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Abstract. We present adaptively-secure efficient solutions to several
central problems in the area of threshold cryptography. We prove these
solutions to withstand adaptive attackers that choose parties for corrup-
tion at any time during the run of the protocol. In contrast, all pre-
viously known efficient protocols for these problems were proven secure
only against less realistic static adversaries that choose and fix the subset
of corrupted parties before the start of the protocol run.
Specifically, we provide adaptively-secure solutions for distributed key
generation in discrete-log based cryptosystems, and for the problem of
distributed generation of DSS signatures (threshold DSS). We also show
how to transform existent static solutions for threshold RSA and proac-
tive schemes to withstand the stronger adaptive attackers. In doing so,
we introduce several techniques for the design and analysis of adaptively-
secure protocols that may well find further applications.

1 Introduction

Distributed cryptography has received a lot of attention in modern cryptographic
research. It covers a variety of areas and applications, from the study of secret-
sharing schemes, to the distributed computation of general functions using secure
multi-party protocols, to the design and analysis of specific threshold cryptosys-
tems. Two main goals that motivate this research area are: (i) provide security
to applications that are inherently distributed, namely, several parties are trying
to accomplish some common task (e.g., secure elections, auctions, games) in the
presence of an attacker, and (ii) avoid single points-of-failure in a security system
by distributing the crucial security resources (e.g. sharing the ability to generate
signatures). In both cases the underlying assumption is that an attacker can
penetrate and control a portion of the parties in the system but not all of them.

Coming up with correct protocols for meeting the above goals has proven
to be a challenging task; trying to design protocols that are practical as well
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as fully-analyzed is even more challenging. One inherent difficulty in the anal-
ysis of cryptographic systems, in general, is the need to define a mathematical
model that is strong enough to capture realistic security threats and attacker’s
capabilities, and which, at the same time, allows to prove the security of sound
solutions. Due to the complexity of building and reasoning about distributed
protocols, this difficulty is even greater in the area of distributed cryptography.
In this case a large variety of security models have been proposed. This is not
just due to “philosophical disagreements” on what the best way to model rea-
sonable attackers is, but it is also influenced by our ability (or lack of it) to prove
security of protocols under strong adversarial models.

One major distinction between security models for distributed protocols is
whether the attacker is static or adaptive (the latter is also called “dynamic”).
In both cases the attacker is allowed to corrupt any subset of parties up to some
size (or threshold) as specified by the security model. However, in the case of an
adaptive adversary the decision of which parties to corrupt can be made at any
time during the run of the protocol and, in particular, it can be based on the
information gathered by the attacker during this run. In contrast, in the static
case the attacker must choose its victims independently of the information it
learns during the protocol. Therefore, the subset of corrupted parties can be
seen as chosen and fixed by the attacker before the start of the protocol’s run.

While the adaptive attacker model appears to better capture real threats,
the bulk of published works on distributed cryptography assumes a static adver-
sary. This is due to the difficulties encountered when trying to design and prove
protocols resistant to adaptive adversaries. Still, general constructions have been
shown in the adaptive-adversary model for secure distributed evaluation of any
polynomial-time computable function (see below). However, these general re-
sults do not provide sufficiently efficient and practical solutions. Until now, no
efficient adaptive solutions for threshold cryptosystems were known.

Our Contribution. The main contribution of this paper is in providing con-
crete, fully-specified, fully-analyzed solutions to some of the central problems
in threshold cryptography, and proving their security in the adaptive adver-
sary model. Our solutions add little overhead relative to existing solutions for
the same problems in the static-adversary model. They are also constant-round;
namely, the number of rounds of communication is fixed and independent of
the number of parties in the system, the input length, or the security parame-
ter. Thus we believe that our protocols can be of real use in emerging threshold
cryptography applications. Very importantly, we provide full analysis and proofs
for our solutions. This is essential in an area where simple intuition is usually
highly misleading and likely to produce flawed protocols.

In addition, our work introduces general new techniques for the design and
analysis of protocols in the adaptive-adversary model. In section 2 we give an
overview of these techniques to aid the understanding of the protocols and the
proofs given in the following sections. We also hope that these techniques will
be applicable to the design of adaptively-secure solutions to other problems.



100 R. Canetti et al.

In section 3 we start the presentation of our protocols with an adaptively-
secure solution for the distributed generation of keys for DSS, El Gamal, and
other discrete-log based public-key systems (for signatures and encryption). Such
a protocol is not only needed for generating keys in a distributed way without
a trusted party, but it is also a crucial component of many other cryptographic
protocols. We illustrate this in our own work by using it for distributed genera-
tion of the r = gk part in DSS signatures.

In section 4 we present a threshold DSS protocol for the shared generation
of DSS signatures that withstands adaptive attackers. We first show a simplified
protocol where the attacker can control up to t < n/4 players. This protocols
helps in highlighting and understanding many of our new and basic techniques.
Next we describe an optimal-resilience, t < n/2, threshold DSS protocol.

In section 5 we show how our techniques can be used to achieve adaptively-
secure distributed protocols for other public-key systems. We show how to mod-
ify existing threshold RSA protocols (proven in the static model) to obtain
adaptively-secure threshold RSA. Here also we achieve optimal-resiliency and
constant-round protocols. Similarly, our techniques allow for “upgrading” ex-
istent proactive discrete-log based threshold schemes from the static-adversary
model to the adaptive one.

Related Work. Our work builds directly on previous protocols that were secure
only in the static-adversary model, particularly on [Ped91b,GJKR99] for the
distributed key generation and [GJKR96] for the threshold DSS signatures. We
modify and strengthen these protocols to achieve adaptive security. Similarly, our
solution to adaptive threshold RSA is based on the previous work of [Rab98].

As said before, if one is not concerned with the practicality of the solutions
then general protocols for secure distributed computation of polynomial-time
functions in the presence of adaptive adversaries are known. This was shown
in [BGW88,CCD88] assuming (ideal) private channels. Later, [BH92] showed
that with the help of standard encryption and careful erasure of keys one can
translate these protocols into the model of public tappable channels. Recently,
[CFGN96] showed how to do this translation without recurring to erasures but
at the expense of a significant added complexity. Other recent work on the
adaptive-adversary model includes [Can98,CDD+99]. Also, independently from
our work, adaptively-secure distributed cryptosystems have been recently stud-
ied in [FMY].

2 Technical Overview: Road-Map to Adaptive Security

This section provides an overview of some basic technical elements in our work.
It is intended as a high-level introduction to some of the issues that underly
the protocol design and proofs presented in this paper (without getting into a
detailed description of the protocols themselves). We point out to some general
aspects of our design and proof methodology, focusing on the elements that are
essential to the treatment of the adaptive-adversary model in general, and to
the understanding of our new techniques. For simplicity and concreteness, our
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presentation focuses mainly on threshold signature schemes which are threshold
solutions to some existing centralized scheme like DSS or RSA. However, most of
the issues we raise are applicable to other threshold functions and cryptosystems.

Threshold Signature Schemes. A threshold signature scheme consists of a
distributed key generation protocol, a distributed signature generation protocol
and a centralized verification algorithm. The signing servers first run the key
generation, and obtain their private key shares and the global public key. Next,
whenever a message needs to be signed, the servers invoke the signature gener-
ation protocol. The definition of secure threshold signature scheme makes two
requirements. The first is unforgeability, which says, roughly, that, even after
interacting with the signing parties in the initial generation of the distributed
key and then in the signing protocol invoked on adaptively chosen messages,
the adversary should be unable (except with negligible probability) to come up
with a message that was not signed by the servers together with a valid signa-
ture. The second requirement is robustness, which says that whenever the servers
wish to sign a message, a valid signature should be generated. Our model and
definitions are a natural adaptation to the adaptive-adversary model of the def-
initions for threshold signatures found in [GJKR96], which in turn are based on
the unforgeability notions of [GMR88].

Proofs by Reduction and the Central Role of Simulations. We use the
usual “reductionist” approach for the proofs of our protocols. Namely, given an
adversary A that forges signatures in the distributed setting, we construct a
forger F that forges signatures of the underlying centralized signature scheme.
Thus, under the assumption that the centralized scheme is secure, the threshold
signature scheme must also be secure. A key ingredient in the reduction is a
“simulation” of the view of the adversary A in its run against the distributed
protocol. That is, the forger F builds a virtual distributed environment where
the instructions of A are carried out. Typically, first F has to simulate to A an
execution of the distributed key generation that results in the same public key
against which F stages a forgery. Then A will successively invoke the distributed
signature protocol on messages of his choice, and F , having access to a signing
oracle of the underlying centralized signature scheme, has to simulate to A its
view of an execution of the distributed signature protocol on these messages.
Eventually, if A outputs a forgery in the imitated environment, F will output a
forgery against the centralized signature scheme. Two crucial steps in the analy-
sis of this forger are: (1) Demonstrate that the adversary’s view of the simulated
interaction is indistinguishable from its view of a real interaction with parties
running the threshold scheme. (2) Demonstrate that the forger can translate a
successful forgery by the adversary (in the simulated run) to a successful forgery
of the centralized signature scheme.

The first step is the technical core of our proofs. Furthermore, to carry out
the second step we need simulators that are able to generate views that are
indistinguishable from the view of the adversary under a given conditioning.
More specifically, F has to simulate a run of the distributed key generation that
arrives at a given public key of the underlying centralized scheme, and it has
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to simulate a run of the distributed signature scheme that arrives at a given
signature output by the signing oracle of the centralized scheme. We refer to
this as the problem of hitting a particular value in the simulation.

Problems with Simulating an Adaptive Adversary. The above proof tech-
nique is also used in the case of static adversaries. However, an adaptive adver-
sary can corrupt any player at any time (as long as not too many parties are
corrupted) and at that point the simulator needs to be able to provide the at-
tacker with the current internal state of the broken party. In particular, this
information must be consistent with the information previously seen by the
attacker. Providing this information is typically the main difficulty in proving
adaptive security of protocols.

We demonstrate this difficulty with a simplified example adapted from our
protocols: Assume that the protocol specifies that each server Pi chooses a ran-
dom exponent xi and makes public (broadcasts) gxi , where g is a known group
generator. Next, the adversary sees gx1 ...gxn, corrupts, say, 1/3 of the servers,
and expects to see the secret exponents xi of the corrupted servers being consis-
tent with gxi . Since the simulator cannot predict which servers will be corrupted,
the only known way to carry out the simulation is to make sure that the simu-
lator knows in advance the secret values xi of all the servers, even though the
adversary corrupts only a fraction of them. However, this is not possible in our
protocols where the xi’s encode a secret quantity x (such as a signing key) un-
known to the simulator. Note that trying to guess which servers will be corrupted
does not help the simulation: there is an exponential number of such sets. (In
contrast, the simulation of such a protocol is possible in the case of a static
attacker where the simulator knows in advance the set of corrupted players.)

Erasures. One way to get around the above problem in the adaptive-adversary
model is to specify in the protocol that the servers erase the private values xi

before the values gxi are broadcasted. Now, when corrupting Pi, this information
is not available to the adversary in the real run of the protocol and therefore
there is no need to provide it in the simulation. However, this technique can
only be applied when the protocol no longer needs xi. A careful use of erasures
is at the core of the design of our protocols. In some cases, this requires that
information that could have been useful for the continuation of the protocol be
erased. Two examples of crucial erasures in our protocols are the erasure of some
of the verification information kept by Pedersen’s VSS protocol [Ped91a] (which
we compensate for with the use zero-knowledge proofs – see below), and the
erasure of all temporary information generated during each execution of the sig-
nature protocol. Furthermore, erasures simplify the task of implementing private
channels with conventional encryption in the adaptive model (see below).1

1 Successful erasure of data is not a trivial task; one needs to make sure that the
data, and all its back-ups, are carefully overwritten. In our setting, we trust un-
corrupted parties to properly erase data whenever required by the protocol. (See
[CFGN96,Can98] for further discussion on the issue of data erasures.)
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Rewinding the Adversary. Another useful technique for getting around the
problem of having to present the attacker with information not available to the
simulator is rewinding. This is a well-known technique for proving zero-knowledge
(and other) protocols. In its essence it allows a simulator that is “in trouble”
with its simulation to rewind the adversary’s state to a previous computation
state, and restart the computation from there. At this point the simulation will
try some other random choices in the computation hoping that it will not end
in another bad position as before. Thus, in the case where the chances to get
“stuck” again are not too large then rewinding is a very useful technique. In a
second try, after the simulator makes some different choices, the adversary will
hopefully not hit an “inconsistent” situation again.

Note that rewinding is a proof technique, not a protocol action. Yet, one
has to design the protocol in ways that make rewinding a useful tool. As in the
case of erasures, correct use of rewinding requires care. Following is an impor-
tant instance where an improper use of rewinding can render the whole sim-
ulation useless.2 Assume that the distributed adversary A asks for signatures
on a sequence of messages m1 , m2, . . .. For each message mi, in order to sim-
ulate the signature protocol, the forger F must ask the signing oracle of the
underlying centralized signature scheme for a signature on mi. Assume now
that during the kth signature protocol (while simulating the distributed signing
of message mk) the simulator gets “stuck” and needs to rewind the adversary
back to a previous signature protocol, say the jth one for j < k. Now the ad-
versary is rewinded back to mj , the subsequent view is different, so with all
likelihood the adversary will start asking for signatures on different messages.
In other words the sequence of messages is now m1, . . . , mj , m

′
j+1, . . . , m

′
k, . . ..

However the sequence of messages asked by the forger F to the signature oracle
is m1, . . . , mj , mj+1, . . . , mk, m′

j+1, . . . , m
′
k, i.e. the forger has now asked more

messages than the adversary (indeed since the adversary was rewinded he has
no recollection of asking the messages mj+1, . . . , mk). This means that the ad-
versary A may output one of those messages as a successful forgery, but such
event will not count as a success for the forger F .

It is important then to confine rewinding of the adversary inside a simulation
of a single run of the signature protocol. One of the tools that we use to ensure
that our protocols are simulatable in such a way is the erasure of local temporary
information generated by our protocols.

The Single-Inconsistent-Player Technique. Another concern that needs to
be addressed is making sure that rewindings do not take place too often (other-
wise the simulator may not run in polynomial time). Very roughly, we guarantee
this property as follows. We make sure that the simulator can, at any point of
the simulated run, present the attacker with a correct internal state (i.e. state
that is consistent with the attacker’s view) for all honest players except, maybe,

2 We remark that the rewinding technique may also cause difficulties when the signa-
ture protocol is composed with other protocols, and in particular when several copies
of the signature protocol are allowed to run concurrently. We leave these issues out
of the scope of this work. See more details in [DNS98,KPR98].
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for one server. The identity of this server is chosen at random. Moreover, the
view of the attacker is independent from this choice. This guarantees that the
inconsistent server is corrupted (and then the simulation is rewinded) with prob-
ability at most one half (this probability is given by the ratio t/n of corrupted
players). Thus, the expected number of rewindings is at most one.

Zero-Knowledge to the Rescue, and Efficiently. Another tool used in our
protocols are zero-knowledge proofs [GMR89], and more specifically zero-know-
ledge proofs of knowledge. Useful as they are, zero-knowledge proofs may add
significant complexity to the protocols, degrade performance, and increase com-
munication. We show how to make intensive use of zero-knowledge proofs with
significant savings in complexity. Specifically, we show how to achieve the ef-
fect of O(n2) zero-knowledge proofs of knowledge (where each of the n players
proves something to each of the other players) in a single 3-move honest verifier
zero-knowledge proof. This is done by implementing the honest verifier using a
distributed generation of a challenge by all players.3 We implement this tech-
nique for Schnorr’s proof of possession of discrete-log [Sch91]; the same technique
can be used for other zero-knowledge protocols as well [CD98].

Maintaining Private Channels in the Adaptive Model. An important
observation about the design of our protocols is that we specify them using
the abstraction of “private channels” between each pair of parties. This is a
usual simplifying approach in the design of cryptographic protocols: The un-
derlying assumption is that these private channels can be implemented via en-
cryption. In the case of adaptive security, however, this simple paradigm needs
to be re-examined. Indeed, a straightforward replacement of private channels
with encryption could ruin the adaptive security of our protocols. Fortunately,
in settings where data erasures are acceptable (and in particular in our setting)
a very simple technique exists [BH92] for solving this problem. It involves lo-
cal refreshment of (symmetric) encryption keys by each party, using a simple
pseudorandom generator and without need for interaction between the parties.
This adds virtually no overhead to the protocols beyond the cost of symmetric
encryption itself.

3 Adaptively-Secure Distributed Key Generation

A basic component of threshold cryptosystems based on the difficulty of com-
puting discrete logarithms is the shared generation of a secret x for which the
value gx is made public. Not only is this needed to generate a shared key without
a trusted dealer but it is also a sub-module of other protocols, e.g. as used in
our own threshold DSS scheme for generating r = gk−1

(see Sec. 4). We call
this module a “Distributed Key Generation” (DKG) protocol. The primitive of
3 Recall that 3-move zero-knowledge proofs cannot exist for cheating verifiers if the

underlying problem is not in BPP [GK96,IS93]. Thus, the distributed nature of the
verifier in our implementation is essential for “forcing honesty”. In particular, our
simulation of these proofs does not require rewinding at all.
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Distributed Key Generation for Discrete–Log Based Cryptosystems is defined in
[GJKR99], yet the solution provided in that paper is proven secure only against
a non-adaptive adversary. Briefly stating, a DKG protocol is performed by n
players P1, ..., Pn on public input (p, q, g) where p and q are large primes, q di-
vides p –1, and g is an element of order q in Z∗

p . DKG generates a Shamir secret
sharing of a uniformly distributed random secret key x ∈ Zq , and makes public
the value y = gx mod p. At the end of the protocol each player has a private
output xi, called a share of x. The protocol is secure with threshold (t, n) if in
the presence of an adversary who corrupts at most t players, the protocol gen-
erates the desired outputs and does not reveal any information about x except
for what is implied by the public value gx mod p.

To ensure the ability to use the DKG protocol as a module in a larger, adap-
tively secure, threshold scheme (like the DSS-ts signature scheme of Section 4)
we add to the requirements of [GJKR99] that at the end of the protocol each
party must erase all the generated internal data pertaining to this execution of
the protocol except of course for its private output xi. This requirement ensures
that the simulator of the threshold scheme within which DKG is used as a module
(e.g. DSS-ts) is able to produce the internal state of a player whom the adversary
corrupts after the execution of the DKG module is completed.

Distributed Key Generation Protocol. We present a distributed key gen-
eration protocol DKG with resilience t < n/3, which is simple to explain and
already contains the design and analysis ideas in our work. (See below for the
modifications required to achieve optimal resilience t < n/2.) DKG is based on
the distributed key generation protocol of [GJKR99] which is proven secure only
against a non-adaptive adversary. (Some of the changes made to this protocol
in order to achieve adaptive security are discussed below.)

Protocol DKG presented in Fig.1, starts with inputs (p, q, g, h) where (p, q, g)
is a discrete–log instance and h is a random element in the subgroup of Z∗

p gen-
erated by g. When DKG is executed on inputs (p, q, g) only, a random h must
first be publicly generated as follows: If q2 does not divide p − 1, the players
generate a random r ∈ Z∗

p via a collective coin-flipping protocol [BGW88] and
take h = r(p−1)/q mod p.4 The protocol proceeds as follows: The first part of
generating x is achieved by having each player commit to a random value zi via
a Pedersen’s VSS [Ped91a,Ped91b,GJKR99]. These commitments are verified by
the other players and the set of parties passing verification is denoted by QUAL.
Then the shared secret x is set (implicitly) to x =

∑
i∈QUAL zi mod q. We de-

note this subprotocol by Joint-RVSS (see Figure 2).5 In addition to enabling the
generation of a random, uniformly distributed value x, Joint-RVSS has the side
effect of having each player Pi broadcast an information-theoretically private
commitment to zi of the form Ci0 = gzihf ′

i(0) mod p, where f ′
i is a random-

4 We chose to write DKG with h as an input so that it could be invoked as a module
by the DSS-ts scheme of Section 4 without generating h each time.

5 See [GJKR99] for an analysis of Joint-RVSS in the non-adaptive adversarial model.
The same analysis applies to the adaptive model treated here.
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Input: Parameters (p, q, g), and h an element in the subgroup generated by g.
Public Output: y the public key
Secret Output of Pi: xi the share of the random secret x

(all other secret outputs are erased)
Other Public Output: Public commitments.

Generating x:
Players execute Joint-RVSS(t, n, t)

1. Player Pi gets the following secret outputs of Joint-RVSS:
– xi, x

′
i his share of the secret and the associated random value (resp.)

– fi(z), f ′
i(z) polynomials he used to share his contribution zi = fi(0)

to x.
– sji, s

′
ji for j = 1..n the shares and randomness he received from others

Players also get public outputs Cik for i = 1..n, k = 0..t and the set
QUAL.

Extracting y = gx mod p:
Each player exposes yi = gzi mod p to enable the computation of y = gx mod
p.
2. Each player Pi, i ∈ QUAL, broadcasts Ai = gfi(0) = gzi mod p and Bi =

hf ′
i(0) mod p, s.t. Ci0 = AiBi. Pi also chooses random values ri and r′i

and broadcasts Ti = gri , T ′
i = hr′i mod p.

3. Players execute Joint-RVSS(t, n, t) for a joint random challenge d. Player
Pi sets his local share of the secret challenge to di. All other secret output
generated by this Joint-RVSS and held by Pi is erased.

4. Each player broadcast di. Set d = EC-Interpolate(d1, . . . , dn).
5. Pi broadcasts Ri = ri + d · fi(0) and R′

i = r′i + d · f ′
i(0)

6. Player Pj checks for each Pi that gRi = Ti · Ad
i and hR′

i = T ′
i · Bd

i . If the
equation is not satisfied then Pj complains against Pi.

7. If player Pi receives more than t complaints, then Pj broadcasts sij . Set
zi = EC-Interpolate(si1, . . . , sin) and Ai = gzi .

8. The public value y is set to y =
∏

i∈QUAL
Ai mod p.

9. Player Pi erases all secret information aside from his share xi.

Fig. 1. DKG - Distributed Key Generation, n ≥ 3t + 1

izing polynomial chosen by Pi in the run of Joint-RVSS. We will utilize these
commitments to “extract” and publish the public key y = gx mod p.

We have that gx = g

∑
i∈QUAL

zi =
∏

i∈QUAL gzi mod p. Thus, if we could
have each player “deliver” gzi in a verifiable way then we could compute y. To
that end, we require Pi to “split” his commitment Ci0 into the two components
Ai = gzi and Bi = hf ′

i (0) (Step 2). To ensure that he gives the correct split, Pi

proves that he knows both DloggAi and DloghBi with Schnorr’s 3-round zero-
knowledge proof of knowledge of discrete-log [Sch91]. We exploit the fact that
each player is proving his statement to many verifiers by generating a single
challenge for all these proofs. Joint challenge d is generated with Joint-RVSS
with public reconstruction (Steps 3-4). The proof completes in Steps 5-6. For
the interesting properties of this form of zero-knowledge proof see Section 2. If
a player fails to prove a correct split, then his value zi is reconstructed using
polynomial interpolation with the error-correcting code procedure such as [BW],
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Threshold Parameters: (t, n, t′)
Input: Parameters (p, q, g) and element h generated by g
Public Output: Cik for i = 1..n, k = 0..t′ (referred to as the “commitment

to the polynomial”). Set QUAL of non-disqualified players
Secret Output of Pi: xi and x′

i the share and the associated random value
fi(z), f ′

i(z) the polynomials used to share zi

sji, s
′
ji for j = 1..n shares received from Pj

1. Each player Pi performs a Pedersen-VSS of a random value zi as a dealer:

(a) Pi chooses two random polynomials fi(z), f ′
i(z) over Zq of degree t′:

fi(z) = ai0 + ai1z + ... + ait′z
t′ f ′

i(z) = bi0 + bi1z + ... + bit′z
t′

Let zi = ai0 = fi(0). Pi broadcasts Cik = gaikhbik mod p for k =
0, ..., t′. Pi sends shares sij = fi(j), s

′
ij = f ′

i(j) mod q to each Pj for
j = 1, ..., n.

(b) Each Pj verifies the shares received from other players for i = 1, ..., n

gsij hs′ij =

t′∏

k=0

(Cik)jk

mod p (1)

If the check fails for an index i, Pj broadcasts a complaint against Pi.
(c) Each player Pi who, as a dealer, received a complaint from player Pj

broadcasts the values sij , s
′
ij that satisfy Eq. (1).

(d) Each player builds the set of players QUAL which excludes any player
– who received more than t complaints in Step 1b, or
– answered to a complaint in Step 1c with values that violate

Eq.(1).

2. The shared random value x is not computed by any party, but it
equals x =

∑
i∈QUAL

zi mod q. Each Pi sets his share of the secret

to xi =
∑

j∈QUAL
sji mod q and the associated random value x′

i =∑
j∈QUAL

s′ji mod q.

Fig. 2. Joint-RVSS - Joint Pedersen VSS, n ≥ 2t + 1

which we denote by EC-Interpolate (Steps 4, 7). The players then erase all the
information generated during the protocol except of their share of the secret key.

Proving Adaptive Security of Key Generation. In Figure 3 we present a
simulator SIM-DKG for the DKG protocol.6 This simulation is the crux of the
proof of secrecy in the protocol, namely, that nothing is revealed by the protocol
beyond the value y = gx mod p (to show this we provide the value of y as input
to the simulator and require it to simulate a run of the DKG protocol that ends
with y as its public output). We denote by G (resp. B) the set of currently good
(resp. bad) players. The simulator executes the protocol for all the players in
G except one. The state of the special player P (selected at random) is used
by the simulator to “fix” the output of the simulation to y, the required public
key. Since the simulator does not know Dloggy it does not know some secret

6 If DKG is preceded with generation of h (see above), the simulator plays the part
of the honest players in that protocol before running SIM-DKG to simulate DKG.
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information relative to this special player (in particular the component zP that
this player contributes to the secret key). This lack of knowledge does not disable
the simulator from proving that it knows P ’s contribution (Steps 2-6 in DKG)
since the simulator can utilize a simulation of this ZK proof. However, if the
adversary corrupts P during the simulation (which happens with probability
< 1/2) the simulator will not be able to provide the internal state of this player.
Thus, the simulator will need to rewind the adversary and select another special
player P ′. The simulation will conclude in expected polynomial time.

Input: public key y and parameters (p, q, g) and h an element generated by
g

1. Perform Step 1 of DKG on behalf of the players in G. At the end of this
step the set QUAL is defined. SIM-DKG knows all polynomials fi(z), f ′

i(z)
for i ∈ QUAL (as it controls a majority of the players). In particular,
SIM-DKG knows the values fi(0), f

′
i(0).

Perform the following pre-computations:
– Choose at random one uncorrupted player P ∈ G
– Compute Ai = gfi(0), Bi = hf ′

i(0) for i ∈ QUAL \ {P}
– Set A∗

P = y · ∏
i∈(QUAL\{P})(Ai)

−1 mod p, and B∗
P = CP0/A

∗
P mod p

– Pick values d, RP , R′
P ∈R Zq, set T∗

P = gRP ·(A∗
P )−d and T

′∗
P = hR′

P ·(B∗
P )−d

2. For each player i ∈ G \ {P} execute Step 2 according to the protocol. For

player P broadcast A∗
P , B∗

P , T∗
P , T

′∗
P which were computed previously.

3. Perform the Joint-RVSS(t, n, t) protocol on behalf of the uncorrupted
players. Note that SIM-DKG knows the shares di, i ∈ B. Erase all the
secret output of the uncorrupted players in this protocol. Pick a t-degree
polynomial f∗

d (z) s.t. f∗
d (0) = d and f∗

d (i) = di for i ∈ B. Set d∗
i = f∗

d (i)
for i ∈ G.

4. Broadcast d∗
i for each i ∈ G.

5. Broadcast Ri = ri + d · fi(0) mod q and R′
i = r′i + d · f ′

i(0) mod q for

i ∈ G \ {P} and R∗
P , R

′∗
P for player P .

6. Execute Step 6 of DKG for all players. (Notice that the corrupted players
can publish a valid complaint only against one another.)

7. For each player with more than t complaints participate in the recon-
struction of their value. Note that only players in B can have more than
t complaints.

8. Erase all information aside from the value xi.

Fig. 3. SIM-DKG - Simulator for the Distributed Key Generation Pro-
tocol DKG

Lemma 1. Simulator SIM-DKG on input (p, q, g, h, y) ends in expected polyno-
mial time and computes a view for the adversary that is indistinguishable from
a view of the protocol DKG on input (p, q, g, h) and output y.

Proof: First we show that SIM-DKG outputs a probability distribution which
is identical to the distribution the adversary sees in an execution of DKG that
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produces y as an output. In the following denote by Gg the subgroup of Z∗
p

generated by g.

1. The first step is carried out according to the protocol, thus values fi(j), f ′
i(j),

i ∈ G, j ∈ B, and Cik, i ∈ G, k = 0 . . . t have the required distribution.
2. The values Ai for i ∈ G \ {P } are distributed exactly as in the real pro-

tocol. The value A∗
P = y · ∏

i∈(QUAL\{P})(Ai)−1 = y · ∏
i∈(G\{P})(Ai)−1 ·∏

i∈(B∩QUAL)(Ai)−1 is distributed uniformly in Gg and independently from
the values Ai for all i. This is because y is random and uniformly distributed
and the Ai for i ∈ B are generated independently from the other ones (be-
cause Joint-RVSS is information theoretically private).
A similar argument holds for values Bi, i ∈ G \ {P } and B∗

P .
Finally, values Ti, T

′
i , i ∈ G \ {P } are picked at random in Gg as in the

protocol. Values T ∗
P , T

′∗
P are also uniformly distributed in Gg. Thus the view

in this step is identical.
3. Here SIM-DKG performs a Joint-RVSS(t, n, t) protocol on behalf of the play-

ers in G exactly as in the protocol. Thus the view in this step is identical.
4. In this step SIM-DKG broadcasts shares d∗

i of a new polynomial f∗
d (z) which is

random subject to the constraint that f∗
d (j) = fd(j) for j ∈ B and f∗

d (0) = d.
Although these d∗

i ’s are not the same values held as shares by the players
in the previous step, the view for the adversary is still the same as in the
real protocol. This is because the adversary has seen a Joint-RVSS of value
d′ and at most t points of the sharing polynomial f . It is easily seen that
for any other value d there is another polynomial that passes through the
t points held by the adversary and the free term d. Notice that since only
the d∗

i ’s are broadcasted the simulator does not have to “match” the public
commitments generated by the Joint-RVSS.

5. Values Ri, R
′
i, i ∈ G satisfy the required constraints (i.e. verification equa-

tion) as in the protocol.

We have shown that the public view of the adversary during the simulation is
identical to the one he would see during a real execution. Now we must proceed
to show that the simulator can produce a consistent view of the internal states for
the players corrupted by the adversary A. Clearly, if a player is corrupted before
Step 2, the simulator can produce a consistent view because it is following the
protocol. After Step 2 the simulator can show correct internal states for all the
players in G except for the special player P . Thus, if P is corrupted the simulator
rewinds the adversary to the beginning of Step 2 and selects at random a different
special player. Notice that if a player Pi in G \{P } is corrupted after Step 4, the
simulator has broadcasted for Pi a “fake” value d∗

i . But since we erased all the
private information (except the shares) generated in Joint-RVSS in Step 3, the
simulator can simply claim that d∗

i was really the share held by Pi. This will not
contradict any of the generated public information. ut
Adaptive vs. Non-Adaptive Solutions. As noted before, DKG is based on
the recent distributed key generation protocol of [GJKR99], which is secure only
against a static adversary. The generation of x is the same in both protocols but
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they differ in the method for extracting the public key. In the current protocol
each player reveals only values (Ai, Bi) = (gfi(0), hf ′

i(0)) from the execution of
Joint-RVSS, and uses zero-knowledge proofs to guarantee that these values are
properly formed. Due to this limited revealing of information it is sufficient
for the simulator to “cheat” with respect to the internal state of only a single
player, and yet to “hit” the desired value. However, in the protocol of [GJKR99],
each player reveals Ai by publishing all values gaik , k = 0, ..., t. For one of the
players the simulator has to commit in this way to a polynomial without knowing
ai0 = fi(0). Therefore he can do it in a way that is consistent with only t points
on this polynomial. Thus, the simulator has an inconsistent internal state for n−t
players, and hence has to stop and rewind every time one of them is corrupted,
which happens with overwhelming probability if the adversary is adaptive.

Key Generation with Optimal Resilience. To achieve an optimally-resilient
(i.e. n = 2t+1) DKG protocol two changes are required. First we need to change
the generation of h which occurs before DKG starts. Instead of using a VSS
protocol which has a t < n/3 resilience ([BGW88]) we need a VSS with an
optimal t < n/2 resilience (e.g. [CDD+99]). The second change is the following:
In our DKG we publicly reconstruct a value created with Joint-RVSS protocol (see
Steps 3-4). This reconstruction is currently done using error-correcting codes,
which make the protocol easy to simulate, but which tolerate only t < n/3
faults. However, we can achieve optimal resilience by sieving out bad shares
with Pedersen verification equation (Eq. (1)) if the players submit the associated
random values generated by Joint-RVSS together with their shares. Therefore the
players must no longer erase these values as in the current Step 3.

This change must be reflected in the simulator, because the current SIM-DKG
is unable to produce these values. However, the simulator could produce them if
he knew the discrete logarithm Dlogg(h). Therefore, in the h-generation protocol,
instead of playing the part of the honest parties, the simulator must pick λ ∈ Zq

at random, compute h = gλ, simulate the VSS protocol of [CDD+99] to arrive
at r = hβ where β = ((p− 1)/q)−1 mod q, and pass λ to the modified SIM-DKG.

4 Adaptively-Secure Threshold DSS Signature Scheme

As described in Section 2, a Threshold Signature Scheme consists of a distributed
key generation, distributed signature protocol, and a signature verification proce-
dure (see full definitions in [GJKR96] or [CGJ+]). Here we present a distributed
DSS signature protocol Sig-Gen with t < n/4 resilience. (Below we give a brief
description for how to modify this protocol to achieve optimal resilience.) We
prove the unforgeability of the Threshold DSS Signature Scheme, which is com-
bined from DKG (Section 3), Sig-Gen, and the regular DSS verification procedure
DSS-Ver. The proof of robustness is deferred to [CGJ+]. We refer the reader to
Section 2 for a higher-level description of the basic elements in our approach,
solutions, and proofs.

Distributed Signature Protocol. The basis for the signature protocol Sig-Gen
(Fig.4) is the protocol of [GJKR96], with modifications to allow for the adaptive
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adversary. Protocol Sig-Gen assumes that the signing parties have previously
executed the DKG protocol and hold the shares xi of a secret key that corresponds
to the generated public key y. The protocol Sig-Gen is invoked every time some
message m needs to be signed.

Input: message m to be signed (plus the outputs of DKG).
Public Output: (r, s) the signature of the message m

1. Generate r = gk−1
mod p mod q

(a) Generate k. Players execute Joint-RVSS(t, n, t). Player Pi sets ki to
his share of the secret. All other secret information generated by the
above execution is erased.

(b) Generate random sharings of 0 on polynomials of degree 2t. Players
execute two instances of Joint-ZVSS(t, n, 2t). Player Pi sets bi and
ci to his shares of the two sharings. All other secret information
generated by the above executions is erased.

(c) Generate a random value a and ga mod p using DKG. Player Pi sets
ai to his share of the secret a.

(d) Player Pi broadcasts vi = kiai + bi mod q.

(e) Each player computes: µ
4
= EC-Interpolate(v1, . . . , vn) mod q [=

ka mod q], then µ−1 mod q, and r
4
= (ga)µ−1

[= gk−1
] mod p mod q.

2. Generate s = k(m + xr) mod q

Pi broadcasts si = ki(m + xir) + ci mod q. Set s
4
=

EC-Interpolate(s1, . . . , sn).
3. Player Pi erases all secret information generated in this protocol.

Fig. 4. Sig-Gen - Distributed Signature Generation, n ≥ 4t + 1

The first part of the signature computation is the generation of the random
value r = gk−1

mod p mod q. This computation is very similar to the distributed
key generation protocol, aside from the complication that it requires g to be
raised to the inverse of the shared secret value k. We achieve this with a variation
of the distributed inversion protocol from [BB89]: The players select a random
uniformly distributed k ∈ Zq in shared form via the Joint-RVSS protocol (Step
1a). Then they perform a DKG protocol to select a random a ∈ Zq in shared form
and publish ga mod p (Step 1c). The inversion of k in the exponent occurs when
the players reconstruct in the clear the product µ = ka mod q which is a random
number, invert it, and then compute gk−1

= (ga)µ−1
(Steps 1d-1e). The value s

is publicly reconstructed when each player reveals the product ki(m+xir) which
lies on a 2t-degree polynomial whose free term is s = k(m + xr). As in DKG, it
is crucial for the proof of adaptive security that the players erase at the end all
secret information generated by this protocol.

Sig-Gen uses a Joint-ZVSS subprotocol to generate randomizing polynomials
(Step 1b). This randomization is needed to hide all partial information during
the public reconstruction of values µ and s (Steps 1e and 2). Joint-ZVSS, which
stands for “Joint Zero VSS”, is a modification of Joint-RVSS where all players
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fix their values zi = ai0 and bi0 (Step 1a, Figure 2) to zero. This can be verified
by other players by checking that Ci0 = 1 mod p.

Proving Adaptive Security of Threshold DSS. We argue the following:

Theorem 1. If DSS is unforgeable under adaptive chosen message attack then
DSS-ts=(DKG,Sig-Gen,DSS-Ver) is a secure (unforgeable and robust) (t, n) -
threshold signature scheme for t < n/4.

Due to space limitations we present only the unforgeability part of this argument
(Lemma 3) and we use the definition of unforgeability of threshold signature
schemes from [GJKR96]. For the complete treatment of security of our scheme,
together with more formal definitions of security of threshold signatures and a
proof of robustness, we invite the reader to [CGJ+]. To prove unforgeability, we
first need the following lemma about the simulator SIM-Sig presented in Fig.5:

Input: message m, its signature (r, s) of a DSS system (y, p, q, g),
an element h generated by g

Compute r∗ = gms−1
yrs−1

mod p. Pick µ ∈R Zq, and set β = (r∗)µ mod p.

1. (a) Execute Joint-RVSS(t, n, t) on behalf of the uncorrupted players. This
results in shares ki for each of the uncorrupted players. Erase all secret
values aside from ki.

(b) Execute two sharings of a 0 value on polynomials of degree 2t using
Joint-ZVSS(t, n, 2t). This results in shares bi, ci for the uncorrupted
players. Erase all secret values aside from bi, ci.

(c) Run the simulator SIM-DKG of the DKG protocol on input β as the
“public key”. This results in shares ai for each of the uncorrupted
players. Note that all other information has already been erased by
the simulator which was called as a sub-routine.

(d) The simulator knows values vi = kiai + bi, i ∈ B that should be
broadcast by the players controlled by the adversary in Step 1e of the
signing protocol. Choose a 2t-degree polynomial fv(z) s.t. fv(0) = µ,
fv(i) = vi for i ∈ B. Set v∗

i = fv(i) for i ∈ G. Compute b∗i = v∗
i −kiai,

i ∈ G. Erase the secret values bi for i ∈ G. Broadcast v∗
i for i ∈ G.

2. The simulator knows values si = ki(m + xir) + ci, i ∈ B that should
be broadcast by the players controlled by the adversary in Step 2 of
the signing protocol. Choose a 2t-degree polynomial fs(z) s.t. fs(0) = s,
fs(i) = si for i ∈ B. Set s∗i = fs(i) for i ∈ G. Compute c∗i = s∗i − ki(m +
xir), i ∈ G. Erase the secret values ci for i ∈ G. Broadcast s∗i for i ∈ G.

3. Erase all the information generated by the signature generation.

Fig. 5. SIM-Sig - Simulator for the Distributed Signature Protocol
Sig-Gen

Lemma 2. Simulator SIM-Sig on input (p, q, g, h, y, m, (r, s)) ends in expected
polynomial time and computes a view for the adversary that is indistinguishable
from a view of the protocol Sig-Gen on input public key (p, q, g, h, y), message m,
and output signature (r, s).

Proof: 1. Generation of r
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(a) The simulator executed Joint-RVSS according to the protocol, thus all
the values generated by these executions have the required distribution.

(b) The simulator executed two instances of Joint-ZVSS according to the pro-
tocol, thus all the values generated by these executions have the required
distribution.

(c) It has been proved that the simulator SIM-DKG outputs the desired
distributions for the DKG protocol. Notice also that β is uniformly dis-
tributed in Gg (the same as ga in the real protocol).

(d) Here the simulator broadcasts values v∗i which were not computed ac-
cording to the protocol. Yet because these shares have been chosen at
random under the condition that they interpolate to a random free term
µ and the polynomial interpolated by them matches the shares held by
the adversary, the view of the adversary is exactly the same as in the
real protocol.

2. Generation of s: The same argument as above applies to the values s∗i .

The discussion about the internal states presented by the simulator to the
adversary when a player is corrupted is identical to the one in the proof of
Lemma 1. It is important to notice that the only rewinding happens during the
simulation of the DKG subroutine inside this protocol. It should be restated here
that once the DKG simulator completes its execution the adversary can now
corrupt any of the players, including the “special” player, because now even for
that player the simulator has a consistent view. ut
Lemma 3. If DSS is unforgeable under adaptive chosen message attack then
DSS-ts=(DKG, Sig-Gen, DSS-Ver) is an unforgeable (t, n)-threshold signature
scheme for t < n/4.

Proof: Assume that DSS-ts is not unforgeable. Then there exists a t-threshold
adversary A s.t. with a non-negligible probability A outputs a valid DSS (mes-
sage,signature) pair (m, (r, s)), after participating in the initial execution of DKG
and then in the repeated execution of Sig-Gen on messages m1, m2, ... of A’s
choice. Furthermore, none of the mi’s is equal to m. Using such adversary A, we
show how to construct a forger F against the regular DSS scheme. F is given
as input a DSS system (p, q, g), and a random public key y. Additionally, F can
accesses a signature oracle OSig that provides DSS signatures under the given
public key (p, q, g, y).

F fixes the random coins of A. First F plays the part of the honest parties in
the h-generation protocol. Then F runs an interaction between SIM-DKG and A
on input (p, q, g, h, y). By lemma 1, the simulation ends in expected polynomial
time and A receives a view that is identical to A’s view of a random execution
of DKG that outputs y. When A requests a signature on message mi, F submits
mi to OSig and receives (ri, si), a random DSS signature on mi. Then F then
runs an interaction between SIM-Sig and A on input (p, q, g, h, y, mi, (ri, si)). By
lemma 2, this simulation ends in expected polynomial time and A receives a
view that is identical to A’s view of a random execution of Sig-Gen that outputs
(ri, si). Finally, since its views of this simulation are indistinguishable from the
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real ones, A outputs a valid DSS signature (m, (r, s)) where m 6= mi for all i.
F outputs this (m, (r, s)) which is a successful existential forgery since F never
asked its oracle this message m. ut
Threshold DSS with Optimal t < n/2 Resilience. Because of lack of space
we defer the description of the modifications that achieve optimal resilience in
the Sig-Gen protocol to the full version [CGJ+] of this paper. These modifications
include the use of the t < n/2 resilient version of DKG as described at the end of
section 3. Furthermore, we use the results of [GRR98] to increase the resilience
of the secret-multiplication steps of the signature protocol itself.

5 Further Applications

The techniques introduced in this paper enable us to achieve adaptive security
for other threshold public-key systems. Here we sketch our solution to Adaptive
Threshold RSA and Adaptive Proactive Solutions.

Adaptive Threshold RSA. We can achieve an adaptively-secure Threshold
RSA Signature Generation protocol (but without distributed key generation)
with optimal resilience. Furthermore, our protocol runs in a constant number of
rounds. We build our solution on the Threshold RSA solution of [Rab98]. The
protocol of that paper needs to be modified to use a Pedersen VSS wherever
a Feldman VSS is used, the zero-knowledge proofs which appear need to be
modified accordingly, and commitments should be of the Pedersen form.

The most interesting change required in this protocol is due to the following:
If the current protocol is invoked twice on two different messages, each player
gives its partial signature on these messages under its fixed partial key. But as
we have seen in Section 2, the simulator is not allowed to rewind back beyond
the current invocation of the signature protocol that it is simulating. Clearly,
the simulator cannot know the partial keys of all players. If a player for whom
he does not know the partial key is broken into during the simulation of the
signing of the second message, then the simulator would need to explain both
partial signatures of that player, and hence would be forced to rewind beyond
the current invocation of the signature protocol.

To avoid this problem, the partial keys need to be changed after each signa-
ture generation. This is achieved in a straightforward manner (though it adds a
performance penalty to the protocol).

Adaptive Proactive Solutions. Our threshold DSS scheme, as well as other
discrete–log based threshold schemes built with our techniques, can be easily
proactivized [HJJ+97] by periodic refreshment of the shared secret key. Due to
space limitations we simply state here that such refreshment can be achieved in
the adaptive model if the players execute a Joint-ZVSS protocol (see Section 4),
and add the generated shares to their current share of the private key x.
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