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selection problem which yields a portfolio of the minimum CVaR with a specified rate of
return.

We propose to include cost as an additional preference criterion for the CVaR optimiza-
tion problem. We demonstrate that, with the addition of a proportional cost, it is possible
to compute an optimal CVaR derivative investment portfolio with significantly fewer instru-
ments and comparable CVaR and VaR. A computational method based on a smoothing
technique is proposed to solve a simulation based CVaR optimization problem efficiently.
Comparison is made with the linear programming approach for solving the simulation based
CVaR optimization problem.
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1 Introduction

One of the main objectives of risk management is to evaluate and improve the performance
of financial organizations in light of the risks taken to achieve profits. A current standard
benchmark for firm-wide measures of risk is value at risk (VaR) [9]. For a given time horizon
t̄ and confidence level β, the value at risk of a portfolio is the loss in the portfolio’s market
value over the time horizon t̄ that is exceeded with probability 1 − β. However, as a risk
measure, VaR has recognized limitations. Firstly it lacks subadditivity and convexity [3, 4].
For example, the VaR of the combination of two portfolios can be greater than the sum of
the VaR of the individual portfolios. Indeed, VaR is a coherent risk measure only when it
is based on the standard deviation of normal distributions. In addition, it has been shown
in [15, 16] that the problem of minimizing the VaR of a portfolio can have multiple local
minimizers.

An alternative risk measure to VaR is conditional value at risk (CVaR), which is also
known as mean excess loss, mean shortfall or tail VaR. For a given time horizon t̄ and
confidence level β, CVaR is the conditional expectation of the loss above VaR for the time
horizon t̄ and the confidence level β. The CVaR risk measure, with a slight modification,
is also applicable to distributions with jumps [20]. It has been shown [18] that CVaR is a
coherent risk measure that has many attractive properties including convexity, see e.g., [17]
for an overview of CVaR. In addition, minimizing CVaR typically leads to a portfolio with a
small VaR.

A convex optimization problem has been proposed in [19] to compute the optimal CVaR
portfolio, we describe the mathematical formulation of CVaR optimization problem in §2. In
particular, when this optimization problem is approximated by Monte Carlo simulation, it
has an equivalent linear programming formulation and can be solved using standard linear
programming methods.

Derivative contracts have become increasingly important as investment tools for achiev-
ing higher returns and decreasing funding costs. In this paper, we first analyze in §3 the
well-posedness of the optimal CVaR/VaR portfolio selection problem when the investment
universe consists of derivative contracts. Specifically, we illustrate that the CVaR/VaR op-
timization problem for derivative portfolios typically has an infinite number of solutions if
the derivative values are computed using delta-gamma approximations. In particular, the
optimal investment portfolios lie in a linear subspace of dimension (n−(2d + 3)), where n
is the total number of instruments in the investment universe and d is the total number of
underlying risk factors; here we assume that there exist only budget and return constraints
and each derivative depends on a single risk factor. Similar results are obtained if a deriva-
tive value depends on more than one risk factor; this analysis is presented in Appendix 6.
Moreover, even when the derivative values are computed with more accurate methods such
as analytic formulae, numerical partial differential equations, or Monte Carlo methods, the
CVaR/VaR optimization problem for derivative portfolios remains ill-posed in the sense that
there are many portfolios that have similar CVaR/VaR values to that of the optimal portfolio
and slight perturbation of the data can lead to significantly different optimal solutions; we
illustrate this with derivative CVaR portfolio examples in §3. We note that the concepts of
well-posed and ill-posed problems were first introduced by Hadamard at the beginning of the
20th century [11] and ill-posed problems emerge from many areas of science and engineering,
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typically in the form of inverse problems.
In §4 we focus on the CVaR optimization problem and introduce cost as an additional

preference; the cost is modeled as proportional to the magnitude of the holding positions.
A similar consideration can be applied to the VaR optimization problem although VaR
optimization is a more computationally challenging task. We show that a similar convex
programming problem can be formulated for CVaR optimization under the proposed pro-
portional cost model. In addition, we demonstrate that the proposed CVaR optimization
formulation with cost is able to limit both the transaction cost and management cost; an
optimal CVaR derivative investment portfolio using a suitable weighted cost parameter has
smaller total trading positions, significantly fewer instruments, and comparable CVaR (and
VaR).

The standard method for a CVaR optimization problem is a linear programming (LP)
approach. Using Monte Carlo simulation, a piecewise linear function is used to approximate
the typically continuous differentiable CVaR function which results in a linear programming
problem. This LP is then solved using standard linear programming software. We illustrate
that this approach becomes inefficient for large scale CVaR optimization problems.

A computational method based on a smoothing technique is proposed in §5 to efficiently
solve a simulation based CVaR optimization problem. Comparison is made with the lin-
ear programming approach to solve the simulation based CVaR optimization problem. We
demonstrate that the smoothing formulation, compared with the linear programming ap-
proach, is computationally much more efficient in both CPU usage and memory requirement
and is capable of solving larger problems.

2 Mathematical Formulation

For a time horizon t̄, let f(x, S) denote the loss of a portfolio with decision variable x ∈ R
n

and random variable S ∈ R
d denote the value of underlying risk factors at t̄. Without loss of

generality, we assume that the random variable S ∈ R
d has a probability density p(S). For

a given portfolio x, the probability of the loss not exceeding a threshold α is given by the
cumulative distribution function

Ψ(x, α)
def
=

∫
f(x,S)≤α

p(S)dS. (1)

When the probability distribution for the loss has no jumps, Ψ(x, α) is everywhere continuous
with respect to α.

The VaR associated with a portfolio x, for a specified confidence level β and time horizon
t̄, is given by

αβ(x)
def
= inf{α ∈ R : Ψ(x, α) ≥ β} (2)

Note that under the assumption that Ψ(x, α) is everywhere continuous, there exists α (pos-
sibly not unique) such that Ψ(x, α) = β.

Define [f(x, S) − α]+ as

[f(x, S) − α]+
def
=

{
f(x, S) − α if f(x, S) − α > 0
0 otherwise.
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The risk measure CVaR, φβ(x), is defined as [18, 20]:

φβ(x)
def
= inf

α

(
α + (1 − β)−1

E
(
[f(x, S) − α]+

))
When the loss distribution has no jumps, CVaR is the conditional expectation of the loss,

given that the loss is αβ(x) or greater, and is given by

φβ(x) = (1 − β)−1

∫
f(x,S)≥αβ(x)

f(x, S)p(S)dS. (3)

Define the augmented function

Fβ(x, α)
def
= α + (1 − β)−1

∫
S∈Rd

[f(x, S) − α]+p(S)dS (4)

Under the assumption that the loss function f(·, S) is convex, the loss distribution is continu-
ous, it can be shown [19] that the function Fβ(x, α) is convex and continuously differentiable
with respect to α and φβ(x) is convex with respect to x. Moreover, minimizing the CVaR
over any x ∈ X, where X is a subset of R

n, is equivalent to minimizing Fβ(x, α) over
(x, α) ∈ X × R, i.e.,

min
x∈X

φβ(x) ≡ min
(x,α)∈X×R

Fβ(x, α). (5)

If, in addition, X is a convex set, then the CVaR minimization problem

min
(x,α)∈X×R

Fβ(x, α) (6)

is a convex programming problem.

3 Minimizing Risk for Derivative Portfolios

At a given time horizon t̄ > 0, assume that the underlying asset prices of the derivative
instruments are St̄ ∈ R

d, the initial asset prices are S0, and the function f(x, S) is the loss
of a portfolio from a universe of n instruments. Assume that instrument values at time t̄ are
{V1(St̄, t̄), · · · , Vn(St̄, t̄)}. For a portfolio selection problem and a given investment horizon
t̄ > 0, the loss associated with the portfolio x is

f(x, St̄) = −xT
(
V t̄ − V 0

)

where for any time t, V t def
= [V1(St, t), . . . , Vn(St, t)]. Note that f(x, S) is a linear function of

x and it can be easily shown that, for any ρ > 0,

αβ(ρ · x) = ρ · αβ(x), and φβ(ρ · x) = ρ · φβ(x).

Let δV ∈ R
n denote the change in the instrument values over the time horizon t̄, i.e.,

δV = V t̄ − V 0. Then the loss, f(x, St̄), of the portfolio over the investment horizon t̄ is
−(δV )T x.
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Without loss of generality, let x ∈ R
n denote the ratio of the instrument holdings to the

total initial investment wealth, i.e., xi is the number of units of the ith instrument holding
per dollar investment. (The VaR and CVaR of a portfolio with a budget ρ are simply ρ·αβ(x)
and ρ · φβ(x) respectively, where αβ(x) and φβ(x) are computed for a dollar’s investment).

Assume for now that the only constraints on the optimal portfolio are the budget and
return constraints; the budget constraint can be expressed as(

V 0
)T

x = 1

and the return constraint for the investment horizon t̄ is(
δV

)T
x = r̄

where r̄ ≥ 0 specifies the expected return of the portfolio over the time horizon t̄ and δV ∈ R
n

is the expected gain for the instruments, i.e., δV = E [(δV )].

If X = {x : (V 0)
T

x = 1,
(
δV

)T
x = r̄} is the set of feasible portfolios, we can write (6)

explicitly as

min
(x,α)

(
α + (1 − β)−1

∫
S∈Rd

[−(δV )T x − α]+p(S)dS

)
subject to

(
V 0

)T
x = 1 (7)(

δV
)T

x = r̄.

We assume that a stochastic model for changes of the underlying asset prices of all the
instruments in a portfolio is given. In addition, we assume that there exist methods for com-
puting the derivative values, such as Black-Scholes formulae, delta-gamma approximations,
and Monte Carlo simulation.

The continuous CVaR optimization problem (7) is a convex nonlinear minimization prob-
lem with linear constraints. If the loss distribution function is continuous, the objective
function is continuously differentiable. How well is this optimization problem posed for a
portfolio of derivatives?

To investigate this, let us consider the delta-gamma approximation of derivative values.
For a short time horizon t > 0, a delta-gamma approximation can be a sufficiently accurate
approximation to the derivative value and is often used in risk assessment. In general, the
delta-gamma approximation describes the most significant component in the change of the
derivative values and can thus provide insight into the nature of the solution. Thus we
assume for now that the change, for a given horizon t̄, in instrument values is specified by
the delta-gamma approximation; for instrument i:

V t̄
i − V 0

i =

(
∂V 0

i

∂t

)
δt̄ +

(
∂V 0

i

∂S

)T

(δS) +
1

2
(δS)T Γi (δS) . (8)

Here the vector (δS) ∈ R
d denotes the change in the underlying values,

∂V 0
i

∂t
denotes the

initial theta sensitivity of the ith instrument value to time,
∂V 0

i

∂S
∈ R

d denotes the initial
delta sensitivity of the ith instrument with respect to the underlyings, and Γi ∈ R

d×d is the
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Hessian matrix denoting the initial gamma sensitivity of the ith instrument with respect to
the underlyings, and δt is change in time.

Let ∂V 0

∂t
and ∂V 0

∂S
denote the initial sensitivities for all instruments in the investment

universe:
∂V 0

∂t

def
=

[
∂V 0

1

∂t
, · · · , ∂V 0

n

∂t

]
∈ R

n

∂V 0

∂S

def
=

[
∂V 0

1

∂S
, · · · , ∂V 0

n

∂S

]T

∈ R
n×d

Assume for now that each instrument depends on a single risky asset. If a derivative
value depends on more than one risk factor, similar results can be obtained by accounting
for the cross-partial derivatives; this analysis is presented in Appendix A. In the case of a

single risk factor, the only non-zero entries in the vector
∂V 0

i

∂S
and matrix Γi are entries i and

(i, i) respectively. Let

Γ
def
=

[
Γdiag

1 , · · · , Γdiag
n

]T

∈ R
n×d

where Γdiag
i represents the diagonal of the matrix Γi as a column vector. Let (δS)2 be the

vector with each entry of δS squared. If we set

Λ
def
=

[(
∂V 0

∂t

)
,

(
∂V 0

∂S

)
,

1

2
Γ

]
∈ R

n×(2d+1), (9)

the loss in portfolio value is given by

f(x, S) = −xT Λ

⎡
⎣ δt̄

δS
(δS)2

⎤
⎦ (10)

If n > 2d + 1, there exists a non-zero z ∈ R
n satisfying ΛT z = 0. It is clear that, for any θ,

f(x, S) = f(x + θ · z, S), ∀S.

Thus the portfolios x and (x + θ · z) have the same VaR and CVaR under the delta-gamma

approximation. For a portfolio selection problem, if X = {x : (V 0)
T

x = 1,
(
δV

)T
x = r̄}

denotes the set of feasible portfolios corresponding to the budget and return constraints, we
may deduce that if n > (2d + 3), then the optimal CVaR and VaR portfolios for the selection
problem defined by minx∈X φβ(x) and minx∈X αβ(x), for any 0 < β < 1, lie in a linear sub-
space of dimension n−(2d+3). This implies that the VaR and CVaR derivative minimization
problems, under these stated assumptions, are ill-posed and different computational methods
may produce different optimal portfolios.

We note that not all derivative values can be expressed as simply V (St, t) where St

represents risk factor values at time t. Asian options for example have a strong dependency
on the history of the stock price. The analysis when such instruments are present is more
complex but similar results may be obtained.

When the derivative values are computed through more accurate methods, such as ana-
lytic formulae or Monte Carlo simulation, the CVaR optimization problem typically remains
ill-posed in the sense that there are many portfolios that have similar risk values to that of
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the optimal portfolio and slight perturbation of the data can lead to significantly different
optimal solutions. We will subsequently illustrate this with an example.

Although much of the subsequent discussion is applicable to the VaR optimization prob-
lem, we will focus only on the CVaR optimization problem due to its computational tractabil-
ity.

A continuous CVaR optimization problem (7) can be approximated using Monte Carlo
simulation. Assume that {(δV )i}m

i=1 are independent samples of δV , the change in the
instrument values over the given horizon. Then the following is an approximation to the
optimization problem (7):

min
(x,α)∈X×R

(
F̄β(x, α)

def
= α +

1

m(1 − β)

m∑
i=1

[−(δV )T
i x − α]+

)
. (11)

When the subset X is specified by a finite set of linear constraints, (11) has an equivalent
linear programming formulation which can be solved by standard methods for linear pro-
gramming, see e.g., [19] and [14] for an overview of modeling the CVaR problem (as well as
other risk measures) as an LP. Here we use interior point method software MOSEK [1].

Naturally, additional properties can be included in the CVaR optimization problem as
constraints to alleviate the ill-posedness of the problem and produce a more desirable optimal
portfolio. However, one needs to be careful to ensure that these constraints are meaningful
and consistent in the sense that there exist feasible solutions. In addition, simply adding
constraints may give a false sense of security; the optimization problem may remain ill-posed,
as will be illustrated next.

The most natural constraints that one can add are simple bound constraints on the in-
strument holdings. The following example illustrates that this does not necessarily regularize
the ill-posedness of the problem. In addition, it demonstrates significant consequences of the
ill-posedness of the CVaR derivative portfolio optimization problem.

Assume, for example, that the feasible portfolios correspond to ones that satisfy budget
and return constraints as well as bound constraints on the instrument positions. Then the
optimization problem (11) becomes

min
(x,α)

(
α +

1

m(1 − β)

m∑
i=1

[−(δV )T
i x − α]+

)

subject to
(
V 0

)T
x = 1 (12)(

δV
)T

x = r̄

l ≤ x ≤ u.

First we demonstrate how CVaR optimal portfolios change with slight perturbations to
the initial volatility. Assume that the initial underlying asset price is S0 = 100 and is
log-normally distributed, the volatility is 0.2, and the drift is 0.1. The annual risk free
interest rate is 5%, a trading year consists of 252 days, and our time horizon is 10 days.
We select our portfolio from 15 different call options on the underlying asset priced using
Black-Scholes type formulae. The options are described by all combinations of strike prices
([0.9; 0.95; 1; 1.05; 1.1] × S0) and expiries ([30; 50; 70] days). We do not allow long or short
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Figure 1: Optimal Portfolio Holdings are Sensitive to Volatility Perturbation: β = 0.95,
t̄ = 10 days

positions of more than 100 units on any option. Our return constraint is twice the risk-free
return over the investment horizon and we use a β = 0.95 confidence level. For this ex-
ample we use m = 25000 Monte Carlo samples. For a $1 investment, the optimal portfolio
under these assumptions has VaR=0.00412 and CVaR=0.00421. Figure 1 illustrates the op-
timal portfolio positions for different volatility perturbations; portfolio 1 corresponds to no
perturbation and portfolios 2 and 3 correspond to perturbations of 0.5% and -0.5% respec-
tively. In this case, the new VaR and CVaR values are VaR=0.00416, CVaR=0.00423 and
VaR=0.00407, CVaR=0.00414 respectively. Note that while the risk values have changed by
less than 2%, the portfolios are significantly different.

To further illustrate the properties of the optimal portfolio from (12), we consider a uni-
verse of 196 instruments consisting of 12 vanilla calls, 12 vanilla puts, 12 binary calls, and 12
binary puts on each of four correlated assets, and the four underlying assets themselves; here
the derivative instruments are all European options. The initial asset prices, the covariance
matrix of the annual returns, and the expected rates of return of the four assets are given
in Tables (9)-(11) in Appendix B respectively. In this paper, we use these specifications for
all our computational results, varying only the option types being considered. The deriva-
tives are priced using Black-Scholes type formulae, assuming that the underlying prices are
log-normally distributed. For this example, we use m = 25000 Monte Carlo samples. The
strike prices used for options on each asset are [0.8; 1.025; 1.25] × S0 where S0 is the time 0
asset values (see Table 9 in Appendix B). The times to expiry are [2; 4; 6; 8]× t̄, where t̄ = 10
days is the investment horizon (we assume that there are 250 trading days in a year). The
options are all combinations of strikes and expiry times. The required portfolio return is
twice the risk free interest rate over the investment horizon with the annual risk free interest
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Figure 2: (Ordered) Holding Ratios From (12) With No Cost Consideration: β = 0.95, t̄ = 10
days

rate equal to 5%. We use lower bounds of −0.3 and upper bounds of 0.4 for this example.
For an investment of $100, no more than 30 units of each instrument can be shorted and
no more than 40 units of each instrument can be bought. An (ordered) optimal portfolio
holding ratio x∗ from (12), computed using the interior point software MOSEK, is shown in
Figure 2 1. Note that MOSEK uses an interior-point optimizer to compute a solution and
hence not all instruments are at their bounds. The optimal portfolios computed by CPLEX
have more instruments at their bounds, but are numerically similar to the MOSEK optimal
portfolios.

Let us exclude the ith instrument from the optimal portfolio if |x∗
i | ≤ 10−5. We first

observe that the optimal portfolio consists of all the instruments in the investment universe.
In addition, about 77% of instrument holding ratios are equal to either their upper or lower
limits. Such an optimal portfolio is undesirable in that it leads to large transaction as well as
management costs. Moreover, any model error will be magnified for a portfolio with extreme
holdings; this is illustrated for the portfolio hedging problem in [2]. Indeed, the optimization
problem with the bound constraints remains ill-posed in the sense that there are many
different portfolios with similar CVaR values; we will illustrate this next by providing a more
desirable optimal CVaR formulation which produces more attractive portfolios with similar
CVaR values.

In addition to the portfolio selection problem, another practically important derivative
portfolio optimization problem is the portfolio hedging problem. In this context, for a given
hedging horizon t̄, one has an initial portfolio and an associated portfolio loss Π0(S, t̄). The
goal is to decrease the risk of this portfolio by selecting an appropriate hedging portfolio from

1The instruments are ordered so as to illustrate the number of holding ratios that are significantly larger
than zero, in particular, the number of holding ratios that are at their bounds.
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the available instruments {V1(S, t), · · · , Vn(S, t)}. Thus the loss function for the hedging
problem has the form

f(x, S) = Π0(S, t̄) − xT (V (S, t̄) − V (S0, 0)) .

While we devote our analysis of ill-posedness in this paper to the portfolio selection problem,
similar analysis applies to the portfolio hedging problem where the goal is to hedge a given
portfolio using more liquid derivatives with CVaR as the risk measure; in [2], without the
mathematical analysis in the general setting and computational results for the smoothing
technique, a shorter and simpler paper is written to illustrate the effect of the ill-posedness
in the derivative portfolio hedging problem based on CVaR; hedging performances of the
optimal portfolios under different cost considerations are also compared. For the hedging
computational results in [2], a shorter time horizon is considered and no return constraint or
budget constraint is imposed.

4 CVaR Optimization with Cost

Given that the CVaR optimization problem for a portfolio of derivatives is ill-posed, in
order to generate a stable solution, additional meaningful criteria need to be considered for
a derivative portfolio CVaR optimization problem. A natural meaningful consideration in
portfolio investment or risk management is transaction and management cost. A portfolio,
which, in addition to a small CVaR, incurs a small transaction and management cost, is
certainly more attractive. We can regard the management cost as a function of the number
of (non-zero holding) instruments in a portfolio. Unfortunately, it is difficult to include this
explicitly into an optimization formulation since it is computationally challenging to solve
the resulting mixed integer program. Our objective is to seek a portfolio which consists of
a small number of instruments by minimizing a combination of CVaR and a suitable cost
function without the need to solve a mixed integer programming problem.

Let us assume that the cost of holding an instrument is proportional to the magnitude
of the instrument holdings. Then we seek a portfolio which has a minimum weighted combi-
nation of CVaR and the proportional cost:

min
x∈X

(
φβ(x) +

n∑
i=1

ci|xi|
)

(13)

where φβ(x) is as defined in (3). Here c ≥ 0 is the weighted cost, representing the cost as
well as the tradeoff between minimizing CVaR and cost.

The weighted cost parameter ci ≥ 0 can be interpreted as a measure of relative desirability
to exclude the ith instrument from the optimal portfolio: if ci is greater than some finite
threshold value, and there exists a feasible portfolio with xi = 0, then the optimal portfolio
x∗ for (13) is guaranteed to exclude the ith instrument, i.e. x∗

i = 0. In this sense, we can
regard our cost model as a model for management cost. This property of the cost model
(13) is due to the fact that the objective function (φβ(x) +

∑n
i=1 ci|xi|) is an exact penalty

function of a constrained optimization problem. We refer interested readers to [10] for a
more detailed discussion on the exact penalty function. Note that if one models the cost as
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∑n
i=1 cix

2
i for example, the resulting optimal portfolio typically has few, if any at all, of its

instruments with a small holding ratio |x∗
i | (e.g., |x∗

i | ≤ 10−5). For the quadratic penalty
function, the constraint x∗

i = 0 is only satisfied as the penalty parameter ci tends to +∞.
To solve (13), we can similarly consider the augmented function Fβ(x, α) +

∑n
i=1 ci|xi|.

It is clear that Fβ(x, α) +
∑n

i=1 ci|xi| remains convex and continuously differentiable with
respect to α since

∑n
i=1 ci|xi| is convex and has no dependence on α; the analysis of [19]

applies. Moreover minimizing the sum of the weighted cost and CVaR of a portfolio x in any
subset X of R

n is equivalent to minimizing Fβ(x, α) +
∑n

i=1 ci|xi| over (x, α) ∈ X × R, i.e.,

min
x∈X

(
φβ(x) +

n∑
i=1

ci|xi|
)

≡ min
(x,α)∈X×R

(
Fβ(x, α) +

n∑
i=1

ci|xi|
)

.

In addition, Fβ(x, α) +
∑n

i=1 ci|xi| is convex with respect to (x, α) and φβ(x) +
∑n

i=1 ci|xi| is
convex with respect to x if the loss function f(x, S) is convex with respect to x. Moreover,
if X is a convex set, the minimization problem

min
(x,α)∈X×R

(
Fβ(x, α) +

n∑
i=1

ci|xi|
)

(14)

is a convex programming problem.
When (14) is approximated through Monte Carlo simulation, and X is specified by the

budget and return constraints and bounds on the holding ratios x, the CVaR optimiza-
tion problem with a proportional cost becomes a constrained piecewise linear minimization
problem:

min
(x,α)

(
α +

1

m(1 − β)

m∑
i=1

[−(δVi)
T x − α]+ +

n∑
j=1

cj|xj |
)

subject to
(
V 0

)T
x = 1 (15)(

δV
)T

x = r̄

l ≤ x ≤ u

To illustrate the effect of the weighted cost parameter c on the optimal portfolio obtained

from the CVaR cost model (14), we consider the weighted cost parameter ci = ω · |CVaR
0|,

1 ≤ i ≤ n, where CVaR
0

denotes the optimal CVaR from (15) with no cost consideration,
for a dollar’s investment. (Here we are implicitly assuming that the transaction costs of
instruments are the same).

Consider the same 196 instrument example in §3. We first recall that the optimal CVaR
portfolio, under no cost consideration, contains all the 196 instruments. In addition 77% of
holding ratios are at their bounds. Figure 3 plots the optimal portfolio holding ratio x∗, for

the same example, for the weighted cost ci = ω · |CVaR
0| where ω = 0, 0.005, and 0.01. We

note that for ω = 0.005 and 0.01, the optimal portfolios are preferable in the sense that they
contain only 35.7% and 29.1% of the 196 instruments respectively.
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Figure 3: Holding Ratios With Varying Costs: β = 0.95, t̄ = 10 days

In order to analyze the impact of the cost consideration on risks, we consider the relative
differences of VaR and CVaR under different weighted cost parameters with respect to that
under cost consideration, i.e.,

RelDifVaR(ω)
def
=

∣∣∣∣VaR(ω) − VaR0

VaR0

∣∣∣∣ , (16)

RelDifCVaR(ω)
def
=

∣∣∣∣CVaR(ω) − CVaR0

CVaR0

∣∣∣∣ , (17)

where CVaR0 is the optimal CVaR value from (15) under no cost consideration. Throughout
the paper, the VaR and CVaR reported correspond to the VaR and CVaR for the Monte
Carlo approximation. Note that the loss distribution from simulations has jumps. Consider
the loss associated with a portfolio x for m scenarios, (loss)1 ≤ . . . ≤ (loss)m, with each loss
(loss)i having probability pi. For a confidence level β, let iβ ≤ m be the index such that

iβ∑
i=1

pi ≥ β >

iβ−1∑
i=1

pi. (18)

Then the VaR is given by αβ(x) = (loss)iβ and CVaR equals

φβ(x) =
1

1 − β

⎡
⎣
⎛
⎝ iβ∑

i=1

pi − β

⎞
⎠αβ(x) +

m∑
i=iβ+1

pi(loss)i

⎤
⎦ . (19)

For a more detailed discussion of CVaR for scenario models, see [20].
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β ω VaR CVaR RelDifVaR RelDifCVaR # instr
0.000 1.5795 1.6458 0.0000 0.0000 196
0.005 1.6544 1.7251 0.0474 0.0482 70

0.95 0.010 1.6990 1.7701 0.0757 0.0755 57
0.050 1.9933 2.0545 0.2620 0.2483 34
0.100 2.3124 2.3640 0.4641 0.4364 26
0.000 1.6891 1.7171 0.0000 0.0000 196
0.005 1.7654 1.7910 0.0452 0.0431 72

0.99 0.010 1.8066 1.8328 0.0696 0.0674 61
0.050 2.1271 2.1443 0.2593 0.2488 34
0.100 2.4067 2.4172 0.4249 0.4077 22

Table 1: Effect of Weighted Cost Parameters on the Optimal CVaR Portfolio for t̄ = 10 days

β ω VaR CVaR RelDifVaR RelDifCVaR # instr
0.000 3.1164 3.1626 0.0000 0.0000 196
0.005 3.2449 3.2934 0.0412 0.0414 90

0.95 0.010 3.3414 3.3950 0.0722 0.0735 76
0.050 4.1099 4.1456 0.3188 0.3108 43
0.100 4.8562 4.8682 0.5583 0.5393 20
0.000 3.1852 3.2134 0.0000 0.0000 196
0.005 3.3124 3.3408 0.0399 0.0396 90

0.99 0.010 3.4115 3.4379 0.0710 0.0699 77
0.050 4.2505 4.2739 0.3344 0.3300 37
0.100 4.8646 4.8854 0.5272 0.5203 19

Table 2: Effect of Weighted Cost Parameters on the Optimal CVaR Portfolio for t̄ = 62.5
days

Tables 1-3 tabulate relative risk differences for β = 0.95 and β = 0.99 with different
weighted cost parameters for an investment horizon of 10, 62.5, and 125 days respectively.
The investment universe consists of 196 instruments which have different expiries depending
on the investment horizon, see Appendix B for detailed specifications. The VaR and CVaR
reported here are for investment portfolios with an initial wealth of $100. The results are for a
single simulation problem and do not represent averages. Tables 1-3 illustrate that, using the
CVaR and cost optimization formulation (15), it is possible to obtain CVaR optimal portfolios
with significantly fewer instruments but comparable risks. For example, for t̄ = 10 days with
ω = 0.005, the optimal risks reflect an increase of less than 5% compared to that under no
cost. Given the inevitable existence of model error as well as computational error due to,
e.g., Monte Carlo approximation, these small differences in risk may be entirely acceptable.
The number of instruments in the optimal portfolio, however, is less than 36% of the number
of non-zero holdings under no cost, assuming a cutoff of 10−5. Not surprisingly, we observe
that, as the cost parameter increases, the risk increases and the number of instruments in
the optimal portfolio decreases.
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β ω VaR CVaR RelDifVaR RelDifCVaR # instr
0.000 3.6263 3.6817 0.0000 0.0000 196
0.005 3.7915 3.8606 0.0456 0.0486 76

0.95 0.010 3.9325 4.0013 0.0844 0.0868 61
0.050 4.6119 4.6379 0.2718 0.2597 30
0.100 4.8658 4.8793 0.3418 0.3253 24
0.000 3.7094 3.7432 0.0000 0.0000 196
0.005 3.8420 3.8715 0.0357 0.0343 87

0.99 0.010 4.0259 4.0641 0.0853 0.0857 65
0.050 4.7118 4.7361 0.2702 0.2653 28
0.100 4.9441 4.9652 0.3329 0.3265 17

Table 3: Effect of Weighted Cost Parameters on the Optimal CVaR Portfolio for t̄ = 125
days

Although we have included a cost consideration as a property of the optimal portfolio
in the objective function in (15), we have excluded the actual transaction cost from the
budget constraint in our optimal CVaR formulation since the actual transaction cost typically
constitutes a very small portion of the budget. In addition, we caution that one needs to
be careful when adding the transaction cost into the formulation; otherwise it may lead to
a nonconvex programming problem. To illustrate this potential difficulty, assume that we
include the transaction cost only in the budget constraint. We note that, alternative to (7),
two equivalent formulations for the CVaR optimization problem are

min
(x,α)∈X×R

φ̂ · Fβ(x, α) − (
δV

)T
x

subject to
(
V 0

)T
x = 1 (20)

and maximizing return subject to a constraint on CVaR (21)

max
(x,α)∈X×R

(
δV

)T
x

subject to
(
V 0

)T
x = 1 (21)

Fβ(x, α) ≤ φ̄.

Here φ̄ and φ̂ are two positive constants.
Consider the formulation (22) of maximizing return subject to a bound on CVaR and a

budget constraint that accounts for transaction costs:
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min
(x,α)

− (
δV

)T
x

subject to F̄β(x, α) ≤ φ̄
n∑

i=1

c̃iV
0
i |xi| +

n∑
i=1

V 0
i xi = 1 (22)

l ≤ x ≤ u

where c̃i is the actual transaction cost per unit holding ratio for the ith instrument, a linear
transaction cost structure. We refer readers to [6] and [8] for a more detailed analysis
of portfolio optimization with transaction costs and [13] for a non-convex transaction cost
structure. Here F̄β(x, α) is as defined in (11). For simplicity of illustration, let us consider
the problem of computing the portfolio with the maximum return, i.e., φ̄ = ∞. Then (22)
simplifies to

min
x

− (δV )T x

subject to

n∑
i=1

c̃iV
0
i |xi| +

n∑
i=1

V 0
i xi = 1 (23)

l ≤ x ≤ u

Eliminating the absolute value in the budget constraint, an equivalent formulation to (23)
is :

min
x

− (
δV

)T
x

subject to

n∑
i=1

c̃iV
0
i (x+

i + x−
i ) +

n∑
i=1

V 0
i xi = 1

x = x+ − x− (24)

x+
i x−

i = 0 i = 1, . . . , n

x+ ≥ 0, x− ≥ 0

l ≤ x ≤ u

Note that the optimization problem (24) now becomes nonconvex due to the presence
of the constraints x+

i x−
i = 0, i = 1, . . . , n. One may be attempted to simply discard the

constraints x+
i x−

i = 0, i = 1, . . . , n, given that it is never optimal to buy and sell the same
instrument simultaneously. This then leads to solving

15



min
x,x+,x−

− (
δV

)T
x

subject to

n∑
i=1

c̃iV
0
i (x+

i + x−
i ) +

n∑
i=1

V 0
i xi = 1

x = x+ − x− (25)

x+ ≥ 0, x− ≥ 0

l ≤ x ≤ u

We note that, for the formulation (22) in which the transaction cost only appears in the
budget constraint, solving (25) is not equivalent to solving (22). The reason is that, a solution
to (25) may not satisfy the quadratic constraints x+

i x−
i = 0 and is thus not necessarily

a solution to (24). This is illustrated by the following simple counter-example with two
instruments. Let δV = [0.1;−0.2], V 0 = [1; 1], c̃ = [0.01; 0.01], l = −[0.5; 0.5], and u =
[1; 1]. Then x = [1;−0.5] is a solution to (25)(with x+ = [15.1874; 10.0626] and x− =
[14.1874; 10.5626]). Note, however, that x = [1;−0.5] is not a solution to (23) since it does
not satisfy the budget constraint. The minimizer of (23) can be shown to be x = [1;− 1

99
].

If one adds the transaction cost in the budget constraint, one may need to include the
transaction cost in the objective function in (22) to ensure that the problem can still be
solved as a linear programming problem.

5 Minimizing CVaR Efficiently

The simulation CVaR optimization problem (15) is a piecewise linear minimization problem
subject to linear constraints. As discussed previously, one way of computing a solution to
(15) is to solve an equivalent linear programming problem:

min
(x,y,z,α)

(
α +

1

m(1 − β)

m∑
i=1

yi +
n∑

j=1

cjzj

)

subject to
(
V 0

)T
x = 1

(δV )T x = r̄ (26)

y ≥ −Bx − αem,

z − x ≥ 0, z + x ≥ 0

l ≤ x ≤ u, y ≥ 0

where the m-by-n scenario loss matrix B is given by

B = [(δV )T
1 ; (δV )T

2 ; · · · ; (δV )T
m]

and em ∈ R
m is the vector of all ones. This linear program has O(m + n) variables and

O(m+n) constraints, where m is the number of Monte Carlo samples and n is the number of
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instruments. We assume that the loss (δV ) is computed using computational methods such
as analytic formulae and Monte Carlo simulation.

Linear programming is the simplest constrained optimization problem; there exists, for
this class of problems, the most thorough theoretic analysis and reliable software. There
are two main types of methods to solve a linear programming problem, simplex meth-
ods [7] and interior point methods [12]. The following are the most relevant properties
of these two methods to our CVaR optimization problem. Consider a standard linear pro-
gram min{cT z | Az = b, z ≥ 0}, where A is an M × N full rank matrix. Simplex methods
compute a solution in a finite number of iterations by following a path from vertex to vertex
along the edges of the polyhedron representing the feasible region. For a linear program of
N variables, each iteration of a simplex method performs O(N2) computation and typically
the method requires a large number of iterations (roughly between 2M to 3M). An interior
point method, on the other hand, produces an infinite sequence of approximations which
converge to a solution in the limit. Interior point methods are shown to have polynomial
complexity. They require O(N3) computation per iteration and the number of iterations
can be bounded by O(

√
NL) where L is the input length for integer data. For the CVaR

portfolio optimization problem, a potential advantage of the simplex method is its ability to
use a warm start. Generating a starting point, on the other hand, is an important part of
an interior point method. It is not clear how a standard interior point method would utilize
a warm start, if at all possible.

Although it is known that both CPLEX and MOSEK are capable of solving very large
linear programming problems in a short amount of time, the efficiency of both methods de-
pends heavily on the sparsity structures of the problem. The linear programming problem
arising from the CVaR optimization problem has a large dense block; the size of this dense
block is determined by the number of scenarios and the number of instruments. We illustrate
below that the computational cost for solving a CVaR problem via the linear programming
approach quickly becomes prohibitive as the number of simulations and/or instruments be-
come large.

Table 4 illustrates how the cpu time grows with the number of simulations and the number
of instruments for the CVaR optimization problem (12). The comparison is made between
CPLEX version 6.6 which implements a simplex method and the MOSEK Optimization Tool-
box for MATLAB version 6 (for Solaris Sparc) which implements an interior point method
for single problems. The problems are implemented in MATLAB version 6.1 and run on a
Sun Sparc Ultra-2 machine.

Table 4 clearly illustrates that, using the standard linear programming software, the
computational cost as well as the memory requirement quickly become prohibitive as the
number of Monte Carlo samples and the number of instruments increase. For example, with
200 instruments and more than 25, 000 simulations, a significant amount of the elapsed time
is spent in swapping relevant data in and out of the cache memory. With 200 instruments
and 50, 000 scenarios, the elapsed time is significantly longer than that of the 48 instrument
example, with the memory swapping dominating the elapsed time, and the entry is marked
by ” - ” in the table.

As an alternative to the linear programming approach for the CVaR optimization problem,
we investigate a computationally efficient method which directly exploits the property of the
CVaR optimization problem; our ultimate objective is to be able to solve large scale CVaR
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MOSEK (cpu sec) CPLEX (cpu sec)
# of instruments being considered

# scenarios 8 48 200 8 48 200
10000 11.07 61.96 1843.90 53.68 427.97 2120.84
25000 30.02 162.13 14744.64 351.44 2345.43 9907.99
50000 43.62 642.24 - 1673.82 9296.98 -

Table 4: CPU time for standard LP methods: β = 0.99

portfolio problems.
We want to solve a derivative portfolio CVaR optimization problem

min
(x,α)∈X×R

(
Fβ(x, α) +

n∑
i=1

ci|xi|
)

.

through Monte Carlo simulation. We assume subsequently that the cumulative loss dis-
tribution function is continuous. The augmented CVaR function Fβ(x, α) +

∑n
i=1 ci|xi| is

continuously differentiable under the assumption that the loss distribution has no jumps.
The linear programming approach arises from approximating the continuously differentiable
function Fβ(x, α) by the piecewise linear objective function

F̄β(x, α) = α +
1

m(1 − β)

m∑
i=1

[− (δV )T
i x − α]+.

As the number of Monte Carlo simulations increases, the piecewise linear approximation
F̄β(x, α) approaches the continuously differentiable function Fβ(x, α).

As an alternative to the piecewise linear approximation F̄ (x, α), we consider a continu-
ously differentiable piecewise quadratic approximation F̃ (x, α) to the continuously differen-
tiable function F (x, α). Let

F̃β(x, α)
def
= α +

1

m(1 − β)

m∑
i=1

ρε(− (δV )T
i x − α) (27)

where ρε(z) is a continuously differentiable piecewise quadratic function which approximates
the piecewise linear function max(z, 0): given a resolution parameter ε > 0,

ρε(z)
def
=

⎧⎨
⎩

z if z ≥ ε
z2

4ε
+ 1

2
z + 1

4
ε if − ε ≤ z ≤ ε

0 otherwise.
(28)

To illustrate the smoothness of F̄ (x, α) and F̃ (x, α), let us consider the function g(α) =
E([S − α]+) assuming that S is a standard normal. Figure 4 graphically illustrates the
accuracy and smoothness of the approximations

1

m

m∑
i=1

[Si − α]+
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Figure 4: A Smooth Approximation

and 1
m

∑m
i=1 ρε(Si−α) as compared to g(α); the top subplot is for m = 3 (the asterisks on the

x-axis represent the Si) and the bottom subplot is for m = 10, 000. It can be observed that,
as the number of independent samples m increases, the difference between 1

m

∑m
i=1[Si − α]+

and 1
m

∑m
i=1 ρε(Si − α) becomes smaller. In addition the function 1

m

∑m
i=1[Si − α]+ appears

smoother.
Using F̃ (x, α) as a continuously differentiable approximation to F (x, α), we solve the

following continuous piecewise quadratic convex programming problem

min
(x,α)

(
F̃β(x, α) +

n∑
j=1

cj |xj|
)

subject to
(
V 0

)T
x = 1 (29)(

δV
)T

x = r̄

l ≤ x ≤ u

Note that, for (26), each simulation introduces an additional variable (and constraint) in
its equivalent linear program formulation when the piecewise linear function F̄ (x, α) is used
to approximate F (x, α). On the other hand, when the continuously differentiable function
F̃ (x, α) is used to approximate F (x, α), the minimization problem (29) has (n + 1) indepen-
dent variables and its equivalent nonlinear program formulation only has O(n) independent
variables and constraints.

An optimization method for a convex nonlinear programming problem (29) typically
generates an infinite sequence of approximations converging to a solution. At each iteration,
however, it typically requires a function and a gradient evaluation and O(n3) linear algebraic
operations. The function/gradient evaluation costs O(mn). If exact second order derivatives
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MOSEK (cpu sec) Smoothing (cpu sec)
# of instruments being considered

# scenarios 8 48 200 8 48 200
10000 6.47 42.04 4244.30 2.45 16.78 419.52
25000 33.50 98.91 10784.10 5.37 35.48 838.15
50000 36.01 318.72 - 9.90 62.08 2080.16

Table 5: CPU times for MOSEK vs. Smoothing: β = 0.99

are used, then the Hessian calculation in the worst case is O(n2k) where k is the total number
of simulations with | − (δV )T

i x − α| ≤ ε. Given that CVaR optimization minimizes the tail
loss with a typical confidence level of β ≥ 0.9, k is usually very small relative to m for most
iterations.

Table 5 makes a comparison between the cpu times of the proposed smoothing formulation
and the linear programming approach (interior point method software MOSEK is used here)
for individual problems. We consider the derivative portfolio CVaR optimization problem
whose investment universe consists of vanilla call and put options on the same four correlated
assets described in §4 with the strikes and maturities described in Table 12 in Appendix B.
The implementation of the smoothing method is based on an interior point method [5] for
nonlinear minimization with bound constraints and is implemented in MATLAB v6.1. The
comparison is made on a Sun Sparc Ultra-5 10 machine. We observe that the smoothing
method is much more efficient than the linear programming approach with up to a 1187%
efficiency speedup. In addition, the 200 instruments and 50000 simulations example can
now be solved in less than 35 cpu minutes with the smooth formulation due to less memory
requirement and better computational efficiency.

Next we illustrate the accuracy and computational efficiency of this smoothing technique
in greater detail. We now consider a different set of derivative portfolios on the same four
correlated assets described in §4. The portfolios consist of an equal number of vanilla calls,
vanilla puts, binary calls and binary puts on each asset. Once again the options are specified
by all combinations of strikes (Kn ×S0) and expiry times (Tn × t̄), where n is the number of
instruments (description in Table 12 in Appendix B.) The investment horizon we use here is
t̄ = 62.5 days.

For various costs, Table 6 compares the CPU usage of MOSEK and our smoothing tech-
nique. We observe that the smoothing technique is more efficient compared to the linear
programming method software MOSEK; the best cpu efficiency speedup is achieved with no
cost consideration. However, with a larger parameter of ω = 0.01, MOSEK requires less cpu
than when ω = 0.005, possibly due to the improved conditioning of the problem for a larger
ω.

For comparison, we consider the relative difference in risks QVaR and QCVaR, where
QVaR is defined as

QVaR
def
=

VaRs − VaRm

|VaRm| , (30)

where VaRs and VaRm are the VaR values computed by the smoothing technique and
MOSEK respectively. Note that we report CVaR as well as VaR since minimizing CVaR
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m n ω = 0 ω = 0.005 ω = 0.01
MOSEK SMTH MOSEK SMTH MOSEK SMTH

20 49.60 10.57 49.97 14.91 48.31 14.62
25000 100 826.95 92.58 885.72 267.14 687.96 177.41

196 7484.89 875.29 4141.79 851.79 2258.44 1088.83
20 129.67 24.40 120.99 35.15 124.37 47.16

50000 100 2893.16 182.08 1242.03 449.98 1068.60 412.04
196 - 1413.31 - 1672.05 - 1545.49

Table 6: CPU times for varying costs and problem sizes, β = 0.95, t̄ = 62.5 days, and
resolution parameter ε = 0.005

m n ω = 0 ω = 0.005
QVaR(%) QCVaR(%) QVaR(%) QCVaR(%)

20 -0.6701 0.2114 -0.7111 0.1984
25000 100 -0.7007 0.9433 -1.3946 0.2442

196 -1.1442 1.4990 -0.6874 0.1637
20 -0.5598 -0.2362 -0.4370 0.0520

50000 100 -0.7407 0.3438 -0.8173 0.1572

Table 7: Comparison of VaR/CVaR values computed by MOSEK and the proposed smooth-
ing technique for β = 0.95, t̄ = 62.5 days, and resolution parameter ε = 0.005

typically leads to a small VaR and VaR itself is an important risk measure. It is implicitly
assumed that the number of scenarios and ω are fixed in computing QVaR. The quotient
QCVaR is defined in a similar manner.

Table 7 compare risks of the optimal portfolios computed by linear programming method
software MOSEK and the smoothing method for different weighted cost parameters; we
observe that the relative difference is less than 1.5% for this example.

For smoothing method, the continuously differentiable approximation F̃ (x, α) to F (x, α)
depends on the resolution parameter ε. Typically this parameter is set to have a value be-
tween 0.05 to 0.005; the resolution parameter value should be smaller for a larger number of
simulations since this leads to better approximation. The resolution parameter of 0.005 typ-
ically leads to a negligible difference in optimal risks between the portfolios computed from
the linear programming method and the smoothing method. Table 8 illustrates the effect of
the resolution parameter ε, on the cpu requirement and relative risk difference to that com-
puted from MOSEK. The resolution parameters used here are ε = 0.005, 0.001, and 0.0005.
We make a few interesting observations. Firstly, the risks computed from the smoothing
method can be smaller than those computed by MOSEK; this suggests that the smooth ap-
proximation is an acceptable approximation to the augmented CVaR function, if not more
preferable. Secondly, as ε becomes smaller, the relative risk difference becomes smaller.
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ε = 0.005
m n QVaR(%) QCVaR(%) CPU Time

20 -0.7348 0.1856 14.62
25000 100 -0.5261 0.8342 177.41

196 -0.5941 1.7078 1088.83
20 -0.4684 0.0385 47.16

50000 100 -1.0684 -0.1008 412.04
196 - - 1545.49

ε = 0.001
m n QVaR(%) QCVaR(%) CPU Time

20 -0.1307 -0.0008 21.06
25000 100 -0.2883 0.0398 203.87

196 -0.2057 0.0269 553.14
20 -0.0521 -0.0016 44.43

50000 100 -0.0155 -0.0445 487.08
196 - - 1621.86

ε = 0.0005
m n QVaR(%) QCVaR(%) CPU Time

20 -0.0005 0.0000 33.61
25000 100 -0.0015 0.0001 238.13

196 -0.0028 0.0007 647.71
20 -0.0009 -0.0002 48.34

50000 100 -0.0051 -0.0012 449.56
196 - - 1720.36

Table 8: Comparison of VaR/CVaR values computed by MOSEK and the proposed smooth-
ing technique for different resolution parameters ε, ω = 0.01, β = 0.95, and t̄ = 62.5 days
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6 Concluding Remarks

In this paper we analyze the well-posedness of the derivative portfolio risk minimization prob-
lem with CVaR and VaR as the choice of risk measures. We illustrate that this minimization
problem is typically ill-posed for derivative portfolios. In particular, we have shown that,
when the derivative values are computed through delta-gamma approximations, there typi-
cally are an infinite number of portfolios with the same VaR and CVaR. Thus the derivative
portfolio selection problem of minimizing risk subject to a specified return typically has an
infinite number of solutions when using delta-gamma approximations. When the derivative
values are computed using more accurate methods such as Black-Scholes formulae and Monte
Carlo techniques, the optimal CVaR or VaR problem is typically ill-posed.

We illustrate that one may not be able to remove the ill-posedness of the CVaR/VaR
optimization problem by simply adding constraints. When simple bound constraints are
imposed on the instrument holdings, the optimal CVaR portfolio typically has a large number
of non-zero instrument holdings (mostly at their bounds). This type of optimal portfolio may
not be desirable and can be problematic since it may entail large management and transaction
costs, and it tends to magnify modeling error.

We propose the inclusion of a weighted cost consideration in the
CVaR optimization problem. We model the cost as proportional to the magnitude of

instrument holding; this cost model is capable of controlling transaction cost as well as man-
agement cost. We illustrate that minimizing CVaR together with this cost model leads to
more desirable portfolios with significantly smaller transaction costs, fewer non-zero instru-
ment holdings, and comparable CVaR (and VaR) measures.

We propose a computationally efficient method for solving a simulation based CVaR op-
timization problem by exploiting the fact that the objective function in the CVaR optimiza-
tion problem approaches a continuously differentiable function as the number of Monte Carlo
samples increases to infinity. With a preliminary implementation of the proposed method
in MATLAB, a comparison is made with the standard linear programming approach. We
illustrate that solving a continuously differentiable piecewise quadratic approximation to the
CVaR optimization problem is much more efficient, producing an optimal CVaR, for appro-
priately chosen resolution parameters, very close to that obtained without cost consideration.
Furthermore, it is more suitable for solving large scale CVaR portfolio optimization problems.

Although we have focused, in this paper, on the optimal derivative portfolio investment
problem for both theoretical analysis and computational illustrations, similar analysis and
computational results on the effectiveness of the CVaR and cost minimization formulation
are presented in [2] for derivative portfolio hedging problems.
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Appendix

A CVaR and Delta-Gamma Approximation

In §3 we assumed that each instrument depended on a single risk factor. In general, an
instrument value may depend on more than one risk factor. Assuming there are d risk factors,
in the analysis that follows we discuss the conditioning of minimizing derivative portfolio
VaR/CVaR for this general case. We first need to set up a matrix of second order sensitivities
of derivatives to the underlying risk factors. Assume that for each h, 1 ≤ h ≤ n, Vh depends
on rh risk factors, where rh ≤ d. Then the second order sensitivity matrix Γh, corresponding
to Vh, has at most r2

h non-zero entries. Further, since Γh is symmetric, it has at most
rh(rh+1)

2
distinct non-zero entries. Assuming an ordering on the risk factors, construct the sets

Rh = {(i, j)|Vh is dependent on risk factors i and j, i.e., Γh(i, j) 	= 0, i ≤ j} for h = 1, . . . , n.
Then

(δS)T Γh (δS) =
∑

(i,i)∈Rh

Γh(i, i)δS
2
i +

∑
(i,j)∈Rh,i�=j

2Γh(i, j)δSiδSj

Then consider R̂ =
⋃n

h=1 Rh. We also set an order on R̂ as follows: for (i1, j1), (i2, j2) ∈ R̂,

(i1, j1) < (i2, j2) if i1 < i2,

(i1, j1) < (i2, j2) if i1 = i2 and j1 < j2.

Now we construct the second order sensitivity matrix Γ ∈ R
d̂×n for all instruments under

consideration, where d̂ is the cardinality of R̂. Row i of Γ corresponds to the ith smallest
element of R̂ which we shall refer to as R̂i. Now

Γ(l, h)
def
=

⎧⎪⎪⎨
⎪⎪⎩

0 if R̂l /∈ Rh
∂2V 0

h

∂S2
i

, where R̂l = (i, i) if R̂l ∈ Rh

2
∂2V 0

h

∂Si∂Sj
, where R̂l = (i, j) if R̂l ∈ Rh, i 	= j

(31)

We also construct the vector δŜ2 ∈ R
d̂ which represents the required corresponding second

order change in risk factors, (δŜ2)l
def
= δSiδSj , where R̂l = (i, j).

THEOREM A.1. Assume that a portfolio is formed from instruments {V1, · · · , Vn} and
the underlying risk factors of {V1, · · · , Vn} are {S1, · · · , Sd}. For a fixed investment horizon
t̄ > 0, 1 ≤ i ≤ n, assume that

V t̄
i − V 0

i =

(
∂V 0

i

∂t

)
δt̄ +

(
∂V 0

i

∂S

)T

(δS) +
1

2
(δS)T Γi (δS) .

Then the following is true:

1. If n > d̂ + d + 1, where d̂ is defined as above, and there exists a portfolio whose VaR =
VaR∗ and CVaR =CVaR∗, where VaR∗ and CVaR∗ are the minimal VaR and CVaR,
then there are an infinite number of optimal portfolios that have the minimal VaR and
CVaR.
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2. If X = {x : (V 0)
T

x = 1,
(
δV

)T
x = r̄} and n > d̂+d+3, then the optimal CVaR and

VaR portfolios defined by minx∈X φβ(x) and minx∈X αβ(x),

for any 0 < β < 1, lie in a linear subspace of dimension n − (d̂ + d + 3).

Proof. The results in the theorem hold due to the fact that there are an infinite number
of portfolios with the same VaR and CVaR under the assumed assumption.

We first note that if portfolios x(1), x(2) ∈ R
n satisfy

f(x(1), S) ≡ f(x(2), S), for all possible S,

then these two portfolios have the same VaR value and the same CVaR value.
Let

Λ
def
=

[(
∂V 0

∂t

)
,

(
∂V 0

∂S

)
,

1

2
Γ

]
∈ R

n×(d̂+d+1). (32)

The proof is straight forward from the observation that

f(x, S) = −xT

((
∂V 0

∂t

)
δt̄ +

(
∂V 0

∂S

)
(δS) +

1

2
Γ
(
δŜ2

))

= −xT Λ

⎡
⎣ δt̄

δS

(δŜ2)

⎤
⎦

If n > d̂ + d + 1, there exists a non-zero z ∈ R
n satisfying

ΛT z = 0.

Then f(x + θz, S) = f(x, S) for any S and θ.
For the second result, similarly there exists a non-zero z ∈ R

n which lies in the null space

of
[
Λ, V 0, δV

]T
(this null space has dimension n − (d̂ + d + 3)).

Note that in the worst case, d̂ = d(d+1)
2

. This completes our proof. �

B Data Specifications for Computational Examples

Tables 9, 10, and 11 describe the initial underlying prices, the expected annual rates of
return, and the covariance matrix of the rate of return respectively.

100 50 30 100

Table 9: Initial Asset Prices
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0.1091 0.0619 0.0279 0.0649

Table 10: Annual Expected Rate of Return

0.2890 0.0690 0.0080 0.0690
0.0690 0.1160 0.0200 0.0610
0.0080 0.0200 0.0220 0.0130
0.0690 0.0610 0.0130 0.0790

Table 11: Annual Covariance Matrix

Tables 12-14 describe the strike prices and the expiry of various portfolios used in the
paper for different investment horizons; they are classified according to the total number of
instruments in the portfolio universe.
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8 instrument example
K8 1
T8 4

48 instrument example
K48 0.8 1 1.25
T48 2 4

200 instrument example
K200 0.8 0.9125 1.025 1.1375 1.25
T200 2 3.5 5 6.5 8

20 instrument example (underlying assets included)
K20 1
T20 4

100 instrument example (underlying assets included)
K100 0.9 1 1.1
T100 3 6

196 instrument example (underlying assets included)
K196 0.8 1.025 1.25
T196 2 4 6 8

Table 12: Strike Price Equals Kn × S0 and Expiries Equal Tn × t̄ for t̄ = 10 days

20 instrument example (underlying assets included)
K20 1
T20 2

100 instrument example (underlying assets included)
K100 0.9 1 1.1
T100 2 4

196 instrument example (underlying assets included)
K196 0.8 1.025 1.25
T196 1.5 2 3 4

Table 13: Strike Price Equals Kn × S0 and Expiries Equal Tn × t̄ for t̄ = 62.5 days
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20 instrument example (underlying assets included)
K20 1
T20 2

100 instrument example (underlying assets included)
K100 0.9 1 1.1
T100 2 4

196 instrument example (underlying assets included)
K196 0.8 1.025 1.25
T196 1.5 2 3 4

Table 14: Strike Price Equals Kn × S0 and Expiries Equal Tn × t̄ for t̄ = 125 days
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