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Abstract. We construct a public key encryption scheme in which there
is one public encryption key, but many private decryption keys. If some
digital content (e.g., a music clip) is encrypted using the public key
and distributed through a broadcast channel, then each legitimate user
can decrypt using its own private key. Furthermore, if a coalition of
users collude to create a new decryption key then there is an eÆcient
algorithm to trace the new key to its creators. Hence, our system provides
a simple and eÆcient solution to the \traitor tracing problem". Our
tracing algorithm is deterministic, and catches all active traitors while
never accusing innocent users, although it is only partially \black box". A
minor modi�cation to the scheme enables it to resist an adaptive chosen
ciphertext attack. Our techniques apply error correcting codes to the
discrete log representation problem.

1 Introduction

Consider the distribution of digital content to subscribers over a broadcast chan-
nel. Typically, the distributor gives each authorized subscriber a hardware or
software decoder (\box") containing a secret decryption key. The distributor
then broadcasts an encrypted version of the digital content. Authorized sub-
scribers are able to decrypt and make use of the content. This scenario comes
up in the context of pay-per-view television, and more commonly in web based
electronic commerce (e.g. broadcast of online stock quotes or broadcast of pro-
prietary market analysis).

However, nothing prevents a legitimate subscriber from giving a copy of her
decryption software to someone else. Worse, she might try to expose the secret
key buried in her decryption box and make copies of the key freely available.
The \traitor" would thus make all of the distributor's broadcasts freely available
to non-subscribers. Chor, Fiat and Naor [4] introduced the concept of a traitor
tracing scheme to discourage subscribers from giving away their keys. Their
approach is to give each subscriber a distinct set of keys that both identify the
subscriber and enable her to decrypt. In a sense, each set of keys is a \watermark"
that traces back to the owner of a particular decryption box. A coalition of
traitors might try to mix keys from many boxes, to create a new pirate box that
can still decrypt but cannot be traced back to them. A traitor tracing scheme
is \k-collusion resistant" if at least one traitor can always be identi�ed when k
of them try to cheat in this way. In practice, especially with tamper-resistant
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decryption boxes, it may suÆce for k to be a fairly small integer, e.g., on the
order of 20.

In this paper we present an eÆcient public key traitor tracing scheme. The
public key settings enable anyone to broadcast encrypted information to the
group of legitimate receivers. Previous solutions were combinatorial with prob-
abilistic tracing [4, 10, 14{16], and could be either public-key or symmetric-key.
Our approach is algebraic with deterministic tracing, and is inherently public-
key. Our approach is much more eÆcient than the public-key instantiations of
previous combinatorial constructions.

Previous approaches [4, 10] incur an overhead that is proportional to the
logarithm of the size of the population of honest users. In a commercial setting
such as a web broadcast or pay-per-view tv, where the number of subscribers
might be in the millions, this is a signi�cant factor. Our approach eliminates
this factor. Furthermore, secret keys in our scheme are very short. Each private
key is just the discrete log of a single element of a �nite �eld (e.g., as small as
160 bits in practice). The size of an encrypted message is just 2k + 1 elements
of the �nite �eld. The work required to encrypt is about 2k+1 exponentiations.
Decryption takes far less than 2k + 1 exponentiations. During decryption, only
the �nal exponentiation uses the private key, which can be helpful when the
secret is stored on a weak computational device.

Previous probabilistic tracing methods try to maximize the chance of catch-
ing just one of the traitors while minimizing the chance of accusing an innocent
user. Our tracing method is deterministic. It catches all of the traitors who con-
tributed to the attack. Innocent users are never accused, as long as the number
of colluders is at or below the collusion threshold. Even when more than k (but
less than 2k) traitors collude, some information about the traitors can be recov-
ered. However, unlike previous tracing methods, our approach is only partially
\black box". This limits the tracer in certain scenarios where the pirate decoder
can be queried, but the pirate keys cannot be extracted (see Section 4.2).

The intuition behind our system is as follows. Each private key is a di�erent
solution vector for the discrete log representation problem with respect to a �xed
base of �eld elements. We can show that the pirate is limited to forming new
keys by taking convex combinations of stolen keys. If every set of 2k keys is
linearly independent, then every convex combination of k keys can be traced
uniquely (but not necessarily eÆciently). By deriving our keys from a Reed-
Solomon code in the appropriate way, we can take advantage of eÆcient error
correction methods to trace uniquely and eÆciently. We note that the multi-
dimensional discrete log representation problem has been previously used, e.g.,
for incremental hashing [1] and Signets [6].

Our scheme is traceable if the discrete log problem is hard. The encryption
scheme is secure (semantic security against a passive adversary) if the decision
DiÆe-Hellman problem is hard. A small modi�cation yields security against an
adaptive chosen ciphertext attack under the same hardness assumption. That
level of protection can be important in distribution scenarios where the decryp-
tion boxes (or decryption software) are widely deployed and largely unsupervised.
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In Section 2 we give de�nitions for the traitor tracing problem. Our basic
scheme is described in Section 3. The tracing algorithm is detailed in Section 4.
Chosen ciphertext security is considered in Section 5. Conclusions are given in
Section 7, including an application of our scheme to defending against software
piracy.

2 De�nitions

For a detailed presentation of the traitor tracing model, see [4]. A public key
traitor tracing encryption scheme is a public key encryption system in which
there is a unique encryption key and multiple decryption keys. The scheme is
made up of four components:

Key Generation: The key generation algorithm takes as input a security pa-
rameter s and a number ` of private keys to generate. It outputs a public
encryption key e and a list of private decryption keys d1; : : : ; d`. Any decryp-
tion key can be used to decrypt a ciphertext created using the encryption
key.

Encryption: The encryption algorithm takes a public encryption key e and a
message M and outputs a ciphertext C.

Decryption: The decryption algorithm takes a ciphertext C and any of the
decryption keys di and outputs the messageM . This is an \open" scheme in
the sense that only the short decryption keys are secret while the decryption
method can be public.

Tracing: Suppose a pirate gets hold of k decryption keys d1; : : : ; dk. Using the
k keys he creates a pirate decryption box (or decryption software) D. The
encryption scheme is said to be \k-resilient" if there is a tracing algorithm
that can determine at least one of the di's in the pirate's possession. The
tracing algorithm is said to be \black box" if its only use of D is as an oracle
to query on various inputs.

Representations: Our traitor tracing scheme relies on the representation problem.
When y =

Q2k
i=1 h

Æi
i we say that (Æ1; : : : ; Æ2k) is a \representation" of y with

respect to the base h1; : : : ; h2k. If �d1; : : : ; �dm are representations of y with respect
to the same base, then so is any \convex combination" of the representations:
�d =

Pm

i=1 �i
�di where �1; : : : ; �m are scalars such that

Pm

i=1 �i = 1.

3 The encryption scheme

We are now ready to present our tracing traitor encryption scheme. Let s be
a security parameter and k be the maximal coalition size. Our scheme defends
against any collusion of at most k parties. We wish to generate one public key
and ` corresponding private keys. Without loss of generality we assume ` � 2k+2
(if ` < 2k + 2 we set ` = 2k + 2 and generate ` private keys).
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Our scheme makes use of a certain linear space tracing code � which is a
collection of ` codewords in Z2k. The construction of the set � and the properties
it has to satisfy are described in the next section. For now, it suÆces to view
the ` words in � as vectors of integers of length 2k. The set � = f(1); : : : ; (`)g
is �xed and publicly known.

Let Gq be a group of prime order q. The security of our encryption scheme
relies on the diÆculty of computing discrete log in Gq . More precisely, the secu-
rity is based on the diÆculty of the Decision DiÆe-Hellman problem [3] in Gq as
discussed below. One can take as Gq the subgroup of Z�

p of order q where p is a
prime with qjp� 1. Alternatively, one can use the group of points of an elliptic
curve over a �nite �eld.

Key generation: Perform the following steps:

1. Let g 2 Gq be a generator of Gq .
2. For i = 1; : : : ; 2k choose a random ri 2 Zq and compute hi = gri .

3. The public key is hy; h1; : : : ; h2ki, where y =
Q2k

i=1 h
�i

i for random �1; : : : ; �2k
2Zq.

4. A private key is an element �i 2 Zq such that �i � 
(i) is a representation of

y with respect to the base h1; : : : ; h2k. The i'th key, �i, is derived from the
i'th codeword (i) = (1; : : : ; 2k) 2 � by

�i = (

2kX
j=1

rj�j)=(

2kX
j=1

rjj) (mod q) (1)

To simplify the exposition we frequently refer to the private key as being the
representation �di = �i �

(i). Note however that only �i needs to be kept secret
since the code � is public. One can verify that �di is indeed a representation
of y with respect to the base h1; : : : ; h2k.

1

Encryption: To encrypt a messageM in Gq do the following: �rst pick a random
element a 2 Zq. Set the ciphertext C to be

C = hM � ya; ha1 ; : : : ; ha2ki

Decryption: To decrypt a ciphertext C = hS;H1; : : : ; H2ki using user i'th secret
key, �i, compute

M = S=U�i where U =
2kY
j=1

H
j
j

Here (i) = (1; : : : ; 2k) 2 � is the codeword from which �i is derived. The cost
of computing U is far less than 2k + 1 exponentiations thanks to simultaneous

1 A codeword might not have an associated private key in the extremely unlikely event
that the denominator is zero in the calculation of �i.
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multiple exponentiation [9, p. 618 ]. Also note that U can be computed without
knowledge of the private key, leaving only a single exponentiation by the private
key holder to complete the decryption.

Before going any further we briey show that the encryption scheme is sound,
i.e. any private key �i correctly decrypts any ciphertext. Given a ciphertext C =
hM � ya; ha1 ; : : : ; h

a
2ki, decryption will yield M � ya=U�i where U =

Q2k
j=1(h

a
j )

j .
Then

U�i = (

2kY
j=1

garjj )�i = (g�
2k
j=1rjj )�ia = (g�

2k
j=1rj�j )a = (

2kY
j=1

h
�j

j )a = ya

as needed. The third equality follows from Equation (1). More generally, it is
possible to decrypt given any representation (Æ1; : : : ; Æ2k) of y with respect to

the base h1; : : : ; h2k, since
Q2k

j=1(h
a
j )
Æj = ya.

Tracing algorithm: We describe our tracing algorithm in Section 4.

3.1 Proof of security

We now show that our encryption scheme is semantically secure against a passive
adversary assuming the diÆculty of the Decision DiÆe-Hellman problem (DDH)
in Gq . The assumption says that in Gq , no polynomial time statistical test can
distinguish with non negligible advantage between the two distributions D =
hg1; g2; g

a
1 ; g

a
2i and R = hg1; g2; g

a
1 ; g

b
2i where g1; g2 are chosen at random in Gq

and a; b are chosen at random in Zq.

Theorem 1. The encryption scheme is semantically secure against a passive
adversary assuming the diÆculty of DDH in Gq.

Proof. Suppose the scheme is not semantically secure against a passive adversary.
Then there exists an adversary that given the public key hy; h1; : : : ; h2ki produces
two messagesM0;M1 2 Gq . Given the encryption C of one of these messages the
adversary can tell with non-negligible advantage � which of the two messages he
was given. We show that such an adversary can be used to decide DDH in Gq .
Given hg1; g2; u1; u2i we perform the following steps to determine if it is chosen
from R or D:

Step 1: Choose random r2; : : : ; r2k 2 Zq. Set y = g1; h1 = g2, and hi = gri2 for
i = 2; : : : ; 2k.

Step 2: Give hy; h1; : : : ; h2ki to the adversary. Adversary returnsM0;M1 2 Gq .
Step 3: Pick a random b 2 f0; 1g and construct the ciphertext

C = hMbu1; u2; u
r2
2 ; : : : ; u

r2k
2 i

Step 4: Give the ciphertext C to the adversary. Adversary returns b0 2 f0; 1g.
Step 5: If b = b0 output \D". Otherwise output \R".
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Observe that if the tuple hg1; g2; u1; u2i is chosen from D, then the ciphertext
C is an encryption of Mb. If the quadruple is from R, then the ciphertext is

an encryption of Mbg
(a1�a2)
1 , where u1 = ga11 and u2 = ga22 . In other words,

the ciphertext is the encryption of a random message. Hence b = b0 holds with
probability 1=2. By a standard argument, a non-negligible success probability
for the adversary implies a non-negligible success probability in deciding DDH.�

3.2 Constructing new representations

To decrypt, it suÆces to know any representation of y with respect to the base
h1; : : : ; h2k. We have already noted that if �d1; : : : ; �dm 2 Z

2k
q are representations

of y then any convex combination of �d1; : : : ; �dm is also a representation of y. The
following lemma shows that convex combinations are the only new representa-
tions of y that can be eÆciently constructed from �d1; : : : ; �dm 2 Z

2k
q .

Lemma 1. Let hy; h1; : : : ; h2ki be a public key. Suppose an adversary is given
the public key and m private keys �d1; : : : ; �dm 2 Z

2k
q for m < 2k. If the adversary

can generate a new representation �d of y with respect to the base h1; : : : ; h2k
that is not a convex combination of �d1; : : : ; �dm then the adversary can compute
discrete logs in Gq.

Proof. Let g be a generator of Gq . Suppose we are given z = gx. We show how to
use the adversary to compute x. Choose random a; b; r1; : : : ; rm; s1; : : : ; s2k 2 Zq.
Construct the set fh1; : : : ; h2kg where hi = zrigsi for 1 � i � m and hi = gsi for
m+1 � i � 2k. Compute y = zagb. Find m linearly independent (and otherwise
random) solutions ��1; : : : ; ��m to �� � �r = a mod q. Extend these to be (otherwise
random) solutions to �� � �s = b mod q, while keeping the �rst m entries of each
��i unchanged. These m extended vectors are representations of y with respect
to the base h1; : : : ; h2k. Suppose that the adversary can �nd another represen-
tation �� that is not a convex combination of ��1; : : : ; ��m. Since it is not a convex
combination, we must have that �1r1 + : : : + �mrm = a0 6= a mod q. But then
a0x+ �� ��s = ax mod q, which yields the discrete log x = (�� ��s)(a�a0)�1 mod q.�

4 Linear space tracing

4.1 The tracing algorithm

We now turn our attention to the tracing algorithm for the encryption scheme
of Section 3. Throughout this subsection we assume the pirate decoder contains
at least one representation of y. Furthermore, we assume that by examining the
decoder implementation it is possible to obtain one of these representations, �d.
In Section 4.2 we show that, in some cases, these assumptions are unnecessary.

Suppose the pirate obtains k keys �d1; : : : ; �dk. By Lemma 1, �d found in the
pirate decoder must lie in the linear span of the representations �d1; : : : ; �dk. We
construct a tracing algorithm that given �d outputs one of �d1; : : : ; �dk.
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Recall that the construction of private keys made use of a set � � Z
2k
q

containing ` codewords. Each of the ` users is given a private key �di 2 Z
2k
q

which is a multiple of a codeword in � . To solve the tracing problem we must
construct a set � � Z

2k
q containing ` codewords with the following property. Let

�d be a point in the linear span of some k codewords (1); : : : ; (k) 2 � . Then
at least one  in (1); : : : ; (k) must be a member of any coalition (of at most
k users) that can create �d. This  identi�es one of the private keys that must
have participated in the construction of the pirated key �d. Furthermore, there
should exist an eÆcient tracing algorithm that when given �d as input, outputs
. In fact, our tracing algorithm will output every (i) that has nonzero weight
in the linear combination.

The set � : We begin by describing the set � containing ` codewords over Z2k
q .

Since q is a large prime we may assume q > max(`; 2k). Consider the following
(`� 2k)� ` matrix:

A =

0
BBBBBBB@

1 1 1 : : : 1
1 2 3 : : : `
12 22 32 : : : `2

13 23 33 : : : `3

...
...

1`�2k�1 2`�2k�1 3`�2k�1 : : : ``�2k�1

1
CCCCCCCA

(mod q)

Observe that any vector in the span of the rows of A corresponds to a polynomial
of degree at most `� 2k � 1 evaluated at the points 1; : : : ; `.

Let b1; : : : ; b2k be a basis of the linear space of vectors satisfying A�x = 0 mod
q. Viewing these 2k vectors as the columns of a matrix we obtain an ` � 2k
matrix B:

B =

0
@ j j j j
b1 b2 b3 : : : b2k
j j j j

1
A

We de�ne � as the set of rows of the matrix B. Hence, � contains ` codewords
each of length 2k. We note that using Lagrange interpolation one can directly
construct the i'th codeword in � using approximately ` arithmetic operations
modulo q.

The tracing algorithm: Consider the set of vectors in � . Let �d 2 Z
2k
q be a vector

formed by taking a linear combination of at most k vectors in � . We show
that given �d one can eÆciently determine the unique set of vectors in � used to
construct �d. Since the vectors in � form the rows of the matrix B above we know
there exists a vector �w 2 F

`
q of Hamming weight at most k such that �w �B = �d.

We show how to recover the vector �w given �d.

Step 1: Find a vector �v 2 F
`
q such that �v � B = �d. Many such vectors exist.

Choose one arbitrarily.2 Since (�v � �w) � B = 0 we know that �v � �w is in

2 If B is in canonical form with the identity matrix as its �rst 2k rows, then �v =
( �djj0 : : : 0) suÆces.
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the linear span of the rows of the matrix A (the rows of A span the space
of vectors orthogonal to the columns of B). In other words, there exists
a unique polynomial f 2 Fq [x] of degree at most ` � 2k � 1 such that
�v � �w = hf(1); : : : ; f(`)i.

Step 2: Since �w has Hamming weight at most k, we know that hf(1); : : : ; f(`)i
equals �v in all but k components. Hence, using Berlekamp's algorithm [2] we
can �nd f from �v. The polynomial f gives us the vector �v � �w from which
we recover �w as required.

For completeness we briey recall Berlekamp's algorithm. The algorithm en-
ables us to �nd f given the vector �v 2 Z

`
q. Let g be a polynomial of degree

at most k such that g(i) = 0 for all i = 1; : : : ; ` for which f(i) 6= vi (where
vi is the i'th component of �v). Then we know that for all i = 1; : : : ; ` we have
f(i)g(i) = g(i)vi. The polynomial fg has degree at most ` � k � 1. Hence, we
get ` equations (for each of i = 1; : : : ; `) in ` variables (the variables are the
coeÆcients of the polynomials fg and g, where the leading coeÆcient of g is 1).
Let h and g be a solution where g is a non-zero polynomial: h is a polynomial of
degree at most `� k � 1 and g is of degree at most k. We know that whenever
f(i) = vi (i.e. at `� k points) we have h(i) = g(i)vi = g(i)f(i). It follows that
f = h=g.

This completes the description of the tracing algorithm. Our tracing algo-
rithm satis�es several properties:

Full tracing Given a pirated key �d the tracing algorithm will recover all keys
that were used in the construction of �d. In all previous tracing schemes only
one pirate was guaranteed to be found. Note that the set of traced pirates
may be a subset of the guilty coalition, i.e., the coalition may have used only
a subset of the keys at its disposal to create �d. All keys that were actually
used (i.e. the pirated key could not be constructed without them) will be
found.

Error free tracing The tracing algorithm is deterministic in the sense that
there is no error probability. Any key output by the tracing algorithm must
have participated in the construction of the pirated key.

Beyond threshold tracing If more than k parties colluded to create the pi-
rated key, then Berlekamp's algorithm may fail to recover the polynomial
f , and tracing will fail. Above this bound, recent results of Guruswami and
Sudan [7] may be used to output a list of candidate polynomials for f . The
tracer gets a list of \leads" for the fraud investigation that includes the actual
colluders. This will be e�ective against coalitions of size at most 2k � 1.

Running time The tracing algorithm requires that we solve a linear system of
dimension ` (the total number of users). A naive implementation runs in time
O(`2) (�eld operations). Asymptotically eÆcient versions of Berlekamp's al-
gorithm run in time ~O(`), where the \soft-Oh" notation hides polylog terms.
The fastest known algorithm, due to Pan [12], runs in time O(` log ` log log `).
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4.2 Black box tracing

The question that remains is the following: given a pirate decryption box (or
pirated decryption software) how does one recover the representation �d used
by the box? It is conceivable that a pirate box could decrypt while the tracer is
unable to extract any representation from it. If the pirate box is tamper-resistant,
the tracer might be unable to open it. Even after seeing the decoding logic, the
tracer might be unable to eÆciently deduce from it a valid representation.

The above discussion shows that it is desirable to enable the tracer to ex-
tract a key used by the box simply by observing its behavior on a few chosen
ciphertexts. In other words, the tracing algorithm may only use the pirated box
as an oracle. Given this oracle the tracing algorithm must output one of the keys
at the pirate's possession. Previous traitor tracing schemes support this kind of
black box tracing [4, 10]. Our scheme supports two types of black box tracing
techniques. The �rst is very eÆcient, but assumes the pirate is restricted in how
it constructs the decryption box. The second works against an arbitrary pirate,
but is less eÆcient.

Single-key pirates. A natural strategy for a pirate to build a pirate decryption
box is to form a new representation �d and then create a box that decrypts
using this representation. We call this a \single-key pirate" since only a single
representation of y is embedded in the pirate decoder. We will show an eÆcient
black box tracing algorithm that works against a single-key pirate. Note that
when a single user attempts to construct a decoder that cannot be traced back
to him he is essentially acting as a single-key pirate.

We model the single-key pirate's behavior as if he is divided into two distinct
parties. The �rst party is given the k keys �d1; : : : ; �dk, and creates some new key
�d. By Lemma 1 we know �d must be a convex combination of the k given keys.
The �rst party then hands �d to the second party. The second party, seeing only
�d and the public key, is free to implement the decryption box however he wants.
For convenience, we refer to the second party as the \box-builder".

We show how the tracer can extract the representation �d = (Æ1; : : : ; Æ2k)
from a decoder created by a single-key pirate. The basic idea is to observe the
decoder's behavior on invalid ciphertexts, e.g., ~C = hS; hz11 ; : : : ; h

z2k
2k i, where the

non-constant vector �z is chosen by the tracer. This ciphertext is invalid since
the hi's are raised to di�erent powers. The next lemma shows that the pirate
box cannot distinguish invalid ciphertexts from valid ciphertexts (assuming the
diÆculty of DDH in Gq). Hence, on input ~C = hS;H1; : : : ; H2ki it must respond
with A where

A = S=
Y

HÆi
i = S=

Y
hziÆii

Lemma 2. Let hy; h1; : : : ; h2ki be a public key and let �d = (Æ1; : : : ; Æ2k) be a
representation of y. Suppose that given �d and the public key the box-builder is
able to construct a pirate decoder that will correctly decrypt all valid ciphertexts,
but when given a random invalid ciphertext ~C = hS; hz11 ; : : : ; h

z2k
2k i will output a

value di�erent from S=
Q
hziÆii , with non-negligible probability (over the choice

of S and �z). Then the box-builder can be used to solve DDH in Gq.
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Proof Sketch. Given a challenge tuple hg1; g2; u; vi we decide whether it is a ran-
dom tuple or a DiÆe-Hellman tuple as follows: build a public key hy; h1; : : : ; h2ki
by picking random ai; bi 2 Zq for i = 1; : : : ; 2k and setting hi = gai1 g

bi
2 . The el-

ement y 2 Gq is constructed as in the key generation algorithm, i.e. y =
Q
h�i

i

for random �i 2 Zq. Next, build a ciphertext

~C = hS; ua1vb1 ; : : : ; ua2kvb2k i

where S is random in Gq . Observe that if the challenge hg1; g2; u; vi is a DiÆe-

Hellman tuple then ~C is a random valid ciphertext. Otherwise, ~C is a random
invalid ciphertext. Next, we ask the box-builder to build a pirate decoder given
(�1; : : : ; �2k) and the public key. We then feed ~C into the pirate decoder. Since
the decoder behaves di�erently for valid and invalid ciphertexts the result en-
ables us to solve the given DDH challenge. �

By querying at invalid ciphertexts the tracer learns the value
Q
hziÆii = S=A

for vectors �z of its choice. After 2k queries with random linearly independent �z,
the tracer can solve for hÆ11 ; : : : ; h

Æ2k
2k . Since the tracer knows the discrete log of the

hi's base g (recall Step 2 of key generation) it can compute gÆ1 ; : : : ; gÆ2k . Ideally,
we would like to use homomorphic properties of the discrete log to run the tracing
algorithm of the previous section \in the exponents". Unfortunately, it is an open
problem to run Berlekamp's algorithm this way. Instead, we can recover the
vector �d = (Æ1; : : : ; Æ2k) from hgÆ1 ; : : : ; gÆ2ki by using recent results on trapdoors
of the discrete log [11, 13] modulo p2q and moduloN2. For instance, the trapdoor
designed by Paillier [13] shows that if encryption is done in the group Z�

N2 then
the secret factorization of N (known to the tracer only) enables the tracer to
recover hÆ1; : : : ; Æ2ki mod N from hgÆ1 ; : : : ; gÆ2ki. The tracing algorithm of the
previous section can now be used to recover the keys at the pirate's possession.
This completes the description of the black box tracing algorithm for single-key
pirates.

Arbitrary pirates. Unfortunately, pirates do not have to limit themselves to a
single-key strategy. For instance, the pirate could embed multiple representations
of y in the pirate decoder. The decoder could use a di�erent random convex
combination of its representations each time it decrypts. This would defeat the
approach described above. It is an open problem to build an extractor that will
eÆciently extract some representation in the convex hull of the keys given to the
pirate.

To achieve black box tracing against an arbitrary pirate we rely on \black
box con�rmation". Suppose the tracer is given an arbitrary pirate decoder, and
the tracer suspects a particular set T of at most k traitors. By querying the
pirate decoder in a black box fashion, the tracer will be able to eÆciently verify
this suspicion with high probability. More precisely, the tracer will be able to
determine that the pirate must possess some unknown subset of the keys of
members of T .
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Let �d1; : : : ; �dk be the keys belonging to members of T and let g be a generator
of Gq . To con�rm its suspicion of T the tracer queries the decoder with an invalid

ciphertext ~C = hS; gz1 ; : : : ; gz2ki, where the vector �z satis�es �z � �di = w for all
i 2 T . Here w is a random element of Gq . As in Lemma 2, the decoder cannot
distinguish this invalid ciphertext from a real one. Consequently, it will respond
with A = S=

Q
gziÆi where hÆ1; : : : ; Æ2ki is some representation of y. If T is

indeed the coalition that created the decoder, then by Lemma 1 we know that
hÆ1; : : : ; Æ2ki is in the convex hull of �d1; : : : ; �dk. Hence, if T is the guilty coalition
we know that A = S=gw. Con�dence in this test can be increased by making
multiple queries, where each query is constructed independently using di�erent
S; �z; w. If for a suspect coalition T the pirate decoder always responds with
A = S=gw then the pirate must possess a subset of the keys belonging to T .
Note that this con�rmation algorithm does not require trapdoors of the discrete
log.

Since we are able to do black box con�rmation, we can do black box tracing by
running the con�rmation algorithm on all

�
n
k

�
candidate coalitions (n is the total

number of users in the system). This results in an ineÆcient tracing algorithm,
but it shows that black box tracing is possible in principle.

5 Chosen ciphertext security

In a typical scenario where our system is used it is desirable to defend against
chosen ciphertext attacks. Fortunately, our scheme can be easily modi�ed to be
secure against adaptive attacks. The modi�cation is similar to the approach used
by Cramer and Shoup [5]. As in Section 3 we work in a group Gq of prime order
q. For example, Gq could be a subgroup of order q of Z�

p for some prime p where
qjp� 1.

Key generation: Let g be a generator of Gq . Pick random r1; : : : ; r2k 2 Zq and
set hi = gri for i = 1; : : : ; 2k. Next, we pick random x1; x2; y1; y2 2 Zq and
�1; : : : ; �2k 2 Zq and compute

y = h�11 h�22 � � �h�2k2k ; c = hx11 hx22 ; d = hy11 hy22

The public key is hy; c; d; h1; : : : ; h2ki. The private key is as in Section 3, but also
includes hx1; x2; y1; y2i. Hence, user i's private key is h�i; x1; x2; y1; y2i.

Encryption: To encrypt a message M 2 Gq do the following: pick a random
element a 2 Zq, and compute

S =M � ya ; H1 = ha1 ; : : : ; H2k = ha2k

� = H(S;H1; : : : ; H2k) ; v = cada�

whereH is a collision resistant hash function (or chosen from a family of universal
one-way hash functions). Set the ciphertext C to be

C = hS;H1; : : : ; H2k; vi

348 D. Boneh, M. Franklin



It is a bit surprising that the system can be made secure against chosen ciphertext
attacks by appending a single element v to the ciphertext.

Decryption: To decrypt a ciphertext C = hS;H1; : : : ; H2k; vi using a private key
h�i; x1; x2; y1; y2i �rst compute � = H(S;H1; : : : ; H2k) and check that

Hx1+y1�
1 �Hx2+y2�

2 = v

If the test fails, reject the ciphertext. Otherwise, output

M = S=U�i where U =

2kY
j=1

H
j
j

and (i) = (1; : : : ; 2k) 2 � is the codeword from which �i is derived.

Tracing: The tracing algorithm remains unchanged.

We show that the scheme is secure against adaptive chosen ciphertext attack.
In other words, we show that the scheme is secure in the following environment:
an adversary is given the public key. It generates two messages M0;M1 and is
given the encryption C = E(Mb) for b 2 f0; 1g chosen at random. The adver-
sary's goal is to predict b. To do so he is allowed to interact with a decryption
oracle that will decrypt any valid ciphertext other than C. If the adversary's
guess for b is b0 and the probability that b = b0 is 1

2 + � then we say that the
adversary has advantage �. The system is said to be secure against an adaptive
chosen ciphertext attack if the adversary's advantage in predicting b is negligible
(as a function of the security parameter).

Theorem 2. The above cryptosystem is secure against an adaptive chosen ci-
phertext attack assuming that (1) the Decision DiÆe-Hellman problem is hard
in the group Gq, and (2) the hash function H is collision resistant (or chosen
from a family of universal one-way hash functions).

We assume the hash function H is collision resistant. Suppose there exists a
polynomial time adversary A that is able to obtain a non-negligible advantage
in predicting b when the above cryptosystem is used. We show that A can be
used to solve the Decision DiÆe-Hellman problem in Gq .

Given a tuple hg1; g2; u1; u2i in Gq we perform the following steps to deter-
mine if it is a random tuple (i.e chosen from R) or a DiÆe-Hellman tuple (i.e
chosen from D):

Init Set h1 = g1 and h2 = g2. pick random r3; : : : ; r2k 2 Zq and set hi = gri2 for
i = 3; : : : ; 2k. Next, choose random x1; x2; y1; y2 2 Zq and �1; : : : ; �2k 2 Zq

and compute

y = h�11 � � �h�2k2k ; c = hx11 hx22 ; d = hy11 hy22
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Challenge The adversary A is given the public key and outputs two messages
M0;M1 2 Gq . We pick a random b 2 f0; 1g and compute:

S =Mb � u
�1
1 u�22

2kY
i=3

u�iri
2

H1 = u1 ; H2 = u2 ; H3 = ur32 ; : : : ; H2k = ur2k2

� = H(S;H1; : : : ; H2k) ; v = ux1+y1�1 ux2+y2�2

The challenge ciphertext given to A is C = hS;H1; : : : ; H2k; vi.
Interaction When the adversary A asks to decrypt a ciphertext

C 0 = hS0; H 0

1; : : : ; H
0

2k; v
0i

we respond as in a normal decryption: �rst we check validity of the ciphertext
and reject invalid ciphertexts. For valid ciphertext we give A the plaintext
M = S0=

Q2k
j=1(H

0

i)
�j .

Output Eventually the adversary A outputs a b0 2 f0; 1g. If b = b0 we say the
input tuple is from D otherwise we say R.

This completes the description of the algorithm for deciding DDH using A.
To complete the proof of Theorem 2 it remains to show two things:

{ When hg1; g2; u1; u2i is chosen from D the joint distribution of the adver-
sary's view and the bit b is statistically indistinguishable from the actual
attack.

{ When hg1; g2; u1; u2i is chosen from R the hidden bit b is (essentially) inde-
pendent of the adversary's view.

The proofs of both statements are similar to the proofs given by Cramer and
Shoup [5] and will be given in the full version of the paper. Based on the two
statements a standard argument shows that if the adversary A has advantage �
in predicting b then the above algorithm for deciding DDH also has advantage
�. This completes the proof of Theorem 2.

Key extraction and black box tracing. It is surprising that although the
scheme is resistant to chosen ciphertext attack, the decryption box will de-
crypt invalid ciphertexts. In particular, it will decrypt an invalid ciphertext
~C = hS;H1; : : : ; H2k; vi where

S =M �ya ; H1 = ha1 ; H2 = ha2 ; H3 = hb33 ; H4 = hb44 ; : : : ; H2k = hb2k2k

� = H(S;H1; : : : ; H2k) ; v = cada�

This is an invalid ciphertext since the hi's are raised to di�erent powers. It passes
the decryptor's test since h1 and h2 are raised to the same power. It cannot be
distinguished from a valid ciphertext, assuming the hardness of DDH in Gq . The
ideas of Section 4.2 can then be applied for black box tracing in this setting.
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6 Pitfalls in designing public key traitor tracing schemes

The pirate decoder need not work in the same way as a legitimate decoder in
a traitor tracing scheme. For example, the pirate may be able to derive a short
string w that enables decryption but is not a legitimate decryption key. If w
could be derived from any subset of k private keys, then it would be impossible
to trace. This successful pirate strategy can be shown to defeat one of the traitor
tracing schemes proposed by Kurosawa and Desmedt in [8]. Their scheme works
as follows:

Key generation: Let g be a generator of a group Gq of order q for some prime
q. Choose a random polynomial f(x) = a0 + a1x + : : : + akx

k over Zq.
Compute

y0 = ga0 ; : : : ; yk = gak

The public key is hg; y0; : : : ; yki. The private key for user i is di = f(i).
Encryption: To encrypt a message M 2 Gq compute

C = hgr; M � yr0 ; y
r
1; : : : ; y

r
ki

where r is random in Zq.
Decryption: To decrypt a ciphertext C = ha; b0; : : : ; bki using user i's private

key di compute: �
b0 � b

i
1 � b

(i2)
2 � � � b

(ik)
k

�
=af(i) =M

The authors show that given the public key and k private keys f(i1); : : : ; f(ik)
it is impossible to construct another private key f(j) for user j, unless the discrete
log problem in Gq is easy. However, let w = (u;w0; w1; : : : ; wk) be any convex
combination of the vectors v1; : : : ; vk, de�ned by:

v1 =

�
f(i1); 1; i1; i

2
1; : : : ; i

k
1

�

...
...

vk =

�
f(ik); 1; ik; i

2
k; : : : ; i

k
k

�

Then w is not a legitimate private key, but it can be used to decrypt any cipher-
text C = ha; b0; : : : ; bki since

bw0

0 � � � bwk

k =au =M

One can show that many of the convex combinations w cannot be traced
to any traitor. To do so, one shows the existence of disjoint coalitions of size k
that can all create the same w. This example illustrates the importance of black
box tracing, to ensure that it is possible to trace no matter how the decoder is
implemented. By increasing the degree of f from k to 2k, it should be possible
to demonstrate k-resilient black box con�rmation (and thus ineÆcient black box
tracing) for this scheme as in Section 4.2.
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7 Conclusion

We present an eÆcient public key solution to the traitor tracing problem. Our
construction is based on Reed-Solomon codes and the representation problem for
discrete logs. Traceability follows from the hardness of discrete log. The semantic
security of the encryption scheme against a passive attack follows from the De-
cision DiÆe-Hellman assumption. A simple extension achieves security against
an adaptive chosen ciphertext attack under the same hardness assumption. The
private key in all cases is just a single element of a �nite �eld and can be as short
as 160 bits. The cryptosystem can be made to work in any group in which the
Decision DiÆe-Hellman problem is hard. It is an interesting open question to
improve on the \black box" traceability of our approach. Also, it seems reason-
able to believe that there exists an eÆcient public key tracing traitors scheme
that is completely collusion resistant. In such a scheme, any number of private
keys cannot be combined to form a new key. Similarly, the complexity of encryp-
tion and decryption is independent of the size of the coalition under the pirate's
control. An eÆcient construction for such a scheme will provide a useful solution
to the public key tracing traitors problem.

To conclude, we mention an application of our system to defending against
software piracy. Typically, when new software is installed from a CD-ROM the
user is asked to enter a short unique key printed on the CD cover. This key
identi�es the installed copy. Clearly the key printed on the CD cover has to be
short (say under 20 characters) since it is typed in manually. Our system can
be used in this settings as follows: since our private key can be made 120 bits
long (to achieve 260 security) it can be printed on the CD cover (each character
encodes 6 bits). The software on the CD is encrypted using our system's public
key. When the user types in his unique CD key the software is decrypted and
installed on the user's machine. However, if a software pirate attempts to create
illegal copies of the distribution CD (say using a CD-ROM burner) he must also
attach a short printed key to the disk. Using our system, the key he attaches to
the bootlegged copies can be traced back to him.
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