
DOI: 10.1007/s00453-001-0084-9

Algorithmica (2002) 32: 521–539 Algorithmica
© 2002 Springer-Verlag New York Inc.

Improved Algorithms for Uniform Partitions of Points 1

P. K. Agarwal,2 B. K. Bhattacharya,3 and S. Sen4

Abstract. We consider the following one- and two-dimensional bucketing problems: Given a setS of n
points inR1 or R2 and a positive integerb, distribute the points ofS into b equal-size buckets so that the
maximum number of points in a bucket is minimized. Suppose at most(n/b)+1 points lie in each bucket in
an optimal solution. We present algorithms whose time complexities depend onb and1. No prior knowledge
of 1 is necessary for our algorithms.

For the one-dimensional problem, we give a deterministic algorithm that achieves a running time of
O(b4(12 + logn) + n). For the two-dimensional problem, we present a Monte Carlo algorithm that runs in
subquadratic time for small values ofb and1. The previous algorithms, by Asano and Tokuyama [1], searched
the entire parameterized space and requiredÄ(n2) time in the worst case even for constant values ofb and1.
We also present a subquadratic algorithm for the special case of the two-dimensional problem whenb = 2.

Key Words. Bucketing, Hashing, Random Sampling, Arrangements.

1. Introduction. We consider geometric optimization problems that do not seem to
have any nice properties like convexity and have a large number of distinct global optimal
solutions. Consequently, it is hard to develop a search strategy that will avoid examining
all the optimum solutions (or more likely near-optimal solutions). However, if there
are few optimal solutions, we may be able to prune the search space. This may lead to
more efficient algorithms that are “output-sensitive” in the sense that the running time
of the algorithm depends on the number of optimal solutions. Since we do not know the
optimum solution to begin with, we can try to estimate the optima by some means, say,
random-sampling, and then use that to prune the search space. The success of such an
approach depends on how effectively we estimate the optima.

In this paper we consider the problem of partitioning a set of points inR1 orR2 into
equal-size buckets, so that the maximum number of points in a bucket is minimized.
These problems were earlier studied in [1] and [4], and they arise in the construction of
optimal hash functions; see the aforementioned references for details.

1 Work by the first author was supported by Army Research Office MURI Grant DAAH04-96-1-0013, by
a Sloan fellowship, by NSF Grants EIA-9870724 and CCR-9732787, and by a grant from the U.S.–Israeli
Binational Science Foundation. Work by the second author was supported by an NSERC grant. Part of this
work was done while the last two authors were visiting the Department of Computer Science, University of
Newcastle, Australia.
2 Center for Geometric Computing, Department of Computer Science, Box 90129, Duke University, Durham,
NC 27708-0129, USA. pankaj@cs.duke.edu.
3 School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
binay@cs.sfu.ca.
4 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. ssen@cs.unc.edu.

Received December 16, 1999; revised September 7, 2000. Communicated by B. Chazelle.
Online publication November 28, 2001.

522 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

First we consider the following one-dimensional problem: Given a setS of n real
numbers and an integer 1≤ b ≤ n, partitionSuniformly intob equal-size buckets, i.e.,
each bucket has the same width. The buckets are defined by real numbersβi = L+ i ·w,
for 0 ≤ i ≤ b whereL is the left endpoint of the leftmost bucket andw is the width
(size) of the buckets. Thei th bucketBi , 1≤ i ≤ b, is defined by the interval [βi , βi+1)

andS∩ Bi is thecontentof the i th bucket (for a fixed choice ofL andw). We wish to
minimize the maximum size of the contents in buckets. Two version of this problem are
studied: (i) thetight case in whichB1 andBb are required to be nonempty, and (ii) the
relaxedcase in which they are allowed to be empty.

Next, we consider the two-dimensional problem. Given a setS of n points inR2

and an integerb ≤ n, we again wish to partitionS into b equal-sizebuckets so that
the maximum number of points in a bucket is minimized. We consider two types of
buckets. First, we consider the case in which the buckets are formed by equally spaced
b+ 1 parallel lines,̀ 0, . . . , `b, with orientationθ , for someθ ∈ S1. We requireS to
lie betweeǹ 0 and`b and both`0, `b to contain at least one point ofS. The buckets
areb strips defined by consecutive lines`i−1 and`i (1 ≤ i ≤ b); see Figure 1(ii). This
bucketing problem is known as theuniform-projectionproblem. We next define buckets
to be the regions formed by two families of equally spaced

√
b+ 1 lines. The extremal

lines in both families are required to contain at least one point ofS; see Figure 1(iii).
This problem is called thetwo-dimensional partitionproblem.

Asano and Tokuyama [1] describeO(n2) andO(b2n2)-time algorithms for the tight
and relaxed cases of the one-dimensional problem. We are able to obtain anO(b4(12+
logn)+n)-time deterministic algorithm for the tight case and anO(b5(12+logn)+bn)-
time algorithm for the relaxed case. The algorithm itself does not require the value of
1; the value is required only for the analysis. Our algorithm is faster than that of Asano
and Tokuyama for small values ofb and1, e.g., whenb = o(n1/3) and1 = O(

√
n/b),

which is the case when points are almost uniformly distributed.
Comer and O’Donnell [4] described an algorithm for the uniform-projection prob-

lem that runs inO(bn2 logn) time usingO(n2 + bn) space. Asano and Tokuyama [1]
gave anO(n2 logn)-time algorithm, which usesO(n) space, by exploiting the dual
transformation of the problem. They also give alternative implementations that could
be better for smallerb, but the worst-case running time isÄ(n2) even for constant
values ofb. Bhattacharya [2] also gave an alternate approach for this problem, us-

Fig. 1. (i) One-dimensional bucketing problem; (ii) uniform-projection problem; (iii) two-dimensional parti-
tioning problem.

Improved Algorithms for Uniform Partitions of Points 523

ing the angle-sweepmethod. We first describe a deterministicO(n4/3 log2+ε n)-time
algorithm, for anyε > 0, that computes an optimal uniform projection for the spe-
cial caseb = 2, thereby improving upon the quadratic upper-bound. For larger values
of b, we describe a Monte Carlo algorithm that computes an optimal solution in time
O(min{bn5/3 log7/3 n+ (b21)n log3 n,n2}), Again, our algorithm is faster for small val-
ues ofb and1. The dependence of running time on1 is borne out by the fact that the
number of possible optimal configurations (having the same value) depends on1.

Our overall approach for both one- and two-dimensional problems is similar. Namely,
we use a sample to “localize” the search for the global optimum. Although intuitively,
this is a good heuristic, analyzing the bound on the number of “potential” candidates
for the global optimum, from the optima of the sample, is rather technical. In the one-
dimensional problem, we can simply choose a “deterministic” sample because the ele-
ments are linearly ordered, but the two-dimensional algorithms rely on random sampling.
In both cases we formulate the problem as searching a small portion of a line arrangement.
In the one-dimensional case, we localize the search to a few cells of the arrangement
while in the two-dimensional case we localize it to a few levels.

The paper is organized as follows. Section 2 describes our one-dimensional algo-
rithm, Section 3 describes the deterministic and Monte Carlo algorithms for the two-
dimensional uniform projection problem, and Section 4 describes the two-dimensional
partitioning problem in which the buckets are rectangles. We conclude in Section 5 by
mentioning a few open problems.

2. Optimal One-Dimensional Cuts. For a setS= {x1, . . . , xn} of real numbers and
an integer 1≤ b ≤ n, a pairc = (w, L) is called acut if the set ofb+ 1 real numbers
βj = L + j · w, 0 ≤ j ≤ b, are such thatβ0 ≤ x1 ≤ xn < βb. The interval [βj−1, βj)

is called thej th bucket and the set of elements ofS lying (strictly) in this interval is the
contentsof the j th bucket. We denote thej th bucket byBj and the size of its contents
|Bj ∩ S| by |Bc

j | for a cutc. Let

8(c, S) = max
1≤ j≤b

|Bc
j |

denote thecut valueof c. Let C be the set of all cuts. The optimalcut value8(S) is
defined as

8(S) = min
c∈C

8(c, S).

Any cut that achieves this cut value is anoptimal cut. If we restrict the cuts to satisfy the
condition that|B1|, |Bb| ≥ 1, i.e., the first and the last buckets must not be empty, then
it is called atight cut. Anoptimal tight cutis defined analogously as above, restricted to
the set of tight cuts. We first describe an algorithm for finding an optimal tight cut.

DEFINITION 2.1. Two cutsc1 andc2 arecombinatorially distinctif there is ani , 1 ≤
i ≤ b, such that|Bc1

i | 6= |Bc2
i |.

DEFINITION 2.2. Thearrangementof a setL of lines in the plane, denotedA(L), is
the planar subdivision induced by the lines ofL; that is,A(L) is a planar map whose
verticesare the intersection points of lines inL, whoseedgesare maximal (relatively

524 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

(ii)(i)

x2

x1

3x

x2

x

4x

1x

x

3

4

)/b−(x4 1x x4 1

w

L

Q

w

L

x(−)/(b−1)

Fig. 2. (i) SetL and the feasible regionQ; (ii) the shaded regions denoteC22,C23, andC24, and the dark
region denotesC(2,4;2), the set of cuts for which{x2, x3, x4} lie in the second bucketB2.

open) connected portions of the lines that do not contain a vertex, and whosefacesare
the connected components ofR2−⋃L.

We parameterize the problem as follows. We represent each cutc = (w, L) as a point
in the plane. Abusing the notation slightly, we use the term “cut” to denote a point in the
(w, L)-plane as well as the set of buckets induced by that cut. Let

L = {xi = L + jw | 1≤ i ≤ n,0≤ j ≤ b}

be the set of(b+ 1)n lines in the(w, L)-plane, which we refer to as theeventlines.
L consists ofb + 1 families of parallel lines (one for each fixedj), each family

containingn lines; see Figure 2(i). Hence, every face inA(L) contains at most 2(b+ 1)
edges. For all cutsc = (w, L) lying in the same facef of A(L) the cut value remains
the same; we denote this value by8(f, S). Let8j (f, S) = |Bc

j (S)| for anyc ∈ f . The
nonempty condition of extreme buckets implies that we have to consider only those cuts
(w, L) that lie in the quadrilateralQ defined by the intersection of the following four
constraints; see Figure 2:

Q: x1 ≥ L > x1− w and
xn − x1

b
< w <

xn − x1

b− 1
.(2.1)

The above constraint leads to the following lemma.

LEMMA 2.3. For every point xi ∈ S, there exists an integer1 ≤ j ≤ b− 1, so that xi
lies in one of the two buckets Bj or Bj+1 for any tight cut.

PROOF. A point xi ∈ S lies in the bucketBj of a cutc = (w, L) if and only if

L + w · (j − 1) ≤ xi < L + w · j .

Improved Algorithms for Uniform Partitions of Points 525

Suppose there are two cutsc1 = (w1, L1) andc2 = (w2, L2) and two integers 1≤ k1 <

k1+ 1< k2 ≤ b such thatxi lies in the bucketBk1 of the cutc1 and in the bucketBk2 of
c2. Then we have the following two inequalities:

xi − x1 < k1 · w1 and xi − x1 > (k2− 1) · w2 ≥ (k1+ 1)w2.

It follows thatk1w1 > (k1+ 1)w2 and therefore

w2

w1
<

k1

k1+ 1
= 1− 1

k1+ 1
.(2.2)

On the other hand, by (2.1),

w2

w1
>

xn − x1

b
· b− 1

xn − x1
= 1− 1

b
.(2.3)

Comparing (2.2) and (2.3), we obtaink1 > b−1, which contradicts the assumption that
k < k2− 1≤ b− 2. Hence, the lemma is true.

This lemma immediately implies that at mostn lines ofL intersectQ, and thatQ
intersectsO(n2) faces ofA(L). The lines ofL that intersectQ can be determined in
O(bn) time. We can therefore search overQ∩A(L) in O(n2) time to find representatives
for all classes of combinatorially distinct optimal cuts.

LEMMA 2.4. For a set of n points, all the combinatorially distinct optimal cuts can be
computed in O(n2) time.

For an integerr ≥ 1, let R⊆ Sbe the subset ofr points obtained by choosing every
(n/r)th point ofS. Using Lemma 2.4 for directly solving the problem, we can compute
the optimal solution forR in O(r 2) time.

LEMMA 2.5. Let no, ro be the maximum size of a bucket in an optimal solution for S
and R, respectively. Then ∣∣∣no

n
− ro

r

∣∣∣ < 1

r
.

PROOF. Let c be an optimal cut forR. Each bucket ofc contains at mostro points.
SinceR is chosen by selecting every(n/r)th point of S, each bucket ofc contains at
most(ro+ 1)n/r − 1 points ofS. Thereforeno < (ro+ 1)n/r , or

no

n
− ro

r
<

1

r
.

Conversely, letc′ be an optimal cut forS. Then each bucket ofc contains at mostno

points ofS, which implies that each bucket contains at most(no+ (n/r)− 1)r/n points
of R. Hence,

ro <
(
no+ n

r

) r

n
or

ro

r
− no

n
<

1

r
.

This completes the proof of the lemma.

526 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

We now describe the algorithm for computing an optimal solution forS, assuming
that we have already computed the value ofro. LetCij denote the set of pointsc = (w, L)
in the(w, L)-plane so that the pointxj ∈ S lies in the bucketBi of the cutc. Then

Cij = {(w, L) | L + (i − 1)w ≤ xj < L + iw}
is the cone with apex at(0, xj); see Figure 2(ii). Given three integers 1≤ l ≤ r ≤ n and
1 ≤ i ≤ b, the set of points in the(w, L)-plane for which the subset{xl , xl+1, . . . , xr }
of S lies in thei th bucketBi is C(l , r ; i) = ⋂r

j=l Cij . C(l , r ; i) is a cone formed by the
intersection of the halfplanesxl ≥ L + (i − 1)w andxr > L + iw.

By Lemma 2.5,

(ro− 1)
n

r
< no < (ro+ 1)

n

r
.(2.4)

Setm = (ro + 1)n/r > no. We use this inequality to computeno efficiently. Define
no = (n/b)+1 andδ = m− (n/b). Using (2.4), we obtain thatδ < 1+ 2n/r .

If b2δ ≥ n, then we use theO(n2)-time algorithm described earlier to compute an
optimal cut, so assume thatb2δ < n. If each bucketBi in a cutc contains at mostm
points of S, then, for any 1≤ i ≤ b, the firsti buckets inc contain at mostri = mi
points, thereforeβi < xri . Similarly, the lastb− i buckets inc contain at most(b− i)m
points, thereforeβi ≥ xli , wherel i = n−m(b− i). Hence,βi ∈ [xli , xri). Setr0 = 1;
see Figure 3. Note thatri − l i = bδ for 1 ≤ i ≤ b. This implies that the subset
Si = {xj | ri−1 ≤ j < l i } always lies in thei th bucketBi (see Figure 3), for all
1≤ i ≤ b. Hence, if there is a cutξ = (w, L) so that all buckets inξ contain at mostm
points, thenξ lies in the regionP(m) =⋂b

i=1 C(ri−1, l i −1; i), which is the intersection
of b cones and is thus a convex polygon with at most 2b edges. For all cutsξ 6∈ P(m),
8(ξ, S) > m. It thus suffices to search for an optimal cut withinP(m).

Let Hi ⊆ L be a set ofl i − ri = bδ lines defined as

Hi = {xj = L + iw | l i ≤ j < ri }.
Set H = ⋃b

i=1 Hi ; |H | = b2δ. The same argument as in Lemma 2.3 shows that no
line of H\L intersects the interior of the polygonP(m). We construct the arrangement
A(H) within the polygonP(m) in O(b4δ2) time. Actually, we can clipA(H) inside
P(m)∩Q, whereQ is the quadrilateral defined in (2.1). LetAP(H) denote this clipped
arrangement. By the above discussion,AP(H) is the same asA(L) clipped withinP(m).
Therefore, for any two pointsξ andξ ′ in a face f ∈ AP(H), the contents of all buckets
in the cutsξ andξ ′ are the same. Let

ϕ(f) = 〈81(f, S), . . . , 8b(f, S)〉.
If f and f ′ are two adjacent faces ofAP(H) separated by a lineL + iw = xj , then the
only difference in the two cutsξ ∈ f andξ ′ ∈ f ′ is thatxj belongs toBi−1 in one of

Fig. 3.The boundaryβi can lie in the shaded interval [l i , ri).

Improved Algorithms for Uniform Partitions of Points 527

them and it belongs toBi in the other. Thereforeϕ(f ′) and8(f ′, S) can be computed
from ϕ(f) and8(f, S) in O(1) time.

We compute, in timeO(b4δ2), a tour5 = 〈 f0, f1, . . . , fu〉, whereu = O(b4δ2), of
the dual graph ofAP(H) that visits every face ofAP(H) at least once. We compute
ϕ(f0) and8(f0, S) in O(n) time. We then visit the faces ofAP(H) along5, and for
eachi ≥ 1, computeϕ(fi) and8(fi , S) fromϕ(fi−1) and8(fi−1, S) in O(1) time. We
can thus computeno = 8(S) = minf ∈AP(H) 8(f, S) in O(b4δ2 + n) time. The total
time spent in computing an optimal cut is

O

(
r 2+ b4

(
1+ n

r

)2
+ n

)
.

Choosingr = ⌈b√n
⌉
, we obtain the following.

LEMMA 2.6. An optimal tight cut for n points into b buckets can be found in O(b412+
b2n) time, assuming that the points are sorted.

Instead of using the quadratic algorithm for computingro, we can computero recur-
sively. LetT(r,1′) denote the maximum running time of the algorithm for computing
an optimal cut for a subsetR⊆ Sof sizer chosen by selecting every(n/r)th point ofS,
wherer/b+1′ is the optimal cut value ofR. Then we have the following recurrence:

T(n,1) =
{

T(r,1′)+ O
(
b4(1+ n/r)2+ n

)
if b2(1+ 2n/r) ≤ n,

O(n2) otherwise.

Choosingr = dn/2e and using the fact thatro ≤ nor/n+ 1, we obtain that

ro ≤ r

b
+ 1

2
+ 1, i.e., 1′ ≤ 1

2
+ 1.

Hence, we can show that

T(n,1) = O(b4(12+ logn)+ n).

THEOREM2.7. Given a set S of n points inR, sorted in increasing order, and an
integer 1 ≤ b ≤ n, an optimal tight cut for S with b buckets can be computed in
O(b4(12+ logn)+ n) time.

REMARK 2.8. If we are interested only in computing anε-approximate solution, for
0 < ε < 1, i.e., computing a cutc such that8(S, c) ≤ (1 + ε)8(S), then we can
obtain a faster algorithm by choosing a sampleR of size r = d2b/εe as described
earlier and computingR. Using (2.4) and the fact that8(S) ≥ n/b, we obtain that
8(R)n/r ≤ (1+ε)8(S). The running time of the algorithm isO(n+(b/ε)2), assuming
that the points inSare sorted. Otherwise, the running time isO(n log(b/ε)+ (b/ε)2).

We can use a similar analysis for finding optimal cuts when relaxed cuts are also
allowed. We simply replacen by bn as there arebn event lines. Another way to view
this is that the optimal cut can be determined by trying out all nonredundant cuts forη

buckets for 2≤ η ≤ b and selecting the best one.

528 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

COROLLARY 2.9. An optimal(relaxed) cut for a set of n points inR with b buckets can
be found in O(b5(12+ logn)+ bn) time.

3. The Uniform-Projection Problem. In this section we describe the algorithms for
the uniform projection problem. LetS= {p1, . . . , pn} be a set ofn points inR2 and let
1 ≤ b ≤ n be an integer. We want to findb+ 1 equally spaced parallel lines so that all
points ofS lie between the extreme lines, the extreme lines contain at least one point of
S, and the maximum number of points in a bucket is minimized; see Figure 1(ii). If the
lines have slopeθ , we refer to these buckets as theθ -cut of S. For eachθ , there is unique
θ -cut of S. We first describe a subquadratic algorithm forb = 2. Next, we show how the
running time of the algorithm by Asano and Tokuyama can be improved, and then we
describe a Monte Carlo algorithm that computes8(S), the optimum value, with high
probability, in subquadratic time for small values ofb and1.

It will be convenient to work in the dual plane. The duality transform maps a point
p = (a,b) to the line p∗ : y = −ax + b and a line`: y = αx + β to the point
`∗ = (α, β) [5]; see Figure 4. Let̀ i denote the line dual to the pointpi ∈ S, and let
L = {`i | 1 ≤ i ≤ n}. The dual of a stripσ bounded by two parallel lines̀1 and`2 is
the vertical segmentσ ∗ = `∗1`∗2; a point p lies in σ if and only if the linep∗ intersects
the segmentσ ∗.

Let A(L) be the arrangement ofL as defined in Section 2. We define thelevel of
a point p ∈ R2 with respect toL, denoted byλ(p,L), to be the number of lines inL
that lie belowp (i.e., the vertical line throughp intersectsL below p). The level of all
points within an edge or a face ofA(L) is the same. For an integer 0≤ k < n, we
define thek-level ofA(L), denoted byAk(L), to be the closure of the set of edges of
A(L) whose level isk. The levelAk(L) is an x-monotone polygonal chain with at
mostO(n(k + 1)1/3) edges [6]. Thelower andupperenvelopes ofA(L) are the levels
A0(L) andAn−1(L), respectively. The total number of vertices on the upper and lower
envelopes ofA(L) is n because every such vertex is the dual of the line supporting an
edge of the convex hull ofS.

Since we require the extreme bucket boundaries to contain a point ofS, the points
dual to the extreme lines lie on the upper and lower envelopes ofL. For a fixedx-
coordinateθ , lets(θ) denote the vertical segment connecting the points on the lower and

h* a*

b*

b

a

primal dual

h

σ*

σ

Fig. 4.The duality transform in two dimensions. Vertical segmentσ ∗ is the dual of the stripσ .

Improved Algorithms for Uniform Partitions of Points 529

β0

1β

2β

3β

4β

Upper envelope

Lower envelope

Fig. 5.The uniform-projection problem and the bucket lines in the dual setting.

upper envelopes ofL with thex-coordinateθ . We can partitions(θ) into b equal-length
subsegmentss1(θ), . . . , sb(θ). Letβ0(θ), . . . , βb(θ) be the endpoints of these segments.
These endpoints are dual to the bucket boundaries of theθ -cut, andsi (θ) is the dual of
the j th bucket in theθ -cut. The line`j intersectssi (θ), i ≤ b, if and only if the point
pj lies in the bucketBi corresponding to theθ -cut. Letβi denote the path traced by the
endpointβi (θ) as we varyθ from−∞ to+∞. If we varyθ , βi (θ), for 0≤ i ≤ b, traces
along a line segment, as long as the endpoints ofs(θ) do not pass through a vertex of
upper or lower envelopes. Therefore eachβi is anx-monotone polygonal chain with at
mostn vertices; see Figure 5 for an illustration. Since we will be looking at the problem
in the dual plane from now, we call theβi ’s bucket lines. Let B = {β0, . . . , βb}. The
intersection of a bucket lineβi with a line`j is aneventat which the pointpj switches
from Bj−1 to Bj or vice versa.

For anx-coordinateθ and a subsetA ⊆ L, letµi (A, θ) denote the number of lines
of A that intersect the vertical segmentsi (θ); µi (A, θ) denotes the set of points dual
to A that lie in thei th bucket of theθ -cut. Let8(A, θ) = max1≤i≤bµi (A, θ). Set
no = 8(S) = 8(L) = minθ 8(L, θ).

3.1. Partitioning into Two Buckets. We first describe a deterministic scheme that finds
in subquadratic time an optimal solution for partitioningS into two buckets. By our
convention,β0, β2 denote the upper and lower envelopes ofL, respectively. To determine
no, we search for anx-coordinateθo, whereβ1(θo) is closest to thedn/2e-level ofA(L).
First, we compute3 = Adn/2e in O(n4/3 log1+ε n) time [3], for anyε > 0, and check
whetherβ1 intersects3. If a point β1(θo) lies on3, then we return theθo-cut. If β1

lies below3, we compute the highest level in the interval [1, dn/2e − 1] of A(L) that
β1 intersects, and setλo to this level. This can be accomplished inO(n4/3 log2+ε n)
by performing a binary search on the levels. Similarly, ifβ1 lies above3, we find in
O(n4/3 log2+ε n) time the smallest level in the interval [dn/2e+1,n−1] thatβ1 intersects
and setλo to this level. Ifβ1(θo) is an intersection point ofβ1 andAλo(L), then we return
the θo-cut. Chan’s algorithm computes the edges of a level incrementally from left to
right, so we can actually detect whetherβ1 intersects the level while computing the level
itself in O(n4/3 log1+ε n) time usingO(n) space. Hence, we obtain the following.

530 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

LEMMA 3.1. The optimal uniform projection of n points inR2 into two buckets can be
computed in O(n4/3 log2+ε n) steps, for anyε > 0, using O(n) space.

3.2. A Deterministic Algorithm. In this section we present a deterministic algorithm
for the uniform-projection problem that hasO(bnlogn+K logn) running time and uses
O(n)storage, whereK denotes the number of event points, i.e., the number of intersection
points betweenL andB. This improves the running times ofO(n2+ bn+ K logn) for
generalb andO(b0.610n1.695+ K logn) for b <

√
n in [1].

As in Asano and Tokuyama’s algorithm, we will sweep a vertical line throughA(L),
but unlike their approach we will not stop at every intersection point ofL and B.
We first compute the lower and upper envelopes ofL, which are the bucket linesβ0

andβb, respectively. We can then compute the rest of the bucket linesβ1, . . . , βb−1

in anotherO(bn) time. We preprocess eachβi for answering ray-shooting queries in
O(n logn) time so that a query can be answered inO(logn) time [9]. The total space used
is O(bn).

We sweep a vertical line fromx = −∞ to x = +∞, stopping at the intersection
points ofL and the bucket lines. At eachx-coordinateθ , for 1 ≤ i ≤ b, we maintain
µi (θ), and, for 1≤ j ≤ n, the index of the bucketνj that contains the linèj in theθ -cut.
These quantities remain the same for allx-coordinates between two consecutive event
points. We also maintain an event queueQ that stores some of the event points that lie to
the right of the sweep line, but it is guaranteed to contain the next event point. Suppose
we are at an event pointβi (θ) = βi ∩ `j and`j lies aboveβi to the right ofβi (θ). Then
`j moves fromBi to Bi+1 at θ . We therefore decreaseµi (θ) by 1, increaseµi+1(θ) by
1, and setνj to i . The next intersection point of̀andB, if it exists, lies on eitherβi or
βi+1. We compute inO(logn) time the intersection points of` with βi andβi+1 that lie
immediately afterβi (θ), using the ray-shooting data structure and add them toQ.

On the other hand, if̀ j lies belowβi to the right ofβi (θ), `j moves fromBi+1

to Bi at θ . We decreaseµi+1(θ) by 1, increaseµi (θ) by 1, compute the next in-
tersection points of̀ j with βi andβi−1, and add the two intersection points (if they
exist) toQ.

We spendO(logn) time at each event point. Therefore the total running time of
the algorithm isO((bn+ K) logn). The event queueQ usesO(K) space and the ray-
shooting data structures useO(bn) space. The size ofQ can be reduced toO(n) using
the standard technique, namely, for each line`j , store only one intersection point of`j

with the bucket lines [7]. In particular, suppose we want to insert a pointσ ∈ `j to Q.
We check whetherQ already contains a pointσ ′ on `j . If x(σ) ≥ x(σ ′), we do not
insertσ into Q. Otherwise, we insertσ into Q and deleteσ ′ from it. The total time spent
at each event point is stillO(logn), but the size ofQ is now O(n). However, the ray-
shooting data structure still requiresO(bn) space. In order to reduce the overall storage
to O(n), we partition the plane intou ≤ 2b vertical stripsW1, . . . ,Wu so that eachWi

contains at mostn vertices of the bucket lines. Note that eachβj contains at mostn/b
vertices insideWi . We now run the above sweep-line algorithm in eachWi separately.
While sweeping a vertical line throughWi , we have to preprocess onlyβi ∩Wi for ray
shooting, for each 0≤ i ≤ b. Since eachβi has at mostn/b vertices insideWi , the total
space used by the ray-shooting data structures isO(n). The asymptotic running time is
still O((bn+ K) logn). Hence, we obtain the following.

Improved Algorithms for Uniform Partitions of Points 531

THEOREM3.2. An optimum partitioning in the tight case can be determined in O((bn+
K) logn) time using O(n) storage, where K is the number of event points.

3.3. A Monte Carlo Algorithm. We now present a Monte Carlo algorithm that runs
in subquadratic time, with high probability, for small values ofb and1, whereno =
(n/b)+1. The overall idea is quite straightforward and similar to Section 2. From the
given setL of n lines, we choose a random subsetR of sizer > 20 logn (a value that
we will specify more precisely in the analysis). Let2R be thex-coordinates of all the
intersection points ofR andB, the set of bucket lines with respect toL. We compute
ro = minθ∈2R 8(R, θ). Note that we are not computing8(R) since we are considering
buckets lines with respect toL. B can be computed inO(n logn+ bn) time, andro can
be computed in additionalO(r (b+ n)) = O(rn) time. We usero to estimate the overall
optimumno with high likelihood. In the next phase we use this estimate and the ideas
used in the one-dimensional algorithm to sweep only those regions ofB that “potentially”
contain the optimal solution. In our analysis, we will show that the number of such event
points iso(n2) if b and1 are small. This approach is similar to the randomized selection
algorithm of Floyd and Rivest.

We choose two parametersr and Var= Var(r) whose values will be specified in
the analysis below. Anevent pointwith respect toL (resp.R) is a vertex ofB or an
intersection point of a line ofL (resp.R) with a chain inB. The event points with respect
to R partition the chains ofB into disjoint segments, which we refer to ascanonical
intervals. Before describing the algorithm we state a few lemmas, which are crucial for
our algorithm.

Random sampling. In the following we assume thatR is a random subset ofL of size
r > 20 logn. Our first lemma establishes a relation between the event points ofA(L)
and those ofA(R).

LEMMA 3.3. Letα > 0 be a constant and let1≤ i ≤ b be an integer. With probability
at least1− 1/nα, at most O((n/r) logn) event points ofA(L) lie on any canonical
interval ofβi .

PROOF. The proof follows along the lines of a standard random-sampling argument.
Consider any event point ofA(L). The probability that more thanc(n/r) logn lines ofL
are not chosen before the first line is chosen to its right is no more than(1− r/n)cnlogn/r ≤
n−c. The probability that this holds foranyevent point ofA(L) (and hence forA(R)) is
less thanK · n−c. SinceK = O(n2), by choosingc = α + 2, the lemma follows.

Using a classical result by Vapnik and Chervonenkis onε-approximations (see, e.g.,
Chapter 16 of [12]), which can also be proved using Chernoff’s bound, we can establish
a relationship between the number of lines ofL and ofR intersecting a vertical segment.

LEMMA 3.4. Let e be a vertical segment and letLe ⊆ L be the subset of ne lines that
intersect e. There is a constant c such that with probability exceeding1− 1/n2,∣∣∣∣ne

n
− |Le ∩ R|

r

∣∣∣∣ ≤ c

√
logn

r
.

532 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

An immediate corollary of the above lemma is the following.

COROLLARY 3.5. There is a constant c so that, with probability exceeding1− 1/n,

∣∣∣no

n
− ro

r

∣∣∣ ≤ c

√
logn

r
.

PROOF. Suppose theθ -cut is an optimal cut forR. Apply Lemma 3.4 to the segments
s1(θ), . . . , sb(θ). Sinceb ≤ n and each segmentsi (θ) intersects less thann lines ofL,
the claim follows.

COROLLARY 3.6. Let ξ be aθ -cut so that every bucket ofξ contains at most m points
of S. For 1≤ i ≤ b− 1, let

l i = r − (b− i)m
r

n
− c

√
r logn and ri = im

r

n
+ c

√
r logn,

where c is an appropriate constant. Then with probability exceeding1− 1/n,

l i ≤ λ(βi (ξ), R) ≤ ri .(3.1)

PROOF. If each bucket ofξ contains at mostm points, then the firsti buckets ofξ
contain at mostmi points ofSand the last(b− i) buckets ofξ contain at most(b− i)m
points ofS. The lemma now follows by an application of Lemma 3.4 to the segments
β0(ξ)βi (ξ) andβi (ξ)βb(ξ).

We also need the following result by Matouˇsek on simplex range searching.

LEMMA 3.7 [10]. Given a set P of n points inR2 and a parameter m, n ≤ m ≤ n2,
one can preprocess P for triangle range searching in time O(m logn), to build a data-
structure of O(m) space and then report queries in O((n log2 n)/

√
m+ K) time, for

output size K, where K is number of points in the query triangle.

REMARK. If m = Ä(r 2 log2 n) andK ≥ (n/r) logn, then the output size dominates
the query time, so the query time becomesO(K) in this case.

First phase. We now describe the algorithm in detail. We first compute inO(n logn+
bn) time the upper and lower envelopes ofL and the bucket linesβ0, . . . , βb. Next, we
choose a random sampleR of sizer , wherer > 20 logn is a parameter to be fixed later,
and computero = minθ 8(R, θ), whereθ varies over thex-coordinates of all the event
points ofB with respect toR. As mentioned earlier, we are not computing an optimal
solution for R, since the bucket lines are defined byL. We can computero in O(rn)
time as described in [1]. This completes the first phase of the algorithm. The total time
required by this phase is

O(n logn+ bn)+ O(rn) = O((r + b)n).(3.2)

Improved Algorithms for Uniform Partitions of Points 533

Second phase. In the following we assume that the setR satisfies Lemmas 3.3 and
3.4 and Corollaries 3.5 and 3.6. This holds with probability exceeding 1− 1/n. By
Corollary 3.5,

ro
n

r
− cn

√
logn

r
≤ no ≤ ro

n

r
+ cn

√
logn

r
.

Set

mL = max

{
ro

n

r
− cn

√
logn

r
,

n

b

}
.

By testing fori = 0,1, . . . in increasing order, we first find the smallest 0≤ i ≤
dlogne such thatmL + 2i < no ≤ mL + 2i+1. We then perform a binary search in the
interval [mL+2i ,mL+2i+1] to compute the optimal valueno. We thus need a procedure
that, given an integerm ∈ [mL + 2i ,mL + 2i+1], can determine whetherno ≤ m or
no > m. Supposeno = (n/b)+1 andδ = m−n/b. SincemL ≥ n/b andmL+2i < no,
we have1 > 2i . Therefore

m≤ mL + 2i+1 ≤ no+ 2i <
n

b
+ 21.(3.3)

We run the decision algorithmO(logn) times.
We now describe the decision algorithm. If each bucket of aθ -cut contains at most

m points ofS, then, by Corollary 3.6,l i ≤ λ(βi (θ), R) ≤ ri . For each 1≤ i < b, let

Xi = {θ | l i ≤ λ(βi (θ), R) ≤ ri }.

Let X = ⋂b−1
i=1 Xi , and let|X| be the number of connected components inX. For any

θ 6∈ X, at least one of theβi does not satisfy (3.1), so8(L, θ) > m for any such
θ -cut. We therefore restrict our search to theθ -cuts for whichθ ∈ X and compute
mo = minθ∈X 8(L, θ). If mo ≤ m, thenno ≤ m. Otherwise, we conclude thatno > m.
Hence, it suffices to describe an algorithm for computingmo.

For each 0≤ i ≤ b, letIi be the set of canonical intervals ofβi whosex-projections
intersectX (see Figure 6), and let

2i = {θ ∈ X | βi (θ) is an event point with respect toL}.

Set I = ⋃b
i=0 Ii , ν = |I|, and2 = ⋃b

i=02i . Since every event point whosex-
coordinate is in2i lies on a canonical interval inIi , by Lemma 3.3,|2| = O(ν(n/r) logn).

Since the contents of buckets change only at the event points,

mo = min
θ∈X

8(L, θ) = min
θ∈2

8(L, θ).

It thus suffices to compute8(L, θ) for all θ ∈ 2. We describe later how to computeX
andI, but we first describe how to compute2 and an optimal cut fromX andI.

534 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

X

2

β1

β

Fig. 6. X, β1, andβ2. Solid lines belong toR and dashed lines belong toL\R. Shaded regions denote the
segmentss1(θ) for θ ∈ X. Large (small) bullets are the intersection points ofL with the bucket lines that lie
(resp. do not lie) insideX × R. Arrowed segments represent the canonical intervals inI1.

Computing2. We preprocessS in O(r 2 log2 n) time into a data structure of size
O(r 2 logn) for answering triangle range queries using Lemma 3.7. For each canonical
interval I ∈ Ii , we compute the subsetLI ⊆ L of lines that intersectI in O((n/r) logn)
time using the range-searching data structure, because, in the primal plane,I corresponds
to a double-wedge and it contains a point ofpi ∈ S if and only if I intersects̀ i . We then
compute the intersection points ofI andLI —these are the event points with respect toL
that lie onI . We repeat this step for all intervals inI. The total time spent in computing
these intersection points isO(r 2 log2 n + ν(n/r) logn). We discard those event points
whosex-projections do not lie inX. Let2 denote the set of the remaining event points.
We sort2 in increasing order. The total time spent in computing and sorting2 is

O(r 2 log2 n+ ν(n/r) logn)+ O(|2| logn) = O(r 2 log2 n+ ν(n/r) log2 n).(3.4)

We sweep a vertical line overX from left to right, stopping at thex-values in2. For
θ ∈ X, we maintain

µ(θ) = 〈µ1(L, θ), . . . , µb(L, θ)〉.
The vectorµ(θ) remains the same for allx-values inX lying between two consecutive
values in2. Suppose we are at a pointθ ∈ 2, which belongs to2i . Let I be the connected
component ofX that containsθ . If θ is the leftmost event point inI , we compute the
number of lines inL intersecting the vertical segmentsi (θ) (i.e., the points ofS lying
in the i th bucket of theθ -cut), for 1≤ i ≤ b, using the range-searching data structure
in time O((n/r) logn), and setµi (L, θ) to this value. We can therefore computeµ(θ)
for such an event point inO(b(n/r) logn) time. If θ is not the first event point inI ,
then we updateµ(θ) as follows. Supposeβi (θ) = βi ∩ `j and`j lies aboveβi after
βi (θ). Then the pointpj moves from the bucketBi to Bi+1 at θ . We decreaseµi (L, θ)
by 1 and increaseµi+1(L, θ) by 1. Similarly, if `j lies belowβi to the right ofβi (θ),
we increaseµi (L, θ) by 1 and decreaseµi+1(L, θ) by 1. The total time spent by the
sweep-line algorithm is

O

(
bn

r
logn

)
· |X| + O(|2|) = O

(
(b|X| + ν)n

r
logn

)
.(3.5)

Improved Algorithms for Uniform Partitions of Points 535

Computing X and I. Finally, we describe how to computeX andIi . Set

l i = r − (b− i)m
r

n
− c

√
r logn and

ri = im
r

n
+ c

√
r logn,

and define

σ = ri − l i = bm
r

n
− r + 2c

√
r logn

≤ br

n

(n

b
+ 21

)
− r + 2c

√
r logn

(by (3.3))

≤ 2b1
r

n
+ 2c

√
r logn.

Recall thatXi is thex-projection of the portion ofβi that lies betweenAl i (R) and
Ari (R). We computeAl i (R) and Ari (R) and clip the portion ofβi between these two
levels; see Figure 7.Al i (R) andAri (R) haveO(r 4/3) vertices. Sinceβi hasn vertices,Xi

consists ofO(n+ r 4/3) connected components and can be computed within this bound.
We setX = ⋂b−1

i=1 Xi ; |X| = O(b(n + r 4/3)). Next, we compute the levelsAj (R),
l i ≤ j ≤ ri . Let Mi be the resulting planar subdivision induced by the edges and vertices
of Al i (R), . . . ,Ari (R). By a result of Dey [6],

|Mi | = O(r 4/3(ri − l i)
2/3) = O(r 4/3σ 2/3).

Clearly,Mi can be computed in timeO(r logr +|Mi |) = O(r 4/3σ 2/3) [8]. Sinceβi is an
x-monotone polygonal chain andMi consists ofσ edge-disjointx-monotone polygonal
chains, the number of intersection points betweenβi andMi is O(nσ+|Mi |) = O(nσ+
r 4/3σ 2/3), and they can be computed within that time bound. We can thus compute the
setI ′i of all canonical intervals ofβi whosex-projections intersectXi in time O(nσ +
r 4/3σ 2/3). We discard those canonical intervals ofI ′i whosex-projections do not intersect
X. The remaining intervals ofI ′i gives the setIi . Therefore

ν ≤
∑

i

|I ′i | = O(b(nσ + r 4/3σ 2/3)).

iβ

il

ir

Fig. 7.The bucket lineβi and the planar subdivisionMi . The shaded region denotesMi .

536 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

Repeating this procedure for all bucket lines, the total time in computing|X| andI is

O(b(nσ + r 4/3σ 2/3)).(3.6)

Summing up (3.2), (3.4), (3.5), and (3.6); substituting the values ofν andX; and using
the fact that we run the decision algorithmO(logn) times, the total time in computing
no is thus

T(n) = O((r + b)n)+ O(r 2 log3 n)+ b(nσ + r 4/3σ 2/3)
n

r
log3 n

+ O
(
b2(n+ r 4/3) · n

r
log2 n+ b(nσ + r 4/3σ 2/3)

)
· n

r
log2 n

+ O(b(nσ + r 4/3σ 2/3)) logn

= O(rn)+ O(b(nσ + r 4/3σ 2/3))
n

r
log3 n+ O

(
b2(n+ r 4/3) · n

r
log2 n

)
.

Substituting the value ofσ , we obtain

T(n) = O(rn)

+ O

(
bn2

r

(
b1

r

n
+
√

r logn
)

log3 n+br1/3n log3 n

(
1

br

n
+
√

r logn

)2/3
)

+ O

(
b2

(
n2

r
+ nr1/3

)
· log2 n

)

= O((b21)n log3 n)+ O

(
rn+ bn2

√
r

log7/2 n+ br2/3n log10/3 n

)

+ O

(
b2

(
n2

r
+ nr1/3

)
· log2 n

)
.

Settingr = db2/3n2/3 log7/3 ne, we obtain the following.

THEOREM3.8. There is a Monte Carlo algorithm to compute the optimal uniform
projection of a set of n points inR2 onto b equal-size buckets in time

O(min{bn5/3 log7/3 n+ (b21)n log3 n,n2}),

with probability at least1− 1/n, where the optimal value is(n/b) +1. In particular,
our algorithm can detect in O(min{bn5/3 log7/3 n,n2}) time whether1 = 0.

REMARK 3.9. As in Remark 2.8, we can obtain a fastε-approximation algorithm. We
choose a random subsetR of sizer = α db/εe2 logn, whereα is a sufficiently large
constant, and computer0 = minθ 8(R, θ). Corollary 3.5 and the fact thatno ≥ n/b
implies thatron/r ≤ (1+ ε)8(S). From (3.2), the running time of the algorithm is
O((r + b) · n) which is O((b · (1+ ε)/ε)2n logn) for the above choice ofr .

Improved Algorithms for Uniform Partitions of Points 537

4. Two-Dimensional Partitioning. In this section we consider the problem of par-
titioning a setS of n points inR2 into “rectangular” buckets. More precisely, givenS
and an integerb ≥ 1, we want to compute two families of equally spaced

√
b+ 1 lines

L = {`0, . . . , `
√

b} andL′ = {`′0, . . . , `′√b
}, so that the following conditions hold:

(i) If the orientation of the lines inL is θ ∈ [0, π/2), then the orientation of the lines
in L′ is π/2+ θ .

(ii) S lies betweeǹ 0 and`√b as well as betweeǹ′0 and`′√
b
.

(iii) Each of the extreme lines̀0, `
′
0, `
√

b, `
′√

b
contains at least one point ofS.

(iv) The buckets are rectanglesBij defined bỳ i−1, `i , `
′
j−1, `

′
j , for any pair 1≤ i, j ≤√

b. The maximum number of points in a bucket is minimum.

See Figure 1(iii) for an example. If the slope of lines inL is θ (and of lines inL′ is
−1/θ), we refer to the resulting buckets as theθ -cut. Letµij (L, θ) be the number of
points in the bucketBij of theθ -cut.

In the dual setting, the strip formed by the lines`i−1 and`i of theθ -cut is the vertical
segmentsi (θ) as defined in the previous section. Similarly, the dual of the strip formed
by `′j−1 and`′j is the segmentsj (−1/θ). Hence, a pointpk belongs to the bucketBij

of the θ -cut if `k intersects bothsi (θ) andsj (−1/θ). Let B = {β0, . . . , β
√

b} be the
set of bucket lines as defined in Section 3.2 (a vertical segments(θ) whose endpoints
lie on the lower and vertical envelopes ofA(L) is partitioned into

√
b equal segments

s1(θ), . . . , s√b(θ)).
As noted by Asano and Tokuyama, we can still compute an optimal solution by a

sweep-line algorithm. We sweep two vertical linesL and L ′. The line L sweeps the
plane fromx = 0 to x = +∞. WhenL is atx = θ , L ′ is atx = −1/θ . We stop when
eitherL or L ′ crosses an intersection point ofL andB. At eachθ , we maintain, for every
1 ≤ i, j ≤ √b, the number of points ofS that lie in the bucketBij of theθ -cut, and for
each line`k ∈ L, the pair(i, j) if pk ∈ Bij . If L passes through an event point lying
onβi , then a line moves from a bucketBij to B(i+1) j at θ , or vice versa. Similarly, ifL ′

passes through an event point lying onβj , then a line moves from a bucketBij to the
bucketBi (j+1) atθ , or vice versa. As in Section 3.2, we can update the invariant and the
event queue at each event point inO(logn) time. Hence, we conclude the following:

THEOREM4.1. An optimum two-dimensional partitioning in the tight case can be de-
termined in O((bn+K) logn) time using O(n) storage, where K is the number of event
points.

We can also extend the Monte Carlo algorithm to this problem. If8(S, θ) ≤ m, then
the strips defined by two consecutive lines ofL (orL′) contain at most

√
bmpoints. If we

choose a random sampleR as in Section 3.3 and definero = minθ maxi, j µij (R, θ) and
compute it using the deterministic algorithm, then Lemmas 3.3 and 3.4 and Corollary 3.5
still hold. Corollary 3.6 can now be restated as follows.

COROLLARY 4.2. Let ξ be aθ -cut so that every bucket ofξ contains at most m points
of S. For 1≤ i ≤ √b− 1, let

l i = r − (
√

b− i)
√

bm
r

n
− c

√
r logn and ri = i

√
bm

r

n
+ c

√
r logn,

538 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

where c is an appropriate constant. Then with probability exceeding1− 1/n,

l i ≤ λ(βi (ξ), R), λ(βi (−1/ξ), R) ≤ ri .(4.1)

We can now proceed along the same lines as in Section 3.3. In order to determine
whetherno ≤ m for a given integerm, we first define the set

X = {θ | l i ≤ λ(βi (θ), R), λ(βi (−1/θ), R) ≤ ri , ∀1≤ i ≤
√
β}.

We sweep two vertical lines throughX as in the deterministic algorithm, but using the
ideas from Section 3.3 to compute event points, to move directly from one connected
component ofX to another, and to computeX andI. Since there are

√
b+1 bucket lines

in this case, we haveν = ∑√b
i=0 |Ii | = O(

√
b(nσ + r 4/3σ 2/3)), whereσ = ri − l i ≤

2b1(r/n)+ 2c
√

r logn. Carrying out the analysis of Section 3.3 with the new value of
ν, we can conclude the following.

THEOREM4.3. Given a set of n points inR2 and an integer b, there exists a Monte Carlo
algorithm to find an optimal two-dimensional partition in time O(min{b1/2n5/3 log7/3 n+
(b3/21)n log3 n,n2}), with probability at least1 − 1/n, where the optimal value is
(n/b)+1.

5. Conclusions. We presented bucketing algorithms in one and two dimensions whose
running times depend on how “nonuniform” the optimal partition is. Intuitively, the
algorithm searches in a small neighborhood of an optimal solution, and the size of this
neighborhood depends on the maximum size of a bucket in an optimal partition. We
conclude by mentioning a few interesting open problems:

• Can the dependence onb and1 in the running time of the one-dimensional algorithm
be improved?
• Can then5/3 logO(1) n term in the running time of the uniform projection algorithm be

removed?
• We assume in Sections 3 and 4 that the extremal lines contain at least one of the

input points. Can this assumption be relaxed without affecting the running time of the
algorithms?

References

[1] T. Asano and T. Tokuyama. Algorithms for projecting points to give the most uniform distribution with
applications to hashing.Algorithmica, 9, (1993), 572–590.

[2] B. Bhattacharya. Usefulness of angle sweep over line sweep.Proc. Foundations of Software Technology
and Theoretical Computer Science, 1991, pp. 390–419.

[3] T. Chan. Remarks on computing the level in line arrangements. Manuscript, 1999.
[4] D. Comer and M. J. O’Donnell. Geometric problems with applications to hashing.SIAM Journal on

Computing, 11 (1982), 217–226.
[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry: Algorithms

and Applications. Springer-Verlag, Berlin, 1997.

Improved Algorithms for Uniform Partitions of Points 539

[6] T. K. Dey. Improved bounds for planark-sets and related problems.Discrete and Computational
Geometry, 19 (1998), 373–382.

[7] H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.
[8] S. Har-Peled. Taking a walk in a planar arrangement.Proc. 40th IEEE Annual Symposium on Foundations

of Computer Science, 1999, pp. 100–110.
[9] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk,Journal of

Algorithms, 18 (1995), 403–431.
[10] J. Matoušek. Efficient Partition trees.Discrete and Computational Geometry, 8 (1992), 315–334.
[11] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, New York, 1995.
[12] J. Pach and P. K. Agarwal.Combinatorial Geometry. Wiley, New York, 1995.

