
Towards Automatic Discovery of Deviations in Binary Implementations with
Applications to Error Detection and Fingerprint Generatio n

David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn Song
Carnegie Mellon University

{dbrumley,jcaballero,zliang,jnewsome,dawnsong}@cmu.edu

Abstract

Different implementations of the same protocol specifi-
cation usually containdeviations, i.e., differences in how
they check and process some of their inputs. Deviations
are commonly introduced as implementation errors or as
different interpretations of the same specification. Auto-
matic discovery of these deviations is important for sev-
eral applications. In this paper, we focus on automatic
discovery of deviations for two particular applications:
error detection and fingerprint generation.

We propose a novel approach for automatically de-
tecting deviations in the way different implementations
of the same specification check and process their input.
Our approach has several advantages: (1) by automati-
cally building symbolic formulas from the implementa-
tion, our approach is precisely faithful to the implemen-
tation; (2) by solving formulas created from two different
implementations of the same specification, our approach
significantly reduces the number of inputs needed to find
deviations; (3) our approach works on binaries directly,
without access to the source code.

We have built a prototype implementation of our ap-
proach and have evaluated it using multiple implemen-
tations of two different protocols: HTTP and NTP. Our
results show that our approach successfully finds devi-
ations between different implementations, including er-
rors in input checking, and differences in the interpre-
tation of the specification, which can be used as finger-
prints.

1 Introduction

Many different implementations usually exist for the
same protocol. Due to the abundance of coding errors
and protocol specification ambiguities, these implemen-
tations usually containdeviations, i.e., differences in how
they check and process some of their inputs. As a result,
same inputs can cause different implementations to reach

semantically different protocol states. For example, an
implementation may not perform sufficient input check-
ing to verify if an input is well-formed as specified in the
protocol specification. Thus, for some inputs, it might
exhibit a deviation from another implementation, which
follows the protocol specification and performs the cor-
rect input checking.

Finding these deviations in implementations is impor-
tant for several applications. In particular, in this paper
we show 1) how we can automatically discover these de-
viations, and 2) how we can apply the discovered devia-
tions to two particular applications:error detectionand
fingerprint generation.

First, finding a deviation between two different imple-
mentations of the same specification may indicate that at
least one of the two implementations has an error, which
we callerror detection. Finding such errors is important
to guarantee that the protocol is correctly implemented,
to ensure proper interoperability with other implementa-
tions, and to enhance system security since errors often
represent vulnerabilities that can be exploited. Enabling
error detection by automatically finding deviations be-
tween two different implementations is particularly at-
tractive because it does not require a manually written
model of the protocol specification. These models are
usually complex, tedious, and error-prone to generate.
Note that such deviations do not necessarily flag an er-
ror in one of the two implementations, since deviations
can also be caused by ambiguity in the specification or
when some parts are not fully specified. However, au-
tomatic discovery of such deviations is a good way to
provide candidate implementation errors.

Second, such deviations naturally give rise tofinger-
prints, which are inputs that, when given to two differ-
ent implementations, will result in semantically differ-
ent output states. Fingerprints can be used to distinguish
between the different implementations and we call the
discovery of such inputsfingerprint generation. Finger-
printing has been in use for more than a decade [25]

and is an important tool in network security for remotely
identifying which implementation of an application or
operating system a remote host is running. Fingerprint-
ing tools [7,10,14] need fingerprints to operate and con-
stantly require new fingerprints as new implementations,
or new versions of existing implementations, become
available. Thus, the process of automatically finding
these fingerprints, i.e., the fingerprint generation, is cru-
cial for these tools.

Automatic deviation discovery is a challenging task—
deviations usually happen in corner cases, and discover-
ing deviations is often like finding needles in a haystack.
Previous work in related areas is largely insufficient. For
example, the most commonly used technique is random
or semi-random generation of inputs [20,43] (also called
fuzz testing). In this line of approach, random inputs are
generated and sent to different implementations to ob-
serve if they trigger a difference in outputs. The obvious
drawback of this approach is that it may take many such
random inputs before finding a deviation.

In this paper, we propose a novel approach to auto-
matically discover deviations in input checking and pro-
cessing between different implementations of the same
protocol specification. We are given two programsP1

andP2 implementing the same protocol. At a high level,
we build two formulas,f1 andf2, which capture how
each program processes a single input. Then, we check
whether the formula(f1 ∧ ¬f2) ∨ (¬f1 ∧ f2) is satisfi-
able, using a solver such as a decision procedure. If the
formula is satisfiable, it means that we can find an input,
which will satisfy f1 but notf2 or vice versa, in which
case it may lead the two program executions to seman-
tically different output states. Such inputs are good can-
didates to trigger a deviation. We then send such candi-
date inputs to the two programs and monitor their output
states. If the two programs end up in two semantically
different output states, then we have successfully found
a deviation between the two implementations, and the
corresponding input that triggers the deviation.

We have built a prototype implementation of our ap-
proach. It handles both Windows and Linux binaries
running on an x86 platform. We have evaluated our ap-
proach using multiple implementations of two different
protocols: HTTP and NTP. Our approach has success-
fully identified deviations between servers and automat-
ically generated inputs that triggered different server be-
haviors. These deviations include errors and differences
in the interpretation of the protocol specification. The
evaluation shows that our approach is accurate: in one
case, the relevant part of the generated input is only three
bits. Our approach is also efficient: we found deviations
using a single request in about one minute.

Contributions. In summary, in this paper, we make the
following contributions:

• Automatic discovery of deviations: We propose
a novel approach to automatically discover devia-
tions in the way different implementations of the
same protocol specification check and process their
input. Our approach has several advantages: (1)
by automatically building symbolic formulas from
an implementation, our approach is precisely faith-
ful to the implementation; (2) by solving formulas
created from two different implementations of the
same specification, our approach significantly re-
duces the number of inputs needed to find devia-
tions; (3) our approach works on binaries directly,
without access to the source code. This is important
for wide applicability, since implementations may
be proprietary and thus not have the source code
available. In addition, the binary is what gets ex-
ecuted, and thus it represents the true behavior of
the program.

• Error detection using deviation discovery: We
show how to apply our approach for automati-
cally discovering deviations to the problem of error
detection—the discovered deviations provide can-
didate implementation errors. One fundamental ad-
vantage of our approach is that it does not require
a user to manually generate a model of the protocol
specification, which is often complex, tedious, and
error-prone to generate.

• Fingerprint generation using deviation discov-
ery: We show how to apply our approach for
automatically discovering deviations to the prob-
lem of fingerprint generation—the discovered devi-
ations naturally give rise to fingerprints. Compared
to previous approaches, our solution significantly
reduces the number of candidate inputs that need
to be tested to discover a fingerprint [20].

• Implementing the approach: We have built a pro-
totype that implements our approach. Our evalua-
tion shows that our approach is accurate and effi-
cient. It can identify deviations with few example
inputs at bit-level accuracy.

The remainder of the paper is organized as fol-
lows. Section 2 introduces the problem and presents
an overview of our approach. In Section 3 we present
the different phases and elements that comprise our ap-
proach and in Section 4 we describe the details of our
implementation. Then, in Section 5 we present the eval-
uation results of our approach over different protocols.
We discuss future enhancements to our approach in Sec-
tion 6. Finally, we present the related work in Section 7
and conclude in Section 8.

2 Problem Statement and Approach
Overview

In this section, we first describe the problem statement,
then we present the intuition behind our approach, and
finally we give an overview of our approach.

Problem statement. In this paper we focus on the
problem of automatically detecting deviations in proto-
col implementations. In particular, we aim to find inputs
that cause two different implementations of the same
protocol specification to reach semantically different out-
put states. When we find such an input, we say we have
found a candidate deviation.

The output states need to be externally observable. We
use two methods to observe such states: (a) monitoring
the network output of the program, and (b) supervising
its environment, which allows us to detect unexpected
states such as program halt, reboot, crash, or resource
starvation. However, we cannot simply compare the
complete output from both implementations, since the
output may be different but semantically equivalent. For
example, many protocols contain sequence numbers, and
we would expect the output from two different imple-
mentations to contain two different sequence numbers.
However, the output messages may still be semantically
equivalent.

Therefore, we may use some domain knowledge about
the specific protocol being analyzed to determine when
two output states are semantically different. For exam-
ple, many protocols such as HTTP, include a status code
in the response to provide feedback about the status of
the request. We use this information to determine if two
output states are semantically equivalent or not. In other
cases, we observe the effect of a particular query in the
program, such as program crash or reboot. Clearly these
cases are semantically different from a response being
emitted by the program.

Intuition of our approach. We are given two imple-
mentationsP1 andP2 of the same protocol specification.
Each implementation at a high level can be viewed as
a mapping function from the protocol input spaceI to
the protocol output state spaceS. Let P1, P2 : I → S
represent the mapping function of the two implementa-
tions. Each implementation accepts inputsx ∈ I (e.g.,
an HTTP request), and then processes the input resulting
in a particular protocol output states ∈ S (e.g., an HTTP
reply). At a high level, we wish to find inputs such that
the same input, when sent to the two implementations,
will cause each implementation to result in a different
protocol output state.

Our goal is to find an inputx ∈ I such thatP1(x) 6=
P2(x). Finding such an input through random testing is
usually hard.

However, in general it is easy to find an inputx ∈ I
such thatP1(x) = P2(x) = s ∈ S, i.e., most inputs
will result in the same protocol output states for differ-
ent implementations of the same specification. Letf(x)
be the formula representing the set of inputsx such that
f(x) = true ⇐⇒ P (x) = s. WhenP1 andP2 imple-
ment the same protocol differently, there may be some
input wheref1 will not be the same asf2:

∃x.(f1(x) ∧ ¬f2(x)) ∨ (¬f1(x) ∧ f2(x)) = true.

The intuition behind the above expression is that when
f1(x) ∧ ¬f2(x) = true, then P1(x) = s (because
f1(x) = true) while P2(x) 6= s (becausef2(x) =
false), thus the two implementations reach different out-
put states for the same inputx. Similarly,¬f1(x)∧f2(x)
indicates whenP1(x) 6= s, butP2(x) = s. We take the
disjunction since we only care whether the implementa-
tions differ from each other.

Given the above intuition, the central idea is to create
the formulaf using the technique of weakest precondi-
tion [19, 26]. LetQ be a predicate over the state space
of a program. The weakest preconditionwp(P, Q) for
a programP and post-conditionQ is a boolean formula
f over the input space of the program. In our setting, if
f(x) = true, thenP (x) will terminate in a state satisfy-
ing Q, and iff(x) = false, thenP (x) will not terminate
in a state satisfyingQ (it either “goes wrong” or does not
terminate). For example, if the post-conditionQ is that
P outputs a successful HTTP reply, thenf = wp(P, Q)
characterizes all inputs which leadP to output a suc-
cessful HTTP reply. The boolean formula output by the
weakest precondition is our formulaf .

Furthermore, we observe that the above method can
still be used even if we do not consider the entire pro-
gram and only consider asingleexecution path (we dis-
cuss multiple execution paths in Section 6). In that case,
the formulaf represents the subset of protocol inputs
that follow one of the execution paths considered and still
reach the protocol output states. Thus,f(x) = true ⇒
P (x) = s, since if an input satisfiesf then for sure it
will make programP go to states, but the converse is
not necessarily true—an input which makesP go to state
s may not satisfyf . In our problem, this means that the
difference betweenf1 andf2 may not necessarily result
in a true deviation, as shown in Figure 2. Instead, the
difference betweenf1 andf2 is a good candidate, which
we can then test to validate whether it is a true deviation.

Overview of our approach. Our approach is an itera-
tive process, and each iteration consists of three phases,
as shown in Figure 1. First, in theformula extraction
phase, we are given two binariesP1 andP2 implement-
ing the same protocol specification, such as HTTP, and

Output
state 1

Output
state 2

Yes

Symbolic
formula f1

Candidate
deviation inputsSolver

2 - Deviation Detection Phase

Program
binary P

1

Different?

Program
binary P2

Deviation
Yes

3 - Validation Phase

Symbolic
formula f

2

Symbolic
formula

generator

1 - Formula Extraction Phase

Input x

Candidate
deviation inputs

Combining
f1 and f2

Satisfiable?

Program
binary P1

Program
binary P

2

Symbolic
formula

generator

Figure 1: Overview of our approach.

an inputx, such as an HTTP GET request. For each
implementation, we log an execution trace of the binary
as it processes the input, and record what output state it
reaches, such as halting or sending a reply. We assume
that the execution from both binaries reaches semanti-
cally equivalent output states; otherwise we have already
found a deviation! For each implementationP1 and
P2, we then use this information to produce a boolean
formula over the input,f1 andf2 respectively, each of
which is satisfied for inputs that cause the binary to reach
the same output state as the original input did.

Next, in thedeviation detectionphase, we use a solver
(such as a decision procedure) to find differences in the
two formulasf1 andf2. In particular, we ask the solver
if (f1∧¬f2)∨ (f2 ∧¬f1) is satisfiable. When satisfiable
the solver will return an example satisfying input. We
call these inputs thecandidate deviation inputs.

Finally, in thevalidation phase we evaluate the can-
didate deviation inputs obtained in the formula extrac-
tion phase on both implementations and check whether
the implementations do in fact reach semantically differ-
ent output states. This phase is necessary because the
symbolic formula might not include all possible execu-
tion paths, then an input that satisfiesf1 is guaranteed to
makeP1 reach the same semantically equivalent output
state as the original inputx but an input that does not
satisfyf1 may also makeP1 reach a semantically equiv-
alent output state. Hence, the generated candidate devia-
tion inputs may actually still cause both implementations
to reach semantically equivalent output states.

If the implementationsdo reach semantically different
output states, then we have found a deviation triggered by
that input. This deviation is useful for two things: (1) it

may represent an implementation error in at least one of
the implementations, which can then be checked against
the protocol specification to verify whether it is truly an
error; (2) it can be used as afingerprint to distinguish
between the two implementations.

Iteration. We can iterate this entire process to examine
other input types. Continuing with the HTTP example,
we can compare how the two implementations process
other types of HTTP requests, such as HEAD and POST,
by repeating the process on those types of requests.

3 Design

In this section, we describe the details of the three phases
in our approach, the formula extraction phase, the devia-
tion detection phase, and the validation phase.

3.1 Formula Extraction Phase

3.1.1 Intuition and Overview

The goal of the formula extraction phase is that given an
input x such thatP1(x) = P2(x) = s, wheres is the
output state when executing inputx with the two given
programs, we would like to compute two formulas,f1

andf2, such that,

f1(x) = true ⇒ P1(x) = s

and
f2(x) = true ⇒ P2(x) = s,

This matches well with the technique ofweakest precon-
dition (WP) [19,26]. The weakest precondition, denoted

wp(P, Q), is a boolean formulaf over the input spaceI
of P such that iff(x) = true, thenP (x) will terminate
in a state satisfyingQ. In our setting, the post-condition
is the protocol output state, and the weakest precondition
is a formula characterizing protocol inputs, which will
cause the implementation to reach the specified protocol
output state.

Unfortunately, calculating the weakest precondition
over an entire real-world binary program can easily re-
sult in a formula that is too big to solve. First, there may
be many program paths which can lead to a particular
output state. We show that we can generate interesting
deviations even when considering a single program path.
Second, we observe that in many cases only a small sub-
set of instructions operate on data derived from the origi-
nal input. There is no need to model the instructions that
do not operate on data derived from the original input,
since the result they compute will be the same as in the
original execution. Therefore we eliminate these instruc-
tions from the WP calculation, and replace them with
only a series of assignments of concrete values to the rel-
evant program state just before an instruction operates on
data derived from the input.

Hence, in our design, we build the symbolic formula
in two distinct steps. We first execute the program on the
original input, while recording a trace of the execution.
We then use this execution trace to build the symbolic
formula.

3.1.2 Calculating the Symbolic Formula

In order to generate the symbolic formula, we perform
the following steps:

1. Record the execution trace of the executed program
path.

2. Process the execution trace. This step translates the
execution trace into a programB written in our sim-
plified intermediate representation (IR).

3. Generate the appropriate post-conditionQ.
4. Calculate the weakest precondition onB by:

(a) TranslatingB into a single assignment form.

(b) Translating the (single assignment) IR pro-
gram into the guarded command language
(GCL). The GCL program, denotedBg, is
semantically equivalent to the input IR state-
ments, but appropriate for the weakest precon-
dition calculation.

(c) Computing the weakest preconditionf =
wp(Bg, Q) in a syntax-directed fashion on the
GCL.

The output of this phase is the symbolic formulaf .
Below we describe these steps in more detail.

Step 1: Recording the execution trace. We generate
formulas based upon the program path for a single ex-
ecution. We have implemented a path recorder which
records the execution trace of the program. The exe-
cution trace is the sequence of machine instructions ex-
ecuted, and for each executed instruction, the value of
each operand, whether each operand is derived from the
input, and if it is derived from the input, an identifier for
the original input stream it comes from. The trace also
has information about the first use of each input byte,
identified by its offset in the input stream. For example,
for data derived from network inputs, the identifier spec-
ifies which session the input came from, and the offset
specifies the original position in the session data.

Step 2: Processing the execution trace.We process
the execution trace to include only relevant instructions.
An instruction is relevant if it operates on data derived
from the inputI. For each relevant instruction, we:

• Translate the x86 instruction to an easier-to-analyze
intermediate representation (IR). The generated IR
is semantically equivalent to the original instruc-
tion.

The advantage of our IR is that it allows us to per-
form subsequent steps over the simpler IR state-
ments, instead of the hundreds of x86 instructions.
The translation from an x86 instruction to our IR
is designed to correctly model the semantics of the
original x86 instruction, including making other-
wise implicit side effects explicit. For example, we
insert code to correctly model instructions that set
theeflags register, single instruction loops (e.g.,
rep instructions), and instructions that behave dif-
ferently depending on the operands (e.g., shifts).

Our IR is shown in Table 1. We translate x86 in-
struction into this IR. Our IR has assignments (r :=
v), binary and unary operations (r := r12bv and
r := 2uv where2b and2u are binary and unary
operators), loading a value from memory into a reg-
ister (r1 := ∗(r2)), storing a value (∗(r1) := r2),
direct jumps (jmpℓ) to a known target label (label
ℓi), indirect jumps to a computed value stored in a
register (ijmpr), and conditional jumps (ifr then
jmp ℓ1 else jmpℓ2).

• Translate the information logged about the operands
into a sequence of initialization statements. For
each operand:

– If it is not derived from input, the operand is
assigned the concrete value logged in the ex-
ecution trace. These assignments effectively
model the sequences of instructions that we do
not explicitly include.

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := r12bv
|r := 2uv | label li | jmp ℓ | ijmp r
| if r jmp ℓ1 else jmp ℓ2

Operations 2b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)
2u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal)| r (a register)| ℓ (a label)
Reg. Types τ ::= reg64t | reg32t | reg16t | reg8 t | reg1 t (number of bits)

Table 1: Our RISC-like assembly IR. We convert x86 assembly instructions into this IR.

– For operands derived from input, thefirst time
we encounter a byte derived from a particu-
lar input identifier and offset, we initialize the
corresponding byte of the operand with asym-
bolic value that uniquely identifies that input
identifier and offset. On subsequent instruc-
tions that operate on data derived from that
particular input identifier and offset, we do
not initialize the corresponding operand, since
we want to accurately model the sequence of
computations on the input.

The output of this step is an IR programB consisting
of a sequence of IR statements.

Step 3: Setting the post-condition. Once we have
generated the IR program from the execution trace, the
next step is to select a post-condition, and compute the
weakest precondition of this post-condition over the pro-
gram, yielding our symbolic formula.

The post-condition specifies the desired protocol out-
put state, such as what kind of response to a request
message is desired. In our current setting, an ideal post-
condition would specify that “The input results in an ex-
ecution that results in an output state that is semantically
equivalent to the output state reached when processing
the original input.” That is, we want our formula to be
true for exactly the inputs that are considered “seman-
tically equivalent” to the original input by the modeled
program binary.

In our approach, the post-condition specified the out-
put state should be the same as in the trace. In order to
make the overall formula size reasonable, we add addi-
tional constraints to the post-condition which constraint
the formula to the same program path taken as in the
trace. We do this by iterating over all conditional jumps
and indirect jumps in the IR, and for each jump, add a
clause to the post-condition that ensures that the final for-
mula only considers inputs that also result in the same
destination for the given jump. For example, if in the
traceif e then ℓ1 else ℓ2 was evaluated and the
next instruction executed wasℓ2, thene must have eval-
uated tofalse, and we add a clause restrictinge = false
to the post-condition.

In some programs, there may be multiple paths that
reach the same output state. Our techniques can be gen-
eralized to handle this case, as discussed in Section 6. In
practice, we have found this post-condition to be suffi-
cient for finding interesting deviations. Typically, inputs
that cause the same execution path to be followed are
treated equivalently by the program, and result in equiv-
alent output states. Conversely, inputs that follow a dif-
ferent execution path often result in a semantically dif-
ferent output state of the program. Although more com-
plicated and general post-conditions are possible, one in-
teresting result from our experiments is that the simple
approach was all that was needed to generate interesting
deviations.

Step 4: Calculating the weakest precondition. The
weakest precondition (WP) calculation step takes as in-
put the IR programB from Step 2, and the desired post-
conditionQ from Step 3. The weakest precondition, de-
notedwp(B, Q), is a boolean formulaf over the input
space such that iff(x) = true, thenB(x) will terminate
in a state satisfyingQ. For example, if the program is
B : y = x + 1 andQ : 2 < y < 5, thenwp(B, Q) is
1 < x < 4.

We describe the steps for computing the weakest pre-
condition below.

Step 4a: Translating into single assignment form.We
translate the IR programB from the previous step into
a form in which every variable is assigned at most once.
(The transformed program is semantically equivalent to
the input IR.) We perform this step to enable additional
optimizations described in [19,29,36], which further re-
duce the formula size. For example, this transformation
will rewrite the programx := x+1; x := x+1; as
x1 := x0+1; x2 := x1+1; . We carry out this
transformation by maintaining a mapping from the vari-
able name to its current incarnation, e.g., the original
variablex may have incarnationsx0 , x1 , andx2 . We
iterate through the program and replace each variable use
with its current incarnation. This step is similar to com-
puting the SSA form of a program [39], and is a widely
used technique.

Step 4b: Translating to GCL.The translation to GCL
takes as input the single assignment form from step 4a,

and outputs a semantically equivalent GCL programBg.
We perform this step since the weakest precondition is
calculated over the GCL language [26]. The result-
ing programBg is semantically equivalent to the input
single-assignment IR statements. The weakest precondi-
tion is calculated in a syntax-directed manner overBg.

The GCL language constructs we use are shown in
Table 2. Although GCL may look unimpressive, it is
sufficiently expressive for reasoning about complex pro-
grams [24, 26, 28, 29]1. StatementsS in our GCL pro-
grams will mirror statements in assembly, e.g., store,
load, assign, etc. GCL has assignments of the form
lhs := e wherelhs is a register or memory location, and
e is a (side-effect) free expression.assumee assumes
a particular (side-effect free) expression is true. Anas-
sumestatement is used to reason about conditional jump
predicates, i.e., we add “assumee” for the true branch of
a conditional jump, and “assume¬e” for the false branch
of the conditional jump.asserte asserts thate must be
true for execution to continue, else the program fails. In
other words,Q cannot be satisfied ifassert e is false.
skip is a semantic no-op.S1; S2 denotes a sequence
where first statementS1 is executed and then statement
S2 is executed.S12S2 is called a choice statement, and
indicates that eitherS1 or S2 may be executed. Choice
statements are used for if-then-else constructs.

For example, the IR:

i f (x0 < 0){
x1 := x0 − 1 ;

} e l s e {
x1 := x0 + 1 ;

}

will be translated as:

(assumex0 < 0; x1 = x0 − 1;)2

(assume¬(x0 < 0); x1 := x0 + 1;)

The above allows calculating the WP over multiple
paths (we discuss multiple paths in Section 6). In our
setting, we only consider a single path. For each branch
conditione evaluated in the trace, we could add the GCL
statementasserte if e evaluated totrue (elseassert¬e
if e evaluated tofalse). In our implementation, usingas-
sert in this manner is equivalent to adding a clause for
each branch predicate to the post-condition (e.g., making
the post-conditione ∧ Q whene evaluated totrue in the
trace).

Step 4c: Computing the weakest precondition.We
compute the weakest precondition forBg from the pre-
vious step in a syntax-directed manner. The rules for
computing the weakest precondition are shown in Ta-
ble 2. Most rules are straightforward, e.g., to calcu-

1The GCL defines a few additional commands such as ado-while
loop, which we do not need.

late the weakest preconditionwp(A; B, Q), we calculate
wp(A, wp(B, Q)). Similarly wp(assumee, Q) ≡ e ⇒
Q. For assignmentslhs := e, we generate a let expres-
sion which binds the variable namelhs to the expression
e. We also take advantage of a technical transformation,
which can further reduce the size of the formula by using
the single assignment form from Step 4a [19,29,36].

3.1.3 Memory Reads and Writes to Symbolic Ad-
dresses

If the instruction accesses memory using an address that
is derived from the input, then in the formula the address
will be symbolic, and we must choose what set of possi-
ble addresses to consider. In order to remain sound, we
add a clause to our post-condition to only consider execu-
tions that would calculate an address within the selected
set. Considering more possible addresses increases the
generality of our approach, at the cost of more analysis.

Memory reads. When reading from a memory loca-
tion selected by an address derived from the input, we
must process the memory locations in the set of ad-
dresses being considered as operands, generating any ap-
propriate initialization statements, as above.

We achieve good results considering only the address
that was actually used in the logged execution trace
and adding the corresponding constraints to the post-
condition to preserve soundness. In practice, if useful
deviations are not found from the corresponding formula,
we could consider a larger range of addresses, achieving
a more descriptive formula at the cost of performance.
We have implemented an analysis that bounds the range
of symbolic memory addresses [16], but have found we
get good results without preforming this additional step.

Memory writes. We need not transform writes to
memory locations selected by an address derived from
the input. Instead we record the selected set of addresses
to consider, and add the corresponding clause to the post-
condition to preserve soundness. These conditions force
the solver to reason about any potential alias relation-
ships. As part of the weakest precondition calculation,
subsequent memory reads that could use one of the ad-
dresses being considered are transformed to a conditional
statement handling these potential aliasing relationships.

As with memory reads, we achieve good results only
considering the address that was actually used in the
logged execution trace. Again, we could generalize the
formula to consider more values, by selecting a range of
addresses to consider.

A,B ∈ GCL stmt ::=lhs := e
| A;B
| assumee (e is an expression)
| asserte (e is an expression)
| A 2 B
| skip

GCL stmt wp(stmt, Q)
assumee e ⇒ Q
asserte e ∧ Q
lhs := e let lhs = e
A; B wp(A, wp(B,Q))
A 2 B wp(A, Q)∧ wp(B,Q)

Table 2: The guarded command language (left), along with thecorresponding weakest precondition predicate trans-
former (right).

F

1

F

2

Figure 2: Different execution paths could end up in the
same output states. The validation phase checks whether
the new execution path explored by the candidate devia-
tion input obtained in the deviation detection phase truly
ends up in a different state.

3.2 Deviation Detection Phase

In this phase, we use a solver to find candidate inputs
which may cause deviations. This phase takes as input
the formulasf1 andf2 generated for the programsP1

andP2 in the formula extraction phase. We rewrite the
variables in each formula so that they refer to the same
input, but each to their own internal states.

We then query the solver whether the combined for-
mula (f1 ∧ ¬f2) ∨ (¬f1 ∧ f2) is satisfiable, and if so,
to provide an example that satisfies the combined for-
mula. If the solver returns an example, then we have
found an input that satisfies one program’s formula, but
not the other. If we had perfectly and fully modeled each
program, and perfectly specified the post-condition to be
that “the input results in a semantically equivalent output
state”, then this input would be guaranteed to produce a
semantically equivalent output state in one program, but
not the other. Since we only consider one program path
and do not perfectly specify the post-condition in this
way, this input is only acandidate deviation input.

3.3 Validation Phase

Finally, we validate the generated candidate deviation in-
puts to determine whether they actually result in seman-
tically different output states in the two implementations.
As illustrated in Figure 2, it is possible that while an in-
put does not satisfy the symbolic formula generated for
a server, it actually does result in an identical or seman-
tically equivalent output state.

We send each candidate deviation input to the imple-
mentations being examined, and compare their outputs to
determine whether they result in semantically equivalent
or semantically different output states.

In theory, this testing requires some domain knowl-
edge about the protocol implemented by the binaries, to
determine whether their outputs are semantically equiva-
lent. In practice, we have found deviations that are quite
obvious. Typically, the server whose symbolic formula
is satisfied by the input produces a response similar to
its response to the original input, and the server whose
symbolic formula is not satisfied by the input produces
an error message, drops the connection, etc.

4 Implementation

Our implementation consists of several components: a
path recorder, the symbolic formula generator, the solver,
and a validator. We describe each below.

Collecting the trace. The symbolic formula generator
component is based on QEMU, a complete system em-
ulator [9]. We use a modified version of QEMU, that
has been enhanced with the ability to track how speci-
fied external inputs, such as keyboard or received net-
work data are procesed. The formula generator moni-
tors the execution of a binary and records the execution
trace, containing all instructions executed by the program
and the information of their operands, such as their value
and whether they are derived from specified external in-
puts. We start monitoring the execution before sending
requests to the server and stop the trace when we observe
a response from the server. We use a no-response timer

to stop the trace if no answer is observed from the server
after a configurable amount of time.

Symbolic formula generation. We implemented our
symbolic formula generator as part of our BitBlaze bi-
nary analysis platform [1]. The BitBlaze platform can
parse executables and instruction traces, disassemble
each instruction, and translate the instructions into the IR
shown in Table 1. The entire platform consists of about
16,000 lines of C/C++ code and 28,000 lines of OCaml,
with about 1,600 lines of OCaml specifically written for
our approach.

Solver. We use STP [30,31] as our solver. It is a deci-
sion procedure specialized in modeling bit-vectors. After
taking our symbolic formula as input, it either outputs an
input that can satisfy the formula, or decides that the for-
mula is not satisfiable.

Candidate deviation input validation. Once a candi-
date deviation input has been returned by the solver, we
need to validate it against both server implementations
and monitor the output states. For this we have built
small HTTP and NTP clients that read the inputs, send
them over the network to the servers, and capture the re-
sponses, if any.

After sending candidate inputs to both implementa-
tions, we determine the output state by looking at the
response sent from the server. For those protocols that
contain some type of status code in the response, such as
HTTP in the Status-Line, each different value of the sta-
tus code represents a different output state for the server.
For those protocols that do not contain a status code in
the response, such as NTP, we define a genericvalid state
and consider the server to have reached that state, as a
consequence of an input, if it sends any well-formed re-
sponse to the input, independently of the values of the
fields in the response.

In addition, we define three special output states: afa-
tal statethat includes any behavior that is likely to cause
the server to stop processing future queries such as a
crash, reboot, halt or resource starvation, ano-response
statethat indicates that the server is not in the fatal state
but still did not respond before a configurable timer ex-
pired, and amalformed statethat includes any response
from the server that is missing mandatory fields. This
last state is needed because servers might send messages
back to the client that do not follow the guidelines in the
corresponding specification. For example several HTTP
servers, such as Apache or Savant, might respond to an
incorrect request with a raw message written into the
socket, such as the string “IOError” without including

Server Version Type Binary Size
Apache 2.2.4 HTTP server 4,344kB
Miniweb 0.8.1 HTTP server 528kB
Savant 3.1 HTTP server 280kB
NetTime 2.0 beta 7 NTP server 3,702kB
Ntpd 4.1.72 NTP server 192kB

Table 3: Different server implementations used in our
evaluation.

the expected HTTP Status-Line such as “HTTP/1.1 400
Bad Request”.

5 Evaluation

We have evaluated our approach on two different proto-
cols: HTTP and NTP. We selected these two protocols
as representatives of two large families of protocols: text
protocols (e.g. HTTP) and binary protocols (e.g. NTP).
Text and binary protocols present significant differences
in encoding, field ordering, and methods used to separate
fields. Thus, it is valuable to study both families. In par-
ticular, we use three HTTP server implementations and
two NTP server implementations, as shown in Table 3.
All the implementations are Windows binaries and the
evaluation is performed on a Linux host running Fedora
Core 5.

The original inputs, which we need to send to the
servers during the formula extraction phase to generate
the execution traces, were obtained by capturing a net-
work trace from one of our workstations and selecting
all the HTTP and NTP requests that it contained. For
each HTTP request in the trace, we send it to each of the
HTTP servers and monitor its execution, generating an
execution trace as output. We proceed similarly for each
NTP request, obtaining an execution trace for each re-
quest/server pair. In Section 5.1, we show the deviations
we discovered in the web servers, and in Section 5.2, the
deviations we discovered in the NTP servers.

5.1 Deviations in Web Servers

This section shows the deviations we found among three
web server implementations: Apache, Miniweb, and Sa-
vant. For brevity and clarity, we only show results for a
specific HTTP query, which we find to be specially im-
portant because it discovered deviations between differ-
ent server pairs. Figure 3 shows this query, which is an
HTTP GET request for the file/index.html .

Deviations detected. For each server we first calculate
a symbolic formula that represents how the server han-

Original request:
0000: 47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48 54 54 50 2F 31 2E 31 0D 0A 48 6F 73 74 3A 20 HTTP/1.1..Host:
0020: 31 30 2E 30 2E 30 2E 32 31 0D 0A 0D 0A 10.0.0.21....

Figure 3: One of the original HTTP requests we used to generate execution traces from all HTTP servers, during the
formula extraction phase.

¬fA ¬fM ¬fS

fA N/A Case 1: unsatisfiable Case 2: 5/0
fM Case 3: 5/5 N/A Case 4: 5/5
fS Case 5: unsatisfiable Case 6: unsatisfiable N/A

Table 4: Summary of deviations found for the HTTP servers, including the number of candidate input queries requested
to the solver and the number of deviations found. Each cell represents the results from one query to the solver and each
query to the solver handles half of the combined formula for each server pair. For example Case 3 shows the results
when querying the solver for(fM ∧ ¬fA) and the combined formula for the Apache-Miniweb pair is the disjunction
of Cases 1 and 3.

dled the original HTTP request shown in Figure 3. We
call these formulas:fA, fS , fM for Apache, Savant and
Miniweb respectively. Then, for each of the three pos-
sible server pairs: Apache-Miniweb, Apache-Savant and
Savant-Miniweb, we calculate the combined formula as
explained in Section 3. For example, for the Apache-
Miniweb pair, the combined formula is(fA ∧ ¬fM) ∨
(fM ∧ ¬fA). To obtain more detailed information, we
break the combined formula into two separates queries to
the solver, one representing each side of the disjunction.
For example, for the Apache-Miniweb pair, we query the
solver twice: one for(fA ∧ ¬fM) and another time for
(fM ∧¬fA). The combined formula is the disjunction of
the two responses from the solver.

Table 4 summarizes our results when sending the
HTTP GET request in Figure 3 to the three servers. Each
cell of the table represents a different query to the solver,
that is, half of the combined formula for each server
pair. Thus, the table has six possible cells. For exam-
ple, the combined formula for the Apache-Miniweb pair,
is shown as the disjunction of Cases 1 and 3.

Out of the six possible cases, the solver returned un-
satisfiable for three of them (Cases 1, 5, and 6). For the
remaining cases, where the solver was able to generate at
least one candidate deviation input, we show two num-
bers in the format X/Y. The X value represents the num-
ber of different candidate deviation inputs we obtained
from the solver, and the Y value represents the number
of these candidate deviation inputs that actually gener-
ated semantically different output states when sent to the
servers in the validation phase. Thus, the Y value repre-
sents the number of inputs that triggered a deviation.

In Case 2, none of the five candidate deviation inputs
returned by the solver were able to generate semantically

different output states when sent to the servers, that is, no
deviations were found. For Cases 3 and 4, all candidate
deviation inputs triggered a deviation when sent to the
servers during the validation phase. In both cases, the
Miniweb server accepted some input that was rejected by
the other server. We analyze these cases in more detail
next.

Applications to error detection and fingerprint gener-
ation. Figure 4 shows one of the deviations found for
the Apache-Miniweb pair. It presents one of the candi-
date deviation inputs obtained from the solver in Case 3,
and the responses received from both Apache and Mini-
web when that candidate input was sent to them dur-
ing the validation phase. The key difference is on the
fifth byte of the candidate deviation input, whose original
ASCII value represented a slash, indicating an absolute
path. In the generated candidate deviation input, the byte
has value 0xE8. We have confirmed that Miniweb does
indeed accept any value on this byte. So, this deviation
reflects an error by Miniweb: it ignores the first character
of the requested URI and assumes it to be a slash, which
is a deviation from the URI specification [15].

Figure 5 shows one of the deviations found for the
Savant-Miniweb pair. It presents one of the candidate de-
viation inputs obtained from the solver in Case 4, includ-
ing the responses received from both Savant and Mini-
web when the candidate deviation input was sent to them
during the validation phase. Again, the candidate devi-
ation input has a different value on the fifth byte, but in
this case the response from Savant is only a raw “File not
found” string. Note that this string does not include the
HTTP Status-Line, the first line in the response that in-
cludes the response code, as required by the HTTP spec-

Candidate deviation input:
0000: 47 45 54 20 E8 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: B4 12 02 12 90 04 02 04 0D 0A 48 6F A6 4C 08 20 Ho.L.
0020: 28 D0 82 91 12 E0 84 0C 35 0D 0A 0D 0A (.......5....

Miniweb response: Apache response:

Server: Miniweb Date: Sat, 03 Feb 2007 05:33:55 GMT
Cache−control: no−cache Server: Apache/2.2.4 (Win32)
[...] [...]

HTTP/1.1 200 OK HTTP/1.1 400 Bad Request

Figure 4: Example deviation found for Case 3, where Miniweb’s formula is satisfied while Apache’s isn’t. The figure
includes the candidate deviation input being sent and the responses obtained from the servers, which show two different
output states.

Candidate deviation input:
0000: 47 45 54 20 08 69 6E 64 65 78 2E 68 74 6D 6C 20 GET .index.html
0010: 09 09 09 09 09 09 09 09 0D 0A 48 6F FF FF FF 20 Ho...
0020: 09 09 09 09 09 09 09 09 09 0D 0A 0D 0A

Miniweb response: Savant response:
HTTP/1.1 200 OK File not found
Server: Miniweb
Cache−control: no−cache
[...]

Figure 5: Example deviation found for Case 4, where Miniweb’s formula is satisfied while Savant’s isn’t. The output
states show that Miniweb accepts the input but Savant rejects it with a malformed response.

ification and can be considered malformed [27]. Thus,
this deviation identifies an error though in this case both
servers (i.e. Miniweb and Savant) are deviating from the
HTTP specification.

Figure 6 shows another deviation found in Case 4 for
the Savant-Miniweb pair. The HTTP specification man-
dates that the first line of an HTTP request must include a
protocol version string. There are 3 possible valid values
for this version string: “HTTP/1.1”, “HTTP/1.0”, and
“HTTP/0.9”, corresponding to different versions of the
HTTP protocol. However, we see that the candidate de-
viation input produced by the solver uses instead a dif-
ferent version string, ”HTTP/\b.1”. Since Miniweb ac-
cepts this answer, it indicates that Miniweb is not prop-
erly verifying the values received on this field. On the
other hand, Savant is sending an error to the client indi-
cating an invalid HTTP version, which indicates that it
is properly checking the value it received in the version
field. This deviation shows another error in Miniweb’s
implementation.

To summarize, in this section we have shown that our
approach is able to discover multiple inputs that trigger
deviations between real protocol implementations. We
have presented detailed analysis of three of them, and

confirmed the deviations they trigger as errors. Out of
the three inputs analyzed in detail, two of them can be
attributed to be Miniweb’s implementation errors, while
the other one was an implementation error by both Mini-
web and Savant. The discovered inputs that trigger devi-
ations can potentially be used as fingerprints to differen-
tiate among these implementations.

5.2 Deviations in Time Servers

In this section we show our results for the NTP protocol
using two different servers: NetTime [6] and Ntpd [12].
Again, for simplicity, we focus on a single request that
we show in Figure 7. This request represents a simple
query for time synchronization from a client. The request
uses the Simple Network Time Protocol (SNTP) Version
4 protocol, which is a subset of NTP [38].

Deviations detected. First, we generate the symbolic
formulas for both servers:fT andfN for NetTime and
Ntpd respectively using the original request shown in
Figure 7. Since we have one server pair, we need to
query the solver twice. In Case 7, we query the solver for
(fN ∧ ¬fT) and in Case 8 we query it for(fT ∧ ¬fN).

Candidate deviation input:
0000: 47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html
0010: 48 54 54 50 2F 08 2E 31 0D 0A 48 6F FF FF FF 20 HTTP/..1..Ho...
0020: 09 09 09 09 09 09 09 09 09 0D 0A 0D 0A

Miniweb response: Savant response:
HTTP/1.1 200 OK HTTP/1.1 400 Only 0.9 and 1.X requests supported
Server: Miniweb Server: Savant/3.1
Cache−control: no−cache Content−Type: text/html
[...] [...]

Figure 6: Another example deviation for Case 4, between Miniweb and Savant. The main different is on byte 21,
which is part of the Version string. In this case Miniweb accepts the request but Savant rejects it.

1 1 1 0 0 0 1 1

0 0 0 0 0 0 1 1

0000: e3 00 04 fa 00 01 00 00 00 01 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

0000: 03 00 00 00 00 01 00 00 00 01 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0040: 00 00 00 00 00 00 00 00 c9 6e 6b 7a ca e2 a8 00

LI VN

LI

MD

MDVN

Original request:

Candidate deviation input:

NetTime response:
0000: 04 0f 00 fa 00 00 00 00 00 00 00 00 00 00 00 00
0020: c9 6e 72 6c a0 c4 9a ec c9 6e 6b 7a ca e2 a8 00
0040: c9 6e 72 95 25 60 41 5e c9 6e 72 95 25 60 41 5e

Ntpd response:
No response

Figure 7: Example deviation obtained for the NTP servers. Itincludes the original request sent in the formula extraction
phase, the candidate deviation input output by the solver, and the responses received from the servers, when replaying
the candidate deviation input. Note that the output states are different since NetTime does send a response, while Ntpd
does not.

The solver returns unsatisfiable for Case 7. For Case 8,
the solver returns several candidate deviation inputs. Fig-
ure 7 presents one of the deviations found for Case 8.
It presents the candidate deviation input returned by the
solver, and the response obtained from both NTP servers
when that candidate deviation input was sent to them dur-
ing the validation phase.

Applications to error detection and fingerprint gener-
ation. The results in Figure 7 show that the candidate
deviation input returned by the solver in Case 8 has dif-
ferent values at bytes 0, 2 and 3. First, bytes 2 and 3 have
been zeroed out in the candidate deviation input. This
is not relevant since these bytes represent the “Poll” and
“Precision” fields and are only significant in messages
sent by servers, not in the queries sent by the clients, and
thus can be ignored.

The important difference is on byte 0, which is pre-
sented in detail on the right hand side of Figure 7. Byte

0 contains three fields: “Leap Indicator” (LI), “Version”
(VN) and “Mode” (MD) fields. The difference with the
original request is in the Version field. The candidate de-
viation input has a decimal value of 0 for this field (note
that the field length is 3 bits), instead of the original dec-
imal value of 4. When this candidate deviation input was
sent to both servers, Ntpd ignored it, choosing not to re-
spond, while NetTime responded with a version number
with value 0. Thus, this candidate deviation input leads
the two servers into semantically different output states.

We check the specification for this case to find out
that a zero value for the Version field is reserved, and
according to the latest specification should no longer be
supported by current and future NTP/SNTP servers [38].
However, the previous specification states that the server
should copy the version number received from the client
in the request, into the response, without dictating any
special handling for the zero value. Since both imple-
mentations seem to be following different versions of the

Program Trace-to-IR time % of Symbolic Instructions IR-to-formula time Formula Size
Apache 7.6s 3.9% 31.87s 49786
Miniweb 5.6s 1.0% 14.9s 25628
Savant 6.3s 2.2% 15.2s 24789
Ntpd 0.073s 0.1% 5.3s 1695

NetTime 0.75s 0.1% 4.3s 5059

Table 5: Execution time and formula size obtained during theformula extraction phase.

Input Calculation Time
Apache - Miniweb 21.3s
Apache - Savant 11.8s
Savant - Miniweb 9.0s
NetTime - Ntpd 0.56s

Table 6: Execution time needed to calculate a candidate
deviation input for each server pair.

specification, we cannot definitely assign this error to one
of the specifications. Instead, this example shows that
we can identify inconsistencies or ambiguity in protocol
specifications. In addition, we can use this query as a
fingerprint to differentiate between the two implementa-
tions.

5.3 Performance

In this section, we measure the execution time and the
output size at different steps in our approach. The re-
sults from the formula extraction phase and the deviation
detection phase are shown in Table 5 and Table 6, respec-
tively. In Table 5, the column “Trace-to-IR time” shows
the time spent in converting an execution trace into our
IR program. The values show that the time spent to con-
vert the execution trace is significantly larger for the web
servers, when compared to the time spent on the NTP
servers. This is likely due to a larger complexity of the
HTTP protocol, specifically a larger number of condi-
tions affecting the input. This is shown in the second
column as the percentage of all instructions that operate
on symbolic data, i.e., on data derived from the input.
The “IR-to-formula time” column shows the time spent
in generating a symbolic formula from the IR program.
Finally, the “Formula Size” column shows the size of
the generated symbolic formulas, measured by the num-
ber of nodes that they contain. The formula size shows
again the larger complexity in the HTTP implementa-
tions, when compared to the NTP implementations.

In Table 6, we show the time used by the solver in the
deviation detection phase to produce a candidate devi-
ation input from the combined symbolic formula. The
results show that our approach is very efficient in dis-

covering deviations. In many cases, we can discover de-
viation inputs between two implementations in approxi-
mately one minute. Fuzz testing approaches are likely to
take much longer, since they usually need to test many
more examples.

6 Discussion and Future Work

Our current implementation is only a first step. In this
section we discuss some natural extensions that we plan
to pursue in the future.

Addressing other protocol interactions. Currently,
we have evaluated our approach over protocols that use
request/response interactions (e.g. HTTP, NTP), where
we examine the request being received by a server pro-
gram. Note that our approach could be used in other
scenarios as well. For example, with clients programs,
we could analyze the response being received by the
client. In protocol interactions involving multiple steps,
we could consider the protocol output state to be the state
of the program after the last step is finished.

Covering rarely used paths. Some errors are hidden
in rarely used program paths and finding them can take
multiple iterations in our approach. For each iteration,
we need a protocol input that drives both implementa-
tions to semantically equivalent output states. These pro-
tocol inputs are usually obtained from a network trace.
Thus, the more different inputs contained in the trace
the more paths we can potentially cover. In addition,
we can query the solver for multiple candidate deviation
inputs, each time requiring the new candidate input to
be different than the previous ones. The obtained candi-
date inputs often result in different paths. We have done
work on symbolic execution techniques to explore mul-
tiple program paths and plan to apply those techniques
here [16,17].

Creating formulas including multiple paths. In this
paper, we apply the weakest precondition on IR pro-
grams that contain a single program path, i.e., the pro-
cessing of the original input by one implementation.

However, our weakest precondition algorithm is capable
of handling IR programs containing multiple paths [19].
In the future, we plan to explore how to create formulas
that include multiple paths.

On-line formula generation. Our current implemen-
tation for generating the symbolic formula works offline.
We first record an execution trace for each implementa-
tion while it processes an input. Then, we process the
execution trace by converting it into the IR representa-
tion, and computing the symbolic formula. Another al-
ternative would be to generate the symbolic formulas in
an on-line manner as the program performs operations
on the received input, as in BitScope [16,17].

7 Related Work

Symbolic execution & weakest precondition. Sym-
bolic execution was first proposed by King [34], and
has been used for a wide variety of problems includ-
ing generating vulnerability signatures [18], automatic
test case generation [32], proving the viability of evasion
techniques [35], and finding bugs in programs [21, 47].
Weakest precondition was originally proposed for devel-
oping correct programs from the ground up [24, 26]. It
has been used for different applications including finding
bugs in programs [28] and for sound replay of application
dialog [42].

Static source code analysis. Chen et al. [23] manually
identify rules representing ordered sequences of security-
relevant operations, and use model checking techniques
to detect violations of those rules in software. Udrea et
al. [45] use static source code analysis to check if a C im-
plementation of a protocol matches a manually specified
rule-based specification of its behavior.

Although these techniques are useful, our approach is
quite different. Instead of comparing an implementation
to a manually defined model, we compare implementa-
tions against each other. Another significant difference
is that our approach works directly on binaries, and does
not require access to the source code.

Protocol error detection. There has been considerable
research on testing network protocol implementations,
with heavy emphasis on automatically detecting errors
in network protocols using fuzz testing [2–5, 8, 11, 13,
33, 37, 43, 46]. Fuzz testing is a technique in which ran-
dom or semi-random inputs are generated and fed to the
program under study, while monitoring for unexpected
program output, usually an unexpected final state such
as program crash or reboot.

Compared to fuzz testing, our approach is more effi-
cient for discovering deviations since it requires testing
far fewer inputs. It can detect deviations by comparing
how two implementations process the same input, even
if this input leads both implementation to semantically
equivalent states. In contrast, fuzz testing techniques
need observable differences between implementations to
detect a deviation.

There is a line of research using model checking
to find errors in protocol implementations. Musuvathi
et.al. [40, 41] use a model checker that operates directly
on C and C++ code and use it to check for errors in
TCP/IP and AODV implementations. Chaki et al. [22]
build models from implementations and checks it against
a specification model. Compared to our approach, these
approaches need reference models to detect errors.

Protocol fingerprinting. There has also been previous
research on protocol fingerprinting [25,44] but available
fingerprinting tools [7,10,14] use manually extracted fin-
gerprints. More recently, automatic fingerprint genera-
tion techniques, working only on network input and out-
put, have been proposed [20]. Our approach is different
in that we use binary analysis to generate the candidate
inputs.

8 Conclusion

In this paper, we have presented a novel approach to au-
tomatically detect deviations in the way different imple-
mentations of the same specification check and process
their input. Our approach has several advantages: (1) by
automatically building the symbolic formulas from the
implementation, our approach is precisely truthful to the
implementation; (2) automatically identifying the devia-
tion by solving formulas generated from the two imple-
mentations enables us to find the needle in the haystack
without having to try each straw (input) individually, thus
a tremendous performance gain; (3) our approach works
on binaries directly, i.e., without access to source code.
We then show how to apply our automatic deviation tech-
niques for automatic error detection and automatic fin-
gerprint generation.

We have presented our prototype system to evaluate
our techniques, and have used it to automatically dis-
cover deviations in multiple implementations of two dif-
ferent protocols: HTTP and NTP. Our results show that
our approach successfully finds deviations between dif-
ferent implementations, including errors in input check-
ing, and differences in the interpretation of the specifica-
tion, which can be used as fingerprints.

Acknowledgments

We would like to thank Heng Yin for his support on
QEMU and Ivan Jager for his help in developing Bit-
Blaze, our binary analysis platform. We would also like
to thank Vijay Ganesh and David Dill for their support
with STP, and the anonymous reviewers for their insight-
ful comments.

This material is based upon work partially supported
by the National Science Foundation under Grants No.
0311808, No. 0433540, No. 0448452, No. 0627511, and
CCF-0424422. Partial support was also provided by the
International Technology Alliance, and by the U.S. Army
Research Office under the Cyber-TA Research Grant No.
W911NF-06-1-0316, and under grant DAAD19-02-1-
0389 through CyLab at Carnegie Mellon.

The views and conclusions contained here are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of ARO, NSF, or the U.S. Govern-
ment or any of its agencies.

References

[1] The BitBlaze binary analysis platform.http://
bitblaze.cs.berkeley.edu .

[2] IrcFuzz. http://www.digitaldwarf.be/
products/ircfuzz.c .

[3] ISIC: IP stack integrity checker.http://www.
packetfactory.net/Projects/ISIC .

[4] JBroFuzz. http://www.owasp.org/
index.php/Category:OWASP \ JBroFuzz .

[5] MangleMe. http://lcamtuf.coredump.
cx .

[6] NetTime. http://nettime.sourceforge.
net .

[7] Nmap. http://www.insecure.org .

[8] Peach.http://peachfuzz.sourceforge.
net .

[9] QEMU: an open source processor emulator.
http://www.qemu.org .

[10] Queso. http://ftp.cerias.purdue.
edu/pub/tools/unix/scanners/queso .

[11] Spike. http://www.immunitysec.com/
resources-freesoftware.shtml.

[12] Windows NTP server.http://www.ee.udel.
edu/∼mills/ntp/html/build/hints/
winnt.html.

[13] Wireshark: fuzz testing tools.http://wiki.
wireshark.org/FuzzTesting.

[14] Xprobe.http://www.sys-security.com.

[15] T. Berners-Lee, R. Fielding, and L. Masinter. Uni-
form Resource Identifier (URI): Generic Syntax.
RFC 3986 (Standard), 2005.

[16] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, D. Song, and H. Yin.
Bitscope: Automatically dissecting malicious bina-
ries. Technical Report CMU-CS-07-133, Carnegie
Mellon University School of Computer Science,
2007.

[17] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
D. Song, and H. Yin. Towards automatically identi-
fying trigger-based behavior in malware using sym-
bolic execution and binary analysis. Technical Re-
port CMU-CS-07-105, Carnegie Mellon University
School of Computer Science, 2007.

[18] D. Brumley, J. Newsome, D. Song, H. W.,
and S. Jha. Towards automatic generation of
vulnerability-based signatures. InProceedings of
the 2006 IEEE Symposium on Security and Privacy,
2006.

[19] D. Brumley, H. Wang, S. Jha, and D. Song. Cre-
ating vulnerability signatures using weakest pre-
conditions. InProceedings of the 2007 Sympo-
sium on Computer Security Foundations Sympo-
sium, 2007.

[20] J. Caballero, S. Venkataraman, P. Poosankam,
M. G. Kang, D. Song, and A. Blum. Fig: Auto-
matic fingerprint generation. In14th Annual Net-
work and Distributed System Security Conference
(NDSS), 2007.

[21] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: A system for automatically gener-
ating inputs of death using symbolic execution. In
Proceedings of the 13th ACM Conference on Com-
puter and Communications Security (CCS), 2006.

[22] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C.
In Proceedings of the 25th International Confer-
ence on Software Engineering (ICSE), 2003.

[23] H. Chen and D. Wagner. MOPS: an infrastructure
for examining security properties of software. In

Proceedings of the 9th ACM conference on Com-
puter and Communications Security (CCS), 2002.

[24] E. Cohen.Programming in the 1990’s. Springer-
Verlag, 1990.

[25] D. Comer and J. C. Lin. Probing TCP implementa-
tions. InUSENIX Summer 1994, 1994.

[26] E. Dijkstra.A Discipline of Programming. Prentice
Hall, Englewood Cliffs, NJ, 1976.

[27] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Updated by RFC
2817.

[28] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Estended static
checking for Java. InACM Conference on the Pro-
gramming Language Design and Implementation
(PLDI), 2002.

[29] C. Flanagan and J. Saxe. Avoiding exponential
explosion: Generating compact verification condi-
tions. In Proceedings of the 28th ACM Sympo-
sium on the Principles of Programming Languages
(POPL), 2001.

[30] V. Ganesh and D. Dill. STP: A deci-
sion procedure for bitvectors and arrays.
http://theory.stanford.edu/˜vganesh/stp.html.

[31] V. Ganesh and D. Dill. A decision procedure for
bit-vectors and arrays. InProceedings of the Com-
puter Aided Verification Conference, 2007.

[32] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected automated random testing. InProceedings of
the 2005 Programming Language Design and Im-
plementation Conference (PLDI), 2005.

[33] R. Kaksonen. A Functional Method for Assess-
ing Protocol Implementation Security. PhD thesis,
Technical Research Centre of Finland, 2001.

[34] J. King. Symbolic execution and program testing.
Communications of the ACM, 19:386–394, 1976.

[35] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Automating mimicry attacks using static
binary analysis. InProceedings of the 14th USENIX
Security Symposium, 2005.

[36] K. R. M. Leino. Efficient weakest precondi-
tions. Information Processing Letters, 93(6):281–
288, 2005.

[37] S. Marquis, T. R. Dean, and S. Knight. SCL: a lan-
guage for security testing of network applications.
In Proceedings of the 2005 conference of the Cen-
tre for Advanced Studies on Collaborative research,
2005.

[38] D. Mills. Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI. RFC 4330 (In-
formational), 2006.

[39] S. Muchnick.Advanced Compiler Design and Im-
plementation. Academic Press, 1997.

[40] M. Musuvathi and D. R. Engler. Model checking
large network protocol implementations. InPro-
ceedings of the First Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2004.

[41] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler,
, and D. L. Dill. CMC: A pragmatic approach to
model checking real code. InProceedings of the
5th Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[42] J. Newsome, D. Brumley, J. Franklin, and D. Song.
Replayer: Automatic protocol replay by binary
analysis. InProceedings of the13th ACM Confer-
ence on Computer and and Communications Secu-
rity (CCS), 2006.

[43] P. Oehlert. Violating assumptions with fuzzing.
IEEE Security and Privacy Magazine, 3(2):58 – 62,
2005.

[44] V. Paxson. Automated packet trace analysis of TCP
implementations. InACM SIGCOMM 1997, 1997.

[45] O. Udrea, C. Lumezanu, and J. S. Foster. Rule-
based static analysis of network protocol imple-
mentations. InProceedings of the 15th USENIX
Security Symposium, 2006.

[46] S. Xiao, L. Deng, S. Li, and X. Wang. Integrated
tcp/ip protocol software testing for vulnerability de-
tection. In Proceedgins of International Confer-
ence on Computer Networks and Mobile Comput-
ing, 2003.

[47] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. En-
gler. Automatically generating malicious disks us-
ing symbolic execution. InProceedings of the 2006
IEEE Symposium on Security and Privacy, 2006.

