
A Fast Implementation of the Octagon Abstract

Domain on Graphics Hardware

Francesco Banterle and Roberto Giacobazzi

Dipartimento di Informatica
Università degli Studi di Verona

Strada Le Grazie 15, 37134 Verona, Italy
E-mail: frabante@gmail.com and roberto.giacobazzi@univr.it

Abstract. We propose an efficient implementation of the Octagon Ab-
stract Domain (OAD) on Graphics Processing Unit (GPU) by exploiting
stream processing to speed-up OAD computations. OAD is a relational
numerical abstract domain which approximates invariants as conjunc-
tions of constraints of the form ±x±y <= c, where x and y are program
variables and c is a constant which can be an integer, rational or real.
Since OAD computations are based on matrices, and basic matrix oper-
ators, they can be mapped easily on Graphics Hardware using texture
and pixel shader in the form of a kernel that implements matrix opera-
tors. The main advantage of our implementation is that we can achieve
sensible speed up by using a single GPU, for each OAD operation. This
can be the basis for an efficient abstract program analyzer based on a
mixed CPU-GPU architecture.
Keywords: Octagon Abstract Domain, General Processing on GPU,
Parallel Computing, Abstract Interpretation, Static Program Analysis.

1 Introduction

The study of stream processing (computing and programming) is recently gain-
ing interest as an alternative and efficient methodology for allowing parallel
processing in many fields of computer science. The paradigm is essentially based
on defining a set of compute-intensive operations (called kernels) which are ap-
plied to each element in the stream. The growing success of this technology is
related with the impressive grow in computational power of dedicated stream
processing units (e.g., for graphic processing and more in general for digital sig-
nal processing) and in their relatively cheap costs. Recently researchers have
become interested in developing algorithms for GPUs. These algorithms were at
the beginning designed only for Computer Graphics purposes, but the high com-
putational power offered pushed researchers to explore the possibilities of using
GPU in more general tasks, leading to the so called General Purpose Computing
on GPU (GP-GPU). GPUs were applied with success in various fields: Database
[10], numerical methods [2, 14, 9], and scientific computing [11, 8]; see [21, 23] for
excellent surveys on GP-GPU.
In this paper we propose a new programming methodology to handle massive

computations in numerical (relational) abstract domains. We consider stream
processors and programming as an efficient and fast methodology for imple-
menting the basic operators of abstract domains involving large matrices and
massive data sets. Among the wide spectrum of numerical abstract domains,
octagons [18] plays a key role due to their relational structure and affordable
computational costs. Octagons provide a way to represent a system of simplified
inequalities on the sum and difference of variable pairs, i.e. they represent con-
straints of the form ±x ± y <= c, where x and y are program variables and c
is a constant which can be an integer, rational or a real number automatically
inferred. Their typical implementation is based on Difference Bound Matrices
(DBM), a data structure used to represent constraints on differences of pairs of
variables. Efficiency is a key aspect in this implementation: The space is con-
strained for n-variables in O(n2) and time is constrained in up to O(n3). This
makes the relational analysis based on octagons applicable to large scale pro-
grams, e.g., those considered in the Astrée static analyzer [5] which employs
programs having more than 10.000 global variables, most of them floating-point,
in long-time iterations (about 3.6×106 iterations of a single loop). We prove that
an important speed-up factor can be obtained by handling DBM in a stream-like
computation model. In particular we exploit the structure of Graphics Process-
ing Unit or (GPU), also called Visual Processing Unit, for an efficient and fast
implementation of the abstract domain of octagons, in particular for a fast imple-
mentation of the basic operations on DBM. GPUs provide a dedicated hardware
architecture for graphics rendering by exploiting a highly parallel structure mak-
ing graphic computations far more effective than typical CPUs for a wide range
of complex algorithms. This architecture is particularly suitable for operations
on matrices, and therefore for handling operations on DBM. A typical GPU im-
plements a number of graphics primitive operations in a way that implements
stream processing: First, the data is gathered into a stream from memory. The
data is then operated upon by one or more kernels, where each kernel comprises
several operations. Finally, the live data is scattered back to memory. The static
analyzer designed in our implementation is based on a CPU which manages the
control flow and the GPU which performs the basic operators on the domain.
Octagons are represented as 2D textures and the basic operations on octagons
are implemented as kernel operations on their fragments. These operations can
be performed in parallel on the texture due to their independence and thanks to
the high degree of parallelism of the SIMD architecture like GPUs. The pipeline
of the analyzer is therefore as follows: each time the analyser reaches a program
point, the corresponding instruction is decomposed into basic abstract operations
on octagons. The GPU is then activated to perform the basic computations, leav-
ing the result in the video memory. As a result of our implementation, we obtain
a sensible speed-up of several orders for simple operators on octagons (i.e., in-
tersection, union, assignment, test guard, widening), and a speed-up around 24
times for the basic operation of octagon closure, which is performed each time
octagons have to be merged. The bottleneck in our system is given by the test

guard operator. This is due to the SIMD architecture of GPU which requires the
spreading of the computation along the whole texture.

2 The Octagon Abstract Domain

The octagon abstract domain introduced by Miné in [18] is a (weakly) relational
abstract domain which provides an upper approximation of program invariants as
conjunctions of constraints of the form ±x±y <= c, where x and y are program
variables and c is a constant which can be an integer, rational or a real. This
abstract domain fits between the less precise linear-time non-relational abstract
domain of intervals and the exponential-time relational approximation of convex
polyhedra. Given a set of program variables V = {V1, . . . , Vn}, we consider a set
of enhanced variables: V ′ = {V ′1 , . . . , V ′2n} where for any Vi ∈ V we have both
a positive form V ′2i−1, denoted V +

i , and a negative form V ′2i, denoted V −i , in
V ′. A Difference Bound Matrix, or DBM for short, m is a n× n square matrix
with elements in a field ZZ or IR [18]. The element at line i and column j,
denoted mij equals a constant c if there is a constraint of the form Vj − Vi ≤ c,
and +∞ otherwise. Thus a conjunction of octagonal constraints in V can be
represented as a DBM with 2n dimension. In particular, a Galois connection has
been established between DBM and sets of tuples of values:

γ(m) = { 〈v1, . . . , v2n〉 |∀i, j ≤ 2n. vj − vi ≤mij }∩{ 〈v1, . . . , v2n〉 | v2i−1 = −v2i }

is the octagon represented by the 2n dimension DBM m. This 2n space is iso-
morphic to a n-dimensional space which represent a convex structure having an
octagon-like shape.
The set of (coherent) DBM, denoted cDBM, enriched with a bottom (empty)
element ⊥cDBM representing the empty set ∅ and a top element >cDBM repre-
senting the whole space, i.e., such that ∀i, j. >cDBM

ij = +∞, and ordered w.r.t.
set inclusion, i.e., m v n iff ∀i, j : mij ≤ nij , forms a complete lattice, where a
DBM is coherent if ∀i, j. mi,j = mı̄̄ where ı̄ = if i mod 2 = 0 then i−1 else i+1.
Intuitively a cDBM does not change by switching positive with negative forms of
the same variable. The switch operation ı̄ is typically implemented by a bit-wise
xor operation. The other classic lattice operators are defined as follows:

∀m,n ∈ cDBM. (m tcDBM n)ij = max(mij ,nij)
∀m,n ∈ cDBM. (m ucDBM n)ij = min(mij ,nij)

The main result in the construction and representation of the octagon abstract
domain is the existence of the best abstraction of octagons as an element in
cDBM. This is achieved by computing normal forms for DBM representing
octagons. A modified version of the Floyd-Warshall closure algorithm which
performs strong closure is considered for this task. The intuition is that, while
the Floyd-Warshall closure algorithm can be seen as a constraint propagation
which completes a set of constraints until the following closure holds:

{

V ′i − V ′k ≤ a
V ′k − V ′j ≤ b

=⇒ V ′i − V ′j ≤ a + b

Fig. 1. A comparison of
floating point performances
between Intel CPU, ATI
GPU and nVidia GPU in the
last five years. As the graph
shows GPU are increasing
their performance every year
faster than CPUs.

The modified Floyd-Warshall strong closure algorithm adds a second form of
constraints until the following closure holds [18]:

{

V ′ı̄ − V ′i ≤ a
V ′j − V ′̄ ≤ b

=⇒ V ′j − V ′i ≤ (a + b)/2

The constraints introduced by the (strong) closure algorithm are called implicit

in order to distinguish them from the explicit constraints considered to build the
octagon. The strong closure operation on DBM is denoted (·)•. All the standard
lattice-theoretic operations and C-like transfer functions have been defined on
cDBM in order to derive an abstract semantics which has been proved correct
by abstract interpretation [18].

3 An Overview on GPUs

In the last few years graphics hardware, known as GPU, dramatically increased
its computationally power and flexibility for answering the need to increase the
realism in videogames and other graphics applications. GPUs are quite a cheap
product and they offer high performances, for example in the case of nVidia
GeForce7950-GX2 (a double GPU equipped with 512Mb of RAM) the cost
is around 310 euro (March 2007) offering a peak of 384 GFlops with a 51.2
Gb/sec bandwidth through the video memory, see figure Figure 2 for a complete
sight on how a GPU is inserted in the traditional computer architecture. These
performances are more than tripled compared with its predecessor the nVidia
GeForce6800 Ultra, 58 GFlops with a 38.5 Gb/sec bandwidth. Indeed GPUs
have an average yearly rate of growth around 2.0, which actually is higher than
Moore’s Law growth rate for CPU, 1.4 per year. See Figure 1 for the trend of
GFlops in GPU in the last years.

3.1 The Programmable Graphics Pipeline

GPUs are optimized to render a stream of geometric primitives (point, lines and
triangles), called vertex buffer , onto an array of pixels called frame buffer . The
GPUs became in the last years fully programmable for transforming and lighting
vertices and pixels. The main purpose of GPU is to processes vertices and pixels.
This processing follows the classic graphics pipeline, allowing in certain stages

Fig. 2. The GPU in a
traditional PC system:
the GPU has a very large
bandwidth with its memory
(a peak of 51.2Gb/s in the
nVida GeForce7900GTX).
This value is nearly 8 times
compared to the one for the
CPU and its memory.

Fig. 3. The GPU Pipeline: vertices which define a primitive (triangle, point, line) are
transformed using a function (implemented as a Vertex Program) in the Vertex Stage by
Vertex Program Unit. Vertices are elaborated in parallel by many Vertex Program Units
(Vertex Program Unit 0, ..., Vertex Program Unit n). Then primitives are discretized
in fragments by the Rasterizer which passes these fragments to the Fragment Stage.
At each fragment is applied a function (Fragment Program) in parallel using many
Fragment Program Units (Fragment Program Unit 0, ..., Fragment Program Unit n).
The result of the Fragment Stage is saved in a texture in the video memory.

programmability via micro programs. We can see a GPU pipeline in Figure 3.
The first step in the pipeline is the vertices processing. Each vertex of a vertex
buffer is processed by a Vertex Program Unit (VPU) which is a programmable
unit that executes a vertex program (VP). A VP is a set of instructions that
specifies how a vertex will be processed by the VPU. The output of a VPU is
not only a modified position for a vertex but it can also add new properties to
the vertex like a color, an address for fetching the memory during the next phase
etc... A modern GPU presents more than one VPU (around 6) and it automati-
cally distributes vertices to elaborate them fast between VPUs. Note that when
a GPU is processing a single vertex buffer the VP is the same for all VPUs. After
the VPU, a unit called rasterizer, generates fragments of the primitives, in other
words it discretizes them in pixels and it interpolates values between vertices
using linear interpolation. In the last step of the pipeline the fragments created
by the rasterizer are processed by another programmable unit called Fragment
Program Unit (FPU), which executes a fragment program (FP). As VP, the FP
is a set of instructions which specifies how a fragment will be processed by the
FPU. The output, which can be a single value or a vector of values, can be

stored in the frame buffer for visualization or in a texture for future processing.
As for VPUs, FPUs are numerous in a modern GPU (around 32), and fragments
are automatically distributed to FPUs. Note that as for the VP, the same FP is
executed by all FPUs until all fragments generated by rasterizer are completed.
In this current generation of GPUs the main instructions allowed in the VPs and
FPs are: float point operations (addition, subtraction, division, multiplication,
square root, logarithm, etc...), random access to the video memory, assignment
command, static and dynamic branching (a costly operation), and loop (with
limited loop size for avoiding infinite loops). VPs and FPs are usually written
in a high-level programming language similar to C. These languages are called
shading languages because they are designed for generating images. The most
common shading languages are: C for Graphics (Cg) [16], the OpenGL Shad-
ing Language (GLSL) [13] and High Level Shading Language (HLSL) [1]. These
languages provide an abstraction for a very close level to the hardware, indeed
they manage directly vertices, textures, fragments, etc... which are very specific
graphics primitives. Other languages present an higher abstraction avoiding di-
rect manipulation of graphics primitives and supporting GP-GPU such as SH
[17], BrookGPU [3], and etc... The main disadvantage of these higher abstrac-
tions is that they are implemented on top of Graphics API such as OpenGL and
Direct3D, so the overhead is quite high.

3.2 Kernel Programming

Data parallelism is the key for high performance in GPUs. In this section, we
shortly introduce the GPU programming model called Kernel Model. The most
powerful components in the GPU architecture are FPUs, because they are more
numerous than VPUs, usually in a ratio 6:1, allowing more parallel power. A GP-
GPU program usually uses FPUs as main processing unit. The first algorithm
is segmented into independent parallel parts, called kernels, each of these is
implemented in a FPU. Inputs and outputs of each kernel are arrays of data,
called texture, and they are stored in the video memory. A texture can be indexed
in 1D (1D texture), in 2D (2D texture), and in 3D (3D texture). Note that 1D
texture can have a size of only 4096 values, while 2D texture and 3D texture can
allow a size up to respectively 40962 and 5123 values. These are the following
steps for kernel to run a kernel:

1. Vertices are passed to the GPU, in order to feed the vertex stage. A typical
GP-GPU invocation is a quadrilateral, parallel to the screen of the display,
which covers a region of pixels that match precisely with the desired size
of the output texture. In our case this provides the extreme boundaries (a
quadrilateral) of a temporary address space for allocating DBMs.

2. The rasterizer generates a fragment for every pixel in the quadrilateral. In
our case the rasterizer fills the adress space with all the addresses, called
fragments.

3. Each fragment is processed by the FPU. At this stage all the FPUs are pro-
cessing the same fragment program. The fragment program can arbitrarily

float4 FP_Max(VertexOutput IN, Sampler2D texWork):

COLOR{float4

ret= tex2D(texWork, IN.t0);

ret=max(ret, tex2D(texWork,

IN.t0+float2(iSize,0.0f)));

ret=max(ret,tex2D(texWork,

IN.t0+float2(0.0f,iSize)));

return max(ret, tex2D(texWork,

IN.t0+float2(iSize,iSize)));

}

Fig. 4. The fragment program for calculating the maximum in a texture by reduction:
IN is the input value of the FP calculated by interpolation from the rasterizer (IN.t0
is the vector that stores the coordinates of the current fragment), texWork is a 2D
texture (declared as Sampler2D) in which are stored the values to reduce. The iSize
is a constant value set in the FP, and represents the inverse of the size of the texture.
tex2D is required to access to a texture in the video memory. Below the control flow of
the calculation of maximum value using reduction paradigm. First the CPU sets the
counter i = 0, then it enters in a loop. In the loop CPU transfers the control to GPU
which calculates the maximum of every square of four pixels. After the GPU finishes
it releases the control to CPU which increments i and it tests i > log2(n) where n is
the width of the texture. If the guard is true the reduction is completed otherwise the
CPU returns in S1.

read from textures in the video memory, but can only write to memory cor-
responding to the location of the fragment in the frame buffer determined
by the rasterizer. The domain of the computation is specified for each input
texture by specifying texture coordinates at each of the input vertices of the
quadrilateral. In our case, the fragment program computes locally to a single
pixel the operations in the octagon domain.

4. The output of the fragment program is a value, that is stored in a texture.

An algorithm needs to reiterate this process as many times as required by the
computation. This is called multi-pass .

3.3 Reduction

A constraint of current GPU’s generation is that a FPU cannot randomly write
the result of its job in the video memory, but only on an address which is chosen
by the GPU’s rasterizer. This is a problem if we want to compute properties from
a texture such as maximum, or minimum value. The solution is a process called
Reduction: the kernel program gets as input the value of four neighbor pixels
and computes the needed function using these four values. At the end it saves
the output in a texture which is reduced by one half. This process is iterated

until the texture is only one single pixel; see Figure 4 for a visual example of the
mechanism of reduction.

3.4 Addresses Issues in GPUs

In the current GPUs, integer arithmetic is not supported, only floating point
is allowed. This feature will be present only in the upcoming GPU generation,
R600 and GeForce Series 8 recently available. In particular when we want to
access to a texture we need to use float addresses. The operator ·− is used in the
octagon domain to access to v−j = −vj the negative variable. This operator is
defined as i−

def
= i xor 1. As we said before the XOR operation cannot be directly

performed in the fragment. A solution to this problem is to encode in a single 1D
texture, called XORTexture, all the XOR values for an address and save them
in float values. Therefore, every time that we need to calculate a xor value of
an address, we fetch the XORTexture with the address.

3.5 Float Precision Issues

GPUs can use two different types of floating point arithmetics: single precision,
close to the 32-bit IEEE-754 standard, and half precision a 16-bit (10bits man-
tissa, 5bits exponent and 1bit sign). The main advantage of the half precision
format is that a GPU performs nearly two times the speed of single precision,
however they are not precise enough for numerical application, such as those
employed in the octagon domain. We observed some numerical instabilities in
the closure operation, therefore we decided to use the single precision format.
This format has enough precision so there is no need to implement double pre-
cision in emulation using two single precision values (value and residual) [7].
GPUs present some issues with floating point arithmetic, because they do not
implement the full IEEE-754 standard [12]. While GPUs can perform precise
arithmetic operations (add, subtraction, multiplication, division, and tests) they
cannot handle NaN value, and partially ±Inf. Also isnan and isinf functions are
very dependent by the drivers of the vendors which usually strongly suggest to
avoid them in fragment programs. This can be a problem in order to represent
>cDBM = +∞ value in the octagon domain, however we simply solved this prob-
lem by assigning to >cDBM the value 3.4e38, the maximum value representable
in the GeForce series 6 and 7 architecture [22].

4 Mapping Octagon Abstract Domain on GPU

The Octagon Abstract Domain can be naturally mapped to GPUs because the
data structure used to represent octagons, the DBM matrix, can be mapped one
to one with a 2D texture of GPU. So there is no need to develop a particular
data structure as in [15]. Another advantage is that the operators of the OAD
are very simple matrix operators that can be performed by using simple kernel
programming. In our implementation we did not use any API for GP-GPU. To

avoid overheads, we directly wrote the code by using OpenGL and Cg language
for writing fragment programs.

4.1 Closure

In the octagon domain closure represents the normal form for the DBM, which
calculates all the constraints (implicit and explicit) between the variables. This
operation is defined in [18] by the following algorithm, which is a modified version
of the Floyd-Warshall shortest-path algorithm:

m0
def
= m

mk+1
def
= S(C2k(mk)) ∀k: 0 ≤ k ≤ n

(m)•
def
= mn

(1)

where m is an empty octagon, C is defined as

[Ck(n)]ij
def
=

0 for i = j
min

(

nij , (nik + nkj),
(nik̄ + nk̄j),

(nik + nkk̄ + nk̄j),
(nik̄ + nk̄k + nkj)

)

elsewhere
(2)

and S as
[S(n)]ij

def
= min(nij , (nīinj̄j)/2) (3)

This operation can be implemented on a GPU in the following way. First the

Fig. 5. The Closure control flow: at each cycle the CPU set parameters for the fragment
program PS Closure C in S1 (k, and the working texture T0), then the GPU executes
PS Closure C saving the result in a texture, T1. The CPU gets back the control and at
stage S2 sets the parameter for fragment program PS Closure S (the working texture
T1), which is then executed by the GPU. Again the CPU gets back the control and
increases the variable i. If i > n (where n is the number of variables in the program)
the closure is reached, otherwise the CPU reiterates S1.

texture, T0, representing the octagon that we want to close is applied C using
FP CLOSURE C in Figure 6, and it is saved in the video memory in another
texture, T1. Secondly at T1 is applied S using FP CLOSURE S in Figure 6 and
the result is saved in T0, see Figure 5 for a visualization of the control flow. This
process is iterated n times, where n is the number of variables in the program.

float4 FP_Closure_C(vertexOutput IN, Sampler2D texWork_T1): COLOR{

float2 c0= IN.t0.xy;

if(c0.x==c0.y)

return 0.0f;

else{

float4 val0,val1,tmpVal,tmpVal2,tmpVal3,tmpVal4;

tmpVal=tex2D(texWork1,float2(k,c0.y));

tmpVal2=tex2D(texWork1,float2(c0.x,kXOR));

tmpVal3=tex2D(texWork1,float2(kXOR,c0.y));

tmpVal4=tex2D(texWork1,float2(c0.x,k));

val0= tex2D(texWork1,c0);

val1= tmpVal4+tmpVal;

val0=(val0>val1)?val1:val0;

val1= tmpVal2+tmpVal3;

val0=(val0>val1)?val1:val0;

val1= tmpVal4+tex2D(texWork1,float2(k,kXOR))+tmpVal3;

val0=(val0>val1)?val1:val0;

val1= tmpVal2+tex2D(texWork1,float2(kXOR,k))+tmpVal;

return (val0.x>val1.x)?val1.x:val0.x;

}};

float4 FP_Closure_S(vertexOutput IN, Sampler2D texWork_T1):

COLOR{

float2 c0=IN.t0.xy;

float4 val0,val1;

val0=(tex2D(texWork_T1,float2(c0.x,XORAddress(c0.x)))+

tex2D(texWork_T1,float2(XORAddress(c0.y),c0.y)))/2.0f;

val1=tex2D(texWork_T1,c0);

float4 ret=(val1<val0)?val1:val0;

return ret>1e30?3.4e38f:ret;

};

Fig. 6. FP Closure C is the FP that implements the C function: values k and kXOR
are constant values set by CPU, kXOR is the xorred value of k. k represents the value
k in Equation 2. FP CLOSURE S implements S (Equation 3).

(a) (b)

Fig. 7. GPU and CPU control flow: a) the control flow for the relaxation part of the
Bellman-Ford Algorithm. b) the control flow of a simple operation, the CPU leaves the
control to the GPU to execute the fragment program for the simple operation.

4.2 Emptiness Test

The emptiness test checks if an octagon (m)• = ∅. This happens if only if the
graph of (m)• has a cycle with a strictly negative weight [18]. A well known
algorithm for detecting negative weight cycle is the Bellman-Ford algorithm.
The mapping is realized as follow. Firstly we initialize texDist the distance array,
a 1D Texture, using a constant shader which returns infinity (3.4e38). The size
of this texture is 2n, where n is the number of variables. Secondly we compute
the first part of the algorithm, we iterate (2n)2 the FP Relax, Figure 8, that
relaxes edges, see Figure 7.a for control flow. Finally we call FP Relax Red,
Figure 8, to find out if there is negative cycle. This function marks with value
1.0 a negative cycles, otherwise it return 0.0. The result of the test is collected
applying a reduction using a Maximum kernel Figure 4.

4.3 Simple Operators

There are some operators used in the octagon domain that require only one pass
to obtain the result. This means that the fragment program for that operator is

float4 FP_Relax(vertexOutput IN, float u,

Sampler1D texDist, Sampler2D texWork1): COLOR{

float4 distU=tex1D(texDist,u);

float4 distV=tex1D(texDist,IN.t0.y);

float4 weight=tex2D(texWork1,float2(u,IN.t0.y));

if(weight>=3.4e38)

return distV;

else{

float4 sum=distU+weight;

return distV>sum?sum:distV;

}};

float4 FP_Relax_Red(vertexOutput IN,

Sampler1D texDist, Sampler2D texWork1): COLOR{

float4 distU=tex1D(texDist,IN.t0.x);

float4 distV=tex1D(texDist,IN.t0.y);

float4 weight=tex2D(texWork1,IN.t0.xy);

if(weight>=3.4e38)

return 0.0;

else

return (distU>=(distV+weight))?1.0:0.0;

};

Fig. 8. FP Relax is a FP that implements the relaxation for a row in the adjacency
matrix. FP Relax Red is a FP that checks if there is a negative cycle (returns 1.0), the
complete check is realized applying a max reduction operation.

called only once, in Figure 7.b the control flow between CPU and GPU is shown
for simple operators. These operators are: union, intersection, test guard, and
assignment.

Union and Intersection. Union and Intersection between octagons are both
used to implement complex guards and to merge the control flow in if else and
loop commands. These operators are implemented using the upper tcDBM and
lower ucDBM bound operators [18]:

[m ucDBM n]ij
def
= min(mij ,nij) (4)

[(m)• tcDBM (n)•]ij
def
= max((m)•ij , (n)•ij) (5)

The implementation on GPU is quite effortless, it is only required to write in
the fragment program Equation 4 and Equation 5, as it is shown in Figure 7.
Note that when we calculate the union operator we need to apply the closure to
m and n.

Test Guard Operator. The test guard operator model how to analyze guards
in programs. The main guard tests, that can be modeled in the octagon domain,
are: vk + vl ≤ c, vk − vl ≤ c, −vk − vl ≤ c, vk + vl = c, vk ≤ c, and vk ≥ c. All
these various tests can be similarly modeled by using the first test, as proved
in [18]. So we will illustrate the implementation for vk + vl ≤, c the others are
similar. The octagon operator for this is defined as:

[m(vk+vl≤c)]ij
def
=

{

min(mij , c) if (j, i) ∈ {(2k, 2l + 1); (2l, 2k + 1)}
mij elsewhere

(6)

In this case, as for Union and Intersection operators, we need only to write a
simple fragment program that implements Equation 6. However in order to save
very costly if-else commands, for checking if (j, i) ∈ {(2k, 2l + 1); (2l, 2k + 1)},
we can solve this calculating the dot product between the difference vector of
{(2k, 2l + 1), (2l, 2k + 1)} and (j, i). This operation could be heavy, but dot
product is an hardware built-in function and it performs faster than executing
if-else commands on a GPU [22], see Figure 7 for the fragment program on GPU
for this operator.

Assignment Operators. The assignment operators model how to analyze as-
signments in programs. The main assignments, that can be modeled in the oc-
tagon domain, are: vk ← vk + c, vk ← vl + c and vk ← e where e is a generic
expression. As for the test guards operators we will show the implementation on
the GPU for the first assignment, the others are similar. Firstly we define the
assignment operator for vk ← vk + c:

[m(vk←vk+c)]ij
def
= mij + (αij + βij)c (7)

with

αij
def
=

1 if j = 2k
−1 if j = (2k + 1)
0 elsewhere

βij
def
=

−1 if i = 2k
1 if i = (2k + 1)
0 elsewhere

(8)

Again as in the case of the Union or Intersection operators we need only to write
Equation 7 in the fragment program, as it is shown in Figure 9.

float4 FP_ASSIGN1(vertexOutput IN, Sampler2D texWork1, float c,

float k2, float k2add1): COLOR{

float4 val=tex2D(texWork_T1,IN.t0);

float alpha,beta;

if(IN.t0.y==k2)

alpha= 1.0f;

else

alpha= (IN.t0.y==k2add1)?-1.0f:0.0f;

if(IN.t0.x==k2)

beta=-1.0f;

else

beta= (IN.t0.x==k2add1)?1.0f:0.0f;

return val+(beta+alfa)*c;};

float4 FP_TEST_GUARD1(vertexOutput IN, Sampler2D texWork1,

float c, float2 coord1, float coord2): COLOR{

float4 val=tex2D(texWork_T1,IN.t0);

float2 diff;

float ret;

diff=IN.t0.yx-coord1;

if(dot(diff,diff)==0.0f)

return min(val,c):val;

diff=IN.t0.yx-coord2;

return (dot(diff,diff)==0.0f)?min(val,c):val;};

Fig. 9. The fragment program for the assignment vk ← vk+c and test guard vk+vl ≤ c.

4.4 Widening

Widening is an operator that is used to speed-up the convergence in abstract in-
terpretation [4] returning an upper approximation of the least fixpoint

∨

i∈N
F i(m)

greater than m of an operator (predicate transformer) F :

[m∇n]ij
def

=

{

mij if nij ≤mij

+∞ elsewhere
(9)

As it can be seen from Equation 9, the widening operator can be easily realized
as a simple operator, indeed the fragment is very simple, see Figure 11. When
we analyze a loop such as:

[li while g do lj ...lk done lk+1]

where li is a pointer to a program location we need to solve mj = (mi tcDBM

mk)g, this is done iteratively. Starting from mi, the octagon for location li, mk

can be deduced from any mj using propagation. We compute the sequence mj :
{

mj,0 = (mi)(g)

mj,n+1 = mj,n∇((mi)
•
(g))

(10)

Fig. 10. The widening control flow: when we need to analyze a loop we proceed iter-
atively to the calculation of the fix point for that loop, this process needs to analyze
commands in the loop, Loop Commands box in the flow, then we calculate the widening
between mj,n and ((mi)

•

(g)). After that we check if mj,n and mj,n+1 represent the same
octagon. This achieved calculating the maximum of the difference of them using the
reduction paradigm performed in the Reduction with Maximum box. If the maximum
is lower than e a small positive value they are the same octagon.

and finally mk+1 is set equal to ((mi)
•
¬g)t

cDBM((mk)•¬g). The calculation of the
whole widening process on GPU for analyzing loops is performed in the following
way: we enter in the loop and we analyze each command in the loop. After that
we calculate the widening on GPU using Figure 11 between mj,n and ((mi)

•
(g)).

Finally we check if we have reached a fix point, this is realized by comparing
mj,n+1, widening result, with mj,n. If it is the same octagon we reached the
fix point, otherwise we need to reiterate the process. This comparison on GPU
is achieved calculating the difference, D0 between the result of the widening
and the previous result. At this point we calculate the maximum value of D0

using reduction paradigm, if the maximum is lower then a certain threshold e
(a small value greater than zero) the two octagons are the same otherwise they
are different, all these operations can be seen summarized in Figure 10.

float4 FP_Widening(vertexOutput IN, Sampler2D texWork1): COLOR{

float4 r1=tex2D(texWork1, IN.t0);

float4 r2=tex2D(texWork2, IN.t0);

return r2<r1?r1:3.4e38;

};

float4 FP_Top(vertexOutput IN): COLOR{

return (IN.t0.x==IN.t0.y)?3.4e38f:0.0f;};

float4 FP_Bottom(vertexOutput IN): COLOR{

return 0.0f;};

Fig. 11. The widening operator and the basic octagons >cDBM and ⊥cDBM.

4.5 Packing Data in RGBA Colors

Current GPUs can handle 4096×4096 2D texture size, so the maximum number
of variables is 4096. However we can allow 8192 variables using pixel packing. A
pixel is generally composed by four components: red, blue, green and alpha. So
we can easily use these channels to allow bigger matrices, this means we treat
red, green, blue, and alfa as four neighbor values in the octagon, see Figure
4.5. One advantage of RGBA packing is that we do not have to modify our

Fig. 12. The RGBA Pack-
ing: four neighbor values are
packed in a single pixel us-
ing red, green, blue and alfa
channels.

fragment programs, since GPU performs vector float point arithmetic operators,
assignments, and the ternary operator (test?cond1:cond2). Also we do not use
the values of a octagon in the dynamic branching (if-else), therefore we do not
have to extend the branching for each components. Another common technique
is to flatten 3D textures, this means to access to a (i, j, k) memory location using
a (i, j) address. However representing octagon bigger than 8192×8192 using 3D
texture implies to use more than 64MB of video memory for each, so we can
keep on the GPU system only few octagons.

4.6 Static Analyzer

We designed a (naive) static analyzer as presented in [6, 18], in which the control
flow is performed by the CPU but simple operators (union, intersection, assign-
ments, guard checks), closure, widening, and fix point check are performed on
GPU. When the interpreter starts to analyze a program, first it sets m = >cDBM

the octagon associated with the first program point, by using the simple frag-
ment program in Figure 11. Then it interprets programs naively by applying
octagon operators for the various commands and combinations of them:

– [li vi ← e lj]: we used the assignment operators;
– [li if g then lj ... else lk... end if lp]: for the branch lj we apply the guard

operator g to the octagon mi) (representing point li), while for the branch lj
we apply the guard operator ¬g to the octagon mi). When the flow control
merges at point lp we use the union operator:

mp = ((mj)
•) tcDBM ((mk)•) (11)

– [li while g do lj ...lk done lk+1]: we used the widening operator as presented
in Section 4.4 for approximating the fixpoint.

5 Results

We implemented our abstract interpreter in C++, by using OpenGL [20], a
successful API for computer graphics that allows GPU programming, and Cg
language for GPU programming. For results we used a machine equipped with
an Intel Pentium 4 D 3.2 Ghz processor, 2GB of main memory, and a GeForce
7950-GTX with 512MB of video memory. We compared the results of our in-
terpreter with a single threaded CPU interpreter. In our experiments, with ran-
domly generated octagons, we timed single operators such as reduction, closure,

intersection, union, assignment, test guard, widening, and emptiness test. The
results for these operators by using a single GPU, compared with a CPU, are
presented in Figure 13. For each operators we reached the following speed-ups,

0 1000 2000 3000 4000 5000
10

−2

10
−1

10
0

10
1

10
2

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−3

10
−2

10
−1

10
0

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(d)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−4

10
−3

10
−2

10
−1

10
0

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(e)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

1

10
2

10
3

10
4

10
5

10
6

10
7

number of variables in the octagon

lo
ga

rit
hm

ic
 ti

m
e

CPU
GPU

(f)

Fig. 13. Timing comparison between CPU and GPU for the octagon domain operators.
We displayed timing in logarithmic scale of the time expressed in milliseconds: a)
reduction operator (for checking fix point). b) closure operator. c) union (similar for
intersection and widening). d) assignment. e) test guard. f) emptiness test.

that can be derived from Figure 13:

1. Reduction Operator: while the computational complexity for the CPU

implementation is O(n2), the one for GPU is O(n2

p
log n2), where n is the

number of variables in an octagon and p is the number of FPUs. However
its computational constant is lower than the one for CPU, so the speed-up
is reasonable, achieving 9.98 times in average.

2. Closure Operator: the computational complexity is the same for both
implementations, GPU and CPU, O(n3). We achieved a 24.13 times speed-
up in average.

3. Emptiness Test: the computational complexity is the same for both im-
plementations, GPU and CPU, O(n3). We achieved a 4.0 times speed-up in
average. Note that the speed-up is lower than the one for the Closure Op-
erator because we need to perform a test (FP Relax Red) and a reduction
operation.

4. Union Operator: the computational complexity is the same for both im-
plementations, GPU and CPU, O(n2). We achieved a 160.5 times speed-up
in average.

5. Assignment Operator: while the computational complexity of this op-
erator for the CPU implementation is O(n) (we need to modify only two
columns), the one for GPU is O(n2). This is caused by SIMD nature of
GPUs that needs to work on all values of a texture and not only a portion
of it. For this operator we reached a lower speed-up than other operators,
6.47 times in average.

6. Test Guard Operator: this represents the worst operator in our imple-
mentation test. Since for the CPU implementation we need to modify only
a constant number of values in the octagon, its computational complexity is
O(1). However on GPUs we cannot modify only few values in a texture, but
all values, so the complexity is O(n). In this case the CPU performs bet-
ter than GPU with a 175.43 times speed-up in average. However it is faster
to perform this operator on GPU than a computation on CPU followed by
a transfer to GPU. This is because we need to transfer a big amount of
data through the bus, which is typically a bottleneck in the architecture (see
Figure 2).

7. Widening Operator: as in the case of Union Operator, the computational
complexity for both implementations is O(n2). We achieved a 114.7705 times
speed-up in average.

Number of variables Reduction Closure Union Assignment Test guard Widening Emptiness Test

CPU

128 0.072928 40.42 0.095516 0.0069554 0.0001233 0.10912 43.73

256 0.29318 348.79 0.36542 0.030791 0.0002158 0.43517 342.10

512 1.1579 2949.90 1.5013 0.081164 0.0002226 1.7894 2716.42

1024 4.618 2.4863e4 6.8319 0.22949 0.001927 7.3287 1.9501e4

2048 15.491 1.9902e5 24.402 0.31771 0.0001477 28.997 1.5683e5

4096 46.444 2.172e6 73.212 0.47234 0.0001477 103.17 1.2546e6

GPU

128 0.77948 6.4472 0.08497 0.010033 0.073362 0.099478 95.947

256 0.88522 58.346 0.097702 0.010693 0.076067 0.093238 632.03

512 0.89636 206.1 0.104 0.02383 0.0782 0.10923 1019.10

1024 0.93726 1804 0.1093 0.022384 0.080448 0.1288 4880.9

2048 1.0562 1.4470e4 0.11889 0.0289 0.086864 0.13345 1.9912e4

4096 1.2043 2.3951e4 0.18231 0.044535 0.10735 0.15447 1.4934e5

From the Table above the results of our implementation on CPU and GPU, the
timing is expressed in second for 20 runs for each operator. As can we see, we
obtain a sensible speed-up for simple operators (intersection, union, assignment,
test guard, widening, emptiness test) and a speed-up around 24 times for clo-
sure operator. The bottleneck in our system is given by the test guard operator
(Figure 13.e), indeed an optimized CPU implementation of this operator takes
only O(1).

6 Conclusion and Future Work

We presented a new implementation of Abstract Octagon Domain on GPU, im-
proving efficiency in time. Another advantage of our implementation is that it
is fully compatible with old GPUs (3-4 years models) and not only new models.
Computational complexity of the algorithm is kept the same, with exception of
the operation for checking if the fix point has been reached during the analysis
of loops. While the complexity of this operation on CPU is O(n2) where n is the

number of variables, it is O(n2

p
log n2), where p is the number of FPUs, due to the

overhead in the reduction phase. The main limits of our current implementation
are: the test guard operator which is linear in the number of variables and the
size of a DBM, which is 8192× 8192, meaning that we can model octagons with
4096 variables using the RGBA packing technique. In future work we would like
to extend the size of octagons using hierarchical techniques as presented in [15].
In these techniques, a larger texture is sliced in subtextures which are addressed
using a page texture. A page texture presents as values pointers to access to the
desired subtexture. We are also interested in upgrading our implementation with
upcoming Graphics Hardware. One of the main advantages of the new genera-
tion is the ability to randomly write the results of a fragment program in the
video memory. Therefore there will be no more need to perform reduction to
check when to stop in the widening operator or for the emptiness test, improv-
ing the complexity and performance for these operators, which represents our
main bottleneck. Another advantage would be the suppression of XORAddress
function, since new GPUs present integer arithmetic, saving memory and GPU
performance. The new generation presents a better floating point implementa-
tion (very close to IEEE754 standard, with still some issues for handling specials)
that could improve our implementation. This improved precision does not solve
the unsound problems, that can be solved using interval linear forms [19]. In
future work we would like to map efficiently interval linear forms on GPU.

References

1. D. Blythe. The direct3d 10 system. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, pages 724–734, New York, NY, USA, 2006. ACM Press.

2. J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the
gpu: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917–924, 2003.

3. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-
rahan. Brook for gpus: stream computing on graphics hardware. ACM Trans.
Graph., 23(3):777–786, 2004.

4. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

5. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE analyzer. In ESOP’05, volume 3444 of LNCS, pages 21–30. Springer,
April 2005.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96, New
York, NY, USA, 1978. ACM Press.

7. G. Da Graçca and D. Defour. Implementation of float-float operators on graphics
hardware. ArXiv Computer Science e-prints, March 2006.

8. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu cluster for high perfor-
mance computing. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 47, Washington, DC, USA, 2004. IEEE Computer Society.

9. N. Galoppo, N. Govindaraju, M. Henson, and D. Manocha. Lu-gpu: Efficient algo-
rithms for solving dense linear systems on graphics hardware. In SC ’05: Proceed-
ings of the 2005 ACM/IEEE conference on Supercomputing, page 3, Washington,
DC, USA, 2005. IEEE Computer Society.

10. N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort: high perfor-
mance graphics co-processor sorting for large database management. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, pages 325–336, New York, NY, USA, 2006. ACM Press.

11. D. Reiter Horn, M. Houston, and P. Hanrahan. Clawhmmer: A streaming hmmer-
search implementation. In SC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing, page 11, Washington, DC, USA, 2005. IEEE Computer Society.

12. IEEE. Ieee 754: Standard for binary floating-point arithmetic.
13. J. Kessenich, D. Baldwin, and R. Rost. The opengl shading language v.1.20 revision

8. September 2006.
14. J. Kruger and R. Westermann. Linear algebra operators for gpu implementation of

numerical algorithms. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages
908–916, New York, NY, USA, 2003. ACM Press.

15. A. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. Owens. Glift: Generic,
efficient, random-access gpu data structures. ACM Trans. Graph., 25(1):60–99,
2006.

16. W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg: a system for programming
graphics hardware in a c-like language. In SIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 896–907, New York, NY, USA, 2003. ACM Press.

17. M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 787–795, New York, NY,
USA, 2004. ACM Press.

18. A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310–319. IEEE CS Press, October 2001.

19. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.

20. J. Neider and T. Davis. OpenGL Programming Guide: The Official Guide to Learn-
ing OpenGL, Release 1. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1993.

21. J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and T. Pur-
cell. A survey of general-purpose computation on graphics hardware. In Euro-
graphics 2005, State of the Art Reports, pages 21–51, August 2005.

22. M. Pharr and R. Fernando. GPU Gems 2 : Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-Wesley Pro-
fessional, March 2005.

23. S. Venkatasubramanian. The graphics card as a stream computer. In SIGMOD-
DIMACS Workshop on Management and Processing of Data Streams, 2003.

