81/2.06 2.55/2.41 0.68/0.77 1.62/1.05 6.81/2.08 3.11/2.75 0.67/0.77 1.81/0.92 6.76/2.01 4.01/3.71 0.63/0.74 1.85/1.19

10B Mean Tput (kreq/s) Lat (ms) MMR MMR ratio Tput (kreq/s) Lat (ms) MMR MMR ratio Tput (kreq/s) Lat (ms) MMR MMR ratio
GET/SET GET/SET Requests Requests GET/SET GET/SET Requests Requests GET/SET GET/SET Requests Requests

Read-Only 3,160 3.37 0.97 1.33 3,151 3.52 0.97 1.26 3,104 3.36 0.96 1.35
Read-Heavy 2,567/285 3.04/8.19 0.98 1.28 2,593/288 2.96/8.30 0.98 1.42 2,540/282 3.00/8.49 0.94 1.34
Mixed 2,343/445 2.80/7.79 0.96 1.5 2,325/444 2.88/7.84 0.96 1.32 2,295/437 2.94/7.78 0.94 1.38

Table 1: Pisces performance over a range of log-normally distributed object sizes and GET/SET workloads

 0
 20
 40
 60
 80

 100
 120
 140

s1 s2 s3 s4 s5 s6 s7 s8

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Servers

(a) Uniform partition placement

 0
 20
 40
 60
 80

 100
 120
 140

s1 s2 s3 s4 s5 s6 s7 s8

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Servers

t1
t2

t3
t4

t5
t6

t7
t8

(b) Demand-aware placement

 0.4

 0.6

 0.8

 1

 1.2

 1.4

   

Server 1

   

   

Server 2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  10  20  30  40  50  60

Te
na

nt
 W

ei
gh

t

Server 3
 10  20  30  40  50  60

  

Time (s)

Server 4

t1
t2
t3
t4

t5
t6
t7
t8

(c) Local tenant weights evolving with weight allocation

Figure 6: Skewed demand can lead to infeasible par-
tition mappings (a). Placing partitions according to
tenant demand and node capacities ensures feasibility
(b). Weight allocation, in turn, adjusts the per-node
tenant weights to the demand (c) (4 of 8 shown).

 0

 5

 10

 15

 20

 25

 30

No RS RS No RS RS No RS RS

La
te

nc
y 

(m
s)

1x demand
2x demand

1.3x demand
4x demand

WFQ(4:3:2:1)Fair QueuingNo Queuing

Figure 7: Fair queuing protects request latencies for
even and weighted tenant shares.

GET/SET (Out/In bandwidth) requests are shown.We also
include a fairness comparison in terms of the MMR ratio
between Pisces and unmodified Membase.

Pisces is able to achieve over 0.94 MMR fairness for
most size variations and workloads. Moreover, Pisces
exceeds the fairness of the unmodified base system by

more than 1.3 times for most cases as well. The mixed
workload for 1kB objects, however, proved to be a particu-
larly troublesome combination. While the read-heavy and
write-heavy tenants received their appropriate shares of
inbound write bandwidth (0.99 MMR), the read-only ten-
ants were able to consume more outbound read bandwidth
than either one, resulting in an overall fairness between
0.63 and 0.64 MMR. One reason for this is the head-of-
line blocking of a tenant’s read requests due to its write
requests fully consuming its current inbound bandwidth
allocation. This can push subsequent read requests to
the next scheduler round, despite having unconsumed
outbound bandwidth remaining. Since read-only tenants
never bottleneck on inbound bandwidth, they can fully
consume their share (and more) of outbound bandwidth.

To fix this issue, we modified the clients to prioritize
read requests over write requests when sending requests
to the servers. While this largely resolved the issue for
read-heavy tenants (> 0.9 MMR), the write-heavy ten-
ants remained obstructed by the bandwidth bottleneck.
The low MMR ratio for writes (bytes in) compared to
Membase is also attributable to this performance write-
bottlenecking variance. For 10B workloads, the prob-
lem disappears (≥ 0.95 MMR) since both read and write
workloads share a single bottleneck: request-rate without
suffering packet-level congestion effects. Pisces is able
to once again claim its fairness crown from Membase for
these cases (> 1.28x more fair than Membase).

6.3 Service Differentiation
So far, we have demonstrated that Pisces’s mechanisms,
working in concert, can achieve both isolation (FQ) and
nearly ideal even fair sharing (PP +WA or RS). We now
turn our attention to providing weighted fairness at the
global level (for service differentiation) and at the local
level (for dominant resource fairness).

Global Differentiation: In Figure 8a, the tenant are as-
signed global weights in decreasing order 4:4:3:3:2:2:1:1
to differentiate their aggregate share of the system re-
sources. Both with and without replica selection, Pisces
is able to achieve high global weighted fairness (> 0.9
MMR) for both in and out bandwidth under a 1kB request
read-heavy workload. Similarly, request latency remains
strongly isolated between the tenants. Since all tenants

11



360 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

 0

 40

 80

 120

 160

 200

 

WA, FQ, PP, No RS (GET)

 0

 4

 8

 12

 16

 20

   
 

 

WA, FQ, PP, No RS (SET)

 0

 40

 80

 120

 160

 200

 20  30  40  50  60  70  80  90  100

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

WA, FQ, PP, RS (GET)

 0

 4

 8

 12

 16

 20

 20  30  40  50  60  70  80  90  100
SE

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s)

WA, FQ, PP, RS (SET)

(a) Global weighted 90% GET / 10% SET throughput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25  30  35  40  45  50  55  60

100x weight (10)
10x weight (40)

1x weight (50)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25  30  35  40  45  50  55  60

100x weight (4)
10x weight (20)

1x weight (40)

 0

 50

 100

 150

 200

 20  25  30  35  40  45  50  55  60

1x weight
2x weight

3x weight
4x weight

 0

 5

 10

 15

 20

 20  25  30  35  40  45  50  55  60

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s)

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s)

S
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s) Time (s)

(b) 64 tenant weighted thruput

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25  30  35  40  45  50  55  60

100x weight (10)
10x weight (40)

1x weight (50)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 25  30  35  40  45  50  55  60

100x weight (4)
10x weight (20)
1x weight (40)

 0

 50

 100

 150

 200

 20  25  30  35  40  45  50  55  60

1x weight
2x weight

3x weight
4x weight

 0

 5

 10

 15

 20

 20  25  30  35  40  45  50  55  60

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s)

G
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s)

S
E

T 
R

eq
ue

st
s 

(k
re

q/
s)

Time (s) Time (s)

(c) 100 tenant weighted thruput

Figure 8: Subfigure (a) demonstrates global 4:3:2:1
weighted fair sharing for a read-heavy workload.
In (b) and (c), Pisces abides by the skewed tenant
weights on an 8 and 20 node cluster respectively.

generate the same demand, the lower weight tenants (3,
2, and 1) exceed their share by 1.3, 2, and 4 times respec-
tively. Per Figure 7, the latencies of these tenants closely
mirror their demand ratios. In both cases, the median (or
mean) latency spread is small (<1 ms), except for that of
the smallest-weight tenant (<2.7 ms).

To further stress the fairness properties of the system,
we ran two larger scale experiments where the number
of tenants far exceeded the number of servers, to mimic
more realistic service scenarios. In Figure 8b, each of
64 tenants reside on 4 out of the 8 available servers with
each server housing 32 tenants. To reflect the highly
skewed nature of tenant shares, i.e. a few heavy hitters
and many small, low-demand users, we configured the
tenant weights along a log-scale: 4 tenants with weight
100, 20 with weight 10, and 40 with weight 1. Within
each weight class, Pisces achieves > 0.91 MMR. Be-
tween classes, however, weighted fairness decreases to
0.56 MMR. This deviation is due to the limits of the
DWRR scheduler token granularity. With such highly
skewed weights, tenants in the smallest weight class (1)
only receive fractional tokens, which means their requests
are processed once every few rounds, which results in a
lower relative share. Fairness between the weight 100 and
weight 10 tenants, however, remains high (0.91 MMR).
In practice, to work around the limited resolution of the
WFQ scheduler, the service provider can cap the number
of tenants per server to ensure reasonable local weights
(token) and match the desired rate guarantees. Figure 8c

 0

 200

 400

 600

 800

 1000

 1200

 20  30  40  50  60  70  80

O
ut

 B
an

dw
id

th
 (M

bp
s)

Time

76% of effective bandwidth

1kB requests
10B requests

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 20  30  40  50  60  70  80

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time

76% of effective throughput

Bottleneck resource = request rate

(a) Dominant resource fairness between 1kB and 10B workloads

16

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

BN Ratio

BN Perf

Class Fair

BN Ratio

BN Perf

Class Fair

BN Ratio

BN Perf

Class Fair
even 2xBW,1xRQ 1xBW,2xRQ

DRFQ
Single-WFQ

(b) Bottleneck ratio fairness and performance with and without multi-
resource queuing

Figure 9: Pisces provides dominant resource fairness
between bandwidth (10kb) and request-rate (10B)
bound tenants (a). Compared to single-resource fair
queuing, DRF provides a better share of the bottle-
neck resource (BN Ratio) and better performance
(BN Perf) over different tenant weights.

shows a larger scaled out experiment, with 100 tenants
resident on 6 of 20 servers (30 tenants per server). While
we see a qualitatively similar result, the actual fairness
degrades considerably (average 0.68 MMR between high
and medium weight tenants, 0.46 MMR across all classes).
However, this is mostly due to performance variance on
the scale-out testbed [25] arising from CPU scheduling
and network bottleneck effects, which affects the high-
weight tenants disproportionately. As a result, the low-
weight tenants can consume a larger share.

Local Dominant Resource Fairness: While Pisces
provides weighted fairness on the global level, we want
to ensure that each tenant receives a weighted share of its
dominant resource on the local level. To stress different
dominant resources and their corresponding bottlenecks,
we experimented with four tenants requesting 1kB ob-
jects (bandwidth limited), while another four operated on
10B objects (request-rate limited). Under even weighting,
Figure 9a shows how Pisces enforces fairness within each
dominant resource type (>0.95 MMR) and evenly splits
the dominant resource shares between types: the 1kB ten-
ants receive ∼76% of the effective outbound bandwidth
and the 10B tenants receive ∼76% of the effective request
rate.3 Although the tenants differ in dominant resource,
they share the same bottleneck resource (request rate in
this case). By computing the bottleneck resource ratio
(BNR) between the different dominant resource tenants,

3This is lower than the optimal rates since transmitting a 1kB
request takes longer than processing a 10B request.

12



USENIX Association  10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 361

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  10  20  30  40  50  60  70  80  90

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time

WA, FQ, PP, No RS

1x bursty
2x diurnal

1x constant
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  10  20  30  40  50  60  70  80  90

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time

WA, FQ, PP, RS

Figure 10: Pisces responds to demand dynamism ac-
cording to tenant weights.

we can directly determine the dominant resource shares as
shown in section 2.2 without having to estimate the effec-
tive resource rates. In this instance, the BNR is around 3.2,
which gives the 10B tenants 76% of the request rate, and
allows the 1kB tenants to consume 76% of the bandwidth.

Using BNR, we compare the dominant resource fair-
ness of the DRF-enabled scheduler versus the single-
resource (request) version for even weighted tenants, 2x
weighted 1kB (bw) vs. 1x weighted 10B (rq) tenants, and
1x weighted 1kB vs. 2x weighted 10B tenants. For the
even and 1x bandwidth, 2x request cases, the bottleneck
resource is request rate. In the 2x bandwidth, 1x request
scenario, the tenants bottleneck on bandwidth. As Fig-
ure 9b shows, the DRF scheduler outperforms the single
resource version in all cases, achieving the best normal-
ized BNR value and bottleneck resource performance
(BN Perf). The single-resource scheduler holds a slight
edge in fairness between tenants of the same dominant
resource class (Class Fair) in the even and 1x bandwidth,
2x request cases. As in the mixed workload experiments,
achieving the highest 10B request throughput required
additional packet prioritization. We enabled the linux
priority queue scheduling discipline to reduce the sched-
uler delay for small requests while waiting for connection
send buffers to clear for the 1kB tenants.

6.4 Dynamic Workloads
Dynamic workloads present a challenge for any system to
provide consistent, predictable performance. In Figure 10,
2 bursty demand tenants (weight 1), 2 diurnal demand
tenants (weight 2), and 4 constant demand tenants (weight
1) access the storage system. Initially, the tenants con-
sume less than the full system capacity which allows the
constant tenants to consume a larger proportion. As the
diurnal tenants ramp up between 0 and 20 seconds, they
begin to consume their share of throughput which cuts
into the excess share consumed by the constant tenants.
Around 20s, both the bursty tenants and diurnal tenants
ramp up to their full load, which results in a nearly 2 to 1
ratio, according to the tenant weights. The diurnal tenants
tail off around 50s along with the bursty tenants which al-
lows the constant demand tenants to, once again, consume
in excess of their fair share (∼ 80 kreq/s). Lastly, at 70s,
the bursty tenants issue one last barrage of requests, which
forces the constant tenants to share the throughput equally.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100  120

La
te

nc
y (

m
s)

Throughput (kreq/s)

(a) Pisces µ-benchmark (1kB)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  50  100 150 200 250 300 350 400 450 500

La
te

nc
y (

m
s)

Throughput (kreq/s)

(b) Pisces µ-benchmark (10B)

Figure 11: Median throughput versus latency micro-
benchmark with 99th-percentile error bars.

Both with and without replica selection enabled, Pisces is
able to handle the demand fluctuations and provide fair
access to the storage resources.

6.5 Efficiency and Overhead
To assess the efficiency and overhead, we ran a micro-
benchmark of a single WFQ Pisces node. In this experi-
ment, tenants issue requests at increasing rates to a single
service node. As shown in Figure 11, Pisces is able to
achieve over 106 kreq/s for 1kB requests, which is > 96%
of Membase throughput, with the same average request
latency (0.14 ms). For 10B requests, Pisces actually out-
performs Membase by 20% (485 vs. 405 kreq/s) with
lower average request latency (0.15 vs. 0.16 ms) due to
the DWRR scheduler’s work stealing mechanism.

7. Related Work
Sharing the network. Most work on sharing datacenter
networks has used either static allocation or VM-level
fairness. The static allocations by SecondNet [13] and
Oktopus [6] guarantee bandwidth but can leave the net-
work underutilized. While more throughput efficient,
Gatekeeper’s ingress and egress scheduling [27], Sea-
wall’s congestion-controlled VM tunneling [28], and Fair-
Cloud’s per-endpoint sharing [26], respectively provide
fairness on a per-VM, VM-pair, or communicating-VM-
group basis, rather than on a per-tenant basis.

NetShare [17] and DaVinci [14] take a per-tenant
network-wide perspective, but the former allocates lo-
cal per-link weights statically, while the latter requires
non-work-conserving link queues and does not consider
fairness. In contrast, Pisces achieves per-tenant fairness
by leveraging replica selection and adapting local weights
according to demand, while maintaining high utilization.

Sharing services. Recent work on cloud service re-
source sharing has focused mainly on single-tenant scena-
rios. Parda [11] applies FAST-TCP congestion control to
provide per-VM fair access, which Pisces uses as well, but
for replicated service nodes. mClock [12] adds limits and
reservations to the hypervisor’s fair I/O scheduler to differ-
entiate between local VMs, while Pisces’s DWRR sched-
uler operates on a per-tenant level. Argon [32] uses cache
management and time-sliced disk scheduling for perfor-
mance insulation on a single shared file server. Pisces

13



362 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) USENIX Association

could adapt these techniques for memory and disk I/O re-
sources. Stout [20] exploits batch processing to minimize
request latency, but does not address fairness.

Several other systems focused on course-grained alloca-
tion. Autocontrol [23] and Mesos [15] allocate per-node
CPU and memory to schedule batch jobs and VMs, using
utility-driven optimization and dominant resource fair-
ness, respectively. They operate on a coarse per-task or
per-VM level, however, rather than on per-application
requests. In [10], the authors apply DRF to fine-grained
multi-resource allocation, specifically to enforce per-flow
fairness in middleboxes. However, their DRF queuing
algorithm relies on virtual time, and it scans each per-flow
packet queue for the lowest virtual start time.

8. Conclusion
This paper seeks to provide system-wide per-tenant
weighted fair sharing and performance isolation in multi-
tenant, key-value cloud storage services. By decom-
posing this problem into a novel combination of four
mechanisms—partition placement, weight allocation,
replica selection, and fair queuing—our Pisces system
can fairly share the aggregate system throughput, even
when tenants contend for shared resources and demand
distributions vary across partitions and over time. Our pro-
totype implementation achieves near ideal fairness (0.99
Min-Max Ratio) and strong performance isolation.

Acknowledgments. We thank Jennifer Rexford for help-
ful discussions early in this project. Funding was provided
through NSF CAREER Award #0953197.

References
[1] http://aws.amazon.com/dynamodb/faqs/, 2012.
[2] http://docs.amazonwebservices.com/

amazondynamodb/latest/developerguide/
Limits.html, 2012.

[3] http://www.couchbase.org/, 2012.
[4] http://code.google.com/p/spymemcached/, 2012.
[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity,

data center network architecture. In SIGCOMM, 2008.
[6] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

predictable datacenter networks. In SIGCOMM, 2011.
[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC, 2010.

[8] S. L. Garfinkel. An evaluation of Amazon’s grid computing ser-
vices: EC2, S3 and SQS. Technical Report TR-08-07, Harvard
Univ., 2007.

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation of
multiple resource types. In NSDI, 2011.

[10] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-resource
scheduling for middleboxes. In SIGCOMM, 2012.

[11] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: Proportional
allocation of resources for distributed storage access. In FAST,
2009.

[12] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling
throughput variability for hypervisor IO scheduling. In OSDI,
2010.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network virtualization
architecture with bandwidth guarantees. In CoNext, 2010.

[14] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang.
Davinci: dynamically adaptive virtual networks for a customized
internet. In CoNext, 2008.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI, 2011.

[16] A. Iosup, N. Yigitbasi, and D. Epema. On the performance vari-
ability of production cloud services. In CCGrid, 2011.

[17] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese. Netshare:
Virtualizing data center networks across services. Technical Report
CS2010-0957, UCSD, 2010.

[18] T. Li, D. Baumberger, and S. Hahn. Efficient and scalable multi-
processor fair scheduling using distributed weighted round-robin.
In PPoPP, 2009.

[19] Y. Mao, E. Kohler, and R. Morris. Cache craftiness for fast
multicore key-value storage. In EuroSys, 2012.

[20] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren.
Stout: an adaptive interface to scalable cloud storage. In USENIX
Annual, 2010.

[21] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC,
1996.

[22] R. M. Nauss. Solving the generalized assignment problem: An
optimizing and heuristic approach. INFORMS J. Computing, 15
(Summer):249–266, 2003.

[23] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In EuroSys, 2009.

[24] D. Palomar and M. Chiang. A tutorial on decomposition methods
for network utility maximization. JSAC, 24(8):1439–1451, 2006.

[25] L. Peterson, A. Bavier, and S. Bhatia. VICCI: A programmable
cloud-computing research testbed. Technical Report TR-912-11,
Princeton CS, 2011.

[26] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica. FairCloud: Sharing the network in cloud
computing. In SIGCOMM, 2012.

[27] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes.
Gatekeeper: supporting bandwidth guarantees for multi-tenant
datacenter networks. In WIOV, 2011.

[28] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing
the data center network. In NSDI, 2011.

[29] D. B. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem. Math. Prog., 62(1):461–474,
1993.

[30] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit
round-robin. Trans. Networking, 4(3):375–385, 1996.

[31] M. Stonebraker. The case for shared nothing. IEEE Database Eng.
Bulletin, 9(1):4–9, 1986.

[32] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R. Ganger.
Argon: Performance insulation for shared storage servers. In
FAST, 2007.

[33] J. Wang, P. Varman, and C. Xie. Optimizing storage performance
in public cloud platforms. J. Zhejiang Univ. – Science C, 11(12):
951–964, 2011.

[34] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: Motivation,
architecture, algorithms, performance. Trans. Networking, 14(6):
1246–1259, 2006.

[35] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving MapReduce performance in heterogeneous environ-
ments. In OSDI, 2008.

14


	Conference Organizers
	External Review Committee
	Contents
	Message from the USENIX OSDI ’12 Program Co-Chairs
	Flat Datacenter Storage
	PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs
	GraphChi: Large-Scale Graph Computation on Just a PC
	Hails: Protecting Data Privacy in Untrusted Web Applications
	Eternal Sunshine of the Spotless Machine: Protecting Privacy with Ephemeral Channels
	CleanOS: Limiting Mobile Data Exposure with Idle Eviction
	COMET: Code Offload by Migrating Execution Transparently
	AppInsight: Mobile App Performance Monitoring in the Wild
	Spotting Code Optimizations in Data-Parallel Pipelines through PeriSCOPE
	MegaPipe: A New Programming Interface for Scalable Network I/O
	DJoin: Differentially Private Join Queries over Distributed Databases
	Improving Integer Security for Systems with KINT
	Dissent in Numbers: Making Strong Anonymity Scale
	Efficient patch-based auditing for web application vulnerabilities
	Experiences from a Decade of TinyOS Development
	Automated Concurrency-Bug Fixing
	All about Eve: Execute-Verify Replication for Multi-Core Servers
	Spanner: Google’s Globally-Distributed Database
	Making Geo-Replicated Systems Fast as Possible,Consistent when Necessary
	SymDrive: Testing Drivers without Devices
	Be Conservative: Enhancing Failure Diagnosis with Proactive Logging
	X-ray: Automating Root-Cause Diagnosis of Performance Anomalies in Production
	Pasture: Secure Offline Data Access Using Commodity Trusted Hardware
	Dune: Safe User-level Access to Privileged CPU Features
	Performance Isolation and Fairness forMulti-Tenant Cloud Storage



