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Abstract—Modern network security rests on the Secure Sock-
ets Layer (SSL) and Transport Layer Security (TLS) protocols.
Distributed systems, mobile and desktop applications, embedded
devices, and all of secure Web rely on SSL/TLS for protection
against network attacks. This protection critically depends on
whether SSL/TLS clients correctly validate X.509 certificates
presented by servers during the SSL/TLS handshake protocol.

We design, implement, and apply the first methodology for
large-scale testing of certificate validation logic in SSL/TLS
implementations. Our first ingredient is “frankencerts,” synthetic
certificates that are randomly mutated from parts of real cer-
tificates and thus include unusual combinations of extensions
and constraints. Our second ingredient is differential testing: if
one SSL/TLS implementation accepts a certificate while another
rejects the same certificate, we use the discrepancy as an oracle
for finding flaws in individual implementations.

Differential testing with frankencerts uncovered 208 dis-
crepancies between popular SSL/TLS implementations such as
OpenSSL, NSS, CyaSSL, GnuTLS, PolarSSL, MatrixSSL, etc.
Many of them are caused by serious security vulnerabilities. For
example, any server with a valid X.509 version 1 certificate can act
as a rogue certificate authority and issue fake certificates for any
domain, enabling man-in-the-middle attacks against MatrixSSL
and GnuTLS. Several implementations also accept certificate
authorities created by unauthorized issuers, as well as certificates
not intended for server authentication.

We also found serious vulnerabilities in how users are warned
about certificate validation errors. When presented with an
expired, self-signed certificate, NSS, Safari, and Chrome (on
Linux) report that the certificate has expired—a low-risk, often
ignored error—but not that the connection is insecure against a
man-in-the-middle attack.

These results demonstrate that automated adversarial testing
with frankencerts is a powerful methodology for discovering
security flaws in SSL/TLS implementations.

I. INTRODUCTION

Secure Sockets Layer (SSL) and its descendant Transport
Layer Security (TLS) protocols are the cornerstone of Internet
security. They are the basis of HTTPS and are pervasively
used by Web, mobile, enterprise, and embedded software to
provide end-to-end confidentiality, integrity, and authentication
for communication over insecure networks.

SSL/TLS is a big, complex protocol, described semi-
formally in dozens of RFCs. Implementing it correctly is
a daunting task for an application programmer. Fortunately,

many open-source implementations of SSL/TLS are available
for developers who need to incorporate SSL/TLS into their
software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma-
trixSSL, cryptlib, and several others. Several Web browsers
include their own, proprietary implementations.

In this paper, we focus on server authentication, which
is the only protection against man-in-the-middle and other
server impersonation attacks, and thus essential for HTTPS
and virtually any other application of SSL/TLS. Server authen-
tication in SSL/TLS depends entirely on a single step in the
handshake protocol. As part of its “Server Hello” message,
the server presents an X.509 certificate with its public key.
The client must validate this certificate. Certificate validation
involves verifying the chain of trust consisting of one or
more certificate authorities, checking whether the certificate is
valid for establishing SSL/TLS keys, certificate validity dates,
various extensions, and many other checks.

Systematically testing correctness of the certificate val-
idation logic in SSL/TLS implementations is a formidable
challenge. We explain the two main hurdles below.

First problem: generating test inputs. The test inputs, i.e.,
X.509 certificates, are structurally complex data with intricate
semantic and syntactic constraints. The underlying input space
is huge with only a tiny fraction of the space consisting of
actual certificates. A simple automated technique, such as
random fuzzing, is unlikely to produce more than a handful of
useful inputs since a random string is overwhelmingly unlikely
to even be parsable as a certificate.

Some test certificates can be created manually, but writing
just a small suite of such complex inputs requires considerable
effort; manually creating a high-quality suite is simply infea-
sible. Furthermore, the testing must include “corner cases”:
certificates with unusual combinations of features and exten-
sions that do not occur in any currently existing certificate but
may be crafted by an attacker.

Second problem: interpreting the results of testing. Given a
test certificate and an SSL/TLS implementation, we can record
whether the certificate has been accepted or rejected, but that
does not answer the main question: is the implementation
correct, i.e., is the accepted certificate valid? And, if the
certificate is rejected, is the reason given for rejection correct?

Manually characterizing test certificates as valid or invalid



and writing the corresponding assertions for analyzing the
outputs observed during testing does not scale. A naive ap-
proach to automate this characterization essentially requires
re-implementing certificate validation, which is impractical and
has high potential for bugs of its own. Interpreting the results
of large-scale testing requires an oracle for certificate validity.

Our contributions. We design, implement, and evaluate the
first approach for systematically testing certificate validation
logic in SSL/TLS implementations. It solves both challenges:
(1) automatically generating test certificates, and (2) automat-
ically detecting when some of the implementations do not
validate these certificates correctly.

The first step of our approach is adversarial input gen-
eration. By design, our generator synthesizes test certificates
that are syntactically well-formed but may violate many of the
complex constraints and internal dependencies that a valid cer-
tificate must satisfy. This enables us to test whether SSL/TLS
implementations check these constraints and dependencies.

To “seed” the generator, we built a corpus of 243,246
real SSL/TLS certificates by scanning the Internet. Our gen-
erator broke them down into parts, then generated over 8
million frankencerts by mutating random combinations of
these parts and artificial parts synthesized using the ASN.1
grammar for X.509. By construction, frankencerts are parsable
as certificates, yet may violate X.509 semantics. They include
unusual combinations of critical and non-critical extensions,
rare extension values, strange key usage constraints, odd
certificate authorities, etc. Testing SSL/TLS implementations
with frankencerts exercises code paths that rarely get executed
when validating normal certificates and helps elicit behaviors
that do not manifest during conventional testing.

Our second insight is that multiple, independent imple-
mentations of X.509 certificate validation—the very same
implementations that we are testing—can be used as an oracle
to detect flaws in validation logic. For each frankencert, we
compare the answers produced by OpenSSL, NSS, GnuTLS,
CyaSSL, PolarSSL, MatrixSSL, OpenJDK, and Bouncy Castle.
These SSL/TLS libraries are supposed to implement the same
certificate validation algorithm and, therefore, should agree
on every certificate. Differences in the implementations of
functionality left unspecified by the X.509 standard may cause
a “benign” discrepancy, but most discrepancies mean that some
of the disagreeing SSL/TLS implementations are incorrect.

Our differential mutation testing of SSL/TLS implementa-
tions on 8,127,600 frankencerts uncovered 208 discrepancies
between the implementations, many of which are caused by
serious flaws. For example, MatrixSSL silently accepts X.509
version 1 certificates, making all MatrixSSL-based applications
vulnerable to man-in-the-middle attacks: anyone with a valid
version 1 certificate can pretend to be an intermediate certifi-
cate authority (CA), issue a fake certificate for any Internet
domain, and that certificate will be accepted by MatrixSSL.

In GnuTLS, our testing discovered a subtle bug in the
handling of X.509 version 1 certificates. Due to a mismatch
between two flags, the code that intends to accept only locally
trusted version 1 root certificates is actually accepting any
version 1 CA certificate, including fake ones from mali-
cious servers. This bug could not have been found without

frankencerts because it is not triggered by any real certificate
from our corpus (but, of course, a man-in-the-middle attacker
could craft a malicious certificate to exploit this vulnerability).

Many vulnerabilities are caused by incorrect or missing
checks on the restrictions that root CAs impose on lower-level
CAs. MatrixSSL does not check path length constraints. If
a restricted CA (e.g., a corporate CA whose authority only
extends to a particular enterprise) creates a new intermediate
CA, who then issues certificates for any Internet domain,
these certificates will be accepted by MatrixSSL. GnuTLS,
CyaSSL, and PolarSSL do not check key usage constraints. As
a consequence, an attacker who compromises the code signing
key of some company can use it to spoof that company’s
servers in TLS connections. Most of these flaws could not
have been discovered without frankencerts because incorrect
validation logic is only triggered by certificates of a certain
form, not by “normal” certificates.

Even if an SSL/TLS implementation correctly rejects a
certificate, the reason given to the user is very important
because Web browsers and other interactive applications often
allow the user to override the warning. For example, if the
warning is that the certificate expired yesterday, this may
indicate a lazy system administrator but does not imply that
the connection is insecure. Because the risk is low, the user
may click through the warning. If, on the other hand, the
certificate is not issued by a legitimate certificate authority,
this means that the server could have been impersonated and
the connection may be insecure.

Our differential testing uncovered serious vulnerabilities in
how SSL/TLS implementations report errors. When presented
with an expired, self-signed certificate, NSS reports that the
certificate has expired but not that the issuer is invalid. This
vulnerability found its way into Web browsers such as Chrome
on Linux and Safari. Since users tend to click through expired-
certificate warnings—and are advised to do so [1]—this flaw
gives attackers an easily exploitable vector for man-in-the-
middle attacks against all users of these Web browsers.

In summary, adversarial test input generation and differen-
tial mutation testing on millions of “frankencerts” synthesized
from parts of real certificates is a powerful new technique
for uncovering deep semantic errors in the implementations
of SSL/TLS, the most important network security protocol.

II. RELATED WORK

A. Security of SSL/TLS implementations

We are not aware of any prior work on systematic, auto-
mated discovery of certificate validation vulnerabilities in the
implementations of SSL/TLS clients.

Moxie Marlinspike demonstrated several flaws in the im-
plementations of SSL/TLS certificate validation [55, 56, 57],
including the lack of CA bit checking in Microsoft’s Cryp-
toAPI as of 2002 [54]. More recently, the same vulnerability
was discovered in the SSL implementation on Apple iOS [40].

Georgiev et al. carried out a study of certificate validation
vulnerabilities caused by the incorrect use of SSL/TLS APIs,
as opposed to flaws in the implementations of these APIs [31].
Georgiev et al. focus primarily on the incorrect validation



of hostnames in server certificates at a different level in the
software stack—in applications, transport libraries, and Web-
services middleware. Fahl et al. analyzed incorrect usage of
SSL in Android apps [29]. The class of certificate validation
vulnerabilities analyzed in this paper is complementary to and
has little overlap with the vulnerabilities discovered in [29, 31].
Unlike [29, 31], we developed an automated technique for
discovering certificate validation vulnerabilities.

A survey of security issues in SSL/TLS can be found
in [16]. Cryptographic flaws in SSL/TLS implementations
and the protocol itself—including compression, initialization,
padding of cipher modes and message authentication codes,
etc.—can be exploited to attack confidentiality, especially
when the protocol is used for HTTPS (HTTP over SSL) [3,
24, 72]. By contrast, this paper is about authentication flaws.

Flaws in SSL server implementations can be exploited
for chosen-ciphertext attacks, resulting in private key compro-
mise [8, 9]. Flaws in pseudo-random number generation can
produce SSL/TLS keys that are easy to compromise [38, 50].

Hash collisions [77] and certificate parsing discrepancies
between certificate authorities (CAs) and Web browsers [44]
can trick a CA into issuing a valid leaf certificate with the
wrong subject name, or even a rogue intermediate CA cer-
tificate. By contrast, we focus on verifying whether SSL/TLS
implementations correctly handle invalid certificates.

Large-scale surveys of SSL certificates “in the wild” can be
found in [19, 25, 27, 78]. Because their objective is to collect
and analyze certificates, not to find certificate validation errors
in SSL/TLS implementations, they are complementary to this
paper: for example, their certificate corpi can be used to “seed”
frankencert generation (Section VII). Delignat-Lavaud et al.
note that GnuTLS ignores unsupported critical extensions [19],
matching what we found with automated testing.

Akhawe et al. surveyed SSL warnings in Web browsers [1].
One of their recommendations is to accept recently expired
certificates. As we show in Section IX, several Web browsers
show just the “Expired certificate” warning even if the expired
certificate is not issued by a trusted CA and the connection is
thus insecure. Akhawe and Felt performed a large-scale user
study of the effectiveness of browser security warnings [2].
One of their findings is that users are less likely to click
through an “Expired certificate” warning than through an
“Untrusted issuer” warning, possibly because the former tend
to occur at websites that previously did not produce any
warnings. Amann et al. demonstrated that certain signs of man-
in-the-middle attacks, such as certificates never seen before for
a given domain or issued by an unusual CA, can be caused
by benign changes in the CA infrastructure [4]. SSL security
indicators in mobile Web browsers were studied in [5, 6].

The focus of this paper is on server certificate authentica-
tion, which is the most common usage pattern for SSL certifi-
cates. The other direction, i.e., client certificate authentication,
was analyzed in [21, 60]. Our adversarial testing techniques for
finding bugs in the client-side validation of server certificates
can also be applied to the implementations of server-side
validation of client certificates.

Several recent high-profile vulnerabilities highlighted the
need for thorough security analysis of SSL/TLS implemen-

tations. The implementation of the SSL/TLS handshake in
Mac OS and iOS accidentally did not check whether the key
used to sign the server’s key exchange messages matches the
public key in the certificate presented by the server, leaving this
implementation vulnerable to server impersonation [49] (this
vulnerability is not caused by incorrect certificate validation).
In GnuTLS, certain errors during certificate parsing were
accidentally interpreted as successful validation, thus enabling
server impersonation [33]. We discuss the latter vulnerability
in more detail in Section VIII.

B. Software testing

Our work introduces a novel black-box testing ap-
proach to address two foundational software testing prob-
lems—generation of test inputs and validation of program
outputs (aka the “oracle” problem)—in the context of find-
ing security bugs, specifically in SSL/TLS implementations.
Researchers have extensively studied these two problems
over the last few decades in a number of contexts and de-
veloped various automated techniques to address them. For
example, techniques using grammars [48, 52, 58, 75, 79],
constraints [13, 53], dedicated generators [18], fuzzing [36],
symbolic execution [12, 35, 45, 47, 74], and genetic algo-
rithms [7] provide automated generation of inputs for black-
box and white-box testing, while techniques using correctness
specifications [15], differential testing [59], and metamorphic
testing [14] provide automated validation of program outputs.
Differential black-box testing has been successfully used to
find parsing discrepancies between antivirus tools that can help
malware evade detection [42].

The use of grammars in testing dates back to the
1970s [62] and has provided the basis for randomized [52, 58,
75, 79] and systematic [48] techniques for finding application
bugs. The most closely related work to ours is Yang et
al.’s Csmith framework, which used random grammar-based
generation of C programs to discover many bugs in production
C compilers [79]. The key difference between Csmith and our
work is input generation. Csmith uses purely grammar-based
generation without actual C programs and hence only produces
input programs with language features that are explicitly
supported by its generation algorithm. Moreover, the design
goal of Csmith is to generate safe programs that have a unique
meaning and no undefined behaviors. This allows Csmith to
use a straightforward test oracle that performs identity compar-
ison on outputs for differential testing. By contrast, our goal is
to explore behaviors of SSL/TLS implementations that are not
exercised by valid certificates and thus more likely to contain
security bugs. Hence, our test generator does not need to
ensure that test outputs conform to a restricted form. To detect
validation errors, we cluster certificates into “buckets” based
on the outputs produced by each SSL/TLS implementation
when presented with a given certificate, with each bucket
representing a discrepancy between the implementations. As
explained in Section IX, multiple discrepancies may be caused
by the same underlying implementation error (in our testing,
15 root causes led to 208 discrepancies).

Clustering test executions is a well-explored area, e.g.,
to diagnose the causes of failed executions by reducing the
number of failures to inspect [32, 41, 43, 61] or to distinguish
failing and passing executions in the context of a single



implementation [20]. We use clustering and differential testing
in tandem to identify incorrect behavior in the context of
multiple implementations tested together.

Our test input generator combines parts of existing real
certificates and also injects synthetic artificial parts using
operations that resemble combination and mutation in genetic
algorithms [39]. In principle, it may be possible to define
a genetic algorithm for certificate generation by customizing
genetic combination and mutation with respect to the SSL
certificate grammar, fields, their values, extensions, etc. The
main challenge for effective genetic search is how to define an
appropriate fitness function, which must measure the potential
usefulness of a candidate input. Genetic search, as well as other
heuristics for test input generation, can complement systematic
exploration using guided sampling [7].

The classic idea of symbolic execution [47] as well as
its more recent variants, e.g., where concrete inputs guide
symbolic execution [12, 35, 74], enable a form of white-box
test input generation that has received much recent attention
for finding security bugs [36, 37, 46, 73]. Godefroid et
al.’s SAGE [36] introduced white-box fuzzing that executes
a given suite of inputs, monitors their execution paths, and
builds symbolic path condition constraints, which are sys-
tematically negated to explore their neighboring paths. SAGE
found several new bugs in Windows applications, including
media players and image processors. Grammar-based whitebox
fuzzing [34] uses a grammar to enumerate valid string inputs
by solving constraints over symbolic grammar tokens. A
security-focused application using a context-free fragment of
the JavaScript grammar to test the code generation module of
the Internet Explorer 7 JavaScript interpreter showed that the
use of the grammar provides enhanced code coverage. Similar
but independent work on CESE [51] uses symbolic grammars
with symbolic execution to create higher-coverage suites for
select UNIX tools, albeit in a non-security setting.

Kiezun et al.’s Ardilla [46] uses concolic execution to
generate test inputs that drive its dynamic taint analysis and
mutates the inputs using a library of attack patterns to create
SQL injection and cross-site scripting attacks. Halfond et
al. [37] show how symbolic execution can more precisely
identify parameter values that define the interfaces of Web
applications, and facilitate finding vulnerabilities. Saxena et
al.’s Kudzu [73] uses a symbolic execution framework based
on a customized string constraint language and solver to find
code injection vulnerabilities in JavaScript clients.

Brumley et al. [10] proposed a white-box symbolic analysis
technique to guide differential testing [59]. Their analysis
is driven by concrete executions in the spirit of dynamic
symbolic (aka concolic) execution [12, 35, 74]. They use
weakest preconditions [23] over select execution paths together
with constraint solving to compute inputs that likely cause
parsing discrepancies between different implementations of
protocols such as HTTP and NTP.

There are two basic differences between our methodology
and that of [10]. First, our black-box approach does not require
analyzing either the source, or the binary code. Second, the
need to solve path constraints limits the scalability of the
approach described in [10]. Generating even a single test
certificate using their technique requires symbolic analysis of

both the parsing code and the certificate validation code hidden
deep inside the program. SSL certificates are structurally more
complex than HTTP and NTP inputs, and, crucially, the certifi-
cate validation logic lies deeper in SSL/TLS implementations
than the X.509 parsing code. For example, a MiniWeb server
responding to a GET /index.html request (one of the case
studies in [10]) executes 246,910 instructions. By contrast, the
simplest of our test cases—an OpenSSL client processing a
certificate chain of length 1 with zero extensions—executes
27,901,961 instructions.

An interesting avenue for future research is to explore
whether the two approaches could be used in conjunction and,
in particular, whether generation of test SSL certificates can
benefit from the fact that the technique of [10] performs a
directed search for likely behavioral differences.

More recent work by Ramos and Engler on UC-KLEE [63],
which integrates KLEE [11] and lazy initialization [45], ap-
plies more comprehensive symbolic execution over a bounded
exhaustive execution space to check code equivalence; UC-
KLEE has been effective in finding bugs in different tools,
including itself. In principle, such goal-directed approaches
are very powerful: they integrate the spirit of differential
testing with symbolic analysis to create formulas that explic-
itly capture behavioral differences of interest. However, the
resulting formulas in the context of structurally complex data
can be exceedingly complex since they represent destructive
updates in imperative code using a stateless logic. Scaling such
approaches to SSL/TLS implementations is an open problem.

In summary, while approaches based on symbolic execu-
tion have been successful in finding bugs in many applications,
their central requirement—the need to solve constraints for
each execution path explored in symbolic execution—is the
basic bottleneck that limits their scalability and applicability
for programs that operate on complex data types, such as
the structurally complex SSL certificates, and have complex
path conditions that can be impractical to solve. By contrast,
our test generation algorithm is not sensitive to the
implementation-level complexity of the programs being
tested. Instead, it focuses on the systematic exploration of
the space of likely useful inputs and thus reduces the overall
problem complexity by de-coupling the complexity of the input
space from that of the SSL/TLS implementations.

Srivastava et al. [76] use static differential analysis, which
does not perform test generation or execution, to analyze
consistency between different implementations of the Java
Class Library API and use the discrepancies as an oracle
to find flaws in the implementations of access-control logic.
While static analysis and dynamic analysis, such as testing,
are well-known to have complementary strengths, they can also
be applied in synergy [28]. For example, for testing SSL/TLS
implementations, static dataflow analysis could potentially
reduce the space of candidate inputs for the test generator by
focusing it to exercise fewer values or fewer combinations of
values for certain certificate extensions.

III. OVERVIEW OF SSL/TLS

A. SSL/TLS protocol

The Secure Sockets Layers (SSL) Protocol Version 3.0 [70]
and its descendants, Transport Layer Security (TLS) Protocol



Version 1.0 [64], Version 1.1 [67], and Version 1.2 [68], are the
“de facto” standard for secure Internet communications. The
primary goal of the SSL/TLS protocol is to provide privacy
and data integrity between two communicating applications.

In this paper, we focus on a particular security guarantee
promised by SSL/TLS: server authentication. Server authen-
tication is essential for security against network attackers. For
example, when SSL/TLS is used to protect HTTP communi-
cations (HTTPS), server authentication ensures that the client
(e.g., Web browser) is not mistaken about the identity of the
Web server it is connecting to. Without server authentication,
SSL/TLS connections are insecure against man-in-the-middle
attacks, which can be launched by malicious Wi-Fi access
points, compromised routers, etc.

The SSL/TLS protocol comprises the handshake protocol
and the record protocol. Server authentication is performed
entirely in the handshake protocol. As part of the hand-
shake, the server presents an X.509 certificate with its public
key [69]. The client must validate this certificate as described
in Section IV. If the certificate is not validated correctly,
authentication guarantees of SSL/TLS do not hold.

Certificate validation in SSL/TLS critically depends on
certificate authorities (CAs). Consequently, we analyze the
correctness of SSL/TLS implementations under the assumption
that the CAs trusted by the client correctly verify the identities
of the servers to whom they issue certificates. If this assump-
tion does not hold—e.g., a trusted CA has been compromised
or tricked into issuing false certificates [17, 22]—SSL/TLS is
not secure regardless of whether the client is correct or not.

In summary, we aim to test if the implementations of
SSL/TLS clients correctly authenticate SSL/TLS servers in the
presence of a standard “network attacker,” who can control any
part of the network and run his own servers, possibly with
their own certificates, but does not control legitimate servers
and cannot forge their certificates.

B. SSL/TLS implementations

In this paper, we focus primarily on testing open-source
implementations of SSL/TLS. Our testing methodology can be
successfully applied to closed-source implementations, too (as
illustrated by our testing of Web browsers), but having access
to the source code makes it easier to identify the root causes
of the flaws and vulnerabilities uncovered by our testing.

We tested the following SSL/TLS implementations:
OpenSSL, NSS, CyaSSL, GnuTLS, PolarSSL, MatrixSSL,
cryptlib, OpenJDK, and Bouncy Castle. These implementa-
tions are distributed as open-source software libraries so that
they can be incorporated into applications that need SSL/TLS
for secure network communications.

Many vulnerabilities stem from the fact that applications
use these libraries incorrectly [31], especially when some
critical part of SSL/TLS functionality such as verifying the
server’s hostname is delegated by the SSL/TLS library to the
application. In this paper, however, we focus on flaws within
the libraries, not in the applications that use them, with one
exception—Web browsers.

HTTPS, the protocol for protecting Web sessions from
network attackers, is perhaps the most important application of

version 
serial no. 

signing algo. 
issuer name: 
Enterprise CA 
validity period 
subject name: 

www.enterprise.com 
... 

extensions 

basic constraint 
CA bit: 0 

key usage:  
keyEncipherment 

other extensions 

Enterprise CA cert  Root CA cert Leaf cert 

version 
serial no. 

signing algo. 
issuer name:  
Root CA 

validity period 
subject name: 
Enterprise CA 

... 

extensions 

basic constraint 
CA bit: 1, pathlen: 0 

key usage: 
keyCertSign  

other extensions 

name constraint: 
*.enterprise.com 

version 
serial no. 

signing algo. 
issuer name:  
Root CA 

validity period 
subject name: 

Root CA 
... 

extensions 

basic constraint 
CA bit: 1 

key usage: 
keyCertSign  

other extensions 

Fig. 1: A sample X509 certificate chain.

SSL/TLS. Therefore, we extend our testing to Web browsers,
all of which must support HTTPS: Firefox, Chrome, Internet
Explorer, Safari, Opera, and WebKit (the latter is a browser
“engine” rather than a standalone browser). Web browsers
typically contain proprietary implementations of SSL/TLS,
some of which are derived from the libraries listed above.
For example, Firefox and Chrome use a version of NSS, while
WebKit has a GnuTLS-based HTTPS back end, among others.

IV. CERTIFICATE VALIDATION IN SSL/TLS

The only mechanism for server authentication in SSL/TLS
is the client’s validation of the server’s X.509 public-key
certificate presented during the handshake protocol. Client
authentication is less common (in a typical HTTPS browsing
session, only the server is authenticated). It involves symmetric
steps on the server side to validate the client’s certificate.

X.509 certificate validation is an extremely complex pro-
cedure, described in several semi-formal RFCs [64, 65, 66, 67,
68, 69, 70, 71]. Below, we give a very brief, partial overview
of some of the key steps.

Chain of trust verification. Each SSL/TLS client trusts a
number of certificate authorities (CAs), whose X.509 certifi-
cates are stored in the client’s local “root of trust.” We will
refer to these trusted certificate authorities as root CAs, and
to their certificates as root certificates. The list of root CAs
varies from application to application and from OS to OS.
For example, the Firefox Web browser ships with 144 root
certificates pre-installed, while the Chrome Web browser on
Linux and MacOS relies on the OS’s list of root certificates.

Each X.509 certificate has an “issuer” field that contains
the name of the certificate authority (CA) that issued the
certificate. The certificate presented by the server (we’ll call it
the leaf certificate) should be accompanied by the certificate
of the issuing CA and, if the issuing CA is not a root CA, the
certificates of higher-level CAs all the way to a root CA.



As part of certificate validation, the client must construct a
valid chain of certificates starting from the leaf certificate and
ending in a root certificate (see an example in Fig. 1). Below,
we list some of the checks involved in validating the chain.
These brief synopses are very informal and incomplete, please
refer to RFC 5280 [69] for the full explanation.

Each certificate in the chain must be signed by the CA
immediately above it and the root (“anchor”) of the chain must
be one of the client’s trusted root CAs.

The current time must be later than the value of each
certificate’s “not valid before” field and earlier than the value
of each certificate’s “not valid after” field, in the time zone
specified in these fields. If no time zone is specified, then
Greenwich Mean Time (GMT) should be used.

If a CA certificate in an X.509 version 1 or version 2
certificate, then the client must either verify that it is indeed
a CA certificate through out-of-band means or reject the
certificate [69, 6.1.4(k)]. The following checks apply only to
X.509 version 3 certificates.

For each CA certificate in the chain, the client must verify
the basic constraints extension:

• The “CA bit” must be set. If the CA bit is not set, then
the current certificate cannot act as a root or intermediate
certificate in a certificate chain. The chain is not valid.

• If the CA certificate contains a “path length” constraint,
the number of intermediate CAs between the leaf certifi-
cate and the current certificate must be less than the path
length. For example, if the CA certificate has path length
of 0, it can be used only to issue leaf certificates.

Every extension in a certificate is designated as critical
or non-critical. A certificate with a critical extension that the
client does not recognize or understand must be rejected.

If a CA certificate in the chain contains a name constraints
extension, then the subject name in the immediately following
certificate in the chain must satisfy the listed name constraints.
Name constraints are used to limit the subjects that a CA can
issue certificates for, by listing permitted or excluded subjects.
This extension is critical.

If a certificate in the chain contains a key usage extension,
the value of this extension must include the purpose that the
certificate is being used for. For example, the key usage of
an intermediate certificate must include keyCertSign (it
must also have the CA bit set in the basic constraints, as
described above). If a leaf certificate contains the server’s
RSA public key that will be used to encrypt a session key,
its key usage extension must include keyEncipherment.
CAs should mark this extension as critical.

Similar to key usage, if a certificate contains an extended
key usage extension, the value of this extension must include
the purpose that the certificate is being used for, e.g., server
authentication in the case of a leaf certificate.

If a certificate contains an Authority Key Identifier (AKI)
extension, then its value—containing the key identifier and/or
issuer and serial number—should be used to locate the public
key for validating the certificate. This extension is used when
the certificate issuer has multiple public keys.

If a certificate contains a Certificate Revocation List (CRL)
distribution points extension, the client should obtain CRL
information as specified by this extension.

The above list omits many important checks and subtleties
of certificate validation. For example, CA certificates may
contain policy constraints that limit their authority in various
ways [69, 4.2.1.11]. Policy constraints extension should be
marked as critical, although in practice few SSL/TLS imple-
mentations understand policy constraints.

Hostname verification. After the chain of trust has been val-
idated, the client must verify the server’s identity by checking
if the fully qualified DNS name of the server it wants to talk to
matches one of the names in the “SubjectAltNames” extension
or the “Common Name” field of the leaf certificate. Some SS-
L/TLS implementations perform hostname verification, while
others delegate it to higher-level applications (see Table IX).

V. CURRENT TESTING PRACTICES FOR SSL/TLS
IMPLEMENTATIONS

Most SSL/TLS implementations analyzed in this paper
ship with several pre-generated X.509 certificates intended for
testing (Table I). These certificates differ only in a few fields,
such as hashing algorithms (SHA-1, MD5, etc.), algorithms
for public-key cryptography (DSA, RSA, Diffie-Hellman, etc.),
and the sizes of public keys (512 bits, 1024 bits, etc.).
OpenSSL uses a total of 2 certificates to test client and server
authentication, respectively; the rest are intended to test other
functionalities such as certificate parsing.

TABLE I: Number of SSL/TLS certificates used by different
implementations for testing

Implementation Certificate count
NSS 64
GnuTLS 51
OpenSSL 44
PolarSSL 18
CyaSSL 9
MatrixSSL 9

Testing with a handful of valid certificates is unlikely to
uncover vulnerabilities, omissions, and implementation flaws
in the certificate validation logic. For example, we found that
GnuTLS mistakenly accepts all versions 1 certificates even
though the default flag is set to accept only locally trusted
version 1 root certificates (see Section IX). This vulnerability
would have never been discovered with their existing test suite
because it only contains version 3 certificates.

Automated adversarial testing is rarely, if ever, performed
for SSL/TLS implementations. As we demonstrate in this
paper, systematic testing with inputs that do not satisfy the
protocol specification significantly improves the chances of
uncovering subtle implementation flaws.

Several of the SSL/TLS implementations in our study, in-
cluding OpenSSL, NSS, and MatrixSSL, have been tested and
certified according to FIPS 140-2 [30], the U.S. government
computer security standard for cryptographic modules. As the
results of our testing demonstrate, FIPS certification does not
mean that an implementation performs authentication correctly
or is secure against man-in-the-middle attacks.



TABLE II: 20 most common issuers in our corpus

Common Name (CN) Occurrences
Cybertrust Public SureServer SV CA 30066
Go Daddy Secure Certification Authority 13300
localhost.localdomain 7179
GeoTrust SSL CA 7171
COMODO SSL CA 7114
RapidSSL CA 6358
COMODO SSL CA 2 5326
BMS 4878
DigiCert High Assurance CA-3 4341
Hitron Technologies Cable Modem Root Certificate Authority 4013
VeriSign Class 3 Secure Server CA - G3 3837
COMODO High-Assurance Secure Server CA 3681
PositiveSSL CA 2 2724
Entrust Certification Authority - L1C 2719
Daniel 2639
Vodafone (Secure Networks) 2634
192.168.168.168 2417
GeoTrust DV SSL CA 2174
localhost 2142
Parallels Panel 2084

VI. COLLECTING CERTIFICATES

We used ZMap [26] to scan the Internet and attempt an
SSL connection to every host listening on port 443. If the
connection was successful, the certificate presented by the
server was saved along with the IP of the host.

This scan yielded a corpus of 243,246 unique certificates.
23.5% of the collected certificates were already expired at the
time they were presented by their servers, and 0.02% were not
yet valid. The certificates in our corpus were issued by 33,837
unique issuers, identified by the value of their CN (“Common
Name”) field. Table II shows the 20 most common issuers.

23,698 of the certificates are X.509 version 1 (v1) cer-
tificates, 4,974 of which are expired. This is important be-
cause—as our testing has uncovered—any v1 certificate issued
by a trusted CA can be used for man-in-the-middle attacks
against several SSL/TLS implementations (see Section IX).

20,391 v1 certificates are self-signed. Table III shows
the 10 most common issuers of the other 3,307 certificates.
localhost, localdomain, and 192.168.1.1 are all self-issued
certificate chains, but many v1 certificates have been issued by
trusted issuers, especially manufacturers of embedded devices.
For example, Remotewd.com is used for remote control of
Western Digital Smart TVs, while UBNT and ZTE make
networking equipment. As we show in Section IX, SSL/TLS
implementations that specifically target embedded devices han-
dle v1 certificates incorrectly and are thus vulnerable to man-
in-the-middle attacks using these certificates.

437 certificates in our corpus have version 4, even though
there is no X.509 version 4. 434 of them are self-signed, the
other 3 are issued by Cyberoam, a manufacturer of hardware
“security appliances.” We conjecture that the cause is an off-
by-one bug in the certificate issuance software: the version field
in the certificate is zero-indexed, and if set to 3 by the issuer,
it is interpreted as version 4 by SSL/TLS implementations.

Table IV shows the number of times various extensions
show up in our corpus and how many unique values we
observed for each extension. Extensions are labeled by short
names if known, otherwise by their object identifiers (OID).

TABLE III: 10 most common issuers of X.509 version 1
certificates

Common Name (CN) Occurrences
BMS 4877
Parallels Panel 2003
localhost 1668
brutus.neuronio.pt 1196
plesk 1163
remotewd.com 1120
UBNT 1094
localdomain 986
192.168.1.1 507
ZTE Corporation 501

TABLE IV: Extensions observed in our corpus

Name or OID Occurrences Unique values
basicConstraints 161723 13
authorityKeyIdentifier 161572 21990
subjectKeyIdentifier 151823 72496
keyUsage 132970 54
extendedKeyUsage 131453 83
crlDistributionPoints 126579 4851
subjectAltName 101622 59767
authorityInfoAccess 89005 3864
certificatePolicies 81264 418
nsCertType 63913 21
nsComment 5870 185
1.3.6.1.4.1.311.20.2 2897 11
issuerAltName 1519 115
1.3.6.1.5.5.7.1.12 1474 2
SMIME-CAPS 915 4
1.3.6.1.4.1.311.21.10 875 16
1.3.6.1.4.1.311.21.7 873 312
privateKeyUsagePeriod 871 798
2.5.29.1 175 133
nsRevocationUrl 112 39
nsCaRevocationUrl 104 52
nsCaPolicyUrl 74 32
nsSslServerName 73 17
nsBaseUrl 63 31
1.2.840.113533.7.65.0 59 6
2.16.840.1.113719.1.9.4.1 54 26
nsRenewalUrl 33 7
2.5.29.80 10 10
qcStatements 8 2
2.5.29.7 7 7
2.16.840.1.113733.1.6.15 6 6
2.5.29.10 5 1
1.3.6.1.4.1.3401.8.1.1 4 4
freshestCRL 4 3
subjectDirectoryAttributes 4 2
1.3.6.1.4.1.311.10.11.11 3 3
2.5.29.3 2 1
2.16.840.1.113733.1.6.7 2 2
1.3.6.1.4.4324.33 2 2
1.3.6.1.4.4324.36 2 2
1.3.6.1.4.4324.34 2 2
1.3.6.1.4.4324.35 2 1
1.2.40.0.10.1.1.1 2 2
1.3.6.1.4.1.311.21.1 2 1
1.3.6.1.4.1.7650.1 1 1
1.3.6.1.4.1.311.10.11.87 1 1
1.3.6.1.4.1.311.10.11.26 1 1
1.3.6.1.4.1.8173.2.3.6 1 1
1.2.40.0.10.1.1.2 1 1
2.5.29.4 1 1
1.2.250.1.71.1.2.5 1 1
1.3.6.1.4.1.6334.2.2 1 1



VII. GENERATING FRANKENCERTS

The key challenge in generating test inputs for SSL/TLS
implementations is how to create strings that (1) are parsed
as X.509 certificates by the implementations, but (2) exercise
parts of their functionality that are rarely or never executed
when processing normal certificates.

We use our corpus of real certificates (see Section VI) as
the source of syntactically valid certificate parts. Our algorithm
them assembles these parts into random combinations we
call frankencerts. One limitation of the certificates in our
corpus is that they all conform to the X.509 specification. To
test how SSL/TLS implementations behave when faced with
syntactically valid certificates that do not conform to X.509,
we also synthesize artificial certificate parts and add them to
the inputs of the frankencerts generator (see Section VII-B).

A. Generating frankencerts

Algorithm 1 describes the generation of a single
frankencert. Our prototype implementation of Frankencert
is based on OpenSSL. It uses parts randomly selected from
the corpus, with two exceptions: it generates a new RSA key
and changes the issuer so that it can create chains where the
generated frankencert acts as an intermediate certificate. The
issuer field of each frankencert must be equal to the subject of
the certificate one level higher in the chain, or else all tested
implementations fail to follow the chain and do not attempt
to validate any other part of the certificate. For every other
field, the generator picks the value from a randomly chosen
certificate in the corpus (a different certificate for each field).

Extensions are set as follows. The generator chooses a
random number of extensions from among all extensions
observed in the corpus (Table IV). For each extension, it
randomly chooses a value from the set of all observed values
for that extension. Each value, no matter how common or rare,
has an equal probability of appearing in a frankencert.

We use two CAs as roots of trust, with an X.509 version 1
certificate and an X.509 version 3 certificate, respectively. For
the purposes of testing, both root CAs are installed in the local
root of trust and thus trusted by all tested SSL/TLS clients.

Each frankencert is a well-formed X.509 certificate signed
by a locally trusted CA, but it may be invalid for a number of
reasons. By design, the frankencert generator does not respect
the constraints on X.509 extensions. It also randomly desig-
nates extensions as critical or non-critical in each generated
frankencert, violating the requirement that certain extensions
must be critical (Section IV). This allows us to test whether
SSL/TLS implementations reject certificates with unknown
critical extensions, as required by the X.509 RFC [69].

For certificate chains, we use between 0 and 3 frankencerts.
Each intermediate certificate uses the previous certificate’s
(randomly chosen) subject as its issuer and is signed by the
previous certificate, creating a chain that SSL/TLS implemen-
tations can follow. These chains are well-formed, but may
still be invalid because of the contents of random frankencerts
acting as intermediate certificates. For example, the key us-
age extension of an intermediate certificate may not include
keyCertSign, as required by the X.509 RFC [69], or an

intermediate certificate may violate a name constraint which
limits the set of subjects it is allowed to certify.

Algorithm 1 Generating a single frankencert
1: procedure FRANKENCERT(certs, exts, issuer)
2: new cert← Create a blank cert
3: for all field ∈ new cert do
4: if field =“key” then
5: new cert.key ← Create a random key
6: else if field =“issuer” then
7: new cert.issuer ← issuer
8: else
9: random cert← CHOICE(certs)

10: new cert.field← random cert.field
11: end if
12: end for
13: num exts←RANDOM(0, 10)
14: for i ∈ 1..num exts do
15: random id←CHOICE(exts)
16: random val←CHOICE(exts[random id])
17: new cert.extensions[i].id← random id
18: new cert.extensions[i].val← random val
19: if RANDOM < 0.05 then
20: FLIP( new cert.extensions[i].critical)
21: end if
22: end for
23: SIGN(new cert, issuer.key)
24: return new cert
25: end procedure

Algorithm 2 Generating a chain of frankencerts
1: procedure FRANKENCHAIN(certs, ca, length)
2: issuer ← ca
3: chain← ∅
4: exts←GETEXTENSIONS(certs)
5: for i ∈ 1..length do
6: chain[i]←FRANKENCERT(certs, exts, issuer)
7: issuer ← chain[i]
8: end for
9: return chain

10: end procedure

B. Generating synthetic mutations

The purpose of synthetic certificate parts is to test how
SSL/TLS implementations react to extension values that follow
the ASN.1 grammar for X.509 but do not conform to the X.509
specification.

Taking a frankencert as input, we first parse all
extensions present in the certificate using OpenSSL.
The critical bit and the rest of the extension value
are extracted using X509 EXTENSION get critical() and
X509 EXTENSION get data(), respectively. Then, for each
of these extensions, the extension value is replaced with a
randomly generated ASN.1 string and a null character (0)
is probabilistically injected into this string. Because most of
the SSL/TLS implementations in our testing are written in
C, and C strings are terminated by a null character, this step
helps verify whether implementations parse extension values



Algorithm 3 Extracting unique extensions from a corpus of
certificates

1: procedure GETEXTENSIONS(certs)
2: uniq exts← ∅
3: for all cert ∈ certs do
4: for all ext ∈ cert.extensions do
5: id← ext.id
6: val← ext.val
7: if id /∈ uniq exts then
8: uniq exts[id] ← ∅
9: end if

10: if val /∈ uniq exts[id] then
11: uniq exts[id] ← uniq exts[id] ∪ val
12: end if
13: end for
14: end for
15: return uniq exts
16: end procedure

correctly. Finally, the extension is randomly marked as critical
or non-critical.

VIII. TESTING SSL/TLS IMPLEMENTATIONS

We tested open-source SSL/TLS libraries and several Web
browsers. The tested libraries are OpenSSL 1.0.1e, PolarSSL
1.2.8, GnuTLS 3.1.9.1, CyaSSL 2.7.0, MatrixSSL 3.4.2, NSS
3.15.2, cryptlib 3.4.0-r1, OpenJDK 1.7.0 09-b30, and Bouncy
Castle 1.49. The tested browsers are Firefox 20.0, Chrome
30.0.1599.114 p1, WebKitGTK 1.10.2-r300, Opera 12.0, Sa-
fari 7.0, and IE 10.0.

Testing was done in parallel on 3 machines: an Ubuntu
Linux machine with two Intel Xeon E5420 (2.5Ghz) CPUs
and 16 GB of RAM, an Ubuntu Linux machine with an Intel
i7-2600K (4.0Ghz) CPU and 16GB of RAM, and a Gentoo
Linux machine with an Intel i5-3360M (2.8Ghz) CPU with
8GB of RAM. Each machine generated and tested frankencerts
independently, with the results merged later. The average speed
of generating a frankencert chain with 3 certificates is 11.7ms.

SSL/TLS clients. We implemented a simple client for each
SSL/TLS library. Each client takes three arguments (host, port,
path to the file with trusted root certificates) and makes an
SSL 3.0 connection to the host/port. The server presents a
frankencert. The client records the answer reported by the
library, including error codes if any. When implementing these
clients, we used the documentation provided by the libraries
and followed the sample code in the documentation as closely
as possible. We expect that most application developers using
the library would follow the same procedure.

For testing Web browsers, we created scripts with the
same input/output format as our clients for the libraries, al-
lowing straightforward integration of browsers into our testing
framework. For Firefox, we used Xulrunner to make an SSL
connection and print the output without bringing up a Firefox
window. For Chrome, we could not find an easy way to avoid
launching the window. Therefore, we used a JavaScript file to
make the connection and record the results.

Each execution of a library client takes between 0.04 and
0.10 seconds, with OpenSSL being the fastest and PolarSSL

the slowest. The browser scripts are much slower: 0.6-1.0
seconds for Firefox and 1.1-1.4 seconds for Chrome.

Differential testing. For differential testing of multiple SS-
L/TLS implementations, we implemented a Python script that
generates frankencerts and executes all clients against each
frankencert. The entire script is 367 lines of code, including
102 lines for certificate generation and 163 lines for parallel
execution of clients. Certificates are generated in batches of
200; executing all clients on a single batch takes 25 seconds.

If a certificate causes disagreement between the clients (i.e.,
the clients produce different error codes when presented with
this certificate), the certificate is indexed by its SHA-1 hash
and stored into the appropriate bucket. Buckets are defined by
the tuples of error codes returned by each client. For example,
if client A accepts the certificate, client B rejects it with error
code 34, and client C rejects it with error code 1, the certificate
is stored into the 0-34-1 bucket. The size of each bucket is
capped at 512 certificates.

In total, we tested our clients on 8,127,600 frankencerts.
It is not computationally feasible to exhaustively generate
certificates with all possible combinations of extension values
from Table IV, but every value of every extension appeared in
at least one of the frankencerts used in the testing.

Our testing yielded 208 distinct discrepancies be-
tween SSL/TLS implementations, with a total of 62,022
frankencerts triggering these discrepancies.

Analysis of the results. All SSL/TLS implementations we
tested are supposed to implement the same protocol and, in par-
ticular, exactly the same certificate validation logic. Whenever
one implementation accepts a certificate and another rejects the
same certificate, their implementations of the X.509 standard
must be semantically different. In other words, differential
testing has no false positives. This is very important when
testing on over 8 million inputs, because any non-negligible
false-positive rate would have resulted in an overwhelming
number of false positives.

While all discrepancies found by differential testing indi-
cate genuine differences between implementations, not every
difference implies a security vulnerability. For each discrep-
ancy, we manually analyzed the source code of the disagreeing
implementations to identify the root cause of the disagreement
and find the flaw (if any) in the certificate validation logic of
one or more implementations. Because some parts of the X.509
standard are left to the discretion of the implementation, a few
of the discrepancies turned out to be benign. For example,
the differing treatments of the Authority Key Identifier (AKI)
extension (Section IX-E) fall into this category.

Differential testing with frankencerts suffers from false
negatives and can miss security flaws. SSL/TLS implemen-
tations may contain code paths that are not exercised by a
given set of frankencerts. An example of this is the recently
discovered certificate validation bug in GnuTLS [33], which is
only triggered by syntactically malformed certificates. It was
not found by our testing because all frankencerts we generated
comply with the X.509 grammar. Similarly, frankencerts will
not trigger flaws on the code paths responsible for processing
extensions that do not occur in the certificate corpus from



which these frankencerts are constructed, or the paths executed
only for certain versions and modes of SSL/TLS, etc.

Further, if all implementations make the same mistake, it
will not manifest as a discrepancy. Finally, an implementation
may reject an invalid certificate for the wrong reason(s). To
reduce false negatives in the latter case, we also analyzed the
discrepancies between the reported validation errors.

Analysis of error reporting. Proper error reporting is critical
for SSL/TLS implementations because a trivial, low-risk warn-
ing (e.g., expired certificate) may accidentally hide or mask a
severe problem (e.g., invalid certificate issuer).

Not every SSL/TLS implementation produces fine-grained
error codes that are easy to translate into a human-
understandable reason for rejection. Many simply reject the
certificate and return a generic error. If the certificate is invalid
for multiple reasons, all libraries except GnuTLS return only
one error value, but some allow the application to extract more
error codes through additional function calls. This is fraught
with peril because the application may forget to make these
additional calls and thus allow a less severe error to mask a
serious problem with the certificate.

Therefore, we limited our differential testing of error
reporting to Web browsers, OpenSSL, NSS, GnuTLS, and
OpenJDK. For this testing, each output was mapped to one of
the following reasons: “Accepted,” “Invalid issuer,” “Expired,”
“Not yet valid,” and “Unknown or invalid critical extension.”
For Web browsers, we also included “Hostname in the certifi-
cate does not match the server.”

IX. RESULTS

Depending on the combination of mutations in a
frankencert, the same flaw in a given implementation of X.509
certificate validation can produce different results. We analyzed
208 discrepancies between the implementations found by our
testing and attributed them to 15 distinct root causes.

Table V summarizes the results. As the second column
shows, most of the issues could not have been discovered
without frankencerts because the certificates triggering these
issues do not exist in our corpus (but, of course, can be crafted
by the adversary to exploit the corresponding flaw).

A. Incorrect checking of basic constraints

Basic constraints, described in Section IV, are an essential
part of CA certificates. Every X.509 version 3 CA certificate
must have the CA bit set, otherwise any domain with a
valid leaf certificate could act as a rogue CA and issue fake
certificates for other domains.

Untrusted version 1 intermediate certificate. Before version
3, X.509 certificates did not have basic constraints, making it
impossible to check whether a certificate in the chain belongs
to a valid CA except via out-of-band means. If an SSL/TLS
implementation encounters a version 1 (v1) CA certificate that
cannot be validated out of band, it must reject it [69, 6.1.4(k)].

Both MatrixSSL and GnuTLS accept chains containing
v1 certificates. As we explain below, this can make any
application based on MatrixSSL or GnuTLS vulnerable to

man-in-the-middle attacks. In MatrixSSL, the following code
silently skips the basic constraints check for any certificate
whose version field is 0 or 1 (encoding X.509 version 1 or 2,
respectively, because the version field is zero-indexed):

/* Certificate authority constraint only available in
version 3 certs */

if ((ic->version > 1) && (ic->extensions.bc.ca<= 0)) {
psTraceCrypto("Issuer does not have basicConstraint

CA permissions\n");
sc->authStatus = PS_CERT_AUTH_FAIL_BC;
return PS_CERT_AUTH_FAIL_BC;

}

GnuTLS, on the other hand, contains a very subtle error.
This error could not have been uncovered without frankencerts
because none of the real certificate chains in our corpus contain
v1 intermediate certificates.

GnuTLS has three flags that an application can set
to customize the library’s treatment of v1 CA certifi-
cates: GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT (only accept v1
root certificates), GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT (ac-
cept v1 certificates for root and intermediate CAs), and
GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT (reject all v1 CA
certificates). Only GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT is set by
default. The intention is good: the application may locally trust
a v1 root CA, but, to prevent other customers of that root CA
from acting as CAs themselves, no v1 intermediate certificates
should be accepted.

The relevant part of GnuTLS certificate validation code
is shown below (adapted from lib/x509/verify.c). After a
root v1 certificate has been accepted, GnuTLS needs to
prevent any further v1 certificates from being accepted. To
this end, it clears the GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT flag
on line 12 before calling _gnutls_verify_certificate2. The
latter function accepts v1 certificates unless a different flag,
GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT is set (line 25).
1 unsigned int _gnutls_x509_verify_certificate(...)
2 {
3 ...
4

5 /* verify the certificate path (chain) */
6 for (i = clist_size - 1; i > 0; i--)
7 {
8 /* note that here we disable this V1 CA flag. So

that no version 1
9 * certificates can exist in a supplied chain.

10 */
11 if (!(flags &

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT))
12 flags &= ˜(GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT);
13 if ((ret = _gnutls_verify_certificate2 (...)) ==

0)
14 {
15 /* return error */
16 }
17 }
18 ...
19 }
20

21 int _gnutls_verify_certificate2(...)
22 {
23 ...
24 if (!(flags & GNUTLS_VERIFY_DISABLE_CA_SIGN) &&
25 ((flags &

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)
26 || issuer_version != 1))
27 {
28 if (check_if_ca (cert, issuer, flags) == 0)
29 {
30 /*return error*/
31 ...



TABLE V: Semantic discrepancies in certificate validation (incorrect answers in bold)

Problem Certificates
triggering
the problem
occur in
the original
corpus

OpenSSL PolarSSL GnuTLS CyaSSL MatrixSSL NSS OpenJDK,
Bouncy
Castle

Browsers

Untrusted version 1 intermediate CA
certificate

No reject reject accept reject accept reject reject reject

Untrusted version 2 intermediate CA
certificate

No reject reject reject reject accept reject reject reject

Version 1 certificate with valid basic
constraints

No accept reject accept accept accept reject reject Firefox: reject
Opera, Chrome: accept

Intermediate CA not authorized to is-
sue further intermediate CA certifi-
cates, but followed in the chain by an
intermediate CA certificate

No reject reject reject reject accept reject reject reject

. . . followed by a leaf CA certificate No reject reject accept reject accept reject reject reject
Intermediate CA not authorized to is-
sue certificates for server’s hostname

No reject reject accept accept accept reject reject reject

Certificate not yet valid Yes reject accept reject reject reject reject reject reject
Certificate expired in its timezone Yes reject accept reject reject accept reject reject reject
CA certificate not authorized for sign-
ing other certificates

No reject reject accept accept accept reject reject reject

Server certificate not authorized for
use in SSL/TLS handshake

Yes reject accept accept accept accept reject reject reject

Server certificate not authorized for
server authentication

Yes reject accept accept accept accept reject reject reject

Certificate with unknown critical ex-
tension

No reject reject accept accept accept reject reject reject

Certificate with malformed extension
value

No accept reject accept accept accept reject reject reject

Certificate with the same issuer and
subject and a valid chain of trust

No reject reject accept reject accept reject reject reject

Issuer name does not match AKI No reject accept accept accept accept reject reject reject
Issuer serial number does not match
AKI

No reject accept reject accept accept reject reject reject

32 }
33 }
34 /*perform other checks*/
35 ...
36 }

There is an interesting dependency between the two
flags. To prevent intermediate v1 certificates from being ac-
cepted, GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT must be false and
GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT must be true. The
calling function sets the former, but not the latter. Therefore,
although by default GnuTLS is only intended to accept root
v1 certificates, in reality it accepts any v1 certificate.

The consequences of this bug are not subtle. If an ap-
plication based on GnuTLS trusts a v1 root CA certificate,
then any server certified by the same root can act as a
rogue CA, issuing fake certificates for any Internet domain
and launching man-in-the-middle attacks against this GnuTLS-
based application. Unfortunately, trusting v1 root certificates is
very common. For example, Gentoo Linux by default has 13 v1
root CA certificates, Mozilla has 9, and we observed thousands
of CA-issued v1 leaf certificates “in the wild” (Section VI).

Untrusted version 2 intermediate certificate. We never
observed X.509 version 2 certificates “in the wild,” but, for
the purposes of testing, did generate version 2 frankencerts.

As explained above, MatrixSSL silently accepts all CA
certificates whose version field is less than 2 (i.e., version
number less than 3). In GnuTLS, gnutls_x509_crt_get_version

returns the actual version, not the version field, and the
following check blocks version 2 certificates:

issuer_version = gnutls_x509_crt_get_version (issuer);
// ...
if (!(flags & GNUTLS_VERIFY_DISABLE_CA_SIGN) &&

((flags &
GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)

|| issuer_version != 1))
{

// ...
}

Version 1 certificate with valid basic constraints. Basic
constraints were added only in X.509 version 3, but several
SSL/TLS implementations always verify basic constraints if
present in the certificate regardless of its version field.

Some of our frankencert chains include version 1 interme-
diate certificates with correct basic constraints (obviously, such
certificates do not exist “in the wild”). OpenSSL, GnuTLS,
MatrixSSL, CyaSSL, Opera, and Chrome accept them, Open-
JDK and Bouncy Castle reject them, NSS and Firefox fail with
a generic Security library failure error. Neither choice appears
to lead to a security vulnerability.

Intermediate CA not authorized to issue further intermediate
CA certificates. When a higher-level CA certifies a lower-
level CA, it can impose various restrictions on the latter. For
example, it can limit the number of intermediate certificates
that may follow the lower-level CA’s certificate in a certificate



chain. This is done by setting the pathLenConstraint field in the
basic constraints extension of the lower-level CA’s certificate.

For example, if path length is set to zero, then the lower-
level CA is authorized to issue only leaf certificates, but not
intermediate CA certificates. This is good security practice: a
CA delegates its authority to a lower-level CA, but prevents
the latter from delegating it any further. We observed 17 CA
certificates with path length constraints in our corpus.

MatrixSSL ignores path length constraints. This can be
exploited by a malicious or compromised CA to evade restric-
tions imposed by a higher-level CA. For example, suppose
that a trusted root CA authorized a lower-level CA—call it
EnterpriseCA—but prohibited it from creating other CAs (via
path length constraints) and from issuing certificates for any
domain other than enterprise.com (via name constraints—see
Section IX-B). This provides a degree of protection if Enter-
priseCA is compromised. If the attacker uses EnterpriseCA to
issue a certificate for, say, google.com, this certificate should
be rejected by any SSL/TLS implementation because it violates
the constraints expressed in EnterpriseCA’s own certificate.

This attack will succeed, however, against any application
based on MatrixSSL. The impact of this vulnerability may be
amplified by the fact that MatrixSSL targets embedded devices,
whose manufacturers are the kind of organizations that are
likely to obtain CA certificates with restricted authority.

There is an interesting discrepancy in how the implemen-
tations react when an intermediate CA whose path length is
zero is followed by a leaf certificate that also happens to be a
CA certificate. In our testing, only MatrixSSL and GnuTLS ac-
cepted this chain. All other SSL/TLS implementations rejected
it because they do not allow any CA certificate to follow an
intermediate CA whose path length is zero. This interpretation
is incorrect. The X.509 standard explicitly permits a leaf CA
certificate to follow an intermediate CA whose path length is
zero [69, Section 4.2.1.9], but only GnuTLS implements this
part of the standard correctly.

B. Incorrect checking of name constraints

The higher-level CA may restrict the ability of a lower-
level CA to issue certificates for arbitrary domains by including
a name constraint in the lower-level’s CA’s certificate. For
example, if the issuing CA wants to allow the lower-level CA
to certify only the subdomains of foo.com, it can add a name
constraint *.foo.com to the lower-level CA’s certificate.

GnuTLS, MatrixSSL, and CyaSSL ignore name constraints
and accept the server’s certificate even if it has been issued by
a CA that is not authorized to issue certificates for that server.

C. Incorrect checking of time

Every X.509 certificate has the notBefore and notAfter
timestamp fields. The SSL/TLS client must verify that the
current date and time in GMT (or the time zone specified in
these fields) is within the range of these timestamps.

PolarSSL ignores the notBefore timestamp and thus accepts
certificates that are not yet valid. When verifying the notAfter
field, it uses local time instead of GMT or the time zone
specified in the field.

MatrixSSL does not perform any time checks of its own
and delegates this responsibility to the applications. The sam-
ple application code included with MatrixSSL checks the day,
but not the hours and minutes of the notAfter field, and uses
local time, not GMT or the time zone specified in the field.

D. Incorrect checking of key usage

SSL/TLS clients must check the key usage and, if present,
extended key usage extensions to verify that the certificates
are authorized for their purpose. Leaf certificates must be
authorized for key encipherment or key agreement, while CA
certificates must be authorized to sign other certificates.

CA certificate not authorized for signing other certificates.
All CA certificates in the chain must include keyCertSign
in their key usage. GnuTLS, CyaSSL, and MatrixSSL do
not check the key usage extension in CA certificates. An
attacker who compromises any CA key, even a key that is
not intended or used for certificate issuance, can use it to
forge certificates and launch man-in-the-middle attacks against
applications based on these libraries.

Server certificate not authorized for use in SSL/TLS hand-
shake. PolarSSL, GnuTLS, CyaSSL, and MatrixSSL do not
check the key usage extension in leaf certificates. This is
a serious security vulnerability. For example, if an attacker
compromises some company’s code signing certificate, which
is only intended for authenticating code, he will be able
to impersonate that company’s network and Web servers to
any application based on the above SSL/TLS libraries, vastly
increasing the impact of the attack.

Server certificate not authorized for server authentication.
PolarSSL, gnuTLS, CyaSSL and MatrixSSL do not check the
extended key usage extension. Given a certificate with key
usage that allows all operations and extended key usage that
only allows it to be used for TLS client authentication (or any
purpose other than server authentication), these libraries accept
the certificate for server authentication.

E. Other discrepancies in extension checks

Unknown critical extensions. If an SSL/TLS implementation
does not recognize an extension that is marked as critical, it
must reject the certificate. GnuTLS, CyaSSL, and MatrixSSL
accept certificates with unknown critical extensions.

Malformed extension values. Given a certificate with a known
non-critical extension whose value is syntactically well-formed
ASN.1 but not a valid value for that extension, OpenSSL,
GnuTLS, CyaSSL, and MatrixSSL accept it, while the other
libraries and all browsers reject it.

Inconsistencies in the definition of self-signed. Self-issued
certificates are CA certificates in which the issuer and subject
are the same entity [69]. Nevertheless, given a (very odd)
certificate whose subject is the same as issuer but that also
has a valid chain of trust, GnuTLS and MatrixSSL accept it.

Inconsistencies between the certificate’s Authority Key Iden-
tifier and its issuer. The Authority Key Identifier (AKI)
extension differentiates between multiple certificates of the



same issuer. When an AKI is present in a certificate issued
by CA whose name is A, but the AKI points to a certificate
whose subject name is B, some libraries reject, others accept.

If the serial number field is absent in the AKI, then
GnuTLS accepts. But if this field is present and does not match
the issuer’s serial number, then GnuTLS rejects.

F. “Users. . . don’t go for the commercial CA racket”

We planned to include cryptlib in our testing, but then
discovered that it does not verify certificate chains. We let the
following code snippet, taken from session/ssl_cli.c, speak
for itself (there is no code inside the if block):

/* If certificate verification hasn’t been disabled
, make sure that

the
server’s certificate verifies */

if( !( verifyFlags & SSL_PFLAG_DISABLE_CERTVERIFY )
)

{
/* This is still too risky to enable by default

because most users outside of web browsing
don’t go for the commercial CA racket */

}

return( CRYPT_OK );

G. Security problems in error reporting

Rejection of an invalid certificate is not the end of the
story. Web browsers and other interactive applications generate
a warning based on the reason for rejection, show this warning
to the user, and, in many cases, allow the user to override the
dialog and proceed.

Different errors have different security implications. A re-
cently expired, but otherwise valid certificate may be evidence
of a sloppy system administrator who forgot to install a new
certificate, but does not imply that the SSL/TLS connection
will be insecure. “Expired certificate” warnings are sufficiently
common that users have learned to ignore them and browser
developers are even advised to suppress them [1].

If, on the other hand, the certificate issuer is not valid, this
means that the server cannot be authenticated and the con-
nection is not secure against man-in-the-middle attacks. If the
server’s hostname does not match the subject of the certificate,
the user may inspect both names and decide whether to proceed
or not. For example, if the hostname (e.g., bar.foo.com) is
a subdomain of the common name in the certificate (e.g.,
foo.com), the user may chalk the discrepancy up to a minor
misconfiguration and proceed.

To test whether SSL/TLS implementations report certificate
errors correctly, we performed differential testing on leaf
certificates with all combinations of the following:

• Expired (E): Current time is later than the notAfter
timestamp in the certificate.

• Bad issuer (I): There is no valid chain of trust from the
certificate’s issuer to a trusted root CA.

• Bad name (N): Neither the common name, nor the sub-
ject alternative name in the certificate match the server’s
hostname.

I is the most severe error. It implies that the connection is
insecure and must be reported to the user. On the other hand,
E is a common, relatively low-risk error.

Table VI shows the results. For these tests, we extended
our client suite with common Web browsers, since they are
directly responsible for interpreting the reasons for certificate
rejection and presenting error warnings to human users.

Most SSL/TLS implementations and Web browsers return
only one error code even if the certificate is invalid for multiple
reasons. What is especially worrisome is that some browsers
choose to report the less severe reason. In effect, they hide a
severe security problem under a low-risk warning. These
cases are highlighted in bold in Table VI.

For example, if a network attacker—say, a malicious Wi-
Fi access point—presents a self-signed, very recently expired
certificate for gmail.com or any other important domain to
a user of Safari 7 or Chrome 30 (on Linux), the only error
warning the user will see is “Expired certificate.” 1 Many
users will click through this low-risk warning—even though
authentication has failed and the server has been spoofed!
This vulnerability is generic in all NSS-based applications:
if the certificate is expired, that’s the only reported error code
regardless of any other problems with the certificate.

A related problem (not reflected in Table VI) is caused
by “Weak Key” warnings. When presented with a certificate
containing a 512-bit RSA key, Firefox and Chrome accept it,
while Opera warns that the key is weak. If the certificate is
invalid, Opera still produces the same “Weak Key” warning,
masking other problems with the certificate, e.g., invalid issuer.
The other warnings are available in the details tab of the error
dialog, assuming Opera users know to look there.

Finally, if Firefox encounters two certs issued by the same
CA that have the same serial number, it shows an error
message describing the problem. This message masks all other
warnings, but there is no way for the user to override it and
proceed, so this behavior is safe.

H. Other checks

Weak cryptographic hash functions. Digital signatures on
SSL/TLS certificates can use a variety of cryptographic hash
(aka message digest) functions. As Table VII shows, only
NSS, GnuTLS, and Chrome reject MD5 certificates, which
are known to be vulnerable to prefix-collision attacks [77].

Short keys. Table VIII shows that virtually all tested imple-
mentations support short keys (512 bits for RSA) and unusual
key sizes (1023 bits, chosen because it occurs 87 times in our
certificate corpus).

Additional checks. Table IX summarizes which SSL/TLS
libraries perform additional checks, such as Certification Re-
vocation Lists (CRL), subject alternative name, and hostname.
The latter check is critically important for security against
man-in-the-middle attacks [31], but often delegated by libraries
to higher-level applications.

1As this paper was being prepared, the same bug was reported in
http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-
against-itself.html



TABLE VI: Error code(s) returned by Web browsers and SSL/TLS libraries for certificates with various combinations of Bad
Issuer (I), Expired (E), and Bad Name (N). Security vulnerabilities are highlighted in bold.

Certs Firefox 20 Chrome 30 Opera 12 Opera 20 Safari 7 Chrome 30 IE 10 OpenSSL PolarSSL GnuTLS CyaSSL MatrixSSL NSS
(Linux) (Linux) (Mac) (Mac)

E E E E !E !E E E E E E E E E
I I I I !I !I I I I I I I ** I
IE IE E I# * !E * * I I IE ** ** E-
IN IN I I# !I !I I IN I- I- I- I- *- I-
IEN IEN N I# * !E * * I- IE- **- **- **- E-
N N N N + !N N N - - - - - -
NE NE N E# !E !E N NE E- **- E- E- E- E-

* is a generic “invalid certificate” warning without a specific error message; the user cannot override this warning
+ is a generic “invalid certificate” warning without a specific error message; the user can override this warning
** is a generic “invalid certificate” error code
# all errors are shown after the user clicks the details tab
! shows a generic error message first; the reported error is shown after user clicks the details button
- the hostname check was not enabled for any of the tested clients

TABLE VII: Support for cryptographic hash algorithms in certificate signatures

Algorithm OpenSSL PolarSSL GnuTLS CyaSSL MatrixSSL NSS OpenJDK BouncyCastle Chrome Firefox WebKit Opera
SHA-1 accept accept accept accept accept accept accept accept accept accept accept accept
SHA-256 accept accept accept accept reject (u) accept accept accept accept accept accept accept
SHA-512 accept accept accept reject (u) reject (u) accept accept accept accept accept accept accept
MD2 reject reject reject reject reject reject reject reject reject reject reject reject
MD4 reject reject reject reject reject reject reject (d) reject reject reject reject reject
MD5 accept accept reject (w) accept accept reject (w) accept accept reject (w) accept accept accept

reject (u) : reject because hash function is unknown
reject (w) : reject because hash function is weak
reject (d) : reject under default settings

TABLE VIII: Support for short keys and unusual key sizes

Key size OpenSSL PolarSSL GnuTLS CyaSSL MatrixSSL NSS OpenJDK BouncyCastle Chrome Firefox WebKit Opera
512-bit RSA accept accept accept accept accept accept accept accept accept accept accept warning
1023-bit RSA accept accept accept accept accept accept accept accept accept accept accept accept

TABLE IX: Verification of extra certificate fields

Library CRL subjectAltName Host name
MatrixSSL * No No
PolarSSL Yes Yes Yes
CyaSSL * Yes Yes
GnuTLS Yes Yes Yes
NSS Yes Yes Yes
OpenSSL * * *

* not verified by default, application must explicitly enable

X. DEVELOPER RESPONSES

We notified the developers of all affected SSL/TLS imple-
mentations about the issues discovered by our testing.

GnuTLS has fixed the bug involving version 1 intermediate
CA certificates (starting from version 3.2.11) and also created
a patch for older versions. A security advisory (CVE-2014-
1959) has been issued for this bug. GnuTLS used to check the
keyUsage field in earlier versions, but removed these checks
after getting bug reports from developers who were using
certificates with incorrect keyUsage fields.2 This was necessary
for compatibility with several other SSL/TLS implementations
that do not check this field. Delignat-Lavaud et al. [19]

2http://www.gnutls.org/faq.html

independently reported that GnuTLS does not reject certificates
with unknown critical extensions. According to GnuTLS, re-
jecting such certificates may allow certain corporations to lock
out GnuTLS by issuing certificates with custom extensions
and thus forcing developers to use the corporation’s own SSL
library instead of GnuTLS.

MatrixSSL plans to reject version 1 intermediate CAs and
check path length constraints starting from the next release.
In general, MatrixSSL only performs basic checks on the
certificate and depends on the application-provided callbacks
to check key usage, extended key usage, expiration timestamps,
etc. To facilitate these checks, MatrixSSL will parse the critical
flags and the extended key usage extension. Since MatrixSSL
primarily targets embedded devices, which do not always have
the time zone information, in most cases the notBefore and
notAfter timestamps in the certificate will have to be checked
against the available local time.

CyaSSL is fixing all reported issues. The fixes will be part
of CyaSSL 3.0.0, expected to be released in April 2014.

PolarSSL is currently working on the fixes.

cryptlib does not support certificate chain validation to
avoid validation failures for the users who run their own CA



hierarchy or do not use certificates. The cryptlib manual3 rec-
ommends other techniques for authenticating the server, such
as matching key fingerprints. In addition, it strongly recom-
mends using the PSK cipher suites for mutual authentication
of both the client and server. The manual also provides an
outline for the application writers who want to use certificates
on how to perform certificate validation on their own.

NSS developers informed us that all Mozilla products use
a glue layer called Personal Security Manager (PSM) over
NSS instead of using NSS directly. The PSM certificate valida-
tion routine, CERT_VerifyCertificate, takes an argument named
CERTVerifyLog that, if not set to NULL, returns a list of all
certificate validation errors. An example usage of the function
can be found at http://mxr.mozilla.org/mozilla-central/source/
security/manager/ssl/src/SSLServerCertVerification.cpp#622

As of this writing, we are still talking to Web-browser
developers about user warnings generated by their browsers
when certificate validation fails.

XI. CONCLUSIONS

We designed, implemented, and applied the first automated
method for large-scale adversarial testing of certificate vali-
dation logic in SSL/TLS implementations. Our key technical
innovation is “frankencerts,” synthetic certificates randomly
mutated from parts of real certificates. Frankencerts are syn-
tactically well-formed, but may violate the X.509 specification
and thus exercise rarely tested functionality in SSL/TLS im-
plementations. Our testing uncovered multiple flaws in popular
SSL/TLS libraries and Web browsers, including security vul-
nerabilities that break server authentication guarantees and can
be exploited for stealthy man-in-the-middle attacks.

Certificate validation is only one part of the SSL/TLS hand-
shake. Bugs in other parts of the handshake—e.g., accidentally
omitting to check that the server’s messages are signed with the
key that matches the certificate [49]—and incorrect usage of
SSL/TLS implementations by higher-level software [29, 31]
can completely disable authentication and leave applications
vulnerable to man-in-the-middle attacks. Development of auto-
mated methods that can analyze the entire SSL/TLS software
stack and prove that it has been implemented securely and
correctly remains an open challenge.
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