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Abstract. An optimally resilient distributed multiplication protocol that
enjoys the property of non-interactivity is presented. The protocol relies
on a standard cryptographic assumption and works over a complete,
synchronous, untappable network with a broadcast channel. As long as
no disruption occurs, each player uses those channels only once to send
messages; thus no interaction is needed among players. The cost is an
increase in local computation and communication complexity that is de-
termined by the factor of the threshold.
As an application of the proposed protocol we present a robust thresh-
old version of the Cramer-Shoup cryptosystem, which is the first non-
interactive solution with optimal resilience.

Keywords: Distributed Multiplication, Round Complexity, Multi-Party
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1 Introduction

Background: Practical cryptographic applications sometimes put their funda-
mental trust on one entity such as a trusted authority or a tamper-proof device.
When such a trustee is not preferred, one practical solution is to distribute the
trust among several parties in order to make the system robust against the leak-
age of partial secrets or Byzantine faults [20,12]. Secret sharing [24] allows a party
to keep a secret in a distributed manner so that some application-dependent func-
tions are computed in collaboration without revealing the secret. So far, much
work has been devoted to the investigation of such multi-party computation,
e.g., [18,2,6,23,1]. In particular, some recent works realized practical multi-party
versions of public-key cryptographic functions such as decryption and signature
generation,e.g., [10,15,8], key generation,e.g., [21,3,14,16] and so on. Sometimes
they are called “function sharing” or “threshold cryptography.”

One of the basic ingredients for all robust threshold schemes is verifiable se-
cret sharing, e.g., [11,22]. A useful property of verifiable secret sharing schemes is
that they allow to compute linear combination of shared secrets without any com-
munication between players. Multiplication on shared secrets, however, remains
a cumbersome process because it requires several interactions among players in
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order to keep the threshold unchanged. Since round complexity can be the dom-
inant factor determining efficiency, especially when the protocol is implemented
over a network where communication overhead can not be ignored, it is of prac-
tical interest to construct a distributed multiplication protocol that enjoys less
round complexity and yet remains practical in computation and communication.

Related Work: A generic approach for evaluating any boolean circuit in a
cryptographic multi-party setting was shown in [18], which assumes the use of a
probabilistic encryption scheme. Although the result is theoretically significant,
this approach will turn out to be inefficient if it is directly applied to construct
a multi-party protocol for a particular function such as multiplication in a large
field.

In [2], Ben-Or, Goldwasser and Wigdersen introduced the degree reduction
technique that converts shares on a 2t-degree polynomial into ones on a t-degree
truncated polynomial. For n players, the technique tolerates less than n/3 cor-
rupted players. The scheme shown in [23] tolerates less than n/2 faulty players
and also follows this line. The scheme in [6] relies on the massive use of zero
knowledge proofs. All the schemes that do not rely on computational assump-
tions require far too many interactions among players, even though some of
them are constant-round. Beaver improved the scheme in [23] but the round
complexity remains unchanged [1].

M. Rabin invented a simple (non-robust) distributed multiplication scheme
in [17], which can be replaced with the previous degree reduction technique.
In the information theoretic setting, Cramer et al. added robustness to Ra-
bin’s basic scheme by developing new Information Checking technique [7]. In
the cryptographic setting, Gennaro et al., provided robustness by having each
player invoke a four-move zero-knowledge interactive proof [17]. All players can
be logically combined into a single verifier (by using an information theoret-
ically secure bit commitment scheme and a verifiable secret sharing), and if
this combination performs all zero-knowledge proofs in parallel, one can obtain
a four-move protocol for distributed multiplication. The immediately thought
is that the public-coin interactive zero-knowledge protocol can be turned into
an non-interactive one by using Fiat-Shamir heuristics [13] at the cost of losing
provable security in a standard cryptographic model. Cerecedo et al., introduced
a dedicated protocol for multiplying a distributedly-generated random number
and a shared secret in a construction of shared signature schemes [5]. Their
scheme works non-interactively for thresholds under one third of the players,
and two additional accesses to the communication channels are needed to obtain
optimal resiliency. Their schemes are not information-theoretically secure, and
hence leak some information about shared secrets. Indeed, the attack introduced
by Gennaro et al., in [16] is applicable.

Our Contribution:We provide a distributed multiplication protocol that works
in a cryptographic setting and offers the following properties:
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– Non-interactivity: As long as no disruption occurs, players access private
network and broadcast channel only once to send data without needing to
synchronize to other players. The players agree on correctness implicitly
by silence (or explicitly by broadcasting 1 bit message if needed). No zero-
knowledge proof is used in the protocol.

– Provably secure in a standard model: The security can be proved under
the intractability assumption of the discrete logarithm problem. We do not
assume the use of shared random string or random oracles.

– Information theoretic secrecy: The shared secrets are secure against infinitely
powerful adversaries.

– Optimal resiliency: Tolerate the corruption of less than half of players.

The cost of achieving these properties is an increase in computation and com-
munication complexity. Our scheme suffers O(t) increase in computation and
communication complexity, where t is the threshold, compared to the above men-
tioned four-move scheme by Gennaro et al. Yet it is comparable to the scheme by
Cerecedo et al. in both computation and communication costs. More concretely,
our scheme consumes about three to four times more computation and commu-
nication than that of the random number generation scheme by Pedersen [22],
which is often used in threshold cryptography.

Our result will reduce the round complexity of several cryptographic ap-
plications, e.g., all variants of El Gamal signature scheme that have embedded
multiplication, and threshold key generation for signature or encryption schemes
that use a composite modulus like RSA.

We use our protocol to construct a robust threshold version of the Cramer-
Shoup cryptosystem that withstands a minority of corrupt decryption servers.
The protocol is non-interactive except for precomputation for randomizing de-
cryption keys. A threshold Cramer-Shoup cryptosystem with optimal resiliency
was described by Canetti et al. in [4] that uses four-move interactive zero-
knowledge proofs. One of their variants has the non-interactivity property, but it
only tolerates O(

√
n) corrupted servers. Accordingly, we show the first optimally

resilient and non-interactive robust threshold cryptosystem that is secure against
adaptive chosen ciphertext attacks under standard cryptographic assumptions.

Organization: Section 2 sketches the model and our goal. Section 3 presents
the proposed multiplication protocol. Proof of security is given in Section 4.
Section 5 extends the protocol to remove an assumption about the inputs. In
Section 6, we construct a threshold version of the Cramer-Shoup cryptosystem.
Some concluding remarks are given in Section 7.

2 Model

2.1 Setting

Communication channels: Our protocol assumes a synchronous private net-
work where a message is assured of being delivered in a fixed period. The network
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is assumed to be secure and complete, that is, every pair of players is connected
by an untappable and mutually authenticated channel. Furthermore, we assume
the use of a broadcast channel where all players receive the same information
sent from authenticated players.
Players and an adversary: Let P be a set of players such that P = {1, . . . , n}.
Player i ∈ P is assumed to be a probabilistic polynomial-time Turing machine.
Among those players, there are up to t corrupt players completely controlled by
a static adversary.
Computational assumption: We use large primes p and q that satisfy q|p−1.
Gq denotes a multiplicative subgroup of degree q in Zp. It is assumed that solving
the discrete logarithm problem in Gq is intractable. All arithmetic operations
are done in Zp unless otherwise stated.

2.2 Notations for Verifiable Secret Sharing

Our scheme uses an information theoretically secure verifiable secret sharing
scheme by Pedersen [22]. Let g and h be elements of Gq where logg h is unknown.
To share secret S in Zq , a dealer first chooses two t-degree random polynomials
f(X) and d(X) from Zq [X] such that f(0) = S is satisfied. Let R denote random
free term of d(X). The dealer sends a pair (Si, Ri) := (f(i), d(i)) ∈ Z2

q to player
i via a private channel. The dealer then broadcasts Ek := gak hbk for k = 0, . . . , t
where ak and bk are coefficients of k-degree term of f(X) and d(X) respectively.
Note that S and R are committed to E0 as E0 = gS hR. Correctness of a share
(Si, Ri) can be verified by checking the relation

gSi hRi =
t∏

k=0

Ek
ik

. (1)

We may refer the right side of the above verification predicate as verification
commitment for player i. Note that any player can compute the verification
commitments without knowing the corresponding shares. Hereafter, we denote
the execution of this verifiable secret sharing protocol by

PedVSS (S, R)[g, h]
f,d−→ (Si, Ri)(E0, . . . , Et).

Polynomials put on an arrow may be omitted if no misunderstanding is expected.
Secret S is reconstructed by interpolation as in

S :=
∑
i∈Q

λi,Q Si mod q, where λi,Q :=
∏

j∈Q,j 6=i

j

j − i
mod q (2)

where Q is any set of at least t+1 qualified players whose share (Si, Ri) satisfies
Equation 1.

Lemma 1. The above verifiable secret sharing scheme offers the following prop-
erties:
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1. If all players follow the protocol, shares are accepted with probability 1.
2. For any Q ⊆ P of size no less than t+1, a set of shares (Si, Ri) | i ∈ Q each

of which satisfies Equation 1 recovers (S, R) that satisfies E0 = gS hR with
overwhelming probability in |q|.

3. Let viewA be a unified view in a protocol run obtained by corrupted players
in A. For any A ⊂ P of size at most t, for any secret S ∈ Zq, and for any
x ∈ Zq,

Prob[S = x|viewA] = Prob[S = x].

As it is well-known, the players can share a random number unknown to any
set of players less than t + 1 by using PedVSS . We refer to this shared random
number generation protocol as

RandVSS ([S], [R])[g, h] → (Si, Ri)(E0, . . . , Et).

Brackets in parentheses imply that the numbers are unknown to any set of
players less than the threshold.

2.3 Goal

Our goal is to construct a protocol such that players in P eventually share the
product of A ∈ Zq and B ∈ Zq as if an honest dealer executes

PedVSS (A · B, Rc)[g, h] → (Ci, R
c
i)(EC0, . . . , ECt) (3)

for some random number Rc ∈ Zq . We assume that A and B have been already
shared by an honest dealer as

PedVSS (A, Ra)[g, h] → (Ai, R
a
i )(EA0, . . . , EAt) (4)

PedVSS (B, Rb)[g, h] → (Bi, R
b
i)(EB0, . . . , EBt) (5)

where Ra and Rb are random numbers taken uniformly from Zq .

3 Protocol

The main idea to reduce round complexity is to use VSS instead of ZKP to
confirm the relationship of committed values. Recall that if a dealer completes
PedVSS(S, R) → (Si, Ri)(E0, . . . , Et) correctly, it implies that the dealer knows
S and R committed to E0 = gS hR. Conversely, if the dealer does not know the
representation of E0, he can not complete the protocol successfully. Similarly, if
Pi completes two PedVSS executions such as

PedVSS (S, R) → (Si, Ri)(E0, . . . , Et),
PedVSS (S′, R′) → (S′

i, R
′
i)(E

′
0, . . . , E

′
t)
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and if Si = S′
i holds for at least t + 1 evaluation points, it proves equality of

committed values, that is, S = S′. Those arguments are derived immediately
from Lemma 1. Furthermore, if Pi completes three executions,

PedVSS (S, R) → (Si, Ri)(E0, . . . , Et),
PedVSS (S′, R′) → (S′

i, R
′
i)(E

′
0, . . . , E

′
t),

PedVSS (S′′, R′′) → (S′′
i , R′′

i )(E′′
0 , . . . , E′′

t ),

and Si + S′
i = S′′

i holds for more than t + 1 i-s, it implies additive relation of
committed values, that is, S+S′ = S′′. Multiplicative relation, which is our main
interest, can be proved in a rather tricky way as is shown in the main protocol.

Our protocol is constructed over the simplified multiplication protocol in [17],
which is reviewed below. This protocol works with t up to t < n/2.

[Protocol: Basic Multiplication]

BM-1: Each player i picks a t-degree random polynomial to share Ai ·Bi. The
share Cij is privately sent to player j, j ∈ P.

BM-2: Each player j computes his share Cj for A · B as

Cj :=
∑
i∈P

λi,PCij mod q.

[End]

Let Q2 and Q1 be subsets of P whose sizes are 2t + 1 and t + 1 respectively.
Recall that A · B can be recovered from Ai · Bi as A · B =

∑
i∈Q2

λi,Q2Ai ·
Bi. Since the above protocol allows players to recover Ai · Bi by computing
Ai · Bi =

∑
j∈Q1

λj,Q1Cij, it holds that A · B =
∑

i∈Q2
λi,Q2

∑
j∈Q1

λj,Q1Cij =∑
j∈Q2

λj,Q2Cj. Therefore, A · B can be recovered from any set of more than
t + 1 Cj-s.

To add robustness to the basic multiplication protocol, each player must
convince other players that Cij is a share of Ai ·Bi. Let the verification commit-
ment for (Ai, R

a
i ) and (Bi, R

b
i) be VAi :=

∏t
k=0 EAk

ik

and VBi :=
∏t

k=0 EBk
ik

respectively.

[Protocol: Robust Distributed Non-interactive Multiplication]

DM-1: Each player i randomly picks t-degree polynomials f1, d1 and d2 from
Zq [X] so that f1(0) = Ai and d1(0) = Ra

i are satisfied. Let Rab
i denote a

randomly chosen free term of d2(X). Player i shares Ai twice as

PedVSS (Ai, R
a
i )[g, h] f1,d1→ (Aij , R

a
ij)(〈VAi〉, EAi1, . . . , EAit), and

PedVSS (Ai, R
ab
i )[VBi, h] f1,d2−→ (〈Aij〉, Rab

ij )(EABi0, . . . , it EABit).
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Angle brackets mean that the variable can be locally computed by the re-
ceivers, or it has been sent before. Note that VBi(= gBi hRb

i ) is used as the
base of the commitments in the second sharing. Player i then selects two
random polynomials f2(X) and d3(X) that satisfy f2(0) = Ai · Bi mod q
and d3(0) = Rb

i · Ai + Rab
i mod q, and performs

PedVSS (Ai · Bi, R
b
i ·Ai + Rab

i )[g, h] f2,d3−→ (Cij, R
c
ij)(〈EABi0〉, ECi1, ..., ECit).

DM-2: Each player j verifies everything received from player i as

gAij hRa
ij = VAi

t∏
k=1

EAik
jk

, (6)

VBi
Aij hRab

ij =
t∏

k=0

EABik
jk

, (7)

gCij hRc
ij = EABi0

t∏
k=1

ECik
jk

. (8)

If a check fails, player j declares so and goes to the disqualification protocol
(see below).

DM-3: Let I be a set of qualified players in DM-2. |I| ≥ 2t + 1 must hold.
Each player j in I computes

Cj :=
∑
i∈I

λi,ICij mod q, (9)

Rc
j :=

∑
i∈I

λi,IRc
ij mod q, (10)

ECk :=
∏
i∈I

ECik
λi,I for k = 0, . . . , t, (11)

where EC i0 = EAB i0.

[End]

Suppose that player j finds that the shares sent from player i do not satisfy
all of the verification equations in DM-2. All players then perform the following
protocol.

[Protocol: Disqualification]

DQ-1: Player i is requested to broadcast all the data that he privately sent
to player j, which is (Aij , R

a
ij, R

ab
ij , Cij, R

c
ij). (If player i keeps silent, he is

disqualified immediately.)
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DQ-2: If t + 1 or more players conclude that the shares satisfy the verification
equations in DM-2, player j must accept the shares just published. On the
other hand, if t+1 or more players decide that those shares are faulty, player
i is disqualified.

[End]
Let D be a set of disqualified players. If |P \ D| < 2t + 1 happens because of

the disqualification, the remaining players in P \D have to recover (Ai, R
a
i ) and

(Bi, R
b
i) owned by a disqualified player i. For this to be done, we use the share

recovery protocol which has been used in proactive secret sharing [19]. Note that
the protocol can be completed in a robust and secure way if at least t+1 honest
players exist. (Ai and Ra

i can be recovered directly from shares (Aij, R
a
ij) if more

than t + 1 correct shares exist.)

4 Security

Lemma 2 (Correctness). If all players follow the protocol, every player i in P
obtains a share (Ci, R

c
i) and commitments (EC0, . . . , ECt) that satisfy gCi hRc

i =∏t
k=0 ECk

ik

and A · B =
∑

i∈Q λi,Q Ci mod q for any Q ⊆ P of size no less
than t + 1.

Proof. According to Lemma 1, any set of no less than t + 1 correct (Aij, R
a
ij)

that passes verification 6 recovers (Ai, R
a
i ) that satisfies gAi hRa

i = VAi. Simi-
larly, any set of no less than t + 1 correct (Aij, R

ab
ij ) that passes verification 7

recovers (Ãi, R
ab
i ) that satisfies VBÃi hRab

i = EABi0. Because both Ai and Ãi

are recovered from the same shares Aij, we have Ãi = Ai. Therefore,

EABi0 = VBAi

i hRab
i = gAi·Bi hAi·Rb

i+Rab
i .

Observe that EABi0 is also used to verify (Cij, R
c
ij) with g and h. Hence, for any

Q ⊆ P of size no less than t + 1, it holds that Ai · Bi =
∑

j∈Q Cijλj,Q mod q.
Recall that A · B can be recovered from a set of correct Ai · Bi as A · B =∑

i∈I(Ai ·Bi)λi,I mod q holds for any I ⊆ P of size no less than 2t + 1. Thus,

∑
j∈Q

Cjλj,Q =
∑
j∈Q

(
∑
i∈I

Cijλi,I)λj,Q

=
∑
i∈I

(
∑
j∈Q

Cijλj,Q)λi,I

=
∑
i∈I

(Ai · Bi)λi,I

= A · B (mod q)

holds for any Q ⊆ P of size no less than t + 1. ut
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Lemma 3 (Secrecy). Let A be A ⊂ P such that |A| ≤ t. Let viewA be unified
view of players in A during a protocol run with secrets (A, Ra) and (B, Rb).
Similarly, let view′

A be a view during a protocol run with (Ã, R̃a) and (B̃, R̃b)
that satisfy gÃ hR̃a

= gA hRa

and gB̃ hR̃b

= gB hRb

. Then, viewA and view′
A are

perfectly indistinguishable.

Proof. We prove the above statement by constructing a protocol simulator that
works without knowing the secrets committed to EA0 and EB0. Let H := P \A.
For simplicity, we exclude the disqualification steps for a while. The view viewA
in a protocol run with secrets A, B can be divided into the following two parts:

viewA,private = {Ωj, Aj, R
a
j , Bj, R

b
j | j ∈ A},

viewA,received = {EAk, EBk, Aij, R
a
ij, R

ab
ij , Cij, R

c
ij,

EAik, EABik, ECik | i ∈ H, j ∈ A, k = 0, . . . , t},

where Ωj is a private random tape of player j.
According to Lemma 1, for any A of size no more than t, viewA,private is

independent of (A, B). Therefore, in order to prove the statement, it is suffi-
cient to show that viewA,received can be perfectly simulated. Given p, q, g, h and
{EAk, EBk | k = 0, . . . , t}, execute the following steps for all i ∈ H:

SIM-1: For j ∈ A, choose Aij and Ra
ij randomly from Zq. Then compute EAik

for k = 1, . . . , t by solving the system of equations gAij hRa
ij = VAi

∏t
k=1 EAjk

ik

for j ∈ A. (Note that this step does not compute discrete logarithms.)
SIM-2: For j ∈ A, choose Rab

ij randomly from Zq. Also choose EABi0 from Gq.

Then, compute EAB ik for k = 1, .., t by solving VBi
Aij hRab

ij =
∏t

k=0 EAB ik
jk

for j ∈ A.
SIM-3: For j ∈ A, choose Cij, R

c
ij randomly from Zq. Then, compute ECik for

k = 1, . . . , t by solving gCij hRc
ij = EABi0

∏t
k=1 ECik

jk

for j ∈ A.

As a result, Aij, R
a
ij, R

ab
ij , Cij, R

c
ij, EAik, EABik, ECik | i ∈ H, j ∈ A, k = 0, . . . , t

is obtained.
Let us examine the distribution of each variable. As Aij, R

a
ij are randomly

chosen in SIM-1, commitments EAik for k = 1, . . . , t distribute uniformly over
the space defined by relation gAij hRa

ij = VAi

∏t
k=1 EAik

jk

for j ∈ A, which is
exactly the same relation that those shares and commitments satisfy in a real
protocol run. Observe that Aij, R

a
ij for j ∈ A randomly distribute over Zq

2t in
a real protocol run. Thus, Aij, R

a
ij for j ∈ A and EAik for k = 1, . . . , t have

the same distribution as those in a real protocol run. A similar observation is
possible for the remaining variables in viewA,received.

Next consider a view in the disqualification protocol. Two cases arise: player j
in A challenges player i in H, and the reverse case. In the former case, challenged
player i in H just broadcasts shares and commitments that have been already
in the view of the adversary. In the latter case, every player i in H just returns
an answer based on the results of verification predicates in DM-2, which are
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computed only with shares and commitments sent from the challenged player.
Therefore, executing the disqualification protocol contributes nothing to viewA.
Secrecy in the share recovery protocol holds according to Theorem 5 of [19]. ut

Lemma 4 (Robustness). Let A be a set of corrupted players. If |A| ≤ t and
|P| ≥ 2t + 1, every player i in P \A obtains correct share (Ci, R

c
i ) and commit-

ments ECk for k = 0, . . . , t as a result of the above protocol.

Proof. Let H := P \A. Clearly, player i in H will not be disqualified in the dis-
qualification protocol because they are in the majority. According to Lemma 1,
any inconsistency among shares and corresponding commitments is detected
with overwhelming probability. Since the sender of the inconsistent shares is re-
quested to broadcast the correct ones, what he can do is to broadcast the correct
ones, the incorrect ones, or halt. Broadcasting incorrect shares or halting results
in being disqualified immediately. Observe that share recovery protocol can be
completed if there are at least t+1 honest players. So even if all corrupted play-
ers are disqualified at DM-2, the remaining players can complete share recovery
protocol and obtain correct shares and commitments that should have sent from
the disqualified player(s). Thus, there are at least t+1 players who have at least
2t + 1 correct shares and commitments, which is sufficient to complete DM-3
to obtain correct (Cj, R

c
j) and ECk.

The above argument is correct if it is infeasible for player i to compute
logh VBi. Observe that

logh VBi = logh gBi hRb
i

= Bi logh g + Rb
i .

Since we assume logh g is not known to any player, player i could compute
logh VBi only if Bi = 0. However, as B is assumed to be honestly shared, Bi = 0
happens with probability 1/q. Thus, the chance that player i distributes incon-
sistent shares remain negligible. ut

5 Extension

In the previous section we made the assumption that B is shared by an hon-
est dealer so that Bi = 0 happens rarely. However, B is typically generated
randomly by players in threshold cryptography. If RandVSS is used for this pur-
pose, adversarial player i can control Bi so as to make it zero by distributing his
choices after receiving shares from all other players.

By adding one more PedVSS to the multiplication protocol, we can deal with
the case of Bi = 0. Let h0 be a randomly chosen member of Gq. The idea is to
let each player i share Ai with bases [VB i, h0] = [gBi hRb

i , h0] instead of [VB i, h].
Accordingly, even if Bi = 0, player i can not cheat because he does not know
logh0

VB i (= Rb
i logh0

h) unless Rb
i = 0. If both Bi and Rb

i equal 0, then other
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players can detect it by finding VB i = 1. The following is a brief description of
the modified steps which correspond to DM-1 and DM-2.

DM’-1: Each player i executes the following VSS-s.
PedVSS (Ai, R

a
i )[g, h]

f1,d1→ (Aij , R
a
ij)(〈VAi〉, EAi1, . . . , EAit)

PedVSS (Ai, R
ab
i )[VBi, h0]

f1,d2−→ (〈Aij〉, Rab
ij )(EABi0, . . . , EABit)

PedVSS (Ai · Bi, R
b
i ·Ai, R

ab
i )[g, h, h0]

f2,d3,d4−→ (Cij, T1ij, T2ij)
(〈EABi0〉, ETi1, . . . , ETit),

PedVSS (Ai · Bi, T3i)[g, h]
f2,d5−→ (〈Cij〉, T3ij)(ECi0, . . . , ECit)

Rab
i and T3i are chosen randomly from Zq . Intuitively, the first and second

VSS commit Ai ·Bi to EAB i0. The third VSS distributes Ai ·Bi committed
to EAB i0. The last VSS transforms the bases of commitment of Ai ·Bi from
[g, h, h0] to [g, h]. (The last VSS can be omitted depending on application.
See the protocols in the next section for instance.)

DM’-2: Each player j verifies

VBi 6= 1,

gAij hRa
ij = VAi

t∏
k=1

EAik
jk

,

VBi
Aij h

Rab
ij

0 =
t∏

k=0

EABik
jk

,

gCij hT1ij h
T2ij

0 = EABi0

t∏
k=1

ETik
jk

,

gCij hT3ij =
t∏

k=0

ECik
jk

,

for all i ∈ P.

Shares for player j can be computed in the same way as shown in DM-3 by
replacing Rc

ij with T3ij. This extended multiplication protocol retains the all
properties stated in the previous section except for the case where honest player
i is disqualified because of VB i = 1, though it happens with negligible probability
as long as adversary is polynomially bounded. In the case of executing RandVSS
for generating B in the presence of infinitely powerful adversaries, honest players
must not be disqualified to maintain information theoretic secrecy. So if VB i = 1
happens for player i, it declares so and invokes another PedVSS that is combined
to the result of RandVSS so that VBj 6= 1 holds for all j ∈ P.
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6 Application

Robust threshold encryption is a useful tool for constructing applications like
secret ballot electronic voting schemes where a single trusted party is not pre-
ferred. The first robust threshold cryptosystem provably secure against adaptive
chosen ciphertext attack was presented by Shoup and Gennaro in [25], where
the security was proved in the random oracle model. The Cramer-Shoup cryp-
tosystem [9] is a provably secure (non-threshold) scheme whose security can be
proved only by using a standard cryptographic assumption, i.e., intractability of
the decision Diffie-Hellman problem.

In [4], Canetti and Goldwasser introduced a robust threshold version of the
Cramer-Shoup cryptosystem which requires four-move ZKP to tolerate a minor-
ity of corrupt players. Here we present another construction that enjoys lower
round complexity and optimal resiliency. In our scenario, unlike previous one
by Canetti et al., players (decryption servers) are assumed to use the decryp-
tion result themselves. Accordingly, it is the player who has to be convinced of
the correctness of the result. Such a scenario will also be applicable to quorum
controlled systems.

6.1 Cramer-Shoup Cryptosystem

Let g1 and g2 be independently chosen elements in Gq. A decryption key is
6-tuple 1 (x1, x2, y1, y2, z1, z2) ∈R Z6

q , and the corresponding encryption key is
triple (X, Y, Z) where X = gx1

1 gx2
2 , Y = gy1

1 gy2
2 and Z = gz1

1 gz2
2 . An encryption

of a message, M ∈ Gq, is (u1, u2, v, m) that satisfies

u1 = gr
1 , u2 = gr

2, m = M · Zr, c := Hash(u1, u2, m), v = XrY cr

for r ∈R Zq , where Hash : {0, 1}∗ → Zq is a corrision-intractable hash function.
To decrypt, compute

V := ux1+c y1
1 ux2+c y2

2

and verify if V = v. If it is successful, the message is recovered by computing
M = m/uz1

1 uz2
2 . Otherwise the encrypted message is rejected.

The security proof against adaptive chosen ciphertext attack in [9] utilizes
the property that the decryption process leaks no information about each of the
secret keys except for their linear relation such as logg1

X = x1 + x2 logg1
g2.

A problem with the threshold scheme is that V must not be revealed to
corrupt players if V 6= v. This means that players have to be convinced of V 6= v
without seeing V itself.

1 The original scheme presented in [9] only uses z1 for efficiency. Here we use z1 and z2

for the sake of key generation, however, it never influences the security. Indeed, [9]
proves the security using a model that uses z1 and z2.
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6.2 A Threshold Version

The underlying idea is to replace V with V ′ such as

V ′ := (V v−1)w

where w is a one-time random number chosen from Z∗
q . Observe that V ′ = 1

holds if and only if V = 1 holds. Furthermore, for every V ′ ∈ Gq and for every
V ∈ Gq, there exists w ∈ Z∗

q that satisfies V ′ = (V v−1)w. Therefore, revealing
V ′ does not leak any information about V in an information theoretic sense
except when V ′ = 1.

For efficiency, decryption is combined with the verification process by replac-
ing the above V ′ with Ṽ such that

Ṽ := V ′/uz1
1 uz2

2

= ux̂1+c ŷ1−z1
1 ux̂2+c ŷ2−z2

2 v−w ,

where x̂1 = w x1 mod q, x̂2 = w x2 mod q, ŷ1 = w y1 mod q and ŷ2 = w y2 mod
q. Each player computes a share of Ṽ . This idea was introduced in [4].

For this to be done, players generate a random factor w for each ciphertext
and multiply them by private keys to get x̂1 := w x1 mod q and so on. This is
where our multiplication protocol is applied. This step takes 2-moves but can
be done before receiving the ciphertext. The decryption protocol can then be
performed non-interactively.

Key Generation: Players generate a secret key (x1, x2, y1, y2, z1, z2) by using
RandVSS as follows.

RandVSS ([x1], [x2])[g1, g2] → (x1i, x2i)(X, EX 1, . . . , EX t)
RandVSS ([y1], [y2])[g1, g2] → (y1i, y2i)(Y, EY 1, . . . , EY t)
RandVSS ([z1], [z2])[g1, g2] → (z1i, z2i)(Z, EZ 1, . . . , EZ t)

Each player computes verification commitments VX i = X
∏t

k=1 EX k
ik

and

VY i = Y
∏t

k=1 EY k
ik

for all i ∈ P, and checks if they do not equal 1. Each
player i then shares (z1i, z2i) as

PedVSS (z1i, z2i)[g1, g2]
f1,f2−→ (z1ij , z2ij)(〈VZ i〉, EZ i1, . . . , EZ it)

to prepare for decryption where VZ i be verification commitments for shares
z1i, z2i such that VZ i =

∏t
k=0 EZ k

ik

.

Key Randomization: Before performing the decryption protocol, players need
to generate a shared random number w and obtain shares of products wx1, wx2,
wy1, and wy2. Intuitively, this process corresponds to randomizing the private
keys. In the following, g3 is a random element of Gq whose indices for g1 and g2

are unknown.
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[Protocol : key Randomization]

KR-1 The players perform

RandVSS ([w], [w′])[g1, g2] → (wi, w
′
i)(EW0, . . . , EWt).

Let VW i denote the verification commitment for wi and w′
i.

KR-2 Each player Pi performs the following VSS-s with t-degree random poly-
nomials f3, . . . , f7, d1, . . . , d5 whose free terms are chosen properly as indi-
cated in left parentheses. γ1i, . . . , γ4i are randomly chosen from Zq .

PedVSS (wi, w
′
i)[g1, g2]

f3,d1−→ (wij, w
′
ij)(〈VW i〉, EW i1, · · ·)

PedVSS (wi, γ1i)[VX i, g3]
f3,d2−→ (〈wij〉, γ1ij)(EWX i0, · · ·)

PedVSS (wix1i, wix2i, γ2i)[g1, g2, g3]
f4,f5,d3−→ (x̃1ij, x̃2ij, γ2ij)

(〈EWX i0〉, EX̃ i1, · · ·)
PedVSS(wi, γ3i)[V Yi, g3]

f3,d4−→ (〈wij〉, γ3ij)(EWY i0, · · ·)
PedVSS (wiy1i, wiy2i, γ4i)[g1, g2, g3]

f6,f7,d5−→ (ỹ1ij, ỹ2ij, γ4ij)

(〈EWY i0〉, EỸ i1, · · ·)

KR-3 Each player j verifies everything in a way similar to that used in DM-2.
Player j then computes its share of the randomized private keys as

(x̂1j, x̂2j, γ̂2j) :=

(∑
i∈I

λi,Ix̃1ij,
∑
i∈I

λi,Ix̃2ij,
∑
i∈I

λi,Iγ2ij

)
, and

(ŷ1j , ŷ2j, γ̂4j) :=

(∑
i∈I

λi,I ỹ1ij,
∑
i∈I

λi,I ỹ2ij,
∑
i∈I

λi,Iγ4ij

)

in modulo q, where I is a set of qualified players. Player j also computes
verification commitments

V X̂ i :=
t∏

k=0

(∏
`∈I

EX̃
λ`,I
`k

)ik

, and

V Ŷ i :=
t∏

k=0

(∏
`∈I

EỸ
λ`,I
`k

)ik

for all i ∈ I to prepare for subsequent use. (Note that V X̂ i = gx̂1i
1 gx̂2i

2 gγ2i

3

and V Ŷ i = gŷ1i

1 gŷ2i

2 gγ4i

3 .) Player j stores the shares and verification com-
mitments.

[End]



144 Masayuki Abe

Decryption:
[Protocol : Robust Threshold Decryption]

RD-1 Each player i broadcasts

Ṽi := ux̂1i+c ŷ1i−z1i

1 ux̂2i+c ŷ2i−z2i

2 v−wi

where c := Hash(u1, u2, m) mod q. Player i then performs the following four
VSS-s. Here, t-degree polynomials f8, . . . , f11 and d6, d7 are randomly chosen
so that they have proper free terms as indicated in the parentheses in the
right side.

PedVSS(x̂1i, x̂2i, γ̂2i)[g1, g2, g3]
f8,f9,d6−→ (x̂1ij, x̂2ij, γ̂2ij)(〈V X̂ i〉, . . .)

PedVSS (ŷ1i, ŷ2i, γ̂4i)[g1, g2, g3]
f10,f11,d7−→ (ŷ1ij , ŷ2ij, γ̂4ij)(〈V Ŷ i〉, . . .)

and

PedVSS (x̂1i + c ŷ1i − z1i, x̂2i + c ŷ2i − z2i, −wi)[u1, u2, v] f12,f13,f14−→
(〈x̂1ij + c ŷ1ij − z1ij〉, 〈x̂2ij + c ŷ2ij − z2ij〉, 〈−wij〉)(〈Ṽi〉, EṼ i1, · · · , EṼ it),

where f12 = f8 + c f10 − f1, f13 = f9 + c f11 − f2, and f14 = −f3.

RD-2 Each player j verifies

g
x̂1ij

1 g
x̂2ij

2 g
γ̂2ij

3 = V X̂ i

t∏
k=1

EX̂
jk

ik ,

g
ŷ1ij

1 g
ŷ2ij

2 g
γ̂4ij

3 = V Ŷ i

t∏
k=1

EŶ
jk

ik , and

u
x̂1ij+c ŷ1ij−z1ij

1 u
x̂2ij+c ŷ2ij−z2ij

2 v−wij = Ṽi

t∏
k=1

EṼik
jk

for all i received. Disqualification will be done in the similar way as before.
Player j finally obtains plaintext as

M = m/
∏
i∈Q

Ṽ
λi,Q
i

where Q is a set of more than t + 1 qualified players.

[End]

6.3 Security Analysis

Our definition of security against an adaptive chosen ciphertext attack refers
to [9]. Similarly, a precise security model for the multi-party setting can be
seen in [25]. In that model, there are adversaries inside the decryption oracle
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who may leak internal information to an attacker. However, because individual
private keys and verification result, i.e., V are information theoretically secure
during the protocols, the joint view of the attacker and the insiders does not
differ from that of the original scheme except for the following:

– Since RandVSS produces w ∈U Zq , instead of Z∗
q , w = 0 happens with

probability 1/q. In this case, Ṽ = 1 holds regardless of V . Accordingly, an
incorrect message is accepted with probability 1/q.

– An adversary has a chance to get Ṽ to be 1 for incorrect messages by ad-
justing corrupted player’s share Ṽi after seeing shares sent from uncorrupted
players. However, this forces the corrupt player i to share Ṽi without knowing
its witnesses in RD-1. Hence the success probability is 1/q.

– Honest player j can be disqualified with probability 2/q, because of VX j = 1
or VY j = 1.

All of those increases in the probability of accepting incorrect messages are
negligible in |q| if the number of adversaries is limited to polynomial in |q|.
Thus, the players reject all invalid ciphertexts except with negligible probability.
The rest of the protocol is the same as the proof of security for the original
scheme.

7 Conclusion

We have shown a non-interactive distributed multiplication protocol in stan-
dard cryptographic setting with a private network and broadcast channels. Non-
interactive means that players need to use the private network and broadcast
channel only once to send data without the need to synchronize with other
players. The protocol withstands less than n/2 corrupt players and uses no zero-
knowledge interactive proofs. Compared to the previous four-move scheme that
relies on zero-knowledge proofs, it increases computation and communication
complexity according to the factor of threshold t.

As an application of our protocol, we constructed a threshold version of the
Cramer-Shoup cryptosystem which works non-interactively with precomputation
for randomizing private keys. If the key randomization protocol is combined to
the decryption protocol, it requires four data moves. Although this form still
enjoys less round complexity than that of the previous construction (including
precomputation steps), it raises an open problem: Show an optimally resilient
and non-interactive protocol that generates a random number and multiplies it
by a previously shared secret.
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