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Abstract. In this paper we perform a review of elliptic curve cryptog-
raphy (ECC) as it is used in practice today in order to reveal unique mis-
takes and vulnerabilities that arise in implementations of ECC. We study
four popular protocols that make use of this type of public-key cryptog-
raphy: Bitcoin, secure shell (SSH), transport layer security (TLS), and
the Austrian e-ID card. We are pleased to observe that about 1 in 10 sys-
tems support ECC across the TLS and SSH protocols. However, we find
that despite the high stakes of money, access and resources protected by
ECC, implementations suffer from vulnerabilities similar to those that
plague previous cryptographic systems.

1 Introduction

Elliptic curve cryptography (ECC) [32, 37] is increasingly used in practice to
instantiate public-key cryptography protocols, for example implementing digital
signatures and key agreement. More than 25 years after their introduction to
cryptography, the practical benefits of using elliptic curves are well-understood:
they offer smaller key sizes [34] and more efficient implementations [6] at the
same security level as other widely deployed schemes such as RSA [44]. In this
paper, we provide two contributions:

• First, we study the current state of existing elliptic curve deployments in
several different applications. Certicom released the first document providing
standards for elliptic curve cryptography in 2000, and NIST standardized
ECDSA in 2006. What does the deployment of these algorithms look like in
2013? In order to study this question, we collect cryptographic data from a
number of different real-world deployments of elliptic curve cryptography:
Bitcoin [38], secure shell (SSH) [47], transport layer security (TLS) [9], and
the Austrian Citizen Card [29].

• Next, we perform a number of “sanity checks” on the data we collected, in
particular on the public keys, key exchange data, and digital signatures, in
order to detect implementation problems that might signal the presence of
cryptographic vulnerabilities.

The security of deployed asymmetric cryptographic schemes relies on the be-
lieved hardness of number theoretic problems such as integer factorization and



the computation of discrete logarithms in finite fields or in groups of points
on an elliptic curve. However, most real-world cryptographic vulnerabilities do
not stem from a weakness in the underlying hardness assumption, but rather
from implementation issues such as side-channel attacks, software bugs or de-
sign flaws (cf. [26]). One such example are so-called cache attacks [40] (see [13]
for an application to the asymmetric setting) that exploit the memory access
pattern in cryptographic schemes using data dependent table lookups. Another
class of problems is related to implementations which do not provide sufficient
randomness and subsequently generate insecure cryptographic keys. Recent ex-
amples of implementations suffering from a lack of randomness are the Debian
OpenSSL vulnerability [51], the discovery of widespread weak RSA and DSA
keys used for TLS, SSH, and PGP as documented in [33, 28] and recent results
in [4] that show how to break a number of RSA keys obtained from Taiwan’s
national Citizen Digital Certificate database.

In order to survey the implementation landscape for elliptic curve cryptog-
raphy, we collected several large cryptographic datasets:

• The first (and largest) dataset is obtained from the Bitcoin block chain. Bit-
coin is an electronic crypto-currency, and elliptic curve cryptography is cen-
tral to its operation: Bitcoin addresses are directly derived from elliptic-curve
public keys, and transactions are authenticated using digital signatures. The
public keys and signatures are published as part of the publicly available
and auditable block chain to prevent double-spending.

• The second largest dataset we collected is drawn from an Internet-wide
scan of HTTPS servers. Elliptic-curve cipher suites that offer forward se-
crecy by establishing a session key using elliptic-curve Diffie-Hellman key
exchange [19] were introduced in 2006 and are growing in popularity for TLS.
This dataset includes the Diffie-Hellman server key exchange messages, as
well as public keys and signatures from servers using ECDSA.

• We also performed an Internet-wide scan of SSH servers. Elliptic-curve cipher
suites for SSH were introduced in 2009, and are also growing more common
as software support increases. This dataset includes elliptic curve Diffie-
Hellman server key exchange messages, elliptic-curve public host keys, and
ECDSA signatures.

• Finally, we collected certificate information, including public keys from the
publicly available lightweight directory access protocol (LDAP) database
for the Austrian Citizen Card. The Austrian e-ID contains public keys for
encryption and digital signatures, and as of 2009, ECDSA signatures are
offered.

Our main results can be categorized as follows.

Deployment. Elliptic curve cryptography is far from being supported as a
standard option in most cryptographic deployments. Despite three NIST curves
having been standardized at the 128-bit security level or higher, the smallest
curve size, secp256r1, is by far the most commonly used. Many servers seem to
prefer the curves defined over smaller fields.



Weak keys. We observed significant numbers of non-related users sharing public
(and hence private) keys in the wild in both TLS and SSH. Some of these cases
were due to virtual machine deployments that apparently duplicated keys across
distinct instances; others we were able to attribute to default or low-entropy
keys generated by embedded devices, such as a network firewall product.

Vulnerable signatures. ECDSA, like DSA, has the property that poor ran-
domness used during signature generation can compromise the long-term signing
key. We found several cases of poor signature randomness used in Bitcoin, which
can allow (and has allowed) attackers to steal money from these clients. There
appear to be diverse causes for the poor randomness, including test values for
uncommonly used implementations, and most prominently an Android Java bug
that was discovered earlier this year (see [35] for a discussion of this bug in An-
droid and related Java implementations).

2 Preliminaries

This section briefly discusses the standardized elliptic curves that are mainly
used in practice. It also fixes notation for elliptic curve public-key pairs and
introduces the basic concepts for key establishment and digital signatures in the
elliptic curve setting.

Elliptic Curves Used in Practice. First, we briefly recap standardized elliptic
curves that are used most commonly in real-world applications. All these curves
are given in their short Weierstrass form E : y2 = x3 + ax + b and are defined
over a finite field Fp, where p > 3 is prime and a, b ∈ Fp. Given such a curve
E, the cryptographic group that is employed in protocols is a large prime-order
subgroup of the group E(Fp) of Fp-rational points on E. The group of rational
points consists of all solutions (x, y) ∈ F2

p to the curve equation together with
a point at infinity, the neutral element. The number of Fp-rational points is
denoted by #E(Fp) and the prime order of the subgroup by n. A fixed generator
of the cyclic subgroup is usually called the base point and denoted by G ∈ E(Fp).

In the FIPS 186-4 standard [50], NIST recommends five elliptic curves for use
in the elliptic curve digital signature algorithm targeting five different security
levels. Each curve is defined over a prime field defined by a generalized Mersenne
prime. Such primes allow fast reduction based on the work by Solinas [46]. All
curves have the same coefficient a = −3, supposedly chosen for efficiency rea-
sons, and their group orders are all prime, meaning that n = #E(Fp). The five
recommended primes are

p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1,
p256 = 2256 − 2224 + 2192 + 296 − 1, p384 = 2384 − 2128 − 296 + 232 − 1,
p521 = 2521 − 1.

In the standard, these curves are named P-192. P-224, P-256, P-384, and P-521,
but in practice they also appear as nistp192, nistp224 etc. These along with
other curves are also recommended by Certicom in the standards for efficient
cryptography SEC2 [15], in which the curves are named secp192r1, secp224r1,



secp256r1, secp384r1, secp521r1. But sometimes, other names are used, for
example P-192 and P-256 are named prime192v1 and prime256v1 in OpenSSL.

For 256-bit primes, in addition to the NIST curve defined over Fp256 , SEC2
also proposes a curve named secp256k1 defined over Fp where p = 2256− 232−
977. This curve is used in Bitcoin. It has a 256-bit prime order. Interestingly, this
choice deviates from those made in FIPS 186-4 in that the curve coefficients are
a = 0 and b = 7. This means that secp256k1 has j-invariant 0 and thus possesses
a very special structure. A curve with j-invariant 0 has efficiently computable
endomorphisms that can be used to speed up implementations, for example using
the GLV decomposition for scalar multiplication [25]. Since for secp256k1 p ≡ 1
(mod 6), there exists a primitive 6th root of unity ζ ∈ Fp and a corresponding
curve automorphism ψ : E → E, (x, y) 7→ (ζx,−y). This map allows the fast
computation of certain multiples of any point P ∈ E(Fp), namely ψ(P ) = λP
for an integer λ with λ6 ≡ 1 (mod n). But efficient endomorphisms not only
speed up scalar multiplication, they also speed up Pollard’s rho algorithm [41]
for computing discrete logarithms [23]. The automorphism group of E has order
6 and is generated by the map ψ above. In contrast, an elliptic curve with j-
invariant different from 0 and 1728 only has an automorphism group of order 2,
such that the speed-up in Pollard’s rho algorithm is a constant factor of up to√

2 over such a curve.

Another consequence of the larger automorphism group is the existence of
six twists (including the curve itself and the standard quadratic twist). An im-
plementation using x-coordinate only arithmetic (such as the formulas in [11])
must pay attention to the curve’s twist security (see [2, 3]). This means that its
quadratic twist needs to have a large enough prime divisor for the discrete log-
arithm problem on the twist to be hard enough. This prevents an invalid-curve
attack in which an attacker obtains multiples with secret scalars of a point on the
quadratic twist, e.g. via fault injection [24]. The quadratic twist of secp256k1

has a 220-bit prime factor and thus can be considered twist secure (e.g. as in
[5]). A non-laddering implementation (using both x- and y-coordinates) can be
compromised by an invalid-curve attack if the implementation does not check
whether the point satisfies the correct curve equation [7]. This could lead to a
more serious attack on secp256k14 since an attacker might obtain scalar multi-
ples with secret scalars of a point on any curve over Fp with coefficient a = 0,
i.e. on any of secp256k1’s twists. The largest prime divisors of the remaining
four twists’ group orders are of size 133, 188, 135, and 161 bits, respectively,
but there are several other smaller prime factors that offer more choices for an
invalid-curve attack.

Elliptic Curve Public-Key Pairs. Given a set of domain parameters that
include a choice of base field prime p, an elliptic curve E/Fp, and a base point
G of order n on E, an elliptic curve key pair (d,Q) consists of a private key d,

4 This invalid curve attack on secp256k1 using fault injection has been mentioned
before, for example by Paulo S.L.M. Barreto (@pbarreto): ”In other words: given 13
faults and a good PC, one can break secp256k1 (and Bitcoin) in 1 minute.”, October
21, 2013, 10:20 PM, Tweet.



which is a randomly selected non-zero integer modulo the group order n, and a
public key Q = dG, the d-multiple of the base point G. Thus the point Q is a
randomly selected point in the group generated by G.

Elliptic Curve Key Exchange. There are several different standardized key
exchange protocols (see [48, 16]) extending the basic elliptic curve Diffie-Hellman
protocol, which works as follows. To agree on a shared key, Alice and Bob indi-
vidually generate key pairs (da, Qa) and (db, Qb). They then exchange the public
keys Qa and Qb, such that each can compute the point P = daQb = dbQa using
their respective private keys. The shared secret key is derived from P by a key
derivation function, generally being applied to its x-coordinate.

Elliptic Curve Digital Signatures. The Elliptic Curve Digital Signature Al-
gorithm (ECDSA) was standardized in FIPS 186-4 [50]. The signer generates a
key pair (d,Q) consisting of a private signing key d and a public verification key
Q = dG. To sign a message m, the signer first chooses a per-message random
integer k such that 1 ≤ k ≤ n− 1, computes the point (x1, y1) = kG, transforms
x1 to an integer and computes r = x1 mod n. The message m is hashed to a
bitstring of length no more than the bit length of n, which is then transformed
to an integer e. The signature of m is the pair (r, s) of integers modulo n, where
s = k−1(e + dr) mod n. Note that r and s need to be different from 0, and k
must not be revealed and must be a per-message secret, which means that it
must not be used for more than one message.

It is important that the per-message secret k is not revealed, since otherwise
the secret signing key d can be computed by d ≡ r−1(ks− e) (mod n) because
r and s are given in the signature and e can be computed from the signed
message. Even if only several consecutive bits of the per-message secrets for a
certain number of signatures are known, it is possible to compute the private key
(see [30]). Also, if the same value for k is used to sign two different messages m1

and m2 using the same signing key d and producing signatures (r, s1) and (r, s2),
then k can be easily computed as k ≡ (s2− s1)−1(e1− e2) (mod n), which then
allows recovery of the secret key.

One solution to prevent the generation of predictable or repeated nonces is to
generate the nonce deterministically from the private key and the message [42].

3 Applications of Elliptic Curves

In this section, we survey deployments of elliptic curve cryptography in the real
world and provide statistics on usage.

Bitcoin. The cryptocurrency Bitcoin is a distributed peer-to-peer digital cur-
rency which allows “online payments to be sent directly from one party to an-
other without going through a financial institution” [38]. The (public) Bitcoin
block chain is a journal of all the transactions ever executed. Each block in
this journal contains the SHA-256 [49] hash of the previous block, hereby chain-
ing the blocks together starting from the so-called genesis block. In Bitcoin, an
ECDSA private key typically serves as a user’s account. Transferring ownership



of bitcoins from user A to user B is realized by attaching a digital signature
(using user A’s private key) of the hash of the previous transaction and infor-
mation about the public key of user B at the end of a new transaction. The
signature can be verified with the help of user A’s public key from the previous
transaction. Other issues, such as avoiding double-spending, are discussed in the
original document [38].

The cryptographic signatures used in Bitcoin are ECDSA signatures and
use the curve secp256k1 (see Section 2). Given an ECDSA (possibly com-
pressed) public-key K, a Bitcoin address is generated using the cryptographic
hash functions SHA-256 and RIPEMD-160 [21]. The public key is hashed twice:
HASH160 = RIPEMD-160(SHA-256(K)). The Bitcoin address is computed di-
rectly from this HASH160 value (where ‖ denotes concatenation) as

base58(0x00 ‖ HASH160 ‖ bSHA-256(SHA-256(0x00 ‖ HASH160))/2224c),

where base58 is a binary-to-text encoding scheme.
By participating in the Bitcoin peer-to-peer network, we downloaded the Bit-

coin block chain up to block number 252 450 (all transactions up to mid-August
2013) in the Berkeley DB [39] format. We extracted 22 159 078 transactions in
plain text: this resulted in a single 26 GB file. In our dataset we have 46 254 121
valid public keys containing an elliptic curve point on the curve, and 15 291 112
of these points are unique. There are 6 608 556 unique points represented in com-
pressed (x-coordinate only) format and 8 682 692 unique points in uncompressed
format (we found 136 points which occur in both compressed and uncompressed
public keys). Since it is hard to tell if address reuse is due to the same user
reusing their key in Bitcoin (see e.g. [43, 36] regarding privacy and anonymity in
Bitcoin), there is no simple way to check if these duplicate public keys belong
to the same or different owners.

Currently (January 2014) there are over 12.2 million bitcoins in circulation
with an estimated value of over 10 billion USD. Bitcoin has been analyzed before
in different settings (e.g. [1, 45]), but we perform, as far as we are aware, the first
asymmetric cryptographic “sanity” check; see Section 4.1.

Secure Shell (SSH). Elliptic curve cryptography can be used in three posi-
tions in the SSH protocol. In SSH-2, session keys are negotiated using a Diffie-
Hellman key exchange. RFC 5656 [47] specifies the ephemeral Elliptic Curve
Diffie-Hellman key exchange method used in SSH, following SEC1 [16]. Each
server has a host key that allows the server to authenticate itself to the client.
The server sends its host key to the client during the key exchange, and the
user verifies that the key fingerprint matches their saved value. The server then
authenticates itself by signing a transcript of the key exchange. This host key
may be an ECDSA public key [47]. Finally, clients can use ECDSA public keys
for client authentication.

We surveyed the state of elliptic curve deployment on the server side for SSH
by scanning the complete public IPv4 space in October 2013 for SSH host keys,
server Diffie-Hellman values, and signature values. We also collected the list of
key exchange and authentication cipher suites offered by each server. We used



ZMap [22], a fast Internet-wide port scanner, to scan for hosts with port 22
open, and attempted an SSH protocol handshake with the addresses accepting
connections on port 22.

In order to focus on elliptic curve values, our client offered only elliptic curve
cipher suites. This resulted in us discovering several implementations that pro-
vided unexpected responses to our non-standards-compliant SSH handshake:
servers that provided RSA or prime-order DSA public keys, or servers that pro-
vided empty keys.

Of the 12 114 534 hosts where we successfully collected a set of cipher suites,
1 249 273 (10.3%) supported an ECDSA cipher suite for the host key. Of these,
1 247 741 (99.9%) supported ecdsa-sha2-nistp256, 74 supported ecdsa-sha2-nistp384,
and 1458 (0.1%) supported ecdsa-sha2-nistp521. 1 674 700 hosts (13.8%) sup-
ported some form of ECDH key exchange. Of these, 1 672 458 (99.8%) supported
the suites ecdh-sha2-nistp256, ecdh-sha2- nistp384, ecdh-sha2-nistp521
in order of increasing security, and 25 supported them in the opposite order. We
successfully collected 1 245 051 P-256, 73 P-384, and 1436 P-521 public keys. In
addition, 458 689 servers responded with a DSA public key, 29 648 responded
with an RSA public key, and 7 935 responded with an empty host key, despite
our client only claiming ECDSA support. The hosts responsible for these re-
sponses included several kinds of routers and embedded devices, including those
from Huawei and Mikrotik.

Transport Layer Security (TLS). In TLS, elliptic curves can arise in several
locations in the protocol. RFC 4492 [9] specifies elliptic curve cipher suites for
TLS. All of the cipher suites specified in this RFC use the elliptic curve Diffie-
Hellman (ECDH) key exchange. The ECDH keys may either be long-term (in
which case they are reused for different key exchanges) or ephemeral (in which
case they are regenerated for each key exchange). TLS certificates also contain a
public key that the server uses to authenticate itself; with ECDH key exchanges,
this public key may be either ECDSA or RSA.

ECC support was added to TLS [9] through an additional set of cipher suites
and three extensions in the client and server hello messages. The cipher suites
indicate support for a particular selection of key exchange, identity verifica-
tion, encryption, and message authenticity algorithms. For example, the cipher
suite TLS ECDHE RSA WITH AES 128 CBC SHA uses ephemeral ECDH for a key ex-
change, signed with an RSA key for identity verification, and uses AES-128 [18]
in CBC mode for encryption and the SHA-1 hash function in an HMAC for mes-
sage authentication. In addition, if a cipher suite that involves ECC is desired,
the client must include a set of supported elliptic curves in a TLS extension in
its client hello message.

Unlike in SSH, a TLS server does not send its full preference of cipher suites
or curves that it supports. Rather, the client sends its list of supported cipher
suites and elliptic curves, and the server either replies with a single cipher suite
from that list or closes the connection if it does not support any cipher suites in
common with the client. If the suite requires ECC, the server similarly includes
only a single curve type along with the key or signature. This makes learning



which curves a server supports more difficult; a client must use multiple TLS
connections to offer a varying set of curves in order to learn a server’s support
and ordered preference.

In October 2013, we used ZMap [22] to scan the IPv4 address space on port
443, and used an event-driven program to send a specially crafted client hello

message to each host with the port open. We offered 38 ECDH and ECDHE
cipher suites and 28 different elliptic curves. Of the 30.2 million hosts with port
443 open, 2.2 million (7.2%) supported some form of ECDH and provided an
ECC public key, along with information about which curve it uses. We then
connected to these hosts again, excluding their known-supported curve type
from our client hello’s curve list. We repeated this process until we had an
empty curve list, the server disconnected with an error, or the server presented
a curve that was not offered to them (a violation of the protocol). This process
allowed us to learn each server’s ordered preference of support across our 28
curves. We found the most commonly supported curve type across the 2.2 million
ECC-supporting hosts was secp256r1, supported by 98% of hosts. The curves
secp384r1 and secp521r1 were supported by 80% and 17% respectively, with
the remaining curves supported by fewer than 3% of hosts each.

We also found that the majority of hosts appear to prefer smaller curve sizes
over larger ones. Of the 1.7 million hosts that supported more than one curve,
98.9% support a strictly increasing curve-size preference. For example, 354 767
hosts had a preference of “secp256r1, secp384r1, secp521r1”, while only 190
hosts had the opposite order of “secp521r1, secp384r1, secp256r1”. This
suggests that most hosts prefer lower computation and bandwidth costs over
increased security.

Austrian e-ID. Physical smart cards are increasingly being deployed for user
authentication. These smart cards contain cryptographic hardware modules that
perform the cryptographic computations; most often, these cards contain private
keys for encryption and signatures. Elliptic curve cryptography is an attractive
option for these types of deployments because of the decreased key size and
computational complexity relative to RSA or large prime-order groups.

Austria’s national e-ID cards contain either an RSA or ECDSA public key,
and can be used to provide legally binding digital signatures. We collected
828 911 Citizen Card certificates from the LDAP database ldap.a-trust.at

in January 2013. Each certificate contained a public key and an RSA signature
from the certificate authority. 477 985 (58%) certificates contained an elliptic
curve public key, and 477 785 parsed correctly using OpenSSL. Of these, 253 047
used curve P-192, and 224 738 used curve P-256.

4 Cryptographic Sanity Check

There is long history of practical problems in cryptography related to insuffi-
cient randomness. The most notorious example in recent history is the Debian
OpenSSL vulnerability [51]: a 2006 change in the code prevented any entropy
from being incorporated into the OpenSSL entropy pool, so that the state of



the pool was dependent only on the process ID and architecture of the host
machine. A fixed number of cryptographic keys, nonces, or other random values
of a given size could ever be generated by these implementations. The problem
was discovered in 2008.

In 2012 two different teams of researchers showed independently that a signif-
icant number of RSA keys (not considering the keys affected due to the Debian
OpenSSL bug) are insecure due to insufficient randomness [33, 28]. The latter pa-
per also examined prime-order DSA SSH host keys and signatures, and found a
significant number of SSH host keys could be compromised due to poor random-
ness during signature generation. Most of the vulnerable keys were attributed to
poor entropy available at first boot on resource-limited embedded and headless
devices such as routers. In 2013, another paper showed that a number of RSA
keys obtained from Taiwan’s national Citizen Digital Certificate database could
be factored [4] due to a malfunctioning hardware random number generator on
cryptographic smart cards. In order to verify if similar vulnerabilities occur in
the setting of elliptic curve cryptography, we gathered as much elliptic curve
data as we could find and performed a number of cryptographic sanity checks:

Key Generation. An elliptic curve public key is a point Q = dG which is a
multiple of the generator G for 1 ≤ d < n. Poor randomness might manifest itself
as repeated values of d, and thus repeated public keys observed in the wild. In
contrast to RSA, where poor random number generators and bugs have resulted
in distinct RSA moduli that can be factored using the greatest common divisor
algorithm when they share exactly one prime factor in common, an elliptic curve
public key appears to have no analogous property. We are unaware of any similar
mathematical properties of the public keys alone that might result in complete
compromise of the private keys, and they are unlikely to exist because discrete
logarithms have strong hardcore properties [10, 31]. We checked for these prob-
lems by looking for collisions of elliptic curve points provided in public keys. In
practice, however, it is not uncommon to encounter the same public key multiple
times: individuals can use the same key for multiple transactions in Bitcoin or
the same key pair can be used to protect different servers owned by the same
entity.

Repeated Per-Message Signature Secrets. ECDSA signatures are random-
ized: each signature consists of two values (r, s): the value r is derived from an
ephemeral public key kG generated using a random per-message secret k, and
a signature value s that depends on k. It is essential for the security of ECDSA
that signers use unpredictable and distinct values for k for every signature, since
predictable or repeated values allow an adversary to efficiently compute the long-
term private key from one or two signature values, as explained in Section 2. In
a widely known security failure, the Sony PlayStation 3 video game console used
a constant value for signatures generated using their ECDSA code signing key,
allowing hackers to compute the secret code signing key [14].

We checked for these problems by parsing each signature and checking for
colliding values of the ephemeral public key.



4.1 Bitcoin

Unexpected, Illegal, and Known Weak Values. We checked for public keys
corresponding to the point at infinity, points that do not lie on the curve, and
“public keys” that possibly do not have corresponding private keys. In addition,
we generated a large list of elliptic curve points for which we know the private
key. This is realized by multiplying the generator of the curve, as specified in
the standard, by various integers s from different sets in the hope that poor
entropy might have generated these scalars. We computed the elliptic curve
scalar multiplication sG for these different values of the scalar s and stored the x-
coordinate of this resulting point in a database (by restricting to the x-coordinate
we represent both points ±sG). We checked these self-generated points in this
database against all the elliptic curve points extracted from the ECDSA public-
keys and signatures to verify if we find collisions: if so, we can compute the
private key. We considered three different sets in the setting of the secp256k1

curve (as used in Bitcoin) and the NIST P-256 curve. The first set contains
small integers i: where 100 ≤ i ≤ 106. The second set contains 256-bit scalars
of low Hamming weight: we used integers of Hamming-weight one (

(
256
1

)
= 256

scalars), two (
(
256
2

)
= 32 640 scalars), and three (

(
256
3

)
= 2 763 520 scalars). The

third set contains the Debian OpenSSL vulnerable keys. We generated the set of
scalars produced by the broken Debian OpenSSL implementation run on a 64-
bit little-endian byte order architecture implementation. For the Bitcoin curve
we extended the first set by also considering the scalars iλ such that the scalar
multiplication corresponds to iλP = ψ(iP ) (see Section 2).

We found that two values from the set of small integers have been used in
practice: the Bitcoin addresses corresponding to the secret key 1 and 2. For the
secret key 1 both the addresses derived from the compressed and decompressed
public point have been used while for the secret scalar 2 only the address to the
decompressed point has been used. One value from the Hamming-weight one set
appeared in practice, the address corresponding to the decompressed public key
268G. All these three addresses currently have a zero balance.

Repeated Per-Message Secrets. We extracted 47 093 121 elliptic curve points
from the signatures and verified that they are correct: i.e. the points are on
the curve secp256k1 (see Section 2). We also looked for duplicated nonces
in the signature and found that 158 unique public keys had used the same
signature nonces r value in more than one signature, making it possible to
compute these users’ private keys. We find that the total remaining balance
across all 158 accounts is small: only 0.00031217 BTC, which is smaller than
the transaction fee needed to claim them. However, we find that one address,
1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj, appears to have stolen bitcoins from
10 of these addresses. This account made 11 transactions between March and Oc-
tober 2013. Each transaction contained inputs from addresses that duplicated
signature nonces, and appear in our list. These transactions have netted this
account over 59 bitcoins (approximately $48,000 USD).

To understand the root causes of the repeated signature nonces, we made a
graph of transactions, starting with the vulnerable addresses and adding edges



Fig. 1: Visualization of transactions between Bitcoin addresses that duplicated
signature nonces (red), and addresses one (yellow) and two (blue) hops away in
the transaction graph. The unique pattern across graphs suggests that multiple
distinct implementations or usage patterns may be to blame for the generation
of repeated nonces that expose users’ private keys.

to other addresses indicating if they had sent or received bitcoins to one an-
other. Next, we created edges from those second layer addresses, terminating
the graph 2 degrees from the original vulnerable keys. This resulted in five dis-
tinct connected components, with the largest connected component containing
1649 addresses. Figure 1 shows the second and third largest connected graphs.
The unique patterns of these two graphs suggest that there are several sets of
unique users or implementations at play creating these types of failure.

We were able to identify three keys belonging to Bitcoincard [8], an embed-
ded device that acts as a standalone Bitcoin client. We also identified several
Blockchain.info accounts that duplicated nonces due to a bug in a Javascript-
client’s random number generator not being seeded correctly [27]. These funds
were then subsequently transferred to the same address mentioned above. In
some cases, nonce repetition may be intentional: there exists a timestamping
scheme for Bitcoin that purposely leaks the private key of a transaction by de-
liberately using the same random nonce [17]. If this scheme is implemented and
tested, then this might explain very small transactions signed with duplicated
nonces.

Unspendable Bitcoins. It is possible to transfer bitcoins to an account for
which (most likely) no corresponding cryptographic key-pair exists. These bit-
coins remain stuck at these accounts forever and are essentially removed from cir-
culation. This might result in deflation: increasing the value of the other (spend-
able) bitcoins. We investigate a lower bound on the number of “unspendable”
bitcoins. Since the HASH160 values and the Bitcoin addresses (which are directly
derived from this HASH160 value) are an integral part of the Bitcoin block chain
(i.e. the transaction history), people have used “interesting” invalid values for
the ECDSA public-key or used the HASH160 value to embed a message. Such
transactions to addresses without corresponding cryptographic key-pair are pos-



HASH160 Bitcoin address balance in BTC

0000000000000000000000000000000000000000 1111111111111111111114oLvT2 2.94896715
0000000000000000000000000000000000000001 11111111111111111111BZbvjr 0.01000000
0000000000000000000000000000000000000002 11111111111111111111HeBAGj 0.00000001
0000000000000000000000000000000000000003 11111111111111111111QekFQw 0.00000001
0000000000000000000000000000000000000004 11111111111111111111UpYBrS 0.00000001
0000000000000000000000000000000000000005 11111111111111111111g4hiWR 0.00000001
0000000000000000000000000000000000000006 11111111111111111111jGyPM8 0.00000001
0000000000000000000000000000000000000007 11111111111111111111o9FmEC 0.00000001
0000000000000000000000000000000000000008 11111111111111111111ufYVpS 0.00000001
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1GZQKjsC97yasxRj1wtYf5rC61AxpR1zmr 0.00012000
ffffffffffffffffffffffffffffffffffffffff 1QLbz7JHiBTspS962RLKV8GndWFwi5j6Qr 0.01000005
151 miscellaneous ASCII HASH160 values 1.32340175

public valid point on
Bitcoin address balance in BTC

key encoding curve

∅ 5 5 1HT7xU2Ngenf7D4yocz2SAcnNLW7rK8d4E 68.80080003

00 ! ! 1FYMZEHnszCHKTBdFZ2DLrUuk3dGwYKQxh 2.08000002
0 128. . . 0 5 5 13VmALKHkCdSN1JULkP6RqW3LcbpWvgryV 0.00010000

040 126. . . 0 ! 5 16QaFeudRUt8NYy2yzjm3BMvG4xBbAsBFM 0.01000000

Table 1: A summary of the interesting HASH160 and public key values used
in the Bitcoin block chain with the corresponding Bitcoin address and balance.
Most likely, these addresses have no valid private key, leaving the account bal-
ances unspendable. The dots in the notation 0 128. . . 0 represent 128 zeros (the key
has 130 zeros in all). We find these addresses hold a total of 75 unspendable
BTC.

sible since the actual ECDSA keys are only required when the money in these
accounts is spent. Given a Bitcoin address, or HASH160 value, it is infeasible
to compute the corresponding cryptographic key-pair (since this requires com-
puting preimages of the hash function used). In this section we assume that
the interesting (or strange) values we encounter do not correspond to a valid
cryptographic key-pair. Of course, it is possible (but unlikely) that these were
generated in a valid manner.

Interesting HASH160 Values. Since no cryptographic key is required to
generate a Bitcoin address, just a HASH160 value, our first idea was to check
for addresses which have a HASH160 value which is a small integer i, where
0 ≤ i < 100. We found that the first nine values all exist and have a non-zero
balance. This motivated us to search for repeated patterns when the HASH160
is displayed in hexadecimal. All of these 16 possibilities exist and three of them
have a non-zero balance; see Table 1.

People have sometimes used HASH160 values to embed an ASCII encoded
string into one or multiple HASH160 values within a transaction. ASCII en-
codes 128 specific characters (97 printable and 33 non-printable). The probability
that an ECDSA public key results in a hexadecimal written HASH160 contain-



ing ASCII characters only is 2−20 (where we assume the cryptographic hash
functions used outputs uniform random data). Our dataset contains 53 019 716
HASH160 values (16 526 211 unique). Hence, we expect to find approximately
16 valid Bitcoin addresses with a HASH160 value containing ASCII characters
only. In our dataset we found 248 ASCII-only HASH160 values (180 unique).
Out of these, 20 unique addresses have spent their money; i.e. they correspond
to a valid Bitcoin address. This is in line with our estimate of 16. Out of the
other 160 unique addresses 137 have a non-zero balance. When inspecting these
values it is clear that people have inserted various messages in the Bitcoin trans-
action history (the messages range from a happy birthday message to a tribute).
Typically only a small number of bitcoins are used in these transactions. See
Table 1 for the details.

Interesting ECDSA Public Keys. Following the same reasoning as in the
HASH160 setting, one could use “interesting” values for the public key itself.
Before we outline our search for such values, let us recall the format of ECDSA
public keys as specified in [16] where we assume the keys are represented in their
hexadecimal value (this is the setting used in Bitcoin). A point P = (x, y) can
be represented as follows where p = 2256−232−977 is the prime used in Bitcoin.

• If P is the point at infinity, then it is represented by the single byte 00.
• An uncompressed point starts with the byte 04 followed by the 256-bit x- and

256-bit y-coordinate of the point (04 ‖ x ‖ y). Hence 2dlog2(p)/8e+ 1 = 65
bytes are used to represent a point.

• A point is compressed by first computing a parity bit b of the y-coordinate
as b = (y mod 2) + 2 and converting this to a byte value (b ∈ {02, 03}). The
dlog2(p)/8e+ 1 = 33-byte compressed point is written as b ‖ x.

Similar to the HASH160 search, we started by looking for points that encode
a small integer value. We generated all the Bitcoin addresses corresponding to
the public keys with values the first 256 integers i (0 ≤ i < 256) and various
values for the parity bit. We used a single byte containing i, a 33-byte value
b ‖ 0 60. . . 0 ‖ i, b ∈ {00, 02, 03}, and a 65-byte value b ‖ 0 124. . . 0 ‖ i, for
b ∈ {00, 04}. We found three addresses with a non-zero balance: the single byte
00, and the 65-byte b ‖ 0 124. . . 0 ‖ i for i = 00 and b ∈ {00, 04}. This first point is
the point at infinity, which is a correctly encoded and valid point on the curve.
Note, however, that this value is explicitly prohibited as a public key [16] since it
can only occur for the private key d = 0 which is not allowed. The 65-byte values
both seem to try and encode the point at infinity: in the case where b = 00 the
encoding is invalid while in the case b = 04 the encoding is valid but the point
(x, y) = (0, 0) is not on the curve.

When looking for other values, we also tried the empty public key (∅). This
address contains a significant amount of bitcoins (over 68 BTC). We suspect
money has been transferred to this account due to software bugs. These results
are included in Table 1. In total we found that at least 75 BTC (over 61,000 USD)
has been transferred to accounts which have (most likely) no valid corresponding
ECDSA private key. Note that this is strictly a lower bound on the number of
unspendable bitcoins, as we do not claim that this list is complete.



4.2 Secure Shell (SSH)

Duplicate public keys. An August 2013 SSH scan collected 1 353 151 valid el-
liptic curve public keys, of which 854 949 (63%) are unique. There were 1 246 560
valid elliptic curve public keys in the October 2013 scan data, of which 848 218
(68%) are unique. We clustered the data by public key. Many of the most com-
monly repeated keys are from cloud hosting providers. For these types of hosts,
repeated host keys could be due either to shared SSH infrastructure that is ac-
cessible via multiple IP addresses, in which case the repeated keys would not
be a vulnerability, or they could be due to mistakes during virtual machine de-
ployment that initialize multiple VMs for different customers from a snapshot
that already contains an SSH host key pair. It appears that both cases are repre-
sented in our dataset. Digital Ocean released a security advisory in July 2013 [20]
recommending that customers should regenerate SSH host keys due to repeated
keys deployed on VM snapshots; we found 5 614 hosts that had served the public
key whose fingerprint appears in Digital Ocean’s setup guide.

We were also able to identify several types of network devices that appeared
to be responsible for repeated host keys, either due to default keys present in
the hardware or poor entropy on boot. These include the Juniper Web Device
Manager, the Juni FemtoAP, and ZTE Wireless Controller. We were able to at-
tribute the repeated keys to these implementations because these devices served
login pages over HTTP or HTTPS which identified the manufacturer and brand.
We were unable to easily give an explanation for most of the repeated keys, as
(unlike in the results reported in [28]) many of the clusters of repeated keys ap-
peared to have almost nothing in common: different SSH versions and operating
systems, different ports open, different results using nmap host identification,
different content served over HTTP and HTTPS, and IP blocks belonging to
many different hosting providers or home/small commercial Internet providers.
We can speculate that some of these may be VM images, but in many cases we
have no explanation whatsoever. We can rule out Debian weak keys as an expla-
nation for these hosts, because the Debian bug was reported and fixed in 2008,
while OpenSSH (which is almost universally given in the client version strings
for the elliptic curve results) introduced support for elliptic curve cryptography
in 2011. We checked for repeated signature nonces and did not find any. We also
checked for overlap with the set of TLS keys we collected and did not find any.

4.3 Transport Layer Security (TLS)

Duplicate public keys. Although we collected a total of over 5.4 million public
keys from ECDH and ECDHE key exchanges, only 5.2 million of these were
unique. As observed in [12], OpenSSL’s default behavior is to use ephemeral-
static ECDH (the key pair is ephemeral for each application instance and not
necessarily per handshake instance) which might explain some of the observed
duplicate keys. We found 120 900 distinct keys that were presented by more
than one IP address, with the most common duplicated key presented by over
2 000 hosts. Many of these duplicated keys appear to be served from a single



or small set of subnets, and appear to serve similarly configured web pages for
various URLs, suggesting that these are part of a single shared hosting. We
also discovered one instance of a default key being used on a device sold to
different consumers. We found about 1 831 Netasq devices that present the same
secp256r1 public key for their ECDHE key exchange. Each device must also
have the same private key, allowing an attacker who buys or compromises one
device to passively decrypt traffic to other devices.

Duplicate server randomness. We also were surprised to find that several
hosts duplicated the 32-byte random nonce used in the server hello message.
We found 20 distinct nonces that were used more than once, 19 of which were
re-used by more than one IP address. The most repeated server random was
repeated 1 541 times and was simply an ASCII string of 32 “f” characters. These
devices all appear to be a UPS power monitor, which appears to outsource its
SSL implementation to a company called Ingrasys according to the certificate
presented. However, we were unable to successfully establish any TLS sessions
with these devices, either using a browser or OpenSSL.

For servers that happen to always duplicate a server random, it is clear
there is an implementation problem to be fixed. However, for servers that only
occasionally produce the same server random, it is indeed more troubling. More
investigation is required to find the root cause of these collisions and determine
if the problem extends to cryptographic keys.

4.4 Austrian e-ID

We did not find any abnormalities with the ECDSA keys in this dataset. Of the
477 985 elliptic curve public keys that we extracted from the Austrian Citizen
Card certificate database, 24 126 keys appear multiple times. However, in all
but 5961 of these cases, the certificate subjects were equal. Of the nonequal
subjects, all but 70 had identical “CN” fields. All of these remaining certificates
with identical public keys issued to nonequal names appeared to be due to either
minor character encoding or punctuation differences or name changes.

5 Conclusions

We explore the deployment of elliptic curve cryptography (ECC) in practice
by investigating its usage in Bitcoin, SSH, TLS, and the Austrian citizen card.
More than a decade after its first standardization, we find that this instantiation
of public-key cryptography is gaining in popularity. Although ECC is still far
from the dominant choice for cryptography, the landscape shows considerable
deployment in 2013.

Our cryptographic sanity checks on these datasets confirmed that, as ex-
pected, ECC is not immune to insufficient entropy and software bugs. We found
many instances of repeated public SSH and TLS keys, some of which seem to cor-
respond to different owners. For the Bitcoin data set, there are many signatures



sharing ephemeral nonces, allowing attackers to compute the corresponding pri-
vate keys and steal coins. We hope that our work will encourage researchers and
developers alike to remain diligent in discovering and tracking down these types
of implementation problems, ultimately improving the security of the crypto-
graphic protocols and libraries we depend on.
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