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1 Introduction

The security of elliptic curve cryptography (ECC) [36,
40] is based on the difficulty of the elliptic curve dis-
crete logarithm problem (ECDLP). The two most com-
mon versions use prime fields and binary extension fields,
respectively. Currently, the best methods to solve large
scale ECDLPs are variants of Pollard’s rho method [44].

We describe an implementation of Pollard’s rho
method to solve prime field ECDLPs on the Cell proces-
sor, the processor that is the heart of the Sony PlaySta-
tion 3 (PS3) game console. The underlying modular
arithmetic is targeted at single instruction multiple data
(SIMD) platforms and is mostly branch-free. It can take
advantage of prime moduli of a special form using effi-
cient “sloppy reduction.” We used the implementation
to set a new prime field ECDLP record for a 112-bit
prime of the proper special form. The calculation was
performed on EPFL’s cluster of about 215 PS3s.

The previous prime field ECDLP record, reported in
2002, involved a 109-bit prime [17]. The following may
explain the apparent lack of interest to set new ECDLP
records. The expected cost to solve a particular ECDLP
on any combination of platforms can be extrapolated
from a relatively short calculation, given implementa-
tions of Pollard’s rho method. Cryptographically rele-
vant ECDLPs turn out to be firmly out of reach, despite

occasional improvements of Pollard’s rho method. Given
easy estimation of overall cost and infeasibility of cryp-
tographically relevant problems, not much is gained by
solving an ECDLP, in particular of a cryptographically
irrelevant size. This is unlike integer factorization where
the only convincing way to show the feasibility and es-
timate the cost of a record-breaking calculation is com-
pleting it (cf. the orders of magnitude difference between
the actual cost reported in [33] and the estimate in [45]).

Besides investigating algorithmic improvements, it is
relevant to study if and how new processor architectures
affect the cost of solving ECDLPs. This concerns any de-
vice that allows implementation of Pollard’s rho method
and occasional communication of its results. Per device,
it suffices to provide an implementation, to measure its
long term yield, and to extrapolate. An example of such
a study focuses on binary extension field ECDLPs [2]. It
comprises various types of desktop processors, the Cell
processor, graphics cards, field programmable gate ar-
rays, and application specific integrated circuits. It is
even possible to harvest cycles on cellphones [52], but it
remains to be seen if that affects ECDLP feasibility.

We present a parallelized implementation of Pollard’s
rho method on a cluster of PS3 game consoles, devices
that are relatively inexpensive given their processing
power. The parallelization exists on five distinct lev-
els: each PS3 runs independently of all others, on each
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PS3’s Cell processor six cores work independently of each
other, and each of these cores simultaneously runs 50
times two interleaved 4-fold SIMD processes. The top
two levels are merely ‘embarrassingly parallel’, the first
at the physical PS3 level, the other provided by the
Cell processor’s multi-core design. The 50 simultaneous
copies serve to amortize a high cost modular inversion,
interleaving is done to improve throughput, and 4-way
SIMD exploits the core’s arithmetic instruction set.

The first projects on EPFL’s PS3 cluster concerned
cryptographic hash collisions [49]. To ascertain the clus-
ter’s reliability and stability for projects requiring long
integer arithmetic, a rough version of Pollard’s rho
method for prime field ECDLP was run for a few weeks.
Because it turned out to work satisfactorily and because
no other project was ready to be deployed, it was left
running. As this soon led to the completion of a non-
negligible fraction of the total expected work for the
ECDLP at hand, it was decided to further optimize the
code and, some misgivings notwithstanding, to attempt
to solve it. Although our choice of improvements that
could be carried through was limited by the early design
decisions (as we did not want to start afresh), the over-
all expected runtime was reduced by more than 60% in
the course of the calculation. It may be further reduced
by adopting a variety of changes in the initial design [6].

Apart from the prime field ECDLP record, we con-
sider if the method from [19] can be applied to ECDLP
as well, and we present an efficient 4-way SIMD bi-
nary modular inversion and a fast branch-free sloppy re-
duction and normalization modulo primes of the form
232ℓ

±m
c , for relatively small ℓ,m, c ∈ Z>0. These methods

are designed for cryptanalytic applications in a SIMD
environment. The sloppy reduction may not be suitable
for cryptographic applications, because it can produce
an incorrect result. When solving ECDLPs, however, it
suffices if calculations are most of the time correct: as
expected based on our heuristics, sloppy reduction never
produced an incorrect result. Many of these methods can
be used on SIMD platforms other than the Cell proces-
sor, such as graphics cards. Finally, this paper led to the
study of the negation map reported in [13].

This paper is organized as follows. Section 2 presents
the general ECDLP, with Section 2.1 defining the prime
field ECDLP that is solved in this article. Section 3 de-
scribes the state of the art of Pollard’s rho method and
our design choices, and includes some of our findings
from [13]. The Cell implementation is described in Sec-
tion 4: sloppy reduction in Section 4.4, the new ECDLP
record in Section 4.6, and a discussion of potential im-
plications for larger prime fields in Section 4.7.

Related work. A Cell processor implementation of Pol-
lard’s rho method to solve a particular type of binary
extension field ECDLPs (namely, for Koblitz curves [37])
is presented in [15] and is part of the larger implemen-
tation project [2] cited above. As far as we are aware
ours is the first paper describing a Cell processor imple-
mentation of Pollard’s rho method to solve prime field

ECDLPs, though parts of it were prepublished as [12].
Our modular arithmetic uses methods from [9]. Other
efficient methods for modular arithmetic on the Cell ap-
peared in [21, 20, 11]. Applications of such arithmetic to
run the elliptic curve factorization method [39] on the
Cell have been explored in [7] for small numbers in the
number field sieve [38] cofactorization step, and in [14]
to factor (large) composites of the form 2M − 1.

2 The prime field ECDLP

Let Fp denote a finite field of prime cardinality p >
3. Any a, b ∈ Fp with 4a3 + 27b2 6= 0 define an elliptic
curve Ea,b over Fp. The group of points Ea,b(Fp) of Ea,b

over Fp is defined as the zero point o along with the set of
pairs (x, y) ∈ Fp × Fp that satisfy the short Weierstrass
equation y2 = x3 + ax+ b, with the following additively
written group law. For c ∈ Ea,b(Fp) define c + o = o +
c = c. For non-zero c = (x1, y1), d = (x2, y2) ∈ Ea,b(Fp)
define c + d = o if x1 = x2 and y1 = −y2. Otherwise c +
d = (x, y) with x = λ2 − x1 − x2 and y = λ(x1 − x) −
y1, where λ =

3x2
1+a

2y1
if x1 = x2 (and thus c = d) and λ =

y1−y2

x1−x2
otherwise. Thus, using these affine Weierstrass

coordinates to represent group elements, doubling (i.e.,
c = d) is different from regular addition (i.e., c 6= d).

Let A, I, M, and S denote the average cost of ad-
dition, inversion, multiplication, and squaring, respec-
tively, in Fp. The cost of regular addition in Ea,b(Fp)
is 6A+ I + 2M + S, and doubling can be done in 8A+
I + 2M+ 2S. For relevant sizes of p it is safe to assume
that I is much larger than M, i.e., at least I > 5M when
using software (in hardware the difference can be made
smaller [30]). Our choice of curve parametrization and
arithmetic is further explained and discussed below.

Let p, a, b and g ∈ Ea,b(Fp) of prime order q be given
such that the index [Ea,b(Fp) : 〈g〉] is small. For h ∈ 〈g〉
the ECDLP is to find an integer m such that mg = h.
For curves without special properties, solving ECDLP is
believed to require an effort on the order of

√
q.

To find the least positive m with mg = h, Shanks’
baby step giant step method [35, Exercise 5.25] builds a
hash table containing i⌈√q⌉g for i = 0, 1, . . . , ⌈√q⌉ and
searches it for h + jg for j = 0, 1, 2, . . . , until a match
is found. This works in time and memory on the order
of

√
q which can both be reduced to

√
m. Pollard’s rho

method (Section 3) achieves expected runtime O(
√
q)

and O(log q) memory or, if run in parallel, much less
memory than Shanks’ method: O((log q)2) memory suf-
fices [25, Exercise 16.23] when roughly

√
q log q out of q

group elements are distinguished (Section 3.1).

2.1 The 112-bit prime field ECDLP

This article concentrates on curve “secp112r1” from [18].
Let R = 2128 and p̃ = R− 3, then p = p̃

11·6949 is prime.
The elliptic curve Ea,b over Fp defined by a = p− 3 and

b = 2061118396808653202902996166388514
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has a group Ea,b(Fp) of prime order q = p+ 1 +
4407293269000505 and is generated by

g = ( 188281465057972534892223778713752,
3419875491033170827167861896082688).

This curve and generator were created “verifiably at
random” [18], implying that solving ECDLP in 〈g〉 =
Ea,b(Fp) should not be unexpectedly easy due to a built-
in trapdoor. Because no corresponding challenge ECDLP
was included in [18], we defined one ourselves in a “veri-
fiably not pre-cooked” manner by taking h = (x, y) ∈ 〈g〉
for an unforgeable value of x. With x = ⌊(π − 3)1034⌋,
this leads to the 112-bit prime ECDLP where

h = ( 1415926535897932384626433832795028,
3846759606494706724286139623885544) ∈ Ea,b(Fp),

is given and an m with mg = h must be found.

3 Pollard’s rho method

3.1 Random walks and parallelization

If objects are selected at random and with replacement
from q objects, the conditional probability at step n+ 1
of finding the first duplicate (or collision) is n

q (if n < q).

Via straightforward arguments (e.g. [34, Exercise 3.1.12])
this leads to

√
πq
2 for the expected number of steps (or

iterations) until the first collision. This result is generally
referred to as the birthday paradox. For arbitrary mul-
tipliers u, v, the object ug + vh ∈ 〈g〉. A collision corre-
sponds to random integer multipliers u, v, ū, v̄ such that
ug + vh = ūg + v̄h. Unless v̄ ≡ v mod q, the value m =
u−ū
v̄−v mod q solves the discrete logarithm problem. The
expected number of steps of this idealized version of Pol-
lard’s rho method [44] is

√
πq
2 .

r-adding and r + s-mixed walks. Pollard’s rho
method uses an approximation of a truly random walk
in 〈g〉. An index function l : 〈g〉 7→ [0, r − 1] is chosen, for
some small integer r, such that the l-induced r-partition
〈g〉 = ∪r−1

i=0 Gi, where Gi = {x : x ∈ 〈g〉 , l(x) = i}, results
in Gi’s of approximately the same cardinality. For ran-
dom integer multipliers ui, vi, addition constants fi =
uig + vih ∈ 〈g〉 are pre-computed for 0 ≤ i < r, and the
starting point of the walk is selected as a random but
known multiple of g. Given a point p of the walk cal-
culate p + fl(p) ∈ 〈g〉 as the next point. This is called
an r-adding walk. It is easy to keep track of the inte-
ger multipliers u, v ∈ {0, 1, . . . , q − 1} such that p = ug +
vh. Finding a duplicate can be done by Floyd’s cycle
finding method [34, Exercise 3.1.6] requiring only a con-
stant number of group elements and integer multipliers:
compute (pk, p2k) for k = 1, 2, . . . (where pk denotes the
kth point of the walk) until a collision occurs, i.e., pk =
p2k. A stack-based cycle detection method is described
in [43].

As shown by the following heuristic analysis from [2,
Appendix B], which refines the arguments from [16], the

average number of steps for an r-adding walk is some-
what larger than

√
πq
2 . Let pi = #Gi

q . A point in the walk
is said to be of class i if its predecessor upon its first oc-
currence belongs to Gi. If the nth point belongs to Gj

(with probability pj) and the (n+ 1)st point produces
the first collision, the collision point cannot be of class j
(this happens with probability pj), since then the colli-
sion would already have occurred in the previous step.
Therefore, the conditional probability that the first col-
lision occurs at step n+ 1 is heuristically assumed to be

n

q



1 −
r−1∑

j=0

p2
j



 .

With q′ = q

1−
Pr−1

j=0
p2

j

this probability is n
q′

, so that we

get via the same arguments referred to above
√

πq′

2
=

√
πq

2(1 − ∑r−1
j=0 p

2
j)

(1)

as a heuristic estimate for the average number of steps
until the first collision.

Pollard, in [44], uses r = 3 with addition constants
f0 = h and f2 = g, but replaces the i = 1 case by the dou-
bling 2p. Although the successive points are not indepen-
dent, further undermining the arguments in the above
heuristics, it was shown in [32] that with high probability
a collision occurs in Θ(

√
q) steps, if the partition is given

by a random oracle. Teske, in [50], shows that larger r-
values, such as r = 20, with random addition constants
lead to fewer iterations and better performance on aver-
age, in accordance with the heuristics and even if none of
the choices does an explicit doubling (as Pollard’s i = 1
case). Generalization of the arguments of [32] to Teske’s
variant is not immediate [10].

Inclusion of doublings leads to r + s-mixed walks :
given a function l : 〈g〉 7→ [0, r + s− 1] that induces an
r + s-partition of 〈g〉, the next point equals p + fl(p) if
0 ≤ l(p) < r, but 2p if l(p) ≥ r. The original walk by Pol-
lard is a 2 + 1-mixed walk. The above heuristics apply to
this case too, if we define the doublings as a single class

hit with probability pD =
Pr+s−1

i=r
#Gi

q (which should be

≈ s
r+s). Experiments by Teske show that best perfor-

mance is achieved when 1
4 ≤ s

r ≤ 1
2 but that mixed walks

are not significantly better than r-adding ones unless
r ≤ 3. Our experiments support the heuristics suggesting
that the optimal ratio is close to zero (see also Table 1).

Per step the occurrence probability of the event p =
fi (and thus potentially an immediate solution to the
discrete logarithm problem) is negligible compared to
the probability of a birthday collision. So, if r-adding as
opposed to r + s-mixed walks are used, the possibility
that doublings will occur can safely be ignored, making
it efficient to SIMD-parallelize r-adding walks. This is
further commented on below and exploited in Section 4.

Some types of elliptic curves allow faster variants of
r-adding walks. For instance, for so-called Koblitz curves
over binary extension fields (which are not covered by
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our definition in Section 2), the Frobenius automorphism
of the finite field can be used to define an efficient func-
tion ψ on the group of points of the elliptic curve. For
instance, defining the successor of point p as ψi(p) + p

allows its quick computation [26].

Parallelized random walks. Parallelization of Pol-
lard’s rho method does not consist of running random
walks in parallel until one of them collides: on M proces-
sors the expected speedup would be only a factor of

√
M ,

so it would overall require
√
M more processing power

than a single processor. The proper way to parallelize
Pollard’s rho method [51] achieves an M -fold speedup
on M processors, thus requiring the same overall pro-
cessing power as a single process in 1

M th of the time.
Different processes must be able to efficiently recognize
whether, probably at different points in time, their walks
have hit upon the same group element. To achieve this,
each process generates a single random walk, each from
its own random starting point, but all using the same
index function l and the same fi’s. As soon as a walk
hits upon a distinguished point, this point is reported to
a central location, along with the corresponding integer
multipliers u and v. If the latter would require too much
central storage, information to regenerate the starting
point should be provided so that, if needed, u and v can
be recalculated. The walk may start afresh from a new
random starting point, or it may continue. The idea is
that as soon as two walks collide – without noticing it
– they will keep taking the same steps (because they
use the same l and the same fi’s) and will thus both ul-
timately reach the same distinguished point. This will
be noticed when the colliding distinguished point is re-
ported to the central location. The discrete logarithm
can then be computed from the two, hopefully distinct,
pairs of integer multipliers that correspond to the same
distinguished point.

A point is distinguished if it has an easily recogniz-
able property that occurs with low enough probability
to make it possible to store distinguished points on disk
and to efficiently find collisions, but often enough for
every walk to hit a distinguished point, eventually. We
required the 24 lowest-order bits of a unique represen-
tation of the x-coordinate to be zero, so that it may be
expected that walks hit a distinguished point once ev-
ery 224 steps and that storage requires less than a ter-
abyte of disk space. Analysis of the distinguished point
property is performed in [46] where the results from [51]
are reaffirmed when

√
q ≪ q

2k ≪ q; i.e. the distinguished
point property should be chosen in such a way that at
least one distinguished point is expected in each cycle.

Unique point representation. When using Pollard’s
rho method, group elements must be represented in a
unique way to be able to decide to which partition they
belong. When using the parallelized version, uniqueness
is also useful to recognize if a point is distinguished. The
fastest point representations that we are aware of that
are applicable are the affine ones, such as the one in Sec-
tion 2. It requires an inversion in Fp per group operation,

i.e., per step of the walk. The resulting high inversion
cost is amortized over many walks running in parallel,
as described below.

Simultaneous inversion. In the parallelized version of
Pollard’s rho method, Montgomery’s simultaneous in-
version method from [42] can be used to share the in-
version with any number of synchronous but indepen-
dent walks. Let n be some number of independent walks
(typically all running on the same processor), and let
zi ∈ F∗

p denote the element that needs to be inverted
for the computation of λ in the ith walk (with λ as in
Section 2). With w0 = 1, first combine the zi’s by cal-
culating wi = ziwi−1 ∈ F∗

p for i = 1, 2, . . . , n, then cal-
culate w̄ = w−1

n , and finally unravel the results: for i =
n, n− 1, . . . , 1 in succession calculate z−1

i = w̄wi−1 and
replace w̄ by ziw̄ = w−1

i−1. Avoiding useless multiplica-
tions, the cost nI of n inversions can thus be replaced
by 3(n− 1)M+ I, which usually implies a considerable
saving. For Pollard’s rho method it leads to an amor-
tized cost of about 6A+ 1

nI + 5M + S per step per walk.
This makes affine Weierstrass coordinates the least costly
point representation for this type of application, if n can
be chosen sufficiently large.

The disadvantage is, however, that the group oper-
ations are non-uniform: i.e. the addition and doubling
are different operations. For SIMD implementation of
two or more walks, this means that a regular addition
step in one walk cannot be executed simultaneously with
a doubling step in another walk. For regular r-adding
walks this is not a problem because, as argued above,
doubling steps will most likely not occur. Also, exclud-
ing r + s-mixed walks in a SIMD environment is not a
big issue since such walks are not advantageous anyhow
(in SIMD, threads could be regrouped to separate reg-
ular addition from doubling steps, but this may lead to
considerable overhead). More importantly, it makes it
harder to profit from the negation map, an optimiza-
tion discussed in Section 3.2, in a SIMD environment,
so elliptic curve parametrizations that allow identical
addition and doubling operations remain relevant. Note
that the one from [24] (see [8] and a series of follow-
up papers) cannot be used if #Ea,b(Fp) is prime, as in
our case. Such parametrizations, and others, are prefer-
able to affine Weierstrass coordinates in applications that
heavily use scalar multiplication, such as ECC and the
elliptic curve method for integer factorization [39].

3.2 Using automorphisms.

Following [53], define an equivalence relation ∼ on 〈g〉
by p ∼ −p for p ∈ 〈g〉. Instead of searching 〈g〉 of size q,
search 〈g〉/∼ of size about q

2 , where the equivalence class
containing p and −p is represented by, for instance, the
element with y-coordinate of least absolute value. Thus,
using this negation map one would expect to save a fac-
tor of

√
2 in the number of iterations, at the cost of find-

ing the representative after each step. The latter is fast
since −(x, y) = (x,−y) for (x, y) ∈ 〈g〉. Obviously, if −p
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Table 1 Number of steps required by Pollard’s rho method in random elliptic curve groups of 32-bit prime order q over
fields of random 32-bit prime cardinality p, divided by

p

πq/2 or by
p

πq/4 (without or with the negation map).
Lowest and highest averages are over 10 measurements. Each measurement calculates the average number of steps
taken until a collision occurs, over 100 000 collision searches where for each search a prime p and an elliptic curve
over Fp are randomly selected until the order q of the group of points is prime. Overall average is the average of the
10 averages (thus, the average over one million searches). Expression (1) and (2) columns are the quotients as
expected based on expressions (1) (with pi = 1

r
for 0 ≤ i < r) and (2) (with pi = 1

r+s
for 0 ≤ i < r and pD = s

r+s
),

respectively. Those expressions are for q → ∞ and indeed for larger (smaller) q they give a better (worse) fit.

Without negation map With negation map
Averages Expression Averages Expression

lowest overall highest (1) lowest overall highest (2)
8-adding 1.080 1.083 1.086 1.069 1.034 1.038 1.041 1.033
16-adding 1.034 1.036 1.039 1.033 1.013 1.016 1.019 1.016
32-adding 1.012 1.015 1.020 1.016 1.007 1.008 1.010 1.008
16 + 4-mixed 1.042 1.044 1.047 1.043 1.035 1.038 1.040 1.031
16 + 8-mixed 1.074 1.077 1.081 1.078 1.074 1.076 1.078 1.069

instead of p is the representative, the integer multipliers
u, v with p = ug + vh must be replaced by −u,−v.

Adapting the earlier r-adding walk heuristics, it
follows that for r-adding (or r + s-mixed) walks the
speedup by a factor of

√
2 that is generally reported in

the literature is slightly too pessimistic. Let the defini-
tions of pi, pD, and of class i be as in Section 3.1. Assume
that the nth point belongs to Gj and that the (n+ 1)st
point produces the first collision while hitting the repre-
sentative p, either directly or after negation. If this step
is a doubling then the same heuristics as in Section 3.1
applies. This happens with probability p2

D. Otherwise,
we only exclude the case that as a result of just the ad-
dition the two predecessors hit the same point (p or −p).

This happens with probability
p2

j

2 . Therefore, the condi-
tional probability that the first collision occurs at step
n+ 1 is heuristically assumed to be

2n

q



1 − p2
D −

r−1∑

j=0

p2
j

2



 .

As above we get

√
πq

4(1 − p2
D − 1

2

∑r−1
j=0 p

2
j)

(2)

for the heuristically expected number of steps until the
first collision. For the same parameter values this is more
than a factor of

√
2 smaller than Expression (1).

Practical application of the negation map is compli-
cated by fruitless cycles, as pointed out in [26, 53]. This
is further discussed in Section 3.3. The group 〈g〉 may
admit other trivially computable maps. For instance,
for Koblitz curves the Frobenius automorphism of a
degree-t binary extension field leads to a further

√
t-fold

speedup [53, 26, 23]. This does not apply to the case
considered in this article.

Small scale experimental verification. For 32-bit
primes q we checked the accuracy of the predictions
based on expressions (1) and (2) and list the results in
Table 1. With all averages larger than 1, both r-adding

and r + s-mixed walks on average perform worse than
truly random walks. For most walks with the negation
map the averages are lower than their negation-less coun-
terparts, indicating that the reduction factor in the ex-
pected number of steps is indeed larger than

√
2. This

does not imply a speedup by the same factor, because to
obtain the figures costly fruitless cycle detection meth-
ods had to be used. It can be seen that r + s-mixed walks
are disadvantageous if s > r

4 . See [13, Table 1] for a sim-
ilar table for 31-bit primes q.

3.3 Fruitless cycles

If the negation map is used, the successor of point p

equals −p − fi with probability 1
2 , for some i. Because

l(−p − fi) = i with probability approximately 1
r , it fol-

lows that p equals its second successor with probability
approximately 1

2r . Thus, when combining r-adding walks
with the negation map all walks can be expected to get
trapped in a fruitless 2-cycle. Below we summarize how
such and other cycles may be dealt with.

Reducing 2-cycles. To reduce occurrence of 2-cycles
as above, [53] proposes an iteration function that looks
ahead and tries to take the first i of ℓ(p), ℓ(p) + 1, . . .,
ℓ(p) + r − 1 with i mod r 6= ℓ(∼(p + fi)) (with indices i
in fi taken modulo r): with f : 〈g〉 → 〈g〉 defined as

f(p) =







E(p) if j = l(∼(p + fj)) for 0 ≤ j < r

∼(p + fi)

{
with i ≥ l(p) minimal such that
l(∼(p + fi)) 6= i mod r,

define p’s successor as f(p). The function E : 〈g〉 → 〈g〉
may restart the walk at a new random point, which is
expected to happen once every rr steps, thus at negli-
gible cost. Overall, the expected cost is increased by a
factor of

∑r
i=0

1
ri , which lies between 1 + 1

r and 1 + 1
r−1 .

Reducing 2- and 4-cycles. Although f reduces 2-
cycles, it introduces new but less frequent 2-cycles, and
does not address 4-cycles, which themselves start from
a random point with probability at least r−1

4r3 when f is
used [13]. Some of these new 2-cycles and most 4-cycles
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are avoided by the iteration function g, which yet again
introduces new (and again less frequent) short cycles:

g(p) =







E(p)







if j ∈ {l(q), l(∼(q + fl(q)))}
or l(q) = l(∼(q + fl(q))) where
q =∼(p + fj), for 0 ≤ j < r,

q =∼(p + fi)







with i ≥ l(p) minimal such that
i mod r 6= l(q) 6= l(∼(q + fl(q)))
and i mod r 6= l(∼(q + fl(q))).

When using g the overall slowdown factor compared to
the standard iteration function is at least r+4

r , with E
called once every ( r

2 )r steps on average.

Cycle detection, escape, and recurrence. Despite
these countermeasures short cycles still occur, and longer
cycles occur as well, so surviving cycles need to be dealt
with. A common method, from [26], is to occasionally
record a fixed length sequence of points, to compare the
next point to all recorded ones, and to escape from a
detected cycle by adding to a well-defined escape point p

on the cycle either fl(p)+c for a small c ∈ Z>1, or a fixed
other addition constant f′, or f′′l(p) from a set of r other
addition constants.

However, after detecting and escaping from a cycle, a
walk may recur to the same cycle, as was first described
in [13]. Table 2 (slightly extending [13, Table 2]) lists
lower bounds for the probability that such recurring cy-
cles occur, along with various other relevant probabilities
and data.

Using the negation map, or not. When the param-
eters were set for our initial rough Cell processor imple-
mentation of Pollard’s rho method, recurring cycles and
their occurrence probabilities as listed in Table 2 were
still unknown. All we had observed was that tests com-
bining the negation map with a variety of cycle reduc-
tion, detection, and escape attempts, and using r-values
that were acceptable to us, resulted in unacceptably low
long term distinguished point yields – as we later found
out due to abundant recurring fruitless cycles. Here it
should be pointed out that the little memory available
was used to process simultaneously as many walks as
possible, in order to better amortize the high cost of
the original modular inversion [29]. This implied that we
only looked at relative small r-values and settled for r =
16, a reasonable choice given the findings in [50]. Thus,
based on our early findings and still unaware of various
relevant issues, we chose not to use the negation map
to run our PS3 cluster experiments with Pollard’s rho
method for the 112-bit prime field ECDLP.

By the time the inversion cost was reduced (by an or-
der of magnitude, using the improved modular inversion
presented in Section 4.5) and we decided to continue and
to try to solve the ECDLP, it was not expected to be
profitable to change the original r-value. Another argu-
ment was that methods to deal with cycles require more
complicated code than the branch-free step function that
is perfectly suited to the Cell processor’s SIMD environ-
ment, and that applies if the negation map is not used.

Table 2, which we derived later while trying to bet-
ter understand fruitless cycles, shows that large r-values
greatly reduce the probability of mishaps. According
to [6], using the negation map with a large r-value leads
to the expected factor of

√
2 speedup on the cache-less

cores of the Cell processor (Section 4.1), while not using
cycle reduction but just occasional cycle detection and
escape, and a clever choice of addition constants.

Also on processors with caches the negation map can
profitably be used. Although large r-values are ruled out
due to cache misses that lead to severe slowdowns [13,
Fig. 1], and any r that is small enough to be cache-
friendly unavoidably causes cycles (Table 2), they can
effectively be dealt with using an occasional doubling.
This is based on a heuristic argument from [13] that a
cycle containing at least one doubling is most likely not
fruitless. Thus, to avoid the problem of recurring cy-
cles, it suffices to define the successor of the cycle escape
point p as ∼(2p). Furthermore, if the probabilities to en-
ter 2- or 4-cycles in the last two columns of Table 2 are
too high given the infrequency of cycle detection, f(p)
and g(p) can be replaced by the doubling based variants

f̄(p) =

{
∼(p + fl(p)) if l(p) 6= l(∼(p + fl(p))),
∼(2p) otherwise

and

ḡ(p) =







q =∼(p + fl(p))

{
if l(q) 6= l(p) 6= l(∼(q + fl(q)))
and l(∼(q + fl(q))) 6= l(q),

∼(2p) otherwise,

respectively [13], thereby (heuristically) avoiding short
fruitless cycles.

It is concluded in [13] that the negation map indeed
leads to a speedup on regular servers and desktop PCs,
assuming the proper modifications to the definition of
the walk. These modifications, may not be compatible
with the restrictions imposed by platforms where multi-
ple walks are executed in SIMD fashion. If doubling and
regular addition are different operations, the required oc-
casional doublings cause SIMD threads to wait for each
other, or they require costly thread-rearrangement (as
mentioned earlier). When using the Cell processor and
a small r-value, we have not been able to find affine
variants or curve parametrizations allowing the same op-
eration for addition and doubling (such as [24]) that
are competitive – taking all issues into account such as
negation map speedup and cycle overheads – with affine
Weierstrass coordinates without the negation map.

3.4 Tag-tracing

Introduced in [19] to speed up r-adding walks, the idea
of tag-tracing is that, given the low probability to hit a
distinguished point, for most iterations a partial compu-
tation suffices. Given p with l(p) = i there is no need to
fully calculate the next point q = p + fi, unless it is a dis-
tinguished point, as long as there is enough information
to compute k = l(q) in order to calculate q’s successor
q + fk. If a table containing the points fik = fi + fk has
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Table 2 Summary of effect of cycle reduction, detection, and escape methods. With the exception of the two bold entries,
all figures are lower bounds.

Successor of p: p + fl(p) f(p) g(p)

Corresponding cycle reduction method: none 2-cycle 4-cycle

Probability to enter







2-cycle

4-cycle

2ω-cycle for ω ∈ Z>2, see [23]

1

2r

1
2r3

2(r−2)2

(r−1)r4

r−1

4r3
r−1
4r3

4(r−2)4(r−1)
r11

Ω(r−ω) Ω(r−ω) Ω(r−ω)

Probability to recur to a cycle after escaping it from p to







∼(p + fl(p)+c)

∼(p + f′)

∼(p + f′′l(p))

1
2r

1
2r2

(r−2)2

r4

1
8r

1
8r3

(r−2)2

2r5

1
8r2

1
8r4

(r−2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r

been precomputed, it would then suffice to fully com-
pute q’s successor as p + fik. Or, better, by taking the
largest τ that allows storage of the table containing the

τ∑

k=1

(
r + k − 1

k

)

=

(
r + τ

τ

)

− 1

sums over at most τ elements from {fi : 0 ≤ i < r}, the
same observation applies to p’s partially calculated first
τ − 1 successors, only fully calculating again its τth suc-
cessor. The first partially calculated intermediate point
that could be a distinguished point is fully calculated.

For discrete logarithms in multiplicative groups of fi-
nite fields, the group operation is modular multiplica-
tion. The partial calculation given in [19] suffices to rec-
ognize properly defined distinguished points and parti-
tion properties and leads to a tenfold speedup for 1024-
bit prime fields. Generalization to ECDLP was left open.

ECDLP tag-tracing. The more complicated group op-
eration in 〈g〉 makes it harder to apply the same idea
to ECDLP. If only the x-coordinate is used for distin-
guishing and partition properties, calculation of the y-
coordinate can be avoided, reducing the average cost per
step by τ−1

τ (2A + M). Combined with simultaneous in-
version, this leads to a speedup by a factor of approxi-
mately 6

5 at best (i.e., for large τ), but this comes at vari-
ous disadvantages that, depending on the circumstances,
may invalidate the speedup entirely.

Although initialization cost of the table can be ig-
nored, the cost of retrieving its entries will grow with τ
due to memory access latencies. In practice this implies
that τ will be of moderate size, thereby lowering the
computational speedup that would ideally be achiev-
able. Slight improvements can be obtained by not storing
rarely accessed entries (taking an infrequently occurring
more costly step instead): for instance, the table entry
corresponding to f0 + f1 + f2 will be accessed six times
as often as the one for 3f0.

ECDLP tag-tracing is incompatible with the negation
map, because the latter needs the y-coordinate that may
not be computed while tag-tracing. One may conclude
that usage of tag-tracing in most circumstances leads to
a slow-down by a factor of 5

6

√
2: only if r must be small

(caches or very little memory) and occasional doubling is
best avoided (SIMD) is it conceivable that the negation
map is ineffective and that ECDLP tag-tracing (with
small τ) gives a small speedup. We could have, but did
not attempt to use ECDLP tag-tracing.

4 Pollard’s rho method on the PS3

To solve the ECDLP from Section 2.1 with Pollard’s rho
method, each core of the Cell processes four walks simul-
taneously in 4-way SIMD fashion, two of those SIMD-
processes are interleaved, and as many as possible of
these interleaved processes are batched, to amortize the
inversion cost in the best possible way (Section 3.1).
Although the description below focuses on the 4-way
SIMD parallelization of the Cell processor’s cores, many
ideas apply to wider SIMD environments as well, such
as graphics cards.

Section 4.1 summarizes the design of the Cell pro-
cessor [27]. The 4-way SIMD long integer representa-
tion, tailored to the Cell’s instructions (described in Sec-
tion 4.2), is presented in Section 4.3. The interleaved 4-
way SIMD arithmetic modulo the specific p (Section 2.1)
is described in Section 4.4. To gain speed, results may
be incorrect; it is argued that it may be expected that
bad cases do not occur (though an example is given).
Section 4.5 describes a 4-way SIMD implementation of
binary modular inversion. Timings and the solution to
the ECDLP are given in Section 4.6. Section 4.7 gives
estimates for ECDLP over other finite fields.

4.1 The Cell processor

The Cell processor, the main processor of the PS3 and
thus mainly targeted at the gaming market, is a powerful
general purpose processor. On the first generation PS3s
it can be accessed using Sony’s hypervisor, making the
PS3 a relatively inexpensive source of processing power.

The architecture of the Cell processor is quite differ-
ent from that of regular server or desktop processors.
The Cell has a Power Processing Element (PPE), a dual-
threaded Power architecture-based 64-bit processor with
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x[0] =

128-bit wide register
︷ ︸︸ ︷

︸ ︷︷ ︸
the 32 (or 16) least significant bits of x2 are located in

this 32-bit word (or in its 16 least significant bits)

...
...

x[j] = 16-bit
︸ ︷︷ ︸

high

order

16-bit
︸ ︷︷ ︸

low

order
...

...
x[n− 1] =

︸ ︷︷ ︸

↑
(x1,

︸ ︷︷ ︸

↑
x2,

︸ ︷︷ ︸

↑
x3,

︸ ︷︷ ︸

↑
x4)

Figure 1 A four-tuple (x1, x2, x3, x4) of 32n-bit or 16n-bit integers represented by 128-bit registers x[0], x[1], . . . , x[n − 1].

access to a 128-bit AltiVec/VMX SIMD unit. Its main
processing power, however, comes from eight Synergis-
tic Processing Units (SPUs). When running Linux, six
SPUs can be used: one is disabled, and one is reserved
by the hypervisor. It is conceivable that this last one
becomes accessible too [28].

Each SPU runs independently from the others at
3.2GHz, using its own 256 kilobyte of fast local mem-
ory (the Local Store) for instructions and data. It is
cache-less and has 128 registers of 128 bits each, allow-
ing SIMD operations on sixteen 8-bit, eight 16-bit, or
four 32-bit integers. An SPU has no 32 × 32 → 64-bit or
64 × 64 → 128-bit integer multiplier, but has several 4-
way SIMD 16 × 16 → 32-bit integer multipliers including
three multiply-and-add instructions. They are described
in Section 4.2 along with the other instructions used in
the later sections. There is an odd and an even pipeline:
per clock cycle an SPU can dispatch one odd and one
even instruction. Because the SPU lacks smart branch
prediction, branching is best avoided (as usual in SIMD).

4.2 Integer and bit arithmetic on the SPU

For a positive integer k, an (unsigned) k-bit integer is
a non-negative integer less than 2k, and a signed k-bit
integer is an integer z satisfying −2k−1 ≤ z < 2k−1.

We interpret each 128-bit SPU register v as a four-
tuple of 32-bit values (v1, v2, v3, v4), where vi is the ith
word of v which may be interpreted as signed or unsigned
32-bit integer. Below, a, b, c, d are 128-bit registers and
all operations are for i = 1, 2, 3, 4 simultaneously.

The call d = spu add(a, b) does 4-way SIMD 32-
bit integer addition, calculating di = (ai + bi) mod 232.
Other instructions generate the corresponding carries
(c = spu genc(a, b): ci = ⌊(ai + bi)/2

32⌋), include ex-
isting carries in additions (d = spu addx(a, b, c): di =
(ai + bi + ci) mod 232), or generate the carries of the
latter additions (e = spu gencx(a, b, c): ei = ⌊(ai + bi +
ci)/2

32⌋). The corresponding integer subtraction instruc-
tions are spu sub, spu genb, spu subx, and spu genbx,
where the ‘b’ in ‘genb’ indicates borrow : no borrow oc-
curs if the borrow-bit is set to 1 (one), and a borrow

occurs if the borrow-bit is set to 0 (zero). These are all
even pipeline instructions that take two cycles.

The call c = spu mulo(a, b) does 4-way SIMD 16 ×
16 → 32-bit unsigned integer multiplication, calculating
ci = (ai mod 216) · (bi mod 216). There are two signed
and one unsigned 4-way SIMD (16× 16) + 32 → 32-bit
multiply-and-add instructions. One of the signed ones
calculates ci = (ai · bi + di) mod 232, where ai and bi are
interpreted as signed 16-bit integers (i.e., their 16 most
significant bits are ignored), and di and ci are signed
32-bit integers.

The other two multiply-and-add instructions (the
other signed one, and the unsigned one) work instead
on the 16 most significant bits of ai and bi, ignoring
the 2 × 4 × 16 least significant bits. The unsigned in-
struction is used for modular multiplication: the call c =
spu mhhadd(a, b, d) calculates ci = (⌊ai/2

16⌋ · ⌊bi/216⌋ +
di) mod 232, where di and ci are unsigned 32-bit inte-
gers. All these multiplications are even pipeline, one of
them can be dispatched per cycle, taking seven cycles.

The call c = spu and(a, b) calculates the 128-bit value
a ∧ b, i.e., the bitwise and of its inputs. The word-wise
comparison call c = spu cmpeq(a, b) results in ci = 232 −
1 (i.e., all one bits across c’s ith word) if ai and bi have
the same value and ci = 0 (i.e., all zero bits) otherwise.
Both are even pipeline with a two cycle latency.

The or-across instruction call spu orx(a) returns the
32-bit value a1 ∨ a2 ∨ a3 ∨ a4, i.e., the bitwise inclusive
or across the words of a. Using d = spu shuffle(a, b, c)
any 16 entries of a 32-byte table (a and b) can be looked
up simultaneously: the pattern in c shuffles 16 of the
32 bytes of a and b to the output d, in such a way
that the jth byte of c determines the jth byte of d, as
a copy of a byte of a or b or as one of the constants
{0x00, 0xFF, 0x80}. It allows duplicate copies. Both
are odd four cycle latency instructions.

The positioning of bits in the top-half-words as in
spu mhhadd requires byte-rearranging shifts and shuf-
fles. These are odd pipeline instructions that can be
dispatched almost for free if they are interleaved with
the even pipeline arithmetic ones. The split instruc-
tion call (b, c) = spu split(a) re-arranges bytes: bi =
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⌊ai/2
16⌋ and ci = ai mod 216 ∈ {0, 1, 2, . . . , 216 − 1}, i.e.,

bi gets ai’s top-half shifted right over two bytes and ci
gets ai’s bottom-half. This can be implemented in a vari-
ety of ways using a combination of two SPU instructions:
using two even pipeline instructions, or two odd ones, or
one of each. The opposite effect is achieved by the merge
instruction call a = spu merge(b, c): ai = 216bi + ci, im-
plemented using a single shuffle instruction. For 0 ≤ k <
32, the shift instruction call b = spu sl(a, k) left-shifts ai

over k bits: bi = ai2
k mod 232 ∈ {0, 1, 2, . . . , 232 − 1}.

4.3 Representation of long integers on the SPU

To solve the ECDLP from Section 2.1, integer arith-

metic is required modulo the 112-bit number p = 2128
−3

11·6949 .
With 128-bit registers, a register could represent a 112-
bit number modulo p. But that simple-minded approach
is not easily compatible with the SPU’s instruction set.

For applications that allow high degrees of paralleliza-
tion, such as Pollard’s rho method, a 90-degree inter-
pretative turn of the words is a better fit for the SPU’s
instruction set: instead of representing a 112-bit inte-
ger using a single 128-bit register, a four-tuple of long
integers (such as 112-bit ones) is laid out across the four-
tuples of words of a sequence of 128-bit registers, thereby
allowing the corresponding words of the four long in-
tegers, i.e., the words that belong to the same 128-bit
register, to be processed simultaneously in SIMD fash-
ion. Fig. 1 illustrates two ways to map four-tuples of
long integers to a sequence of 128-bit registers: one that
uses all 4 × 32 = 128 bits of each register, and one where
only 4 × 16 = 64 of the 128 bits per register are signif-
icant. This approach allows 4-way SIMD processing of
four-tuples of identically sized long integers of any size.

Both methods represent four-tuples of long integers
by word slicing a number of 128-bit registers. The choice
of representation depends on the operation to be car-
ried out, as further discussed in the next section. As
above, each 128-bit register v is interpreted as a four-
tuple (v1, v2, v3, v4) of 32-bit words. Here these words are
interpreted as unsigned 32-bit integers.

In the first representation method, a sequence of ℓ
128-bit registers x[0], x[1], . . . , x[ℓ− 1] is used to repre-
sent a four-tuple (x1, x2, x3, x4) of 32ℓ-bit integers in
their radix 232 representation:

xi =

ℓ−1∑

j=0

x[j]i2
32j

for i = 1, 2, 3, 4. Thus, the ith word x[j]i of the 128-
bit register x[j] equals the coefficient of 232j in the
radix 232 representation of the ith 32ℓ-bit integer xi, for
j = 0, 1, . . . , ℓ− 1 and i = 1, 2, 3, 4. This representation
matches the SPU’s 4-way SIMD integer additions and
subtractions from Section 4.2, and is used for long inte-
ger addition, subtraction, and modular inversion.

In the second representation method, a sequence of
m 128-bit registers y[0], y[1], . . . , y[m− 1] is used to rep-

resent a four-tuple (y1, y2, y3, y4) of 16m-bit integers in
their radix 216 representation:

yi =

m−1∑

j=0

(y[j]i mod 216)216j

for i = 1, 2, 3, 4 and where 0 ≤ y[j]i mod 216 < 216.
Thus, the two least significant bytes of the ith word y[j]i
of the 128-bit register y[j] contain the coefficient of 216j

in the radix 216 representation of the ith 16m-bit in-
teger yi, for j = 0, 1, . . . ,m− 1 and i = 1, 2, 3, 4. When
used with the shift instruction spu sl, this representa-
tion matches the SPU’s 4-way SIMD unsigned multiply-
and-add instruction spu mhhadd (Section 4.2). It is used
for long integer multiplication.

Thus we use the 128-bit register width to hard-code
4-way SIMD processing of four-tuples of long integers.
The values for ℓ (full-word radix 232) and m (bottom-
half-word radix 216) depend on the modulus size. For
112-bit or 128-bit moduli (as both used below), ℓ = 4
and m = 8 are used, ℓ = 5 for moduli of 129 up to 160
bits, and m = 10 for moduli of 145 up to 160 bits.

4.4 4-way SIMD long integer SPU-arithmetic

With R = 2128, reduction modulo the multiple p̃ = R− 3
of the prime p = p̃

11·6949 (Section 2.1) can be done using
sloppy reduction modulo p̃, which is faster than reduc-
tion modulo p but which may produce an incorrect re-
sult, with a probability that is argued to be negligible.
When working in Fp we use a redundant representation
modulo p̃. Only when required for distinguishing and
partition properties (Section 3.1) we switch to a unique
value modulo p using a quick Montgomery-like step [41].
All methods in this section allow any number of SIMD
threads. See [3, 4, 5, 22, 47, 48], for instance, for pre-
vious work involving primes of a special form. We are
not aware of earlier publication of modular arithmetic
similar to sloppy reduction or an analysis thereof.

Sloppy reduction modulo p̃. For z ∈ Z with 0 ≤ z <
R2 and z = z0 +Rz1 for z0, z1 ∈ Z, 0 ≤ z0, z1 < R, de-
fine

R(z) = z0 + 3z1.

From p̃ = R− 3 it follows that R(z) ≡ z mod p̃ and
R(z) ≡ z mod p. With R(z) = y = y0 + y1R for y0, y1 ∈
Z, 0 ≤ y0, y1 < R, it follows from R(z) = z0 + 3z1 ≤
4R− 4 that y1 ≤ 3. If y1 = 3, then y0 + y1R = y0 +
3R ≤ 4R− 4 and thus y0 ≤ R − 4. Using y0 ≤ R− 1
when y1 ≤ 2, it follows that R(y) = y0 + 3y1 ≤ R+ 5.

Define S(z) = R(R(z)). Then S(z) < R+ 6 and
S(z) ≡ z mod p̃ (and thus S(z) ≡ z mod p). If all val-
ues in the range of S occur with approximately the
same probability, then S(z) ≥ R with probability close
to 6

R+6 , which is small. Thus, the truncated value
S(z) mod R ∈ {0, 1, . . . , R− 1} is most likely equivalent
to z modulo p̃. For relevant z-values, i.e, products of
two 128-bit integers, it is argued below that S(z) ≥ R
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Algorithm 1 Sloppy reduction modulo p̃ of a four-tuple of 256-bit integers.

Input:

{
a four-tuple (c1, c2, c3, c4) of 256-bit integers in radix 216

represented by sixteen 128-bit registers c[0], c[1], . . . , c[15].

Output:

{
a four-tuple (t1, t2, t3, t4) of 128-bit integers ti = S(ci) mod R, for i = 1, 2, 3, 4, in radix 216

represented by eight 128-bit registers t[0], t[1], . . . , t[7].

1: Let r be a register with r1 = r2 = r3 = r4 = 3 · 216

2: /* the 16 most significant bits of the words of r all represent 3 */
3: /* Compute the first application of R */
4: for k = 0 to 7 do

5: t[k] = spu mhhadd(spu sl(c[k + 8], 16), r, c[k])
6: for k = 0 to 6 do

7: (s, t[k]) = spu split(t[k])
8: t[k + 1] = spu add(t[k + 1], s)
9: (s, t[7]) = spu split(t[7])

10: /* Compute the second application of R */
11: t[0] = spu mhhadd(spu sl(s, 16), r, t[0])
12: (s, t[0]) = spu split(t[0])
13: if spu orx(s) 6= 0 then

14: t[1] = spu add(t[1], s)
15: for k = 1 to 6 do

16: (s, t[k]) = spu split(t[k])
17: t[k + 1] = spu add(t[k + 1], s)
18: /* truncate modulo R by ignoring that there may be an i ∈ {1, 2, 3, 4} with t[7]i ≥ 216 */
19: return t[0], t[1], . . . , t[7]

with probability only about 1
R , so low that S may in-

deed simply be truncated, rather than applying R a third
time (which would always be correct modulo p̃ and p).
Sloppy reduction modulo p̃ of z is therefore defined as
S(z) mod R ∈ {0, 1, . . . , R− 1}.

The SPU calculation of 4-way SIMD sloppy reduc-
tion modulo p̃ of a four-tuple of 256-bit integers in
radix 216 representation is done by the algorithm de-
picted in Alg. 1. Without the if-statement in line 13
(while keeping lines 14-17) it is branch-free (and slower).

Incorrectness probability of sloppy reduction

modulo p̃ of products. Let 0 ≤ x, y < R and let xy =
a+ bp̃ for integers a, b with 0 ≤ a < p̃ and 0 ≤ b ≤ R+
1. Define c as the smallest integer such that 0 ≤ cR+
a− 3b < R. It then follows from xy = cR+ a− 3b+
(b− c)R that R(xy) = cR+ a− 3c. If a− 3c ≥ 0, then
S(xy) = a < p̃ so that sloppy reduction modulo p̃ pro-
duces the correct result. If a− 3c < 0, then R(xy) = (c−
1)R+R + a− 3c. With cR < R− a+ 3b ≤ R+ 3(R+
1) so that c ≤ 4 and thus 0 ≤ R+ a− 3c < R, it follows
that S(xy) = R+ a− 3c+ 3c− 3 = R+ a− 3. Because
also S(xy) < R+ 6, the cases where S(xy) ≥ R (and
sloppy reduction modulo p̃ is incorrect) are 3 ≤ a ≤ 8.

Because S(xy) ∈ {R,R+ 1, . . . , R+ 5} for pairs
(x, y) for which sloppy reduction modulo p̃ of xy is in-
correct, it follows that S(xy) is coprime to p̃, implying
that x and y are co-prime to p̃. But if for such a pair it
is the case that gcd(x, p̃) = 1, then gcd(y, p̃) = 1 as well.

Writing a = i+ 3k, where i ∈ {0, 1, 2} and k ∈ {1, 2},
it follows from a− 3c < 0 that c ≥ k + 1. Since c is
minimal such that 0 ≤ cR+ a− 3b < R, it follows that
kR+ a− 3b < 0 and thus b > a+kR

3 . With xy = a+

bp̃ and a ≥ 3k this implies xy > 3k + (3k+kR)p̃
3 = 3k +

k(R+3)(R−3)
3 = kR2

3 . Thus x, y > kR
3 , since 0 ≤ x, y < R.

The number of pairs (x, y) with x, y > kR
3 and xy > kR2

3
is approximated as

(3 − k)R2

3
−

∫ R

kR
3

kR2

3x
dx =

(3 − k)R2

3
− kR2

3
log

(
3

k

)

.

For 3k ≤ a < 3(k + 1) the probability that xy ≡ a mod p̃

for a pair (x, y) may be approximated as 3
R · φ(p̃)

p̃ (where

φ denotes Euler’s totient function). This leads to

(
φ(p̃)

p̃

)

· R ·
∑

k=1,2

(

3 − k − k log

(
3

k

))

as a heuristic approximation for the total number of pairs
(x, y) where sloppy reduction modulo p̃ of the product

xy produces an incorrect result. Because φ(p̃)
p̃ ≈ 0.90896,

the sum equals 3 − log
(

27
4

)
≈ 1.09046, and 0.90896 ·

1.09046 ≈ 0.99118, we find a heuristic upper bound of 1
R

for the probability that sloppy reduction modulo p̃ of xy
is incorrect, assuming that x and y are drawn at random.

Incorrectness probability for other moduli. Sloppy
reduction may be advantageous for other primes of the

form 232ℓ
±m
c for relatively small ℓ,m, c ∈ Z>0. For ℓ =

6, 8, m = 38, c = 2 [5, 9], and the functions R′(z0 +
z12

32ℓ) = z0 +mz1 and S′(z) = R′(R′(z)), sloppy re-
duction modulo either of the two primes 232ℓ−1 − m

2 is
defined as S′ mod 232ℓ, i.e., truncation of S′ to 32ℓ bits
(this works for ℓ = 1

2 and ℓ = 1 too). A heuristic upper
bound of 343

232ℓ for the probability that sloppy reduction
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Algorithm 2 Radix 216 schoolbook multiplication of two four-tuples of 16m-bit integers.

Input:

{
two four-tuples (a1, a2, a3, a4), (b1, b2, b3, b4) of 16m-bit integers in radix 216

represented by 2m 128-bit registers a[0], a[1], . . . , a[m− 1], b[0], b[1], . . . , b[m− 1].

Output:

{
a four-tuple (c1, c2, c3, c4) of 32m-bit integers ci = ai · bi, for i = 1, 2, 3, 4, in radix 216

represented by 2m 128-bit registers c[0], c[1], . . . , c[2m− 1].
1: for k = 0 to m− 1 do

2: c[m+ k] = 0
3: a[k] = spu sl(a[k], 16)
4: b[k] = spu sl(b[k], 16)
5: for j = 0 to m− 1 do

6: (e[0], c[j]) = spu split(spu mhhadd(a[0], b[j], c[m]))
7: for k = 1 to m− 1 do

8: (e[k], c[m+ k − 1]) = spu split(spu add(spu mhhadd(a[k], b[j], c[m+ k]), e[k − 1]))
9: /* a[k]i · b[j]i + c[m+ k]i + e[k − 1]i ≤ (216 − 1)2 + 216 − 1 + 216 − 1 = 232 − 1 for i = 1, 2, 3, 4 */

10: c[2m− 1] = e[m− 1]
11: return c[0], c[1], . . . , c[2m− 1]

Algorithm 3 Division by 216 modulo p of a four-tuple of 128-bit integers.

Input:

{
a four-tuple (x1, x2, x3, x4) of 128-bit integers in radix 216

represented by eight 128-bit registers x[0], x[1], . . . , x[7].

Output:

{
a four-tuple (y1, y2, y3, y4) of 128-bit integers yi ≡ xi2

−16 mod p, for i = 1, 2, 3, 4, in radix 216

represented by eight 128-bit registers y[0], y[1], . . . , y[7].

1: Let p[0], p[1], . . . , p[6] be 128-bit registers representing p1 = p2 = p3 = p4 = p in radix 216

2: /* Put p’s bits in the 16 most significant locations, if that has not been done beforehand */
3: for k = 0 to 6 do

4: p[k] = spu sl(p[k], 16)
5: ν = spu sl(spu mulo(x[0], r), 16) where r is a register with r1 = r2 = r3 = r4 = 47325
6: (y[0], d) = spu split(spu mhhadd(p[0], ν, x[0])) /* d is zero */
7: for k = 1 to 6 do

8: (y[k], y[k − 1]) = spu split(spu add(spu mhhadd(p[k], ν, y[k − 1]), x[k]))
9: (y[7], y[6]) = spu split(spu add(x[7], y[6]))

10: return y[0], y[1], . . . , y[7]

modulo 232ℓ −m of xy is incorrect, for random non-
negative x, y < 232ℓ, follows as above. It uses

m−1∑

k=1

(

m− k − k log
(m

k

))

≈ 342.552

and an argument involving c = 2 that is somewhat more
contrived than the φ(p̃)-argument above: for odd a
both x and y must be odd and integration is over the
odd x’s only, for even a each odd x leads to a single even y
whereas each even x leads to two y’s. Thus, the summa-
tion hides the observation that 1

2 · 1
2 + 1

2

(
1
2 + 1

2 · 2
)

= 1.

Sloppy multiplication modulo p̃. Alg. 2 depicts the
algorithm for the SPU calculation of 4-way SIMD school-
book multiplication of two four-tuples of 16m-bit inte-
gers in radix 216 representation [9]. The only subtlety
in Alg. 2 is that none of the two 4-way SIMD additions
in line 8 (spu add and as part of spu mhhadd) generates
a carry. Alg. 1 and Alg. 2 are compatible: using Alg. 2
with m = 8, its four-tuple output can be simultaneously
reduced modulo p̃ using Alg. 1, and the latter’s four-
tuple output can again be used as one of the four-tuple
inputs for Alg. 2. Sloppy multiplication modulo p̃ con-

sists of a call to Alg. 2 with m = 8 followed by a call to
Alg. 1.

All four outputs of Alg. 1 have a small probability
not to be unique modulo p̃ (with only the residue classes
0, 1, and 2 modulo p̃ allowing two representations), but
the outputs are not unique modulo p. Unique represen-
tations modulo p are obtained as indicated below. As
analyzed above, each output has a small probability to
be incorrect: for instance, when 2 mod p̃ is represented
as 2 + p̃ = R− 1 and squared, the value S((R − 1)2) =
R+ 1 is truncated to the incorrect result 1.

Unique representation modulo p. Given a four-tuple
(x1, x2, x3, x4) of integers modulo p̃ in {0, 1, . . . , R − 1},
a unique representation modulo p is required for each xi

at the end of each step of Pollard’s rho method. Least
non-negative remainders modulo p require computation
of xi mod p ∈ {0, 1, . . . , p− 1} for i = 1, 2, 3, 4. A faster
way to obtain unique representations modulo p is to si-
multaneously calculate all xi2

−16 mod p ∈ {0, 1, . . . , p−
1}. This is not the same as xi mod p ∈ {0, 1, . . . , p− 1},
but that is not a problem as long as the distinguishing
and partition properties are properly defined.



12

The computation of xi2
−16 mod p is done using a sin-

gle Montgomery reduction [41] iteration in radix 216.
Because −1

p ≡ 47325 mod 216, the value νi = −xi

p mod

216 = 47325xi mod 216 satisfies xi + νip ≡ 0 mod 216, so
that yi = (xi + νip)/2

16 ≡ xi2
−16 mod p. A unique rep-

resentation in {0, 1, . . . , p− 1} of yi modulo p is obtained
by observing that

yi ≤
R− 1 + (216 − 1)p

216
< 3p,

so that either yi, yi − p, or yi − 2p is in {0, 1, . . . , p− 1}.
A 4-way SIMD algorithm to perform the calcula-

tion of (y1, y2, y3, y4) given a four-tuple (x1, x2, x3, x4) as
above is depicted in Alg. 3 (which in practice should be
replaced by a version that uses radix 232 as opposed to
radix 216 for the additions to the xi’s). The unique rep-
resentation is then obtained by two applications of the
4-way SIMD modular subtraction algorithm depicted in
Alg. 4 with ℓ = 4. Alg. 4 uses masks to avoid branching,
and can simply be changed to have radix 232 inputs or
output. If it is used with bi = mi = p, then the result-
ing ci equals the input ai if ai < p but ci equals ai − p
if ai ≥ p, for i = 1, 2, 3, 4 simultaneously, as required.

Pipelining. To reduce bottlenecks in the even and the
odd pipelines, the implementations of all algorithms pre-
sented here attempt to balance the two pipelines by
shifting instructions between the two. Bottlenecks are
also reduced by interleaving two 4-way SIMD processes,
thereby considerably increasing overall throughput and
reducing overall latency, sacrificing the (mostly irrele-
vant) latency per walk of Pollard’s rho method.

Simultaneous inversion. With r = 16 as chosen in
Section 3.1 it is possible to store the data for 50 sequen-
tial interleaved 4-way SIMD walks in the SPU’s Local
Store, synchronizing the walks at the point where the
modular inverses are calculated. Per SPU we use the si-
multaneous inversion from Section 3.1 in a nested man-
ner, not sharing inversions among multiple SPUs as the
computational advantages would be outweighed by syn-
chronization and communication overhead.

Let zijk ∈ F∗
p for 1 ≤ k ≤ 50, 1 ≤ j ≤ 2 and 1 ≤ i ≤ 4

denote the 400 elements for which the inversions will be
shared per SPU. Using 99 (partially interleaved) 4-way
SIMD sloppy multiplications modulo p̃ the four-tuple
(ν1, ν2, ν3, ν4) of products νi =

∏50
k=1

∏

j=1,2 zijk mod p̃
is calculated, for i = 1, 2, 3, 4 simultaneously, while keep-
ing the partial products. The four inverses ν−1

i mod p are
then calculated using simultaneous inversion at the cost
of 3 × (4 − 1) = 9 modular multiplications and one mod-
ular inversion (described in Section 4.5), possibly using a
SIMD tree-based approach for the combination and un-
raveling. Finally, the individual inverses z−1

ijk mod p are
calculated (in a representation modulo p̃) at the cost of
twice 99 4-way SIMD sloppy multiplications modulo p̃,
by unraveling in 4-way SIMD fashion.

4.5 SIMD modular inversion on the SPU

The calculation of the modular inverse of a positive in-
teger b in a residue class of the odd modulus a = p is
outlined by the algorithm depicted in Alg. 5. It uses
the binary version of the Euclidean algorithm from [31]
to compute an almost Montgomery inverse b−12k mod p
for some integer k, because that allows fast implemen-
tation on the SPU. The factor 2k mod p is removed
by table look-up of the value 2−k mod p (which equals
21−k mod p

2 if (21−k mod p) ∈ {0, 1, 2, . . . , p− 1} is even

and (21−k mod p)+p
2 otherwise) followed by sloppy multi-

plication modulo p̃ from Section 4.4.
Let d = gcd(a, b). Let y be a solution of by ≡ d mod a.

The algorithm has invariants

ku, kv ≥ 0, u, v > 0,

u(2ku+kvy) ≡ rd mod a,

v(2ku+kvy) ≡ sd mod a,

gcd(u, v) = d,

us− vr = a, (3)

2kuu ≤ a, 2kvv ≤ b,

r ≤ 0 < s.

The values of u and v are bounded by a and b, respec-
tively. The invariant a = us− vr ≥ s− r bounds r and s.
For ℓ = 4 both r and s fit in 128 bits. When the loop
exits the subscript ku + kv is bounded as follows:

2ku+kv ≤ (2kuu)(2kvv) ≤ ab.

At that point u = v = gcd(u, v) = d. If v > 1 then b is
not coprime to a and the modular inverse computation
fails. Otherwise d = 1 and the output z = s · (2−ku−kv )
satisfies

z = zd ≡ s · (2−ku−kv )d
≡ (v2ku+kvy)2−ku−kv ≡ vy = y mod a.

At the start of every iteration at least one of u and v is
odd, by (3). If tu and tv are picked as large as possible,
then the new u and v will both be odd, so that after
the subtraction and next iteration’s shift u+ v will be
reduced by at least a factor of 2.

The trailing zero bit count of a positive integer k is
the population count of k ∧ (k − 1). Examining u and v
simultaneously can therefore be done using the SPU’s
population count instruction; however, it acts only on
8-bit data, so the resulting tu and tv may not be maxi-
mal. This increases the number of iterations performed
by Alg. 5 by about 1%: with maximal tu and tv the
number of iterations would be close to 0.706 times the
bitlength of a, as analyzed in [34]. Alg. 5 needs on aver-
age almost 80 iterations for inversion modulo p.

The four differences u− v, r − s, v − u, and s− r are
evaluated simultaneously. The loop is exited if neither
u− v nor v − u needs a borrow. Otherwise, depending
on the sign of u− v a mask is created to build a fast
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Algorithm 4 Modular subtraction of two four-tuples of 32ℓ-bit integers in radix 216 representation.

Input:







a four-tuple (m1,m2,m3,m4) of 32ℓ-bit integer moduli in radix 232

represented by ℓ 128-bit registers m[0],m[1], . . . ,m[ℓ− 1]
(typically, but not necessarily, the four moduli are the same);
two four-tuples (a1, a2, a3, a4), (b1, b2, b3, b4) of 32ℓ-bit integers in radix 216

with 0 ≤ ai and 0 ≤ bi ≤ mi for i = 1, 2, 3, 4,
represented by 4ℓ 128-bit registers a[0], a[1], . . . , a[2ℓ− 1], b[0], b[1], . . . , b[2ℓ− 1].

Output:







a four-tuple (c1, c2, c3, c4) of 32ℓ-bit integers in radix 216 with 0 ≤ ci ≡ (ai − bi) mod mi

for i = 1, 2, 3, 4, represented by 2ℓ 128-bit registers c[0], c[1], . . . , c[2ℓ− 1] where,
if bi = mi = p, then ci = ai if ai < p but ci = ai − p if ai ≥ p, for i = 1, 2, 3, 4.

1: Let β be a register with β1 = β2 = β3 = β4 = 1, for four borrows that are initially empty
2: Let γ be a register with γ1 = γ2 = γ3 = γ4 = 0, for four carries that are initially empty
3: /* Convert a and b input registers to radix 232 */
4: for k = 0 to ℓ− 1 do

5: u[k] = spu merge(a[2k + 1], a[2k])
6: v[k] = spu merge(b[2k + 1], b[2k])
7: /* Do the subtraction */
8: for k = 0 to ℓ− 1 do

9: c[k] = spu subx(u[k], v[k], β)
10: β = spu genbx(u[k], v[k], β)
11: /* Set the masks for the negative ci’s, i.e., the zero βi’s */
12: µ = spu cmpeq(β, 0) /* where 0 consists of 128 zero bits */
13: /* if βi = 0 (implying that ith mask µi is all ones), then add mi to ci */
14: for k = 0 to ℓ− 1 do

15: ν = spu and(mi, µ)
16: t[k] = spu addx(c[k], ν, γ)
17: γ = spu gencx(c[k], ν, γ)
18: /* Convert from radix 232 to radix 216 */
19: for k = 0 to ℓ− 1 do

20: (c[2k + 1], c[k]) = spu split(t[k])
21: return c[0], c[1], . . . , c[2ℓ− 1]

branch-free selector of the parts of (u, r, v, s) that must
be updated. This, and the fact that we know that the in-
puts are co-prime, avoids the four branches from Alg. 5.
The implementation does not take advantage of the de-
creasing sizes of u and v or of the initial small sizes of r
and s, but treats them all as 32ℓ-bit integers. Neverthe-
less, it is quite efficient because only 4-way SIMD oper-
ations are carried out on the four-tuple (u, r, v, s). For
ℓ = 4 it is about 8.5 times faster than the implementa-
tion from [29].

4.6 Timings and solution of the ECDLP

With parameters as selected above, the clock cycle
counts for the various operations are listed in Table 3.
It lists both the number of clock cycles used by a single
operation for eight walks in parallel (organized as two in-
terleaved 4-way SIMD processes), but also the artificial
number of clock cycles used per operation and iteration
in the third and fifth column, respectively: artificial be-
cause a single sloppy multiplication modulo p̃ for one
walk is not completed in 54 clock cycles, but 8 × 54 ≈
430 clock cycles suffice to do eight multiplications, one
for each of eight walks.

Table 3 refers only to the cost of regular point addi-
tion, as iterations do not perform doublings: this saves

code (and thus space) and makes the main inner-loop
of the parallel walks branch-free at a negligible risk
to drop off the curve (as argued in Section 3.1). The
“Miscellaneous” category accounts for the retrieval of
the fi’s, data-shuffling, distinguished point checking, and
all other overheads including occasional branching.

At 3.2GHz, an SPU performs about seven million it-
erations per second. With a 24-bit distinguishing prop-
erty (of the unique representation of x2−16 mod p ∈
{0, 1, 2, . . . , p− 1}), a single PS3 (six SPUs) produced
on average five distinguished points every two seconds,
i.e., at most 160-bytes per second in uncompressed for-
mat. The ethernet connecting a server with the 215 PS3s
could easily handle the required bandwidth.

Approximately 8.5 × 1016 elliptic curve additions
were carried out to find that mg = h for

m = 312521636014772477161767351856699.

This number of elliptic curve additions is close to the
number

√
πq
2 ≈ 8.36 × 1016 of iterations expected based

on the birthday paradox. It is also close to the num-
ber of iterations expected based on Eq. (1), namely
√

πq
2(1− 1

16
)
≈ 8.64 × 1016, which takes into account that

we used a 16-adding walks. This effort translates into
more than 1018 additions and multiplications modulo
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Algorithm 5 Outline of a single modular inverse computation using 4-way SIMD arithmetic.

Input:

{
a, b, ℓ where a is odd, a, b > 0, and ℓ is the radix 232 length of a;
assume availability of a large enough table of 2−k mod a for k = 0, 1, 2, 3, . . . .

Output: “Not relatively prime,” or a residue class b−1 mod a.
1: Let (u, r, v, s) be a four-tuple of 32ℓ-bit integers, represented in radix 232 using ℓ 128-bit registers, with initial

value (a, 0, b, 1).
2: Let (ku, kv) be a pair of 32-bit integers, represented using a 128-bit register, with initial value (0, 0)
3: while true do

4: Find tu such that 2tu divides u and tv such that 2tv divides v (see text)
5: Replace (ku, kv) by (ku + tu, kv + tv)
6: Use shifts to replace (u, r, v, s) by (u/2tu , r · 2tv , v/2tv , s · 2tu)
7: if u > v then

8: Replace (u, r, v, s) by (u− v, r − s, v, s)
9: else if v > u then

10: Replace (u, r, v, s) by (u, r, v − u, s− r)
11: else if v equals 1 then

12: return s · 2−(ku+kv) mod a
13: else

14: return Not relatively prime

the 112-bit prime number p (or, most of the time, its
128-bit multiple p̃ = 2128 − 3), and thus to well over 260

operations on 32-bit or 64-bit integers. With our latest
software the calculation would have taken less than four
months. Because earlier versions were less efficient, the
actual calculation took from January 13 to July 8, 2009.
See also [6].

Slightly more than five billion distinguished points
were collected. All distinguished points received were
correct, indicating that none of the 5 × 1017 sloppy re-
ductions modulo p̃ was incorrect (each had probability
argued to be less than 2−128 ≈ 10−38.53 to be incorrect,
Section 4.4), and that none of the walks dropped off the
curve due to an overlooked doubling (which too would
have happened with negligible probability, Section 3.1)
– or that if such mishaps occurred they magically can-
celled each others’ effect (a possibility that can safely be
ruled out).

4.7 ECDLP over other finite fields

Based on the above, the performance for other prime
field ECDLP instances can be estimated. For binary ex-
tension fields different methods apply, both for the un-
derlying field arithmetic and for Pollard’s rho method;
for such fields the reader is referred to [2].

If the prime does not have a special form, sloppy re-
duction cannot be used. For generic, odd moduli Mont-
gomery arithmetic [41] can be used, because it is per-
fectly amenable to SIMD-implementation. It replaces
modular multiplication by Montgomery multiplication,
which consist of regular multiplication followed by (or
interleaved with) Montgomery reduction. As a result
special purpose sloppy reduction is replaced by generic
Montgomery reduction. The latter is cost-wise roughly
equivalent to ordinary schoolbook multiplication plus
some overhead. An additional modular subtraction suf-
fices to obtain a unique representation, if so required.

The average clock cycle count for two interleaved 4-
way SIMD Montgomery multiplications for generic odd
moduli of up to 128 bits is about 620, while the cost of
obtaining all eight unique representations is reduced to
40 clock cycles [9]. As a result the total average clock
cycle count per iteration is approximately 580, i.e., a
slow-down by a factor of less than 1.3 compared to Ta-
ble 3. The expected number of iterations is about 1.25
times the square root of the group size, and may thus be
up to about 256 = 2(128−112)/2 times larger for 128-bit
prime field ECDLPs compared to the 112-bit prime field
ECDLP solved in Section 4.6. These figures do not take
the improvements suggested in [6] into account.

For larger moduli overheads will have a relatively
smaller effect on the cycle count, so that quadratic cost
extrapolation for schoolbook multiplication will be too
pessimistic. Thus, extrapolation of the figures from Ta-
ble 3 to larger prime moduli must be done with care
and should be validated by experiments. Nevertheless,
naive extrapolation of the above 580 cycle count per iter-

ation for 128-bit primes to
(

160
128

)2 · 580 ≈ 900 cycles per
iteration for a 160-bit prime turns out to be reasonably
accurate [9]. This takes into account the smaller num-
ber of sequential processes because field elements require
more storage. The growth of the expected number of
iterations by a factor of up to 65536 = 2(160−128)/2, how-
ever, is more dramatic and implies that 160-bit prime
ECDLPs are currently out of reach.

For larger prime fields it may pay off to replace
schoolbook multiplication by a Karatsuba-like method.
But all efforts to bend the quadratic growth of the cost
of the underlying arithmetic are made futile by the un-
avoidable growth of the number of iterations: the sheer
number of iterations will for the moment preclude real-
istic attempts to solve ECDLPs over such fields.
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Table 3 Average clock cycle count for the operations carried out during an iteration of Pollard’s rho method on a single
SPU that performs 50 sequential processes, each consisting of two interleaved 4-way SIMD iterations, for a total of
400 simultaneous walks per SPU.

Operation Average # cycles Average # cycles Operations Average # cycles
(sloppy modulus p̃ = 2128 − 3, per two interleaved per operation per iteration per iteration

modulus p = p̃
11·6949 ) 4-SIMD operations

Sloppy multiplication modulo p̃ 430 54 6 322
(multiplication+reduction) (318 + 112) (40 + 14)
Modular subtraction 40 even, 24 odd: 40 total 5 6 30
Modular inversion n/a 4941 1

400 12
Unique representation mod p 192 24 1 24
Miscellaneous 544 68 1 68

Total 456

5 Conclusion

We developed SIMD multiplication modulo primes of

the form 232ℓ
±m
c for small ℓ,m, c ∈ Z>0 that achieves

a speedup of approximately 30% over more traditional
methods. It uses a redundant representation modulo
232ℓ ±m and a truncation-based reduction method,
whose probability to produce an incorrect result has been
argued to be very small. The method is suitable for error-
tolerant applications, such as cryptanalytic ones.

As an application, we have shown the cryptanalytic
potential of a commonly available toy by using a clus-
ter of PlayStation 3 game consoles to solve an elliptic
curve discrete logarithm problem over a 112-bit prime
field. The runtimes and their extrapolations provide up-
per bounds for the effort required to solve larger in-
stances of the same problem using a larger network of
game consoles. Such a network is in principle accessible
using programs such as BOINC [1]. Although surrepti-
tious application of such programs would not be difficult
to arrange for any miscreant who desires to do so, the
effort required to solve a “practically relevant” problem
remains staggering.

It was shown that the tag-tracing method from [19]
can in principle be applied in elliptic curve context as
well, but that scenarios are limited where the proposed
method could lead to a speedup. The work reported here
triggered deeper investigations into the negation map
and the resulting fruitless cycles, and led to the concept
and analysis of recurring cycles, reported in more detail
in [13].
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T. Güneysu, F. Gurkaynak, T. Kleinjung, T. Lange,
N. Mentens, R. Niederhagen, C. Paar, F. Regazzoni,
P. Schwabe, L. Uhsadel, A. V. Herrewege, and B.-
Y. Yang. Breaking ECC2K-130. Cryptology ePrint
Archive, Report 2009/541, 2009. http://eprint.

iacr.org/2009/541.

[3] J.-C. Bajard, N. Meloni, and T. Plantard. Effi-
cient RNS bases for cryptography. In IMACS’05
: World Congress: Scientific Computation Applied
Mathematics and Simulation, 2005.

[4] A. Bender and G. Castagnoli. On the implementa-
tion of elliptic curve cryptosystems. In G. Brassard,
editor, CRYPTO, volume 435 of Lecture Notes in
Computer Science, pages 186–192. Springer, 1989.

[5] D. J. Bernstein. Curve25519: New Diffie-Hellman
speed records. In PKC 2006, volume 3958 of LNCS,
pages 207–228, 2006.

[6] D. J. Bernstein. Faster ECDL. Rump-session talk
at CHES 2010, slides available from http://cr.yp.

to/talks/2010.08.19-2/slides.pdf, 2010.

[7] D. J. Bernstein, H.-C. Chen, M.-S. Chen, C.-M.
Cheng, C.-H. Hsiao, T. Lange, Z.-C. Lin, and B.-
Y. Yang. The billion-mulmod-per-second PC. In
Workshop record of SHARCS’09, pages 131–144,
2009. http://www.hyperelliptic.org/tanja/

SHARCS/record2.pdf.

[8] D. J. Bernstein and T. Lange. Faster addition and
doubling on elliptic curves. In Asiacrypt 2007, vol-
ume 4833 of LNCS, pages 29–50, 2007.



16

[9] J. W. Bos. High-performance modular multiplica-
tion on the Cell processor. In WAIFI 2010, volume
6087 of LNCS, pages 7–24, 2010.

[10] J. W. Bos, A. Dudeanu, and D. Jetchev. Optimal
collision bounds in the Pollard rho algorithm for
discrete logarithms using additive walks. Work in
progress, 2010.

[11] J. W. Bos and M. E. Kaihara. Montgomery mul-
tiplication on the Cell. In Parallel Processing and
Applied Mathematics 2009, volume 6067 of LNCS,
pages 477–485. Springer, 2010.

[12] J. W. Bos, M. E. Kaihara, and P. L. Mont-
gomery. Pollard rho on the PlayStation 3. In
Workshop record of SHARCS’09, pages 35–50,
2009. http://www.hyperelliptic.org/tanja/

SHARCS/record2.pdf.

[13] J. W. Bos, T. Kleinjung, and A. K. Lenstra. On the
use of the negation map in the Pollard rho method.
In ANTS-IX, volume 6197 of LNCS, pages 67–83,
2010.

[14] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. L.
Montgomery. Pushing the limits of ECM. Cryptol-
ogy ePrint Archive, Report 2010/338, 2010. http:

//eprint.iacr.org/2010/338.

[15] J. W. Bos, T. Kleinjung, R. Niederhagen, and
P. Schwabe. ECC2K-130 on Cell CPUs. In
Africacrypt 2010, volume 6055 of LNCS, pages 225–
242, 2010.

[16] R. P. Brent and J. M. Pollard. Factorization of the
eighth Fermat number. Mathematics of Computa-
tion, 36(154):627–630, 1981.

[17] Certicom. Press release: Certicom announces el-
liptic curve cryptosystem (ECC) challenge winner.
http://www.certicom.com/index.php/2002-

press-releases/38-2002-press-releases/340-

notre-dame-mathematician-solves-eccp-109-

encryption-key-problem-issued-in-1997,
2002.

[18] Certicom Research. Standards for Efficient Cryp-
tography 2: Recommended Elliptic Curve Domain
Parameters. Standard SEC2, Certicom, 2000.

[19] J. H. Cheon, J. Hong, and M. Kim. Speeding up the
Pollard rho method on prime fields. In Asiacrypt
2008, volume 5350 of LNCS, pages 471–488, 2008.

[20] N. Costigan and P. Schwabe. Fast elliptic-curve
cryptography on the Cell Broadband Engine. In
Africacrypt 2009, volume 5580 of LNCS, pages 368–
385. Springer, 2009.

[21] N. Costigan and M. Scott. Accelerating SSL us-
ing the vector processors in IBM’s Cell Broadband
Engine for Sony’s Playstation 3. Cryptology ePrint

Archive, Report 2007/061, 2007. http://eprint.

iacr.org/2007/061.

[22] R. E. Crandall. Method and apparatus for public
key exchange in a cryptographic system, October
1992. U.S. patent number 5,159,632.

[23] I. M. Duursma, P. Gaudry, and F. Morain. Speed-
ing up the discrete log computation on curves with
automorphisms. In Asiacrypt 1999, volume 1716 of
LNCS, pages 103–121, 1999.

[24] H. M. Edwards. A normal form for elliptic curves.
Bulletin of the American Mathematical Society,
44:393–422, July 2007.

[25] S. Galbraith. Mathematics of public key cryptogra-
phy (version 0.6). http://www.isg.rhul.ac.uk/
∼sdg/crypto-book/crypto-book.html, 2010.

[26] R. P. Gallant, R. J. Lambert, and S. A. Vanstone.
Improving the parallelized Pollard lambda search on
anomalous binary curves. Mathematics of Compu-
tation, 69(232):1699–1705, 2000.

[27] H. P. Hofstee. Power efficient processor architecture
and the Cell processor. In HPCA 2005, pages 258–
262, 2005.

[28] G. Hotz. Here’s your silver plate. http:

//rdist.root.org/2010/01/27/how-the-ps3-

hypervisor-was-hacked/.

[29] IBM. Multi-precision math library. Example
Library API Reference. Available at https:

//www.ibm.com/developerworks/power/cell/

documents.html.

[30] M. E. Kaihara and N. Takagi. A hardware algorithm
for modular multiplication/division. IEEE Trans.
Computers, 54(1):12–21, 2005.

[31] B. S. Kaliski. The Montgomery inverse and its
applications. IEEE Transactions on Computers,
44(8):1064–1065, 1995.

[32] J. H. Kim, R. Montenegro, Y. Peres, and P. Tetali.
A birthday paradox for Markov chains, with an op-
timal bound for collision in the Pollard rho algo-
rithm for discrete logarithm. The Annals of Applied
Probability, 20(2):495–521, 2010.

[33] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra,
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