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Abstract
In 1944, Cairns proved the following theorem: given any two
straight-line planar drawings of a triangulation with the same
outer face, there exists a morph (i.e., a continuous transfor-
mation) between the two drawings so that the drawing re-
mains straight-line planar at all times. Cairns’s original proof
required exponentially many morphing steps. We prove that
there is a morph that consists ofO(n2) steps, where each step
is a linear morph that moves each vertex at constant speed
along a straight line. Using a known result on compatible
triangulations this implies that for a general planar graph G
and any two straight-line planar drawings ofGwith the same
embedding, there is a morph between the two drawings that
preserves straight-line planarity and consists ofO(n4) steps.

1 Introduction
A morph between two geometric shapes is a continuous
transformation of one shape into the other. Computer Graph-
ics, Animation, and Modeling are only few of the areas of
Computer Science that make use of morphs. The usual goal
in morphing is to ensure that the structure of the shapes be
“visible” throughout the entire transformation.

Two-dimensional graph drawings can be used to rep-
resent many of the shapes for which morphs are of inter-
est (e.g., two-dimensional images [6, 17, 32], polygons and
poly-lines [1, 2, 9, 14, 19, 24, 25, 26, 27]). As such, morphs
of graph drawings have been well studied.

In this context, the input consists of two drawings Γ1

and Γ2 of the same graph G, and the problem is to transform
continuously from one drawing to the other. A morph
between Γ1 and Γ2 is a continuously changing family of
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drawings of G indexed by time t ∈ [0, 1], such that the
drawing at time t = 0 is Γ1 and the drawing at time t = 1
is Γ2. Preserving structure during the morph becomes a
matter of preserving geometric properties such as planarity,
straight-line planarity, edge lengths, or edge directions. For
example, preserving edge lengths in a straight-line drawing
leads to problems of linkage reconfiguration [10, 11].

Morphing Planar Graph Drawings. This paper is about
morphing planar graphs. A result by Angelini et al. [3] ad-
dresses the problem of “topological morphing” where the
planar embedding changes. However most work, including
ours, is about the case where the initial and final planar draw-
ings are topologically equivalent—i.e., have the same faces
and the same outer face—and planarity must be preserved
throughout the morph.

In addition to the above applications, morphing while
preserving planarity has application to the problem of
creating three-dimensional models from two-dimensional
slices [5], with time playing the role of the third dimension.
The paper by Lubiw and Petrick [22] bounds the complexity
of a morph that preserves planarity but relaxes the straight-
line condition to allow edges to be drawn as polylines.
The case of orthogonal graph drawings is well-solved—a
SODA’06 paper describes an efficiently computable morph
between any two orthogonal drawings of the same graph that
preserves planarity and orthogonality [23]. The case of pre-
serving more general edge directions is explored by Biedl et
al. [7] and in the thesis of Spriggs [28].

Morphing Straight-Line Planar Drawings. In this paper
we give an efficient algorithm to morph between two topo-
logically equivalent straight-line planar drawings of a trian-
gulated graph, where the morph must preserve straight-line
planarity. The issue is to find the vertex trajectories.

Existence. In 1944, Cairns [8] gave a proof of existence
using an induction argument where at each step a low-degree
vertex is contracted to a neighbour in the source drawing.
Because the same contraction may not preserve planarity in
the target drawing, Cairns needed an extra morphing step in
which a graph that is triangulated except for one non-convex
face is morphed to make that face convex. More details can
be found in Section 2. Since Cairns used two recursive calls



his method takes an exponential number of steps.
Thomassen [33] extended Cairns’s algorithm to all pla-

nar straight-line drawings. By augmenting both drawings
to isomorphic (“compatible”) triangulations he reduced the
general case to Cairns’s result. The idea of compatible tri-
angulations was rediscovered and thoroughly explored by
Aronov et al. [4], who showed, among other things, that two
drawings of a graph on n vertices have a compatible triangu-
lation of size O(n2) and that this bound is tight in the worst
case.

We note that Thomassen [33] also showed that there ex-
ists a morph that preserves convexity in addition to straight-
line planarity.
Continuous Morph. An alternative approach to morphing
planar straight-line triangulations was presented by Floater
and Gotsman [15]. Their method is based on Tutte’s graph
drawing algorithm [34], in which the position of each vertex
is expressed as a convex combination of the positions of
its neighbours. Any matrix of such coefficients provides
a planar drawing. So Floater and Gotsman expressed each
of the given drawings by means of a matrix of coefficients,
and then took a linear interpolation between the matrices
to obtain the morph. Gotsman and Surazhsky [18, 29, 30,
31] extended the method to all planar straight-line graph
drawings, and showed that the resulting morphs are visually
appealing. The algorithm does not produce explicit vertex
trajectories. It computes, at any given time-point of the
morph, a “snapshot” of the graph at that time. In other
words, it provides an efficient implementation of a black-
box representation of the morph, where an input time-point
is mapped to an output graph drawing. There are no quality
guarantees about the number of time-points required to
approximate continuous motion, or about the grid size of the
drawings or the minimum feature size (the measure of how
close a vertex and non-incident edge may be). For related
results, see [12, 13, 16].
Piece-Wise Linear Morphs. The problem of finding a
planar straight-line morph that uses a polynomial number of
discrete steps has been asked several times (see, e.g., [20,
21, 22, 23]). The most natural definition of a discrete
step is a linear morph, where every vertex moves along a
straight line segment at uniform speed. A linear morph is
completely specified by the initial and final vertex positions.
If Γ1 and Γ2 are straight-line planar drawings of a graph,
we use 〈Γ1,Γ2〉 to denote the linear morph from Γ1 to Γ2.
We seek a morph that consists of a sequence of k linear
morphs (a “piece-wise linear morph”). Such a morph can
be specified by k + 1 planar straight-line graph drawings.
If Γ1, . . . ,Γk+1 are straight-line planar drawings of a graph,
we use 〈Γ1, . . . ,Γk+1〉 to denote the morph from Γ1 to Γk+1

that consists of the k linear morphs from Γi to Γi+1 for
i = 1, . . . , k.
Our Result. We solve the above open problem by giving an

efficient version of Cairns’s algorithm. Given a triangulation
G on n vertices and two straight-line planar drawings of G
with the same outer face, we give a morph between the two
drawings that preserves straight-line planarity and consists
of O(n2) linear morphs. By the result of Aronov, et al. on
compatible triangulations [4], it immediately follows that
we can morph between two straight-line planar drawings of
any planar graph with a common planar embedding using
O((n2)2) = O(n4) linear morphing steps.

Our idea is to follow Cairns’s vertex contraction proof,
but avoid the double recursion by directly giving a morph
to convexify one small non-convex face in an otherwise
triangulated graph. The other issue is that contracting a
vertex to a neighbour is not actually legitimate in a morph.
We show how to keep vertices close but not coincident
without increasing the number of morphing steps. We begin
with a more detailed description of Cairns’s approach in
the following Section 2. In Sections 3 and 4 we give an
efficient “pseudo-morph” that permits vertex contractions,
and in Section 5 we show how to avoid coincident vertices.

2 Overview of Cairns’s Proof
We are given two drawings Γ1 and Γ2 of a triangulated graph
G with the same outer face. Cairns assumed that the outer
face is drawn as the same triangle in both drawings, which is
easy to accomplish via a few linear morphs. By the identity∑

p deg(p) = 6n − 12, there is at least one non-boundary
vertex p with deg(p) ≤ 5. Let ∆i(p) be the polygon defined
by the neighbourhood of this vertex p in Γi and let ∆∗i (p)
be the kernel of ∆i(p), i.e., the region inside ∆i(p) that is
visible to all points in ∆i(p). We will write Γ, ∆(p), and
∆∗(p) without the subscript i when referring to the drawing
at the “current” time in the morph.

Cairns observed the following fact, which follows from
a straightforward case analysis: for any (≤ 5)-gon, at least
one of its vertices must be in the kernel. So, ∆∗1(p) contains
at least one vertex t1 of ∆1(p), and ∆∗2(p) contains at least
one vertex t2 of ∆2(p). It may not be the case that t1 = t2
(and there may be no vertex that is in both kernels ∆∗1(p) and
∆∗2(p)). However, Cairns [8] observed that we can find a re-
drawing Γ3 of G in which both t1 and t2 are in the kernel
∆∗3(p). The precise details are not important here, but the
general idea is to find a re-drawing Γ3 in which the polygon
∆3(p) is convex, and if we are unable to convexify the
polygon due to the presence of external chords (i.e., edges
between two vertices of ∆(p) that lie outside ∆(p)), the idea
is to make the polygon ∆3(p) “as convex as possible”.

Once we have found this intermediate drawing Γ3, we
can find a morph from Γ1 to Γ2 as follows:

1. Morph from Γ1 to Γ3: To accomplish this, we first
contract p to t1 in both drawings Γ1 and Γ3. The
contraction can be done by a linear morph without



violating planarity because t1 is in both kernels ∆∗1(p)
and ∆∗3(p). We can then use recursion to morph
between the two drawings with n− 1 vertices.

2. Morph from Γ3 to Γ2: To accomplish this, we first con-
tract p to t2 in both drawings Γ2 and Γ3. The contrac-
tion can again be done without violating planarity be-
cause t2 is in both kernels ∆∗2(p) and ∆∗3(p). We can
again use recursion to morph between the two drawings
with n− 1 vertices.

The number of linear morphing steps required by the
resulting algorithm satisfies the recurrence

(2.1) T (n) ≤ 2T (n− 1) +O(1),

yielding T (n) = O(2n), which is exponential, unfortu-
nately.

There is another problem with the above description:
we cannot move p to lie exactly on top of t1 or t2 during
the morph, since “coincident” vertices are technically not
allowed in a drawing. What the above algorithm finds is a
pseudo-morph, which we define inductively as a sequence
consisting of the following kinds of steps:

• a linear morph;

• a contraction of a vertex p to another vertex, followed
by a pseudo-morph between the two reduced drawings,
and then an “un-contraction” of p.

In Cairns’s original proof, after computing the morph be-
tween the two reduced drawings, we add p back to the morph
by setting p to lie somewhere inside the kernel ∆∗(p) at all
times during the morph. Specifically, Cairns suggested plac-
ing p at the centroid of ∆∗(p), which is fine for an existential
proof, but introduces further complexity. Appendix A con-
tains an example where the the centroid of ∆∗(p) does not
move in a straight line during a linear morph of the draw-
ing. We can keep p inside the kernel ∆∗(p) by breaking its
trajectory into linear pieces and using a sequence of linear
morphs, but because the kernel may experience many combi-
natorial changes over time, there is no obvious way to bound
the number of linear morphs. The end result may be more
exponential factors if the coefficient in front of T (n − 1) in
(2.1) is increased.

For now, we will ignore the issue of how to turn a
pseudo-morph into an actual morph that avoids coincident
vertices; we will return to this issue later in Section 5.
In Sections 3–4, we first concentrate on developing an
algorithm that can find a pseudo-morph with O(n2) steps.

3 New Approach
To improve Cairns’s algorithm, the first main idea is to by-
pass the first of the two recursive calls. Instead of morphing

from Γ1 to a fixed target drawing Γ3, the subproblem we ac-
tually need to solve is a weaker one:

PROBLEM 3.1. ((≤ 5)-GON “CONVEXIFICATION”)
Given a vertex p of degree at most 5 with t1 in ∆∗1(p) and t2
in ∆∗2(p), find a pseudo-morph from Γ1 to any straight-line
planar drawing Γ3 of G in which t2 is in ∆∗3(p).

We put “convexification” in quotes, since we do not
require that ∆3(p) is completely convex, just that its ker-
nel contains the specified vertex t2. Let Tconv5(n) de-
note the minimum number of linear morphing and contrac-
tion/uncontraction steps required to solve Problem 3.1. Then
the recurrence for the overall morphing algorithm changes
from (2.1) to

(3.2) T (n) ≤ T (n− 1) + Tconv5(n) +O(1),

which is polynomial if Tconv5(n) is polynomial.
To solve the (≤ 5)-gon “convexification” problem, it

is natural to start with the 4-gon convexification problem:
Given a vertex p of degree 4 with t1 in ∆∗1(p) and t2 in
∆∗2(p), find a pseudo-morph from Γ1 to any straight-line
planar drawing Γ3 of G in which t2 is in ∆∗3(p). Observe
that in a non-convex 4-gon abcd, say with d as the reflex
vertex as in Figure 3, both d and the opposite vertex b are
in the kernel. Thus the only case we need to convexify is
when the vertex t2 is a or c. Because t2 is in ∆∗2(p), the
edge ac must be inside the 4-gon in Γ2, and therefore cannot
be outside the 4-gon in Γ1. Thus the 4-gon convexification
problem can be rephrased as follows:

PROBLEM 3.2. (4-GON CONVEXIFICATION) Given a tri-
angulated graph G with a triangle boundary and a 4-gon
abcd in a straight-line planar drawing ofG such that neither
ac nor bd is an edge outside of abcd (i.e., abcd does not have
external chords), find a pseudo-morph so that abcd becomes
convex.

Let Tconv4(n) denote the minimum number of linear
morphing and contraction/uncontraction steps required to
solve Problem 3.2. We will solve Problem 3.2 in the next sec-
tion. Our idea is to adapt Cairns’s approach again. Namely,
we find a low-degree vertex, contract it to a neighbor, and re-
cursively solve the 4-gon convexification problem on a graph
with n− 1 vertices. No second recursive call is required this
time. The details involve a case analysis, and the end result
is the recurrence

(3.3) Tconv4(n) ≤ Tconv4(n− 1) +O(1),

yielding a linear bound Tconv4(n) = O(n).
One might think that 5-gon convexification would re-

quire an even longer case analysis, but we show that the 5-
gon case can be reduced to the 4-gon case:



LEMMA 3.1. Tconv5(n) = O(Tconv4(n− 1)).

Proof. We solve Problem 3.1 using a black-box solution to
Problem 3.2. We initially contract p to t1 in Γ1 (recall that t1
is in the kernel ∆∗1(p)). If p has degree 3, then we are done,
and if p has degree 4, then we can convexify ∆(p) using at
most Tconv4(n− 1) steps. So assume that ∆(p) is a 5-gon, of
the form t2abcd.

First consider the case where t1 is b. Thus p is contracted
to b which is in the kernel of the polygon (see Figure 1). We
convexify the 4-gon t2bcd using at most Tconv4(n− 1) steps.
The convexification is possible since t2c cannot be an edge
outside t2bcd, for otherwise t2 cannot be in the kernel ∆∗2(p).
Now, t2 sees all of the 4-gon t2bcd as well as the triangle t2ab
and thus lies in the kernel ∆∗(p). At the end we uncontract
p.

d t2

c

t1=b

a

Figure 1: Contraction of p to b

Next consider the case where t1 is d. Thus p is con-
tracted to d which is in the kernel of the polygon (see
Figure 2). We convexify the 4-gon t2abd using at most
Tconv4(n − 1) steps. The convexification is possible since
t2b cannot be an edge outside t2abd, for otherwise t2 cannot
be in the kernel ∆∗2(p). Now, b sees all of the 4-gon t2abd
as well as the triangle bcd and thus lies in the kernel ∆∗(p).
We uncontract p from d, contract p to b, and arrive at the
previous case.

a

t2

c

t1=d

b

Figure 2: Contraction of p to d

The remaining cases are symmetric.

Combining (3.2) and (3.3) with Lemma 3.1 gives the
recurrence T (n) ≤ T (n− 1) +O(n), implying that T (n) =
O(n2). All that remains is to solve the 4-gon convexification
problem and prove (3.3).

4 Convexifying a 4-Gon
In this section we present a solution to Problem 3.2. As-
sume we are given a straight-line planar drawing Γ of a tri-
angulated graph with a triangle boundary z1z2z3, and we are
given a 4-gon abcd such that neither ac nor bd is an edge out-
side of abcd. We want to find a pseudo-morph that convexi-
fies abcd while preserving straight-line planarity throughout.
The boundary z1z2z3 stays fixed during the morph. If abcd
is convex, we are done. Assume without loss of generality
that d is the reflex vertex of the non-convex 4-gon, and thus
b is the tip of the arrowhead shape (see Figure 3). The trian-
gulation contains the edge bd.

c

b

a

d

Figure 3: 4-Gon abcd

We follow Cairns’s idea of reducing the size of the
problem by one by contracting a non-boundary vertex p
with deg(p) ≤ 5 to a vertex that is in ∆∗(p) and then
recursively finding a pseudo-morph. However, we need to
be careful not to destroy abcd or introduce the edge ac when
we contract p, since the external chord ac would preclude
convexification of abcd. We supplement Cairns’s approach
with additional arguments to deal with different types of
problematic vertices p.

Formally, we define a problematic vertex to be a vertex
p of one of the following types:

• p is a vertex of the 4-gon abcd and is not on the
boundary.

• p is a vertex of the boundary triangle z1z2z3.

• p is outside the 4-gon, is not on the boundary, has degree
at most 5, and is adjacent to both a and c, and either a
or c is in ∆∗(p).

We call a vertex p of the third type an ac-inducing vertex,
since following Cairns’s original approach and attempting to
contract p to a or c would introduce the forbidden edge ac.

Define the value of a vertex p to be 6−deg(p). The total
value of all vertices is 6n−∑

p deg(p) = 12.
If there is a non-problematic vertex p with deg(p) ≤ 5,

then Cairns’s approach works fine. Thus, we may assume
that every non-problematic vertex has degree at least 6, i.e.,
value at most 0. In the next three subsections, we show that
some kinds of problematic vertices can be handled, that is,
we can either morph directly to convexify the 4-gon abcd,



or we can perform a contraction that reduces the problem
size by one. When no problematic vertices can be handled,
we bound the values of the remaining problematic vertices.
Then in Section 4.4 we rule out the bad case where no
vertex can be handled using a counting argument based on
the vertex values.

4.1 Non-Boundary 4-Gon Vertices Suppose that a is not
a boundary vertex and deg(a) ≤ 4 (see Figure 4). Observe
the following fact: in any (≤ 4)-gon, every edge must be
incident to at least one vertex that lies in the kernel (this is
obvious by picturing the case of a non-convex 4-gon). In
particular, b or d must be in ∆∗(a). We can thus move a to
within a small distance from whichever vertex is in ∆∗(a)
and perturb it slightly to directly convexify abcd.

c

b

au1

u2

d

Figure 4: Non-boundary vertex a

The case of a degree-(≤ 4) non-boundary vertex c is
symmetric.

Suppose that b is not a boundary vertex and deg(b) ≤ 4
(see Figure 5). Then b must have exactly one neighbour x
that is not on abcd, and x must be adjacent to both a and c.
Since d is a reflex vertex of axcd, xmust be in ∆∗(b). So, we
contract b to x, recursively convexify axcd, and uncontract
b.

c

b

a

d x

Figure 5: Non-boundary vertex b

Suppose that d is not a boundary vertex and deg(d) ≤ 4
(see Figure 6). Then d must have exactly one neighbour x
that is not on abcd, and x must be adjacent to both a and c.
If x is outside of the triangle abc, then a is in ∆∗(d), and
we directly convexify abcd by moving d to within a small
distance from a. Otherwise, we contract d to x, recursively
convexify abcx, and uncontract d.

c

d

a

x

b

(a) x outside triangle abc

c

d

a

x b

(b) x inside triangle abc

Figure 6: Non-boundary vertex d

We may now assume that each non-boundary vertex of
abcd has degree at least 5, i.e., value at most 1, for a total
value of at most 4.

4.2 Boundary Vertices Suppose a boundary vertex, say,
z1, has degree 3. Then z1 must have a neighbour y that is
also adjacent to z2 and z3 (see Figure 7a). Note that the
triangles z1yz2 and z1yz3 are empty of other vertices.

If abcd lies entirely within the triangle T = yz2z3, then
we can simply recursively morph the subgraph contained
in T . The fact that edge ac does not exist limits any
other cases we must consider. In particular, abcd must be
composed of either z1yz2 or z1yz3 and an adjacent triangle
in yz2z3. Without loss of generality, assume the former (see
Figure 7b). Then, we move y to within a small distance from
z1 and perturb it slightly to directly convexify abcd. As we
move y, we linearly transform the contents of yz2z3.

Now, suppose that all three boundary vertices have
degree 4. Then there must exist an internal triangle y1y2y3
containing all the vertices except for the boundary vertices
with zi adjacent to yj for j 6= i, i, j ∈ {1, 2, 3}. If abcd
lies entirely within y1y2y3 (see Figure 8a), then we simply
recursively morph the subgraph contained in y1y2y3. If
abcd lies entirely outside y1y2y3, then consider the graph of
constant size formed by deleting all vertices within y1y2y3.
It can be verified that the polygon defined by any pair of
adjacent faces in this graph can be made convex in a constant
number of steps. Thus, if abcd is composed of two of the
faces of this graph, then we are done. The final case occurs



z2 z3

z1

y

(a)

z2=b z3

z1=c

y=d

a

(b)

Figure 7: Boundary vertex with degree 3

when abcd is composed of a triangle u outside y1y2y3 and
a triangle v inside y1y2y3 (see Figure 8b). We convexify
the polygon defined by u and y1y2y3 and linearly transform
the contents of y1y2y3 throughout the morph. This morph
necessarily also convexifies the polygon defined by u and v,
which is abcd.

We may now assume that the boundary vertices have
total degree at least 4 + 4 + 5, i.e., total value at most
2 + 2 + 1 = 5.

4.3 ac-Inducing Vertices Recall that a non-boundary ver-
tex x is ac-inducing if deg(x) ≤ 5, x is adjacent to both a
and c, and either a or c is in ∆∗(x) (see Figure 9a).

Our key observation is that such vertices are rare:

LEMMA 4.1. There are at most two ac-inducing vertices.

Proof. Assume towards contradiction that there are two ac-
inducing vertices, x and x′ on the same side of ac. Since
either a or c is in ∆∗(x), ac lies inside ∆(x). However, then
ac can not also lie inside ∆(x′), so we have a contradiction.
Therefore, there are at most two ac-inducing vertices: at
most one on each side of ac.

We first note that no ac-inducing vertex has degree 3;
otherwise, ac would necessarily be an edge, which is a
contradiction.

Now, suppose that there are two ac-inducing vertices,
x and x′, where deg(x) = 4 and deg(x′) ∈ {4, 5} (see

z2 z3

z1

y1

y3 y2

(a) abcd within triangle y1y2y3

z2 z3

z1

y1

y3 y2

u

v

(b) abcd composed of triangles u and v

Figure 8: All three boundary vertices with degree 4

Figure 9b). Polygon axcx′ cannot contain any vertices, or
else a and c would not be able to see each other in either
∆(x) or ∆(x′), and thus one of x or x′ would not be an
ac-inducing vertex.

Assume without loss of generality that a is in ∆∗(x′).
We first move x′ to within a small distance from a and
outside abc. Inside abc, ∆(x) is a triangle, and so x′ lies
in ∆∗(x). We contract x to x′, recursively convexify in the
reduced graph, and uncontract x.

We may now assume either that there is exactly one
ac-inducing vertex, with degree at least 4, or that there are
exactly two ac-inducing vertices, with degrees at least 4 + 6
or 5 + 5. In any case, the ac-inducing vertices have total
value at most 2.

4.4 Putting It All Together To summarize, if none of the
preceding cases is applicable, then

• the non-problematic vertices have total value at most 0,

• the non-boundary vertices of abcd have total value at
most 4,

• the boundary vertices have total value at most 5, and

• the ac-inducing vertices have total value at most 2.

(It is possible to eliminate at least one more case with further
arguments, but this would not be necessary.) Since the total



c

b

a

dx

(a) ac-inducing vertex, x

c

b

a

x dx′

(b) Two ac-inducing vertices, x and x′

Figure 9: ac-inducing vertices

value of all vertices is equal to 12, we have already reached
a contradiction. We conclude that there is a 4-gon convexi-
fication algorithm satisfying the recurrence (3.3), yielding a
pseudo-morph with O(n) steps. As a consequence, there is
a pseudo-morph with O(n2) steps between any two straight-
line planar drawings of a triangulated graph with a common
triangle boundary.

5 Avoiding Coincident Vertices
The preceding algorithm only constructs pseudo-morphs. In
this section, we describe a general way of converting any
given pseudo-morphM into an actual morph M , under the
assumption that in the pseudo-morph, we only contract non-
boundary vertices with degree at most 5. This assumption
clearly holds for the algorithm in Sections 3–4.

Suppose that the given pseudo-morphM consists of the
contraction of a non-boundary vertex p with deg(p) ≤ 5 to a
vertex a, followed by a pseudo-morph M0 of the reduced
graph, and then the uncontraction of p. We recursively
convertM0 into a morph M0. Then we modify M0 to Mp

0

by adding p back to the morph, placing it somewhere inside
the kernel ∆∗(p) at all times, to preserve planarity when we
add back the edges incident to p. In fact, we will keep p close
to a, which we know lies in the kernel. To obtain the final
morph M , we replace the contraction of p to a by a linear
morph that moves p from its initial position to its position at
the start of Mp

0 , and we replace the uncontraction of p by a
linear morph that moves p from its position at the end of Mp

0

to its final position.
Cairns’s original proof converts M0 to Mp

0 by placing

p at the centroid of the kernel, but the overall number of
linear morphing steps could increase drastically. We will use
a different placement of p that preserves the number of steps
exactly.

As a warm-up case, and because we will need it later on,
we first consider the case when deg(p) = 3. For this case,
it suffices to show that we can add a new point p inside a
triangle as it undergoes a linear morph:

LEMMA 5.1. Let Γ1 and Γ2 be straight-line drawings of a
triangle on vertices a, b, c in clockwise order such that the
morph 〈Γ1,Γ2〉 is planar. Augment each Γi to Γp

i by adding
a point p at a convex combination λ1ai + λ2bi + λ3ci for
some constants λ1, λ2, λ3 > 0 with λ1 + λ2 + λ3 = 1,
where ai is the position of a in Γi, etc. Then the morph
〈Γp

1,Γ
p
2〉 is planar, and furthermore, at each time instant t of

the morph, with vertices p, a, b, c at points pt, at, bt, ct, we
have pt = λ1at + λ2bt + λ3ct.

Note that for the case when deg(p) = 3 it suffices to
consider a single linear morph, because the rule for placing
p is uniform. The same is true of the case when deg(p) = 4,
and the argument is equally simple: if a 4-gon a, b, c, d
undergoes a planar linear morph that keeps a in the kernel,
then the line segment ac also remains in the kernel, so we
can place p at a fixed linear combination of a and c.

We now turn to the general case when deg(p) = 5.
In this case we must consider the whole sequence of linear
morphs, and the argument is more complicated.

LEMMA 5.2. Let Γ1, . . . ,Γk be straight-line planar draw-
ings of a 5-gon C on vertices a, b, c, d, e in clockwise order
such that the morph 〈Γ1, . . . ,Γk〉 is planar and vertex a is
inside the kernel of the polygon C at all times during the
morph. Then we can augment each drawing Γi to a drawing
Γp
i by adding vertex p at some point pi inside the kernel of

the polygon C in Γi, and adding straight line edges from p to
each of a, b, c, d, e in such a way that the morph 〈Γp

1, . . . ,Γ
p
k〉

is planar.

Proof. We assume that vertex a has the same position during
the entire morph 〈Γ1, . . . ,Γk〉. This is not a loss of gener-
ality because if vertex a moves, we can translate the whole
drawing to move it back: if Γ1 and Γ2 are planar straight-
line drawings of a graph and Γ3 is a translation of Γ2. Then
〈Γ1,Γ2〉 is a planar morph if and only if 〈Γ1,Γ3〉 is.

We also assume that b, a, and e are not collinear in
any drawing Γi, as otherwise we can slightly perturb the
position of a without affecting the planarity of the morph
〈Γ1, . . . ,Γk〉. Hence, in any drawing Γi, the angle αi

incident to a and internal to the polygon C is such that either
αi < π or αi > π. If αi < π, we say that Γi is a-convex.
Otherwise, it is a-reflex.

We partition the sequence of drawings Γ1, . . . ,Γk into
maximal subsequences of a-convex and a-reflex drawings.



Observe that at any time instant t during morph
〈Γ1, . . . ,Γk〉 there exists an εt > 0 such that the intersec-
tion between the disk D centered at a with radius εt and the
kernel of polygon C consists of a non-zero-area sector S of
D. This is because a is a vertex of the kernel of C. Let
ε = mint εt be the minimum of εt among all time instants t
of the morph.

b

c
e

D a

d
S

(a)

D
e

a
b

c d

S

(b)

Figure 10: Illustrations for the existence of a disk D (light
grey region) centered at a whose intersection with the kernel
of C (green region) is a non-zero-area sector S (dark grey
region) in (a) the a-convex case and (b) the a-reflex case.

Observe that if Γi is a-convex then the radii of D
delimiting S lie on edges (a, b) and (a, e), respectively (see
Fig. 10a), while if Γi is a-reflex then the radii ofD delimiting
S lie on the elongations of edges (a, b) and (a, e) emanating
from a, respectively (see Fig. 10b).

In drawing Γi we denote the position of vertex w by wi.
Note that the position of vertex a is unchanged so we abuse
the notation and simply denote it by a. We denote the length
of edge (w, z) in Γi by li(w, z). Let l(w, z) = maxi li(w, z).
Define fb = ε/l(a, b) and fe = ε/l(a, e).

Consider a maximal subsequence of Γ1, . . .Γk that con-
sists entirely of a-convex (or entirely of a-reflex) drawings.
We will construct a triangle a, b′, e′ with dummy vertices b′

and e′ so that the triangle lies inside the kernel of the poly-
gon throughout the subsequence. Then the idea is to express
vertex p as a fixed convex combination of a, b′, e′ so that we
obtain a planar morph by Lemma 5.1. Dummy vertices b′

and e′ are placed as follows.
If the subsequence is a-convex then for each Γi in the

subsequence, b′ and e′ are placed at points b′i = fb · bi +
(1 − fb) · a and e′i = fe · ei + (1 − fe) · a, respectively.
See Fig. 11a. Observe that b′ lies on edge (a, b), since its
position is a convex combination of the positions of a and b.
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Figure 11: Illustrations for the placement of dummy vertices
b′ and e′ in the a-convex and a-reflex cases to create triangle
τi.

Similarly, e′ lies on edge (a, e).
If the subsequence is a-reflex then for each Γi in the sub-

sequence, construct point b∗i by extending the line segment
bia an equal distance beyond a. Similarly, construct point e∗i
by extending the line sement eia an equal distance beyond a.
Vertices b′ and e′ are placed at points b′i = fb ·b∗i +(1−fb)·a
and e′i = fe ·e∗i +(1−fe) ·a, respectively. See Fig. 11b. Ob-
serve that b′ and e′ lie on the elongations of (a, b) and (a, e)
emanating from a, respectively.

Note also that, whether Γi is a-convex or a-reflex, the
positive-area triangle (a, b′, e′) is contained inside the sector
S that is the intersection between D and the kernel of C.
This is because fb · li(a, b) ≤ εli(a, b)/l(a, b) ≤ ε. Similarly
fe · li(a, e) ≤ ε.

We denote by τi the triangle (a, b′, e′) in drawing Γi.
Observe that, during each morphing step that transforms

an a-convex drawing Γi into an a-convex drawing Γi+1,
vertices b′ and e′ move at constant speed along trajectories
that are parallel to those of b and e, respectively, since they
are expressed as convex combinations of such points and
of a, which does not move. Hence, they move linearly.
Moreover, since b′ and e′ lie on edges (a, b) and (a, e),
respectively, and since the morphing 〈Γi,Γi+1〉 is planar, the
linear morphing 〈τi, τi+1〉 is also planar.

Analogously, during each morphing step that transforms
an a-reflex drawing Γi into an a-reflex drawing Γi+1, ver-
tices b′ and e′ move linearly, since they are expressed as con-
vex combinations of a and of b∗ and e∗, which in turn move
parallel to b and e, since triangles (a, b, e) and (a, b∗, e∗) are
congruent and symmetric with respect to a. Moreover, since
b′ and e′ lie on the lines through edges (a, b) and (a, e), re-
spectively, and since the morphing 〈Γi,Γi+1〉 is planar, the



linear morphing 〈τi, τi+1〉 is also planar.
On the other hand, during a morphing step from an a-

convex Γi to an a-reflex Γi+1, or vice versa, triangle τi
degenerates to a segment and triangle τi+1 then reappears
from the segment. However, it is crucial to note that the
intersection between τi and τi+1 is a non-empty convex
region incident to a (see Fig. 12), since it is not possible to
move b (resp., e) in one single planar linear morph in such a
way that its trajectory crosses the elongation of (a, b) (resp.,
of (a, e)) emanating from a.

ei+1

a
ei+1

ei

bi

ei

bi+1
bi

bi+1

Figure 12: The intersection between τi (blue region) in the
a-reflex Γi and τi+1 (grey region) in the a-convex Γi+1 is a
non-empty region incident to a.

Based on the above discussion, we give an algorithm to
construct the required morphing 〈Γp

1, . . . ,Γ
p
k〉.

Our proof is by induction on the number of alternations
between a-convex and a-reflex drawings in the sequence.
Assume that Γ1 is a-reflex (the other case is analogous). In
the base case we handle the first maximal subsequence of
a-reflex drawings. Let i be the minimum index such that
Γ1, . . . ,Γi are a-reflex and Γi+1 is a-convex. For each r
with 1 ≤ r ≤ i, we will construct Γp

r from Γr by placing
vertex p at a point pr and adding straight-line edges from
p to vertices of C, ensuring that 〈Γp

1, . . . ,Γ
p
i 〉 is a planar

morph. Take any point pi in the intersection of τi and τi+1.
Parameterize pi as a convex combination of a, b′i and e′i, say
pi = λ1a+λ2b

′
i +λ3e

′
i. Using the same λ’s, define point pr

to be λ1a+λ2b
′
r +λ3e

′
r. Then, by the above discussion, the

morph 〈Γp
1, . . . ,Γ

p
i 〉 is planar. This completes the base case

of the induction.
Next, consider a morphing step from an a-reflex Γi to

an a-convex Γi+1. (The step from a-convex to a-reflex is
analogous.) Assume inductively that:

• we have chosen points pr for 1 ≤ r ≤ i such that the
morph 〈Γp

1, . . . ,Γ
p
i 〉 is planar and

• point pi is inside the region of intersection, R, between
triangle τi and triangle τi+1.

We consider the maximal sequence of a-convex draw-
ings including Γi+1. Let j > i be the minimum index such
that Γi+1, . . . ,Γj are a-convex and Γj+1 is a-reflex. For
each r with i + 1 ≤ r ≤ j, we will construct Γp

r from Γr

by placing vertex p at a point pr and adding straight-line
edges from p to vertices of C. Our goal is to ensure that
〈Γp

i ,Γ
p
i+1, . . . ,Γ

p
j 〉 is planar. Our plan is to choose parame-

ters λ1, λ2, λ3 and keep vertex p at the point λ1a+λ2b
′+λ3e

′

throughout. This ensures planarity of all steps of the morph
except possibly the first step.

We have a constraint at the end of the sequence, that pj
should lie in τj ∩ τj+1. We also have to take care that the
first step 〈Γp

i ,Γ
p
i+1〉 is planar.

The constraint that pj should lie in τj ∩ τj+1 re-
stricts the choice of λ1, λ2, λ3 to the set Λ defined as
{(λ1, λ2, λ3) : λ1, λ2, λ3 > 0, λ1 + λ2 + λ3 = 1, λ1a +
λ2b
′
j + λ3e

′
j ∈ τj ∩ τj+1}. Define R′ to be the re-

gion inside τi+1 corresponding to Λ, viz. {λ1a + λ2b
′
i+1 +

λ3e
′
i+1 : (λ1, λ2, λ3) ∈ Λ}. Refer to Fig. 13a. It remains

to choose a point pi+1 in R′ so that the morph 〈Γp
i ,Γ

p
i+1〉 is

planar.
Consider the morph 〈Γi,Γi+1〉. Parameterizing this

morph from time t = 0 to time t = 1, let σ be the time
where b, a, and e become collinear. Observe that 0 < σ < 1
because b, a and e are not collinear in Γi or Γi+1. The instant
at which they become collinear is indicated by b, e and the
dashed line between them in Fig. 13a. We claim that there
exists a point pi+1 in the interior of R′ close enough to a
such that |pipi+1 ∩ R|/|pipi+1| > σ. Namely, if a is not
the only point in R ∩ R′, then pi+1 can be chosen as any
point of R ∩ R′ different from a. Otherwise, the existence
of a suitable point pi+1 can be proved by observing that (i)
R′ is incident to a, (ii) the ratio |pipi+1 ∩ R|/|pipi+1| gets
arbitrarily close to 1 when pi+1 gets arbitrarily close to a
(see Fig. 13b).

With this choice of pi+1 it remains to show that the
morph 〈Γp

i ,Γ
p
i+1〉 is planar. Parameterize the morph from

time t = 0 to time t = 1. We are going to prove the following
statement: For each line l passing through two consecutive
vertices of C, vertex p remains on the same side of l at every
time instant 0 ≤ t ≤ 1 of the morph. Since pi lies in the
kernel of the polygon C in Γp

i , the statement implies that p
is in the kernel of the polygon C during the entire morph,
which implies that the morph is planar.

We now prove the statement. The 3 cases when l passes
through b and c, when l passes through c and d, and when l
passes through d and e, easily follow from the definition of ε.
It remains to consider the cases when l passes through a and
b or when l passes through a and e. The statement follows
easily for these cases if pi+1 lies in R ∩R′.

Otherwise, note that either p does not intersect the
elongation of (a, e) when passing from pi to pi+1 during the
morph (as in Fig. 13a) or p does not intersect the elongation
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Figure 13: (a) Illustration for the placement of point pi+1.
The starting a-reflex drawing Γi is blue, as is the corre-
sponding triangle τi, while the final a-convex drawing Γi+1

is black and the corresponding triangle τi+1 is grey. Point
pi is in region R = τi ∩ τi+1. Point pi+1 must be placed
in region R′. For sake of readability, points b′ and e′ are
not shown. (b) The ratio |pipi+1 ∩ R|/|pipi+1| > σ gets
arbitrarily close to 1 when pi+1 gets arbitrarily close to a.

of (a, b) when passing from pi to pi+1. Assume the former,
the other case being analogous. Note that this implies the
statement when l passes through a and e.

Concerning the final case in which l passes through a
and b, we note that from time t = 0 to time t = σ, p is inside
R. Since R is delimited by the elongation of (a, b) at time
t = 0, we have that p is on the same side of l at each time
instant 0 ≤ t ≤ σ. Also, from time t = σ to time t = 1
vertex p is separated from the elongation of (a, b) by edge
(a, e). Since pi+1 lies in R′, which is delimited by the line
through the positions of a and e at time instant t = 1, p does
not traverse edge (a, e) during the morph. Hence, p remains
on the same side of l also at each time instant σ ≤ t ≤ 1.
This completes the proof of the statement.

To conclude, we have proved by induction on the num-
ber of alternations between a-convex and a-reflex drawings
in the sequence Γ1, . . . ,Γk, that we can construct a sequence
of drawings Γp

1, . . . ,Γ
p
k that determine a planar morph of the

cycle C augmented by vertex p and its edges, as required.

6 Conclusion
In this paper we have given an algorithm that takes as input
two straight-line planar drawings Γ1 and Γ2 of the same
graph with the same embedding, and finds a morph with a
polynomial number of steps from Γ1 to Γ2 that preserves
straight-line planarity. Each step is a linear morph, and the
number of steps is O(n2) and O(n4) for triangulations and
general plane graphs, respectively.

One natural question is to reduce the number of steps. In
particular, is there a morph with fewer than O(n4) steps for
general plane graphs? We would need a different approach
than compatible triangulation. On the other side, we are not
aware of any non-trivial (even linear) lower bound, although
we suspect that a constant number of steps do not always
suffice.

It would also be interesting to design morphing algo-
rithms for sub-classes of planar graphs, such as trees, outer-
plane graphs, and series-parallel graphs. We suspect that,
for such graph classes, morphs with a linear number of steps
always exist. Note that using Lemma 5.1, it is easy to prove
that a morph with a linear number of steps exists between any
two straight-line planar drawings of a maximal plane 3-tree.

Thomassen [33] showed that there exists a morph be-
tween any two topologically equivalent planar convex draw-
ings that preserves convexity as well as straight-line pla-
narity. Can this be done with a polynomial number of linear
morphs?

It is possible to implement our algorithm in polynomial
time under the real RAM model of computation. However,
we have not bounded the coordinate values and coefficients
in our linear morphs and it seems that they may require a
superpolynomial number of bits when converted to integers
(though they can be described using polynomial number
of arithmetic operations). Consequently, the intermediate
drawings produced by our morph may have an exponential
ratio of the distances between the closest and farthest pairs
of vertices. We leave as an open problem to find a morph that
uses a polynomial number of linear morphing steps and uses
only a polynomial (or, even better, a logarithmic) number of
bits per coordinate.
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Appendix A: Non-linear motion in Cairns’s algorithm
The morphing algorithm of Cairns [8] was described in
Section 2. Here we give an example to show that Cairns’s
suggestion of keeping p at the centroid of ∆∗(p) results in
non-linear motion.
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Figure 14: A linear morph of polygon (a, b, c, d), with kernel
a, t, c, s, shown in three snapshots as b moves to b′ and b′′,
and d moves to d′ and d′′. Corner s of a, t, c, s moves along
a trajectory that is not a straight line. As a consequence, the
centroid φ of a, t, c, s does not move along a straight line.
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