
An Evaluation of the Google Chrome Extension Security Architecture

Nicholas Carlini, Adrienne Porter Felt, and David Wagner
University of California, Berkeley

nicholas.carlini@berkeley.edu, apf@cs.berkeley.edu, daw@cs.berkeley.edu

Abstract

Vulnerabilities in browser extensions put users at risk by
providing a way for website and network attackers to
gain access to users’ private data and credentials. Exten-
sions can also introduce vulnerabilities into the websites
that they modify. In 2009, Google Chrome introduced
a new extension platform with several features intended
to prevent and mitigate extension vulnerabilities: strong
isolation between websites and extensions, privilege sep-
aration within an extension, and an extension permission
system. We performed a security review of 100 Chrome
extensions and found 70 vulnerabilities across 40 exten-
sions. Given these vulnerabilities, we evaluate how well
each of the security mechanisms defends against exten-
sion vulnerabilities. We find that the mechanisms mostly
succeed at preventing direct web attacks on extensions,
but new security mechanisms are needed to protect users
from network attacks on extensions, website metadata at-
tacks on extensions, and vulnerabilities that extensions
add to websites. We propose and evaluate additional de-
fenses, and we conclude that banning HTTP scripts and
inline scripts would prevent 47 of the 50 most severe vul-
nerabilities with only modest impact on developers.

1 Introduction

Browser extensions can introduce serious security vul-
nerabilities into users’ browsers or the websites that ex-
tensions interact with [20, 32]. In 2009, Google Chrome
introduced a new extension platform with several secu-
rity mechanisms intended to prevent and mitigate ex-
tension vulnerabilities. Safari and Mozilla Firefox have
since adopted some of these mechanisms for their own
extension platforms. In this paper, we evaluate the se-
curity of the widely-deployed Google Chrome extension
platform with the goal of understanding the practical suc-
cesses and failures of its security mechanisms.

Most extensions are written by well-meaning devel-
opers who are not security experts. These non-expert

developers need to build extensions that are robust to at-
tacks originating from malicious websites and the net-
work. Extensions can read and manipulate content from
websites, make unfettered network requests, and access
browser userdata like bookmarks and geolocation. In the
hands of a web or network attacker, these privileges can
be abused to collect users’ private information and au-
thentication credentials.

Google Chrome employs three mechanisms to prevent
and mitigate extension vulnerabilities:

• Privilege separation. Chrome extensions adhere to
a privilege-separated architecture [23]. Extensions
are built from two types of components, which are
isolated from each other: content scripts and core
extensions. Content scripts interact with websites
and execute with no privileges. Core extensions do
not directly interact with websites and execute with
the extension’s full privileges.

• Isolated worlds. Content scripts can read and mod-
ify website content, but content scripts and websites
have separate program heaps so that websites can-
not access content scripts’ functions or variables.

• Permissions. Each extension comes packaged with
a list of permissions, which govern access to the
browser APIs and web domains. If an extension has
a core extension vulnerability, the attacker will only
gain access to the permissions that the vulnerable
extension already has.

In this work, we provide an empirical analysis of
these security mechanisms, which together comprise a
state-of-the-art least privilege system. We analyze 100
Chrome extensions, including the 50 most popular ex-
tensions, to determine whether Chrome’s security mech-
anisms successfully prevent or mitigate extension vulner-
abilities. We find that 40 extensions contain at least one
type of vulnerability. Twenty-seven extensions contain
core extension vulnerabilities, which give an attacker full
control over the extension.

Based on this set of vulnerabilities, we evaluate the
effectiveness of each of the three security mechanisms.
Our primary findings are:

• The isolated worlds mechanism is highly successful
at preventing content script vulnerabilities.

• The success of the isolated worlds mechanism ren-
ders privilege separation unnecessary. However,
privilege separation would protect 62% of exten-
sions if isolated worlds were to fail. In the remain-
ing 38% of extensions, developers either intention-
ally or accidentally negate the benefits of privilege
separation. This highlights that forcing developers
to divide their software into components does not
automatically achieve security on its own.

• Permissions significantly reduce the severity of half
of the core extension vulnerabilities, which demon-
strates that permissions are effective at mitigating
vulnerabilities in practice. Additionally, dangerous
permissions do not correlate with vulnerabilities:
developers who write vulnerable extensions use per-
missions the same way as other developers.

Although these mechanisms reduce the rate and scope
of several classes of attacks, a large number of high-
privilege vulnerabilities remain.

We propose and evaluate four additional defenses. Our
extension review demonstrates that many developers do
not follow security best practices if they are optional, so
we propose four mandatory bans on unsafe coding prac-
tices. We quantify the security benefits and functional-
ity costs of these restrictions on extension behavior. Our
evaluation shows that banning inline scripts and HTTP
scripts would prevent 67% of the overall vulnerabilities
and 94% of the most dangerous vulnerabilities at a rela-
tively low cost for most extensions. In concurrent work,
Google Chrome implemented Content Security Policy
(CSP) for extensions to optionally restrict their own be-
havior. Motivated in part by our study [5], future versions
of Chrome will use CSP to enforce some of the manda-
tory bans that we proposed and evaluated.

Contributions. We contribute the following:

• We establish the rate at which extensions contain
different types of vulnerabilities, which should di-
rect future extension security research efforts.

• We perform the first large-scale study of the ef-
fectiveness of privilege separation when developers
who are not security experts are required to use it.

• Although it has been assumed that permissions mit-
igate vulnerabilities [12, 14, 10], we are the first to
evaluate the extent to which this is true in practice.

• We propose and evaluate new defenses. This study
partially motivated Chrome’s adoption of a new
mandatory security mechanism.

2 Extension Security Background

2.1 Threat Model

In this paper, we focus on non-malicious extensions that
are vulnerable to external attacks. Most extensions are
written by well-meaning developers who are not secu-
rity experts. We do not consider malicious extensions;
preventing malicious extensions requires completely dif-
ferent tactics, such as warnings, user education, security
scans of the market, and feedback and rating systems.
Benign-but-buggy extensions face two types of attacks:

• Network attackers. People who use insecure net-
works (e.g., public WiFi hotspots) may encounter
network attackers [26, 21]. A network attacker’s
goal is to obtain personal information or credentials
from a target user. To achieve this goal, a network
attacker will read and alter HTTP traffic to mount
man-in-the-middle attacks. (Assuming that TLS
works as intended, a network attacker cannot com-
promise HTTPS traffic.) Consequently, data and
scripts loaded over HTTP may be compromised.

If an extension adds an HTTP script – a JavaScript
file loaded over HTTP – to itself, a network attacker
can run arbitrary JavaScript within the extension’s
context. If an extension adds an HTTP script to
an HTTPS website, then the website will no longer
benefit from the confidentiality, integrity, and au-
thentication guarantees of HTTPS. Similarly, insert-
ing HTTP data into an HTTPS website or extension
can lead to vulnerabilities if the untrusted data is al-
lowed to execute as code.

• Web attackers. Users may visit websites that host
malicious content (e.g., advertisements or user com-
ments). A website can launch a cross-site script-
ing attack on an extension if the extension treats the
website’s data or functions as trusted. The goal of
a web attacker is to gain access to browser userdata
(e.g., history) or violate website isolation (e.g., read
another site’s password).

Extensions are primarily written in JavaScript and
HTML, and JavaScript provides several methods for con-
verting strings to code, such as eval and setTimeout.
If used improperly, these methods can introduce code
injection vulnerabilities that compromise the extension.
Data can also execute if it is written to a page as
HTML instead of as text, e.g., through the use of
document.write or document.body.innerHTML. Ex-
tension developers need to be careful to avoid passing
unsanitized, untrusted data to these execution sinks.

Extension

Content Script Core Extension

Browser API

ServersWebsite
[attacker]

Network attacker
(if website is HTTP)

Network attacker
(if connection is HTTP)

Figure 1: The architecture of a Google Chrome extension.

2.2 Chrome Extension Security Model
Many Firefox extensions have publicly suffered from
vulnerabilities [20, 32]. To prevent this, the Google
Chrome extension platform was designed to protect users
from vulnerabilities in benign-but-buggy extensions [4].
It features three primary security mechanisms:

• Privilege separation. Every Chrome extension is
composed of two types of components: zero or
more content scripts and zero or one core extension.
Content scripts read and modify websites as needed.
The core extension implements features that do not
directly involve websites, including browser UI el-
ements, long-running background jobs, an options
page, etc. Content scripts and core extensions run in
separate processes, and they communicate by send-
ing structured clones over an authenticated channel.
Each website receives its own separate, isolated in-
stance of a given content script. Core extensions can
access Chrome’s extension API, but content scripts
cannot. Figure 1 illustrates the relationship between
components in a Chrome extension.

The purpose of this architecture is to shield the priv-
ileged part of an extension (i.e., the core extension)
from attackers. Content scripts are at the highest
risk of attack because they directly interact with
websites, so they are low-privilege. The sheltered
core extension is higher-privilege. As such, an at-
tack that only compromises a content script does
not pose a significant threat to the user unless the
attack can be extended across the message-passing
channel to the higher-privilege core extension.

1.4% of extensions also include binary plugins in
addition to content scripts and core extensions [12].
Binary plugins are native executables and are not
protected by any of these security mechanisms. We
do not discuss the security of binary plugins in this
paper because they are infrequently used and must
undergo a manual security review before they can
be posted in the Chrome Web Store.

• Isolated worlds. The isolated worlds mechanism is
intended to protect content scripts from web attack-
ers. A content script can read or modify a website’s
DOM, but the content script and website have sepa-
rate JavaScript heaps with their own DOM objects.
Consequently, content scripts and websites never
exchange pointers. This should make it more dif-
ficult for websites to tamper with content scripts.1

• Permissions. By default, extensions cannot use
parts of the browser API that impact users’ privacy
or security. In order to gain access to these APIs, a
developer must specify the desired permissions in a
file that is packaged with the extension. For exam-
ple, an extension must request the bookmarks per-
mission to read or alter the user’s bookmarks. Per-
missions also restrict extensions’ use of cross-origin
XMLHttpRequests; an extension needs to specify
the domains that it wants to interact with. Only the
core extension can use permissions. Content scripts
cannot invoke browser APIs or make cross-origin
XHRs.2 A content script has only two privileges:
it can access the website it is running on, and send
messages to its core extension.

Permissions are intended to mitigate core extension
vulnerabilities.3 An extension is limited to the per-
missions that its developer requested, so an attacker
cannot request new permissions for a compromised
extension. Consequently, the severity of a vulnera-
bility in an extension is limited to the API calls and
domains that the permissions allow.

1Although isolated worlds separates websites from content scripts,
it not a form of privilege separation; privilege separation refers to tech-
niques that isolate parts of the same application from each other.

2In newer versions of Chrome, content scripts can make cross-
origin XHRs. However, this was not permitted at the time of our study.

3Extension permissions are shown to users during installation, so
they may also have a role in helping users avoid malicious extensions;
however, we focus on benign-but-buggy extensions in this work.

Google Chrome was the first browser to implement
privilege separation, isolated worlds, and permissions for
an extension system. These security mechanisms were
intended to make Google Chrome extensions safer than
Mozilla Firefox extensions or Internet Explorer browser
helper objects [4]. Subsequently, Safari adopted an iden-
tical extension platform, and Mozilla Firefox’s new Add-
on SDK (Jetpack) privilege-separates extension mod-
ules. All of our study findings are directly applicable to
Safari’s extension platform, and the privilege separation
evaluation likely translates to Firefox’s Add-on SDK.

Contemporaneously with our extension review, the
Google Chrome extension team began to implement
a fourth security mechanism: Content Security Policy
(CSP) for extensions. CSP is a client-side HTML pol-
icy system that allows website developers to restrict what
types of scripts can run on a page [29]. It is intended to
prevent cross-site scripting attacks by blocking the exe-
cution of scripts that have been inserted into pages. By
default, CSP disables inline scripts: JavaScript will not
run if it is in a link, between <script> tags, or in an
event handler. The page’s policy can specify a set of
trusted servers, and only scripts from these servers will
execute. Consequently, any attacker that were to gain
control of a page would only be able to add code from
the trusted servers (which should not lead to harm). CSP
can also restrict the use of eval, XHR, and iframes. In
Chrome, CSP applies to extensions’ HTML pages [28].

3 Extension Security Review

We reviewed 100 Google Chrome extensions from the
official directory. This set is comprised of the 50 most
popular extensions and 50 randomly-selected extensions
from June 2011.4 Section 3.1 presents our extension re-
view methodology. Our security review found that 40%
of the extensions contain vulnerabilities, and Section 3.2
describes the vulnerabilities. Section 3.3 presents our ob-
servation that 31% of developers do not follow even the
simplest security best practices. We notified most of the
authors of vulnerable extensions (Section 3.4).

3.1 Methodology
We manually reviewed the 100 selected extensions, using
a three-step security review process:

1. Black-box testing. We exercised each extension’s
user interface and monitored its network traffic to
observe inputs and behavior. We looked for in-
stances of network data being inserted into the

4We excluded four extensions because they included binary plugins;
they were replaced with the next popular or random extensions. The
directory’s popularity metric is primarily based on the number of users.

DOM of a page. After observing an extension, we
inserted malicious data into its network traffic (in-
cluding the websites it interacts with) to test poten-
tial vulnerabilities.

2. Source code analysis. We examined extensions’
source code to determine whether data from an
untrusted source could flow to an execution sink.
After manually reviewing the source code, we
used grep to search for any additional sources or
sinks that we might have missed. For sources,
we looked for static and dynamic script inser-
tion, XMLHttpRequests, cookies, bookmarks, and
reading websites’ DOMs. For sinks, we looked
for uses of eval, setTimeout, document.write,
innerHTML, etc. We then manually traced the call
graph to find additional vulnerabilities.

3. Holistic testing. We matched extensions’ source
code to behaviors we identified during black-box
testing. With our combined knowledge of an ex-
tension’s source code, network traffic, and user in-
terface, we attempted to identify any additional be-
havior that we had previously missed.

We then verified that all of the vulnerabilities could occur
in practice by building attacks. Our goal was to find all
vulnerabilities in every extension.

During our review, we looked for three types of vul-
nerabilities: vulnerabilities that extensions add to web-
sites (e.g., HTTP scripts on HTTPS websites), vulnera-
bilities in content scripts, and vulnerabilities in core ex-
tensions. Some content script vulnerabilities may also
be core extension vulnerabilities, depending on the ex-
tensions’ architectures. Core extension vulnerabilities
are the most severe because the core is the most privi-
leged extension component. We do not report vulnera-
bilities if the potential attacker is a trusted website (e.g.,
https://mail.google.com) and the potentially mali-
cious data is not user-generated; we do not believe that
well-known websites are likely to launch web attacks.

After our manual review, we applied a well-known
commercial static analysis tool to six extensions, with
custom rules. However, our manual review identified
significantly more vulnerabilities, and the static analysis
tool did not find any additional vulnerabilities because of
limitations in its ability to track strings. Prior research
has similarly found that a manual review by experts un-
covers more bugs than static analysis tools [30]. Our
other alternative, VEX [3], was not built to handle several
of the types of attacks that we reviewed. Consequently,
we did not pursue static analysis further.

Web Network
Vulnerable Component Attacker Attacker

Core extension 5 50
Content script 3 1
Website 6 14

Table 1: 70 vulnerabilities, by location and threat model.

Vulnerable Component Popular Random Total

Core extension 12 15 27
Content script 1 2 3
Website 11 6 17

Any 22 18 40

Table 2: The number of extensions with vulnerabilities,
of 50 popular and 50 randomly-selected extensions.

3.2 Vulnerabilities

We found 70 vulnerabilities across 40 extensions. The
appendix identifies the vulnerable extensions. Table 1
categorizes the vulnerabilities by the location of the vul-
nerability and the type of attacker that could exploit it.
More of the vulnerabilities can be leveraged by a net-
work attacker than by a web attacker, which reflects the
fact that two of the Chrome extension platform’s secu-
rity measures were primarily designed to prevent web at-
tacks. A bug may be vulnerable to both web and network
attacks; we count it as a single vulnerability but list it in
both categories in Table 1 for illustrative purposes.

The vulnerabilities are evenly distributed between
popular and randomly-selected extensions. Table 2
shows the distribution. Although popular extensions are
more likely to be professionally written, this does not
result in a lower vulnerability rate in the set of popular
extensions that we examined. We hypothesize that pop-
ular extensions have more complex communication with
websites and servers, which increases their attack sur-
face and neutralizes the security benefits of having been
professionally developed. The most popular vulnerable
extension had 768,154 users in June 2011.

3.3 Developer Security Effort

Most extension developers are not security experts.
However, there are two best practices that a security-
conscious extension developer can follow without any
expertise. First, developers can use HTTPS instead of
HTTP when it is available, to prevent a network attacker
from inserting data or code into an extension. Second,
developers can use innerText instead of innerHTML

when adding untrusted, non-HTML data to a page;
innerText does not allow inline scripts to execute. We
evaluate developers’ use of these best practices in order
to determine how security-conscious they are.

We find that 31 extensions contain at least one vulner-
ability that was caused by not following these two sim-
ple best practices. This demonstrates that a substantial
fraction of developers do not make use of optional se-
curity mechanisms, even if the security mechanisms are
very simple to understand and use. As such, we advocate
mandatory security mechanisms that force developers to
follow best security practices (Section 7).

3.4 Author Notification

We disclosed the extensions’ vulnerabilities to all of the
developers that we were able to contact. We found con-
tact information for 80% of the vulnerable extensions.5

Developers were contacted between June and September
2011, depending on when we completed each review. We
sent developers follow-up e-mails if they did not respond
to our initial vulnerability disclosure within a month.

Of the 32 developers that we contacted, 19 acknowl-
edged and fixed the vulnerabilities in their extensions,
and 7 acknowledged the vulnerabilities but have not
completely fixed them as of February 7, 2012. Two of
the un-patched extensions are official Google extensions.
As requested, we provided guidance on how the security
bugs could be fixed. None of the developers disputed the
legitimacy of the vulnerabilities, although one developer
argued that a vulnerability was too difficult to fix.

The appendix identifies the extensions that have been
fixed. However, the “fixed” extensions are not necessar-
ily secure despite our review. While checking on the sta-
tus of vulnerabilities, we discovered that developers of
several extensions have introduced new security vulner-
abilities that were not present during our initial review.
We do not discuss the new vulnerabilities in this paper.

4 Evaluation of Isolated Worlds

The isolated worlds mechanism is intended to pro-
tect content scripts from malicious websites, includ-
ing otherwise-benign websites that have been altered by
a network attacker. We evaluate whether the isolated
worlds mechanism is sufficient to protect content scripts
from websites. Our security review indicates that iso-
lated worlds largely succeeds: only 3 of the 100 exten-
sions have content script vulnerabilities, and only 2 of
the vulnerabilities allow arbitrary code execution.

Developers face four main security challenges when
writing extensions that interact with websites. We dis-
cuss whether and how well the isolated worlds mecha-
nism helps prevent these vulnerability classes.

5For the remaining 20%, contact information was unavailable, the
extension had been removed from the directory, or we were unable to
contact the developer in a language spoken by the developer.

Data as HTML. One potential web development mis-
take is to insert untrusted data as HTML into a page,
thereby allowing untrusted data to run as code. The iso-
lated worlds mechanism mitigates this type of error in
content scripts. When a content script inserts data as
HTML into a website, any scripts in the data are executed
within the website’s isolated world instead of the exten-
sion’s. This means that an extension can read data from a
website’s DOM, edit it, and then re-insert it into the page
without introducing a content script vulnerability. Alter-
nately, an extension can copy data from one website into
another website. In this case, the extension will have in-
troduced a vulnerability into the edited website, but the
content script itself will be unaffected.

We expect that content scripts would exhibit a higher
vulnerability rate if the isolated worlds mechanism did
not mitigate data-as-HTML bugs. Six extensions’ con-
tent scripts contained data-as-HTML errors that resulted
in web site vulnerabilities, instead of the more-dangerous
content script vulnerabilities. Furthermore, we found
that 20 of the 50 (40%) core extension vulnerabilities are
caused by inserting untrusted data into HTML; core ex-
tensions do not have the benefit of the isolated worlds
mechanism to ameliorate this class of error. Since it is
unlikely that developers exercise greater caution when
writing content scripts than when writing core exten-
sions, we conclude that the isolated worlds mechanism
reduces the rate of content script vulnerabilities by miti-
gating data-as-HTML errors.

Eval. Developers can introduce vulnerabilities into their
extensions by using eval to execute untrusted data. If an
extension reads data from a website’s DOM and evals
the data in a content script, the resulting code will run in
the content script’s isolated world. As such, the isolated
worlds mechanism does not prevent or mitigate vulnera-
bilities due to the use of eval in a content script.

We find that relatively few developers use eval, possi-
bly because its use has been responsible for well-known
security problems in the past [8, 27]. Only 14 extensions
use eval or equivalent constructs to convert strings to
code in their content scripts, and most of those use it
only once in a library function. However, we did find
two content script vulnerabilities that arise because of an
extension’s use of eval in its content script. For exam-
ple, the Blank Canvas Script Handler extension can be
customized with supplemental scripts, which the exten-
sion downloads from a website and evals in a content
script. Although the developer is intentionally running
data from the website as code, the integrity of the HTTP
website that hosts the supplemental scripts could be com-
promised by a network attacker.

Click Injection. Extensions can register event handlers
for DOM elements on websites. For example, an ex-
tension might register a handler for a button’s onClick
event. However, extensions cannot differentiate between
events that are triggered by the user and events that are
generated by a malicious web site. A website can launch
a click injection attack by invoking an extension’s event
handler, thereby tricking the extension into performing
an action that was not requested by the user. Although
this attack does not allow the attacker to run arbitrary
code in the vulnerable content script, it does allow the
website to control the content script’s behavior.

The isolated worlds mechanism does not prevent or
mitigate click injection attacks at all. However, the at-
tack surface is small because relatively few extensions
register event handlers for websites’ DOM elements. Of
the 17 extensions that register event handlers, most are
for simple buttons that toggle UI state. We observed only
one click injection vulnerability, in the Google Voice ex-
tension. The extension changes phone numbers on web-
sites into links. When a user clicks a phone number
link, Google Voice inserts a confirmation dialog onto the
DOM of the website to ensure that the user wants to place
a phone call. Google Voice will place the call following
the user’s confirmation. However, a malicious website
could fire the extension’s event handlers on the link and
confirmation dialog, thereby placing a phone call from
the user’s Google Voice account without user consent.

Prototypes and Capabilities. In the past, many vulner-
abilities due to prototype poisoning and capability leaks
have been observed in bookmarklets and Firefox exten-
sions [20, 32, 2]. The isolated worlds mechanism pro-
vides heap separation, which prevents both of these types
of attacks. Regardless of developer behavior, these at-
tacks are not possible in Chrome extensions as long as
the isolation mechanism works correctly.

Based on our security review, the isolated worlds
mechanism is highly effective at shielding content scripts
from malicious websites. It mitigates data-as-HTML er-
rors, which we found were very common in the Chrome
extensions that we reviewed. Heap separation also pre-
vents prototype poisoning and capability leaks, which are
common errors in bookmarklets and Firefox extensions.
Although the isolated worlds mechanism does not pre-
vent click injection or eval-based attacks, we find that
developers rarely make these mistakes. We acknowledge
that our manual review could have missed some content
script vulnerabilities. However, we find it unlikely that
we could have missed many, given our success at find-
ing the same types of vulnerabilities in core extensions.
We therefore conclude that the isolated worlds mecha-
nism is effective, and other extension platforms should
implement it if they have not yet done so.

5 Evaluation of Privilege Separation

Privilege separation is intended to shield the privileged
core extension from attacks. The isolated worlds mecha-
nism serves as the first line of defense against malicious
websites, and privilege separation is supposed to protect
the core extension when isolated worlds fails. We eval-
uate the effectiveness of extension privilege separation
and find that, although it is unneeded, it would be par-
tially successful at accomplishing its purpose if the iso-
lated worlds mechanism were to fail.

5.1 Cross-Component Vulnerabilities

Some developers give content scripts access to core
extension permissions, which removes the defense-in-
depth benefits of privilege separation. We evaluate the
impact of developer behavior on the effectiveness of ex-
tension privilege separation.

Vulnerable Content Scripts. The purpose of privilege
separation is to limit the impact of content script vulner-
abilities. Even if a content script is vulnerable, privi-
lege separation should prevent an attacker from execut-
ing code with the extension’s permissions. We iden-
tified two extensions with content script vulnerabilities
that permit arbitrary code execution; these two exten-
sions could benefit from privilege separation.

Despite privilege separation, both of the vulnerabili-
ties yield access to some core extension privileges. The
vulnerable content scripts can send messages to their
respective core extensions, requesting that the core ex-
tensions exercise their privileges. In both extensions,
the core extension makes arbitrary XHRs on behalf of
the content script and returns the result to the content
script. This means that the two vulnerable content scripts
could trigger arbitrary HTTP XHRs even though con-
tent scripts should not have access to a cross-origin
XMLHttpRequest object. These vulnerable extensions
represent a partial success for privilege separation be-
cause the attacker cannot gain full privileges, but also
a partial failure because the attacker can gain the ability
to make cross-origin XHRs.

Hypothetical Vulnerabilities. Due to the success of
the isolated worlds mechanism, our set of vulnerabilities
only includes two extensions that need privilege separa-
tion as a second line of defense. To expand the scope of
our evaluation of privilege separation, we explore a hy-
pothetical scenario: if the currently-secure extensions’
content scripts had vulnerabilities, would privilege sepa-
ration mitigate these vulnerabilities?

Of the 98 extensions that do not have content script
vulnerabilities, 61 have content scripts. We reviewed the
message passing boundary between these content scripts

Permissions Number of Scripts

All of the extension’s permissions 4
Partial: Cross-origin XHRs2 9
Partial: Tab control 5
Partial: Other 5

Table 3: 61 extensions have content scripts that do not
have code injection vulnerabilities. If an attacker were
hypothetically able to compromise the content scripts,
these are the permissions that the attacker could gain ac-
cess to via the message-passing channel with the cores.

and their core extensions. We determined that 38% of
content scripts can leverage communication with their
core extensions to abuse some core extension privileges:
4 extensions’ content scripts can use all of their cores’
permissions, and 19 can use some of their cores’ permis-
sions. Table 3 shows which permissions attackers would
be able to obtain via messages if they were able to com-
promise the content scripts. This demonstrates that privi-
lege separation could be a relatively effective layer of de-
fense, if needed: we can expect that privilege separation
would be effective at limiting the damage of a content
script vulnerability 62% of the time.

Example. The AdBlock extension allows its content
script to execute a set of pre-defined functions in the core
extension. To do this, the content script sends a mes-
sage to the core extension. A string in the message is
used to index the window object, allowing the content
script to select a pre-defined function to run. Unfortu-
nately, this also permits arbitrary code execution because
the window object provides access to eval. As such,
a compromised content script would have unfettered ac-
cess to the core extension’s permissions.

Example. A bug in the Web Developer extension unin-
tentionally grants its content script full privileges. Its
content script can post small notices to the popup page,
which is part of the core extension. The notices are in-
serted using innerHTML. The notices are supposed to be
text, but a compromised content script could send a no-
tice with an inline script that would execute in the popup
page with full core extension permissions.

5.2 Web Site Metadata Vulnerabilities

The Chrome extension platform applies privilege separa-
tion with the expectation that malicious website data will
first enter an extension via a vulnerable content script.
However, it is possible for a website to attack a core ex-
tension without crossing the privilege separation bound-
ary. Website-controlled metadata such as titles and URLs
can be accessed by the core extension through browser

Type Vulnerabilities

Website content 2
Website metadata 5
HTTP XHR 16
HTTP script 28

Total 50

Table 4: The types of core extension vulnerabilities.

managers (e.g., the history, bookmark, and tab man-
agers). This metadata may include inline scripts, and
mishandled metadata can lead to a core extension vulner-
ability. Website metadata does not flow through content
scripts, so privilege separation does not impede it. We
identified five vulnerabilities from metadata that would
allow an attacker to circumvent privilege separation.

Example. The Speeddial extension replicates Chrome’s
built-in list of recently closed pages. Speeddial keeps
track of the tabs opened using the tabs manager and does
not sanitize the titles of these pages before adding them
to the HTML of one of its core extension pages. If a title
were to contain an inline script, it would execute with the
core extension’s permissions.

5.3 Direct Network Attacks

Privilege separation is intended to protect the core exten-
sion from web attackers and HTTP websites that have
been compromised by network attackers. However, the
core extension may also be subject to direct network at-
tacks. Nothing separates a core extension from code
in HTTP scripts or data in HTTP XMLHttpRequests.
HTTP scripts in the core extension give a network at-
tacker the ability to execute code with the extension’s
full permissions, and HTTP XHRs cause vulnerabilities
when extensions allow the HTTP data to execute.

Direct network attacks comprise the largest class
of core extension vulnerabilities, as Table 4 illus-
trates. Of the 50 core extension vulnerabilities, 44 vul-
nerabilities (88%) stem from HTTP scripts or HTTP
XMLHttpRequests, as opposed to website data. For ex-
ample, many extensions put the HTTP version of the
Google Analytics script in the core extension to track
which of the extensions’ features are used.

Example. Google Dictionary allows a user to look up
definitions of words by double clicking on a word. The
desired definition is fetched by making a HTTP request
to google.com servers. The response is inserted into
one of the core extension’s pages using innerHTML. A
network attacker could modify the response to contain
malicious inline scripts, which would then execute as
part of the privileged core extension page.

5.4 Implications

The isolated worlds mechanism is so effective at protect-
ing content scripts from websites that privilege separa-
tion is rarely needed. As such, privilege separation is
used to address a threat that almost does not exist, at
the cost of increasing the complexity and performance
overhead of extensions. (Privilege separation requires an
extra process for each extension, and communication be-
tween content scripts and core extensions is IPC.) We
find that network attackers are the real threat to core ex-
tension security, but privilege separation does not miti-
gate or prevent these attacks. This shows that although
privilege separation can be a powerful security mecha-
nism [23], its placement within an overall system is an
important determining factor of its usefulness.

Our study also has implications for the use of privi-
lege separation in other contexts. All Chrome extension
developers are required to privilege separate their exten-
sions, which allows us to evaluate how well developers
who are not security experts use privilege separation. We
find that privilege separation would be fairly effective at
preventing web attacks in the absence of isolated worlds:
privilege separation would fully protect 62% of core ex-
tensions. However, in more than a third of extensions,
developers created message passing channels that allow
low-privilege code to exploit high-privilege code. This
demonstrates that forcing developers to privilege sepa-
rate their software will improve security in most cases,
but a significant fraction of developers will accidentally
or intentionally negate the benefits of privilege separa-
tion. Mandatory privilege separation could be a valuable
line of defense for another platform, but it should not be
relied on as the only security mechanism; it should be
coupled with other lines of defense.

6 Evaluation of the Permission System

The Chrome permission system is intended to reduce
the severity of core extension vulnerabilities. If a web-
site or network attacker were to successfully inject mali-
cious code into a core extension, the severity of the at-
tack would be limited by the extension’s permissions.
However, permissions will not mitigate vulnerabilities
in extensions that request many dangerous permissions.
We evaluate the extent to which permissions mitigate the
core extension vulnerabilities that we found.

Table 5 lists the permissions that the vulnerable ex-
tensions request. Ideally, each permission should be re-
quested infrequently. We find that 70% of vulnerable ex-
tensions request the tabs permission; an attacker with
access to the tabs API can collect a user’s browsing his-
tory or redirect pages that a user views. Fewer than half
of extensions request each of the other permissions.

Permissions Times Requested Percentage

tabs (browsing history) 19 70%
all HTTP domains 12 44%
all HTTPS domains 12 44%
specific domains 10 37%
notifications 5 19%
bookmarks 4 15%
no permissions 4 15%
cookies 3 11%
geolocation 1 4%
context menus 1 4%
unlimited storage 1 4%

Table 5: The permissions that are requested by the 27
extensions with core extension vulnerabilities.

None
15%

Low
11%

Medium
30%

High
44%

Figure 2: The 27 extensions with core vulnerabilities,
categorized by the severity of their worst vulnerabilities.

To summarize the impact of permissions on extension
vulnerabilities, we categorized all of the vulnerabilities
by attack severity. We based our categorization on the
Firefox Security Severity Ratings [1], which has been
previously used to classify extension privileges [4]:

• Critical: Leaks the permission to run arbitrary code
on the user’s system

• High: Leaks permissions for the DOM of all
HTTP(S) websites

• Medium: Leaks permissions for private user data
(e.g., history) or the DOM of specific websites that
contain financial or important personal data (e.g.,
https://*.google.com/*)

• Low: Leaks permissions for the DOM of spe-
cific websites that do not contain sensitive data
(e.g., http://*.espncricinfo.com) or permis-
sions that can be used to annoy the user (e.g., fill up
storage or make notifications)

• None: Does not leak any permissions

We did not find any critically-vulnerable extensions.
This is a consequence of our extension selection method-
ology: we did not review any extensions with binary plu-
gins, which are needed to obtain critical privileges.

Figure 2 categorizes the 27 vulnerable extensions by
their most severe vulnerabilities. In the absence of a per-
mission system, all of the vulnerabilities would give an

attacker access to all of the browser’s privileges (i.e., crit-
ical privileges). With the permission system, less than
half of the vulnerable extensions yield access to high-
severity permissions. As such, our study demonstrates
that the permission system successfully limits the sever-
ity of most vulnerabilities.

We hypothesized that permissions would positively
correlate with vulnerabilities. Past work has shown that
many extensions are over-permissioned [12, 14], and we
thought that developers who are unwilling to follow se-
curity best practices (e.g., use HTTPS) would be unwill-
ing to take the time to specify the correct set of permis-
sions. This would result in vulnerable extensions re-
questing dangerous permissions at a higher rate. How-
ever, we do not find any evidence of a positive correlation
between vulnerabilities and permissions. The 27 exten-
sions with core vulnerabilities requested permissions at
a lower rate than the other 73 extensions, although the
difference was not statistically significant. Our results
show that developers of vulnerable extensions can use
permissions well enough to reduce the privileges of their
insecure extensions, even though they lack the expertise
or motivation required to secure their extensions.

Permissions are not only used by the Google Chrome
extension system. Android implements a similar permis-
sion system, and future HTML5 device APIs will likely
be guarded with permissions. Although it has been as-
sumed that permissions mitigate vulnerabilities [10, 12,
14], our study is the first to evaluate whether this is true
for real-world vulnerabilities or measure quantitatively
how much it helps mitigate these vulnerabilities in prac-
tice. Our findings indicate that permissions can have a
significant positive impact on system security and are
worth including in a new platform as a second line of
defense against attacks. However, they are not effective
enough to be relied on as the only defense mechanism.

7 Defenses

Despite Google Chrome’s security architecture, our se-
curity review identified 70 vulnerabilities in 40 exten-
sions. Based on the nature of these vulnerabilities, we
propose and evaluate four additional defenses. The de-
fenses are bans on unsafe coding practices that lead to
vulnerabilities. We advocate mandatory bans on unsafe
coding practices because many developers do not fol-
low security best practices when they are optional (Sec-
tion 3.3). We quantify the security benefits and com-
patibility costs of each of these defenses to determine
whether they should be adopted. Our main finding is that
a combination of banning HTTP scripts and banning in-
line scripts would prevent 94% of the core extension vul-
nerabilities, with only a small amount of developer effort
to maintain full functionality in most cases.

In concurrent work, Google Chrome implemented
Content Security Policy (CSP) for extensions. CSP can
be used to enforce all four of these defenses. Initially,
the use of CSP was wholly optional for developers. As
of Chrome 18, extensions that take advantage of new fea-
tures will be subject to a mandatory policy; this change
was partially motivated by our study [5].

7.1 Banning HTTP Scripts

Scripts fetched over HTTP are responsible for half of the
vulnerabilities that we found. All of these vulnerabili-
ties could be prevented by not allowing extensions to add
HTTP scripts to their core extensions [15] or to HTTPS
websites. Extensions that currently violate this restric-
tion could be easily modified to comply by packaging the
script with the extension or using a HTTPS URL. Only
vulnerable extensions would be affected by the ban be-
cause any extension that uses HTTP scripts will be vul-
nerable to man-in-the-middle attacks.

Core Extension Vulnerabilities. Banning HTTP scripts
from core extensions would remove 28 core extension
vulnerabilities (56% of the total core extension vulner-
abilities) from 15 extensions. These 15 extensions load
HTTP scripts from 13 domains, 10 of which already offer
the same script over HTTPS. The remaining 3 scripts are
static files that could be downloaded once and packaged
with the extensions.

Website Vulnerabilities. Preventing extensions from
adding HTTP scripts to HTTPS websites would re-
move 8 website vulnerabilities from 8 extensions (46%
of the total website vulnerabilities). These vulnerabili-
ties allow a network attacker to circumvent the protec-
tion that HTTPS provides for websites. The extensions
load HTTP scripts from 7 domains, 3 of which offer an
HTTPS option. The remaining 4 scripts are static scripts
that could be packaged with the extensions.

7.2 Banning Inline Scripts

Untrusted data should not be added to pages as
HTML because it can contain inline scripts (e.g., in-
line event handlers, links with embedded JavaScript, and
<script> tags). For example, untrusted data could
contain an image tag with an inline event handler:
. We find that 40%
of the core extension vulnerabilities are caused by adding
untrusted data to pages as HTML. These vulnerabilities
could be prevented by not allowing any inline scripts to
execute: the untrusted data will still be present as HTML,
but it would be static. JavaScript will only run on a page
if it is in a separate .js file that is stored locally or loaded
from a trusted server that the developer has whitelisted.

Banning inline scripts from extension HTML would
eliminate 20 vulnerabilities from 15 extensions. All of
these vulnerabilities are core extension vulnerabilities.
Content script vulnerabilities cannot be caused by inline
scripts, and we cannot prevent extensions from adding
inline scripts to HTTPS websites because existing en-
forcement mechanisms cannot differentiate between a
website’s own inline scripts and extension-added scripts.

However, banning inline scripts has costs. Developers
use legitimate inline scripts for several reasons, such as
to define event handlers. In order to maintain function-
ality despite the ban, all extensions would need to delete
their inline scripts from HTML and move them to sepa-
rate .js files. Inline event handlers (e.g., onclick) can-
not simply be copied and pasted; they need to be rewrit-
ten as programmatically using the DOM API.

We reviewed the 100 extensions to determine what
changes would be needed to comply with a ban on in-
line scripts. Applying this ban breaks 79% of the exten-
sions. However, all of the extensions could be retrofitted
to work without inline scripts without significant changes
to the extension. Most of the compatibility costs pertain
to moving the extensions’ inline event handlers. The ex-
tensions contain an average of 7 event handlers, with a
maximum of 98 and a minimum of 0 event handlers.

7.3 Banning Eval
Dynamic code generation converts strings to code, and
its use can lead to vulnerabilities if the strings are un-
trusted data. Disallowing the use of dynamic code gen-
eration (e.g., eval and setTimeout) would eliminate
three vulnerabilities: one core extension vulnerability,
and two vulnerabilities that are both content script and
core extension vulnerabilities.

We reviewed the 100 extensions and find that dynamic
code generation is primarily used in three ways:

1. Developers sometimes pass static strings to
setTimeout instead of functions. This coding pat-
tern cannot be exploited. It would be easy to alter
instances of this coding pattern to comply with a
ban on dynamic code generation; the strings simply
need to be replaced with equivalent functions.

2. Some developers use eval on data instead of
JSON.parse. We identified one vulnerability that
was caused by this practice. In the absence of dy-
namic code generation, developers could simply use
the recommended JSON.parse.

3. Two extensions use eval to run user-specified
scripts that extend the extensions. In both cases,
their error is that they fetch the extra scripts over
HTTP instead of HTTPS. For these two extensions,
a ban on eval would prevent the vulnerabilities but
irreparably break core features of the extensions.

Security Broken, Broken And
Restriction Benefit But Fixable Unfixable

No HTTP scripts in core 15% 15% 0%
No HTTP scripts on HTTPS websites 8% 8% 0%
No inline scripts 15% 79% 0%
No eval 3% 30% 2%
No HTTP XHRs 17% 29% 14%

All of the above 35% 86% 16%
No HTTP scripts and no inline scripts 32% 80% 0%
Chrome 18 policy 27% 85% 2%

Table 6: The percentage of the 100 extensions that would be affected by the restrictions. The “Security Benefit”
column shows the number of extensions that would be fixed by the corresponding restriction.

Richards et al. present additional uses of eval in a large-
scale study of web applications [24].

We find that 32 extensions would be broken by a ban
on dynamic code generation. Most instances can easily
be replaced, but 2 extensions would be permanently bro-
ken. Overall, a ban on eval would fix three vulnerabili-
ties at the cost of fundamentally breaking two extensions.

7.4 Banning HTTP XHR
Network attacks can occur if untrusted data from
an HTTP XMLHttpRequest is allowed to flow to a
JavaScript execution sink. 30% of the 70 vulnerabilities
are caused by allowing data from HTTP XHRs to exe-
cute. One potential defense is to disallow HTTP XHRs;
all XHRs would have to use HTTPS. This ban would re-
move vulnerabilities from 17 extensions.

However, banning HTTP XHRs would have a high
compatibility cost. The only way to comply with an
HTTPS-only XHR policy is to ensure that the server sup-
ports HTTPS; unlike scripts, remote data cannot be pack-
aged with extensions. Developers who do not control
the servers that their extensions interact with will not be
able to adapt their extensions. Extension developers who
also control the domains may be able to add support for
HTTPS, although this can be a prohibitively expensive
and difficult process for a novice developer.

We reviewed the 100 extensions and found that 29%
currently make HTTP XHRs. All of these would need
to be changed to use HTTPS XHRs. However, not all of
the domains offer HTTPS. Ten extensions request data
from at least one HTTP-only domain. Additionally, four
extensions make HTTP XHRs to an unlimited number of
domains based on URLs provided by the user; these ex-
tensions would have permanently reduced functionality.
For example, Web Developer lets users check whether a
website is valid HTML. It fetches the user-specified web-
site with an XHR and then validates it. Under a ban on
HTTP XHRs, the extension would not be able to validate
HTTP websites. In total, 14% of extensions would have
some functionality permanently disabled by the ban.

7.5 Recommendations
Table 6 summarizes the benefits and costs of the de-
fenses. If the set of 100 extensions were subject to all
four bans, only 5 vulnerable extensions would remain,
and 16 extensions would be permanently broken. Based
on this evaluation, we conclude:

• We strongly recommend banning HTTP scripts and
inline scripts; together, they would prevent 47 of the
50 core extension vulnerabilities, and no extension
would be permanently broken. The developer effort
required to comply with these restrictions is modest.

• Banning eval would have a neutral effect: neither
the security benefits nor the costs are large. Conse-
quently, we advise against banning eval.

• We do not recommend banning HTTP XHRs, given
the number of extensions that would be permanently
disabled by the ban. Of the 20 vulnerabilities that
the ban on HTTP XHRs would prevent, 70% could
also be prevented by banning inline scripts. We do
not feel that the ban on HTTP XHRs adds enough
value to justify breaking 14% of extensions.

Starting with Chrome 18, extensions will be subject to
a CSP that enforces some of these bans [13]. Our study
partially motivated their decision to adopt the bans [5],
although the policy that they adopted is slightly stricter
than our recommendations. The mandatory policy in
Chrome 18 will ban HTTP scripts in core extensions, in-
line scripts, and dynamic code generation. Due to tech-
nical limitations, they are not adopting a ban on adding
HTTP scripts to HTTPS websites. The policy will re-
move all of the core extension vulnerabilities that we
found. The only extensions that the policy will perma-
nently break are the two extensions that rely on eval.

8 Related Work

Extension vulnerabilities. To our knowledge, our work
is the first to evaluate the efficacy of the Google Chrome
extension platform, which is widely deployed and ex-
plicitly designed to prevent and mitigate extension vul-
nerabilities. Vulnerabilities in other extension platforms,
such as Firefox, have been investigated by previous re-
searchers [20, 3]. We found that 40% of Google Chrome
extensions are vulnerable, which is in contrast to a pre-
vious study that found that 0.24% of Firefox extensions
contain vulnerabilities [3]. This does not necessarily im-
ply that Firefox extensions are more secure; rather, our
scopes and methodologies differ. Unlike the previous
study, we considered network attackers as well as web
attackers. We find that 5% of Google Chrome exten-
sions have the types of web vulnerabilities that the pre-
vious study covered. The remaining discrepancy could
be accounted for by our methodology: we employed ex-
pert human reviewers whereas previous work relied on
a static analysis tool that does not model dynamic code
evaluation, data flow through the extension API, data
flow through DOM APIs, or click injection attacks.

Privilege separation. Privilege separation is a fundamen-
tal software engineering principle proposed by Saltzer
and Schroeder [25]. Numerous works have applied this
concept to security, such as OpenSSH [23] and qmail [6].
Recently, researchers have built several tools and frame-
works to help developers privilege separate their appli-
cations [7, 11, 17, 18, 22]. Studies have established that
privilege separation has value in software projects that
employ security experts (e.g., browsers [9]). However,
we focus on the effectiveness of privilege separation in
applications that are not written by security experts.

In concurrent and independent work, Karim et al. stud-
ied the effectiveness of privilege separation in Mozilla
Jetpack extensions [16]. Like Chrome extensions, Jet-
pack extensions are split into multiple components with
different permissions. They statically analyzed Jetpack
extensions and found several capability leaks in mod-
ules. Although none of these capability leaks are tied to
known vulnerabilities, the capability leaks demonstrate
that developers can make errors in a privilege-separated
environment. Their findings support the results of our
analysis of privilege separation in Chrome extensions.

Extension permissions. Previous researchers have es-
tablished that permissions can reduce the privileges of
extensions without negatively impacting the extensions’
functionality [4, 12]. Studies have also shown that some
extensions request unnecessary permissions, which is
undesirable because it unnecessarily increases the scope
of a potential vulnerability [12, 14]. All of these past
studies asserted that the correct usage of permissions

could reduce the severity of attacks on extensions. How-
ever, they did not study whether this is true in practice
or quantify the benefit for deployed applications. To our
knowledge, we are the first to test whether permissions
mitigate vulnerabilities in practice.

CSP compatibility. Adapting websites to work with CSP
can be a challenging undertaking for developers, primar-
ily due to the complexities associated with server-side
templating languages [31]. However, extensions do not
use templating languages. Consequently, applying CSP
to extensions is easier than applying it to websites in
most cases. We expect that our CSP compatibility find-
ings for extensions will translate to packaged JavaScript
and packaged web applications.

Malicious extensions. Extension platforms can be
used to build malware (e.g., FFsniFF and Infos-
tealer.Snifula [33]). Mozilla and Google employ several
strategies to prevent malicious extensions, such as do-
main verification, fees, and security reviews. Liu et al.
propose changes to Chrome to make malware easier to
identify [19]. Research on extension malware is orthog-
onal to our work, which focuses on external attackers that
leverage vulnerabilities in benign-but-buggy extensions.

9 Conclusion

We performed a security review on a set of 100 Google
Chrome extensions, including the 50 most popular, and
found that 40% have at least one vulnerability. Based
on this set of vulnerabilities, we evaluated the effective-
ness of Chrome’s three extension security mechanisms:
isolated worlds, privilege separation, and permissions.

We found that the isolated worlds mechanism is highly
effective because it prevents common developer errors
(i.e., data-as-HTML errors). The effectiveness of iso-
lated worlds means that privilege separation is rarely
needed. Privilege separation’s infrequent usefulness may
not justify the complexity and communication overhead
that it adds to extensions. However, our study shows that
privilege separation would improve security in the ab-
sence of isolated worlds. We also found that permissions
can have a significant positive impact on system security;
developers of vulnerable extensions can use permissions
well enough to reduce the scope of their vulnerabilities.

Although we demonstrated that privilege separation
and permissions can mitigate vulnerabilities, developers
do not always use them optimally. We identified sev-
eral instances in which developers accidentally negated
the benefits of privilege separation or intentionally cir-
cumvented the privilege separation boundary to imple-
ment features. Similarly, extensions sometimes ask for
more permissions than they need [12]. Automated tools
for privilege separation and permission assignment could

help developers better use these security mechanisms,
thereby rendering them even more effective.

Despite the successes of these security mechanisms,
extensions are widely vulnerable. The vulnerabilities oc-
cur because the system was designed to address only one
threat: websites that attack extensions through direct in-
teraction. There are no security mechanisms to prevent
direct network attacks on core extensions, website meta-
data attacks, or attacks on websites that have been altered
by extensions. This finding should serve as a reminder
that multiple threats should be considered when initially
designing a system. We propose to prevent these addi-
tional threats by banning insecure coding practices that
commonly lead to vulnerabilities; bans on HTTP scripts
and inline scripts would remove 94% of the most serious
attacks with a tractable developer cost.

Acknowledgements

We would like to thank Prateek Saxena and Adam Barth
for their insightful comments. This material is based
upon work supported by Facebook and National Sci-
ence Foundation Graduate Research Fellowships. Any
opinions, findings, conclusions, or recommendations ex-
pressed here are those of the authors and do not neces-
sarily reflect the views of Facebook or the National Sci-
ence Foundation. This work is also partially supported
by National Science Foundation grant CCF-0424422, a
gift from Google, and the Intel Science and Technology
Center for Secure Computing.

References

[1] L. Adamski. Security severity ratings.
https://wiki.mozilla.org/Security_

Severity_Ratings.

[2] B. Adida, A. Barth, and C. Jackson. Rootkits for
JavaScript Environments. In Web 2.0 Security and
Privacy (W2SP), 2009.

[3] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. VEX: Vetting Browser Extensions
For Security Vulnerabilities. In USENIX Security,
2010.

[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting Browsers from Extension Vulnerabili-
ties. In Network and Distributed System Security
Symposium (NDSS), 2010.

[5] Adam Barth. More secure extensions, by de-
fault. http://blog.chromium.org/2012/02/

more-secure-extensions-by-default.html,
February 2012.

[6] D. J. Bernstein. The qmail security guarantee.
http://cr.yp.to/qmail/guarantee.html.

[7] A. Bittau, P. Marchenko, M. Handley, and
B. Karp. Wedge: splitting applications into
reduced-privilege compartments. In USENIX Sym-
posium on Networked Systems Design and Imple-
mentation, 2008.

[8] B. Chess, Y. T. O’Neil, and J. West. JavaScript Hi-
jacking. Technical report, Fortify, 2007.

[9] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith,
and C. Valasek. Browser Security Comparison: A
Quantitative Approach. Technical report, Accuvant
Labs, 2011.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-
ner. Android Permissions Demystified. In ACM
Conference on Computer and Communication Se-
curity (CCS), 2011.

[11] A. P. Felt, M. Finifter, J. Weinberger, and D. Wag-
ner. Diesel: Applying Privilege Separation to
Database Access. In ACM Symposium on Informa-
tion, Computer and Communications Security (Asi-
aCCS), 2011.

[12] A. P. Felt, K. Greenwood, and D. Wagner. The Ef-
fectiveness of Application Permissions. In USENIX
Conference on Web Application Development (We-
bApps), 2011.

[13] Google Chrome Extensions. Content Se-
curity Policy (CSP). http://code.

google.com/chrome/extensions/trunk/

contentSecurityPolicy.html.

[14] A. Guha, M. Fredrikson, B. Livshits, and
N. Swamy. Verified security for browser exten-
sions. In IEEE Symposium on Security and Privacy,
2011.

[15] C. Jackson. Block chrome-extension:// pages
from importing script over non-https connec-
tions. http://code.google.com/p/chromium/
issues/detail?id=29112.

[16] Rezwana Karim, Mohan Dhawan, Vinod Ganapa-
thy, and Chung chiech Shan. An Analysis of the
Mozilla Jetpack Extension Framework. In Proceed-
ings of the 26th European Conference on Object-
Oriented Programming (ECOOP), 2012.

[17] A. Krishnamurthy, A. Mettler, and D. Wagner.
Fine-grained privilege separation for web applica-
tions. In International Conference on World Wide
Web (WWW), 2010.

[18] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek,
E. Kohler, D. Mazières, R. Morris, M. Osborne,
S. VanDeBogart, and D. Ziegler. Make Least Priv-
ilege a Right (Not a Privilege). In Conference on
Hot Topics in Operating Systems, 2005.

[19] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome
Extensions: Threat Analysis and Countermeasures.
In Network and Distributed System Security Sym-
posium (NDSS), 2012.

[20] R. S. Liverani and N. Freeman. Abusing Firefox
Extensions. Defcon17.

[21] A. Mikhailovsky, K. V. Gavrilenko, and
A. Vladimirov. The Frame of Decep-
tion: Wireless Man-in-the-Middle Attacks
and Rogue Access Points Deployment.
http://www.informit.com/articles/

article.aspx?p=353735&seqNum=7, 2004.

[22] D. Murray and S. Hand. Privilege separation made
easy: trusting small libraries not big processes.
In European Workshop on System Security (EU-
ROSEC), 2008.

[23] N. Provos, M. Friedl, and P. Honeyman. Preventing
Privilege Escalation. In USENIX Security Sympo-
sium, 2003.

[24] G. Richards, C.Hammer, B. Burg, and J. Vivek.
The Eval that Men Do: A Large-scale Study of
the Use of Eval in JavaScript Applications. In Eu-
ropean Conference on Object-Oriented Program-
ming, 2012.

[25] J. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. In IEEE 63,
1975.

[26] R. Saltzman and A. Sharabani. Active Man in the
Middle Attacks: A Security Advisory. Technical
report, IBM, 2009.

[27] StackOverflow. Why is using JavaScript eval func-
tion a bad idea? http://stackoverflow.com/

questions/86513/why-is-using-javascript

-eval-function-a-bad-idea.

[28] B. Sterne and A. Barth. Content secu-
rity policy. https://dvcs.w3.org/hg/

content-security-policy/raw-file/tip/

csp-specification.dev.html.

[29] Brandon Sterne and Adam Barth. Content se-
curity policy 1.1. https://dvcs.w3.org/hg/

content-security-policy/raw-file/tip/

csp-specification.dev.html, May 2012.

[30] S. Wagner, J. Jurgens, C. Koller, and
P. Trischberger. Comparing Bug Finding
Tools with Reviews and Tests. Lecture Notes
in Computer Science, 2005.

[31] J. Weinberger, A. Barth, and D. Song. Towards
Client-side HTML Security Policies. In Workshop
on Hot Topics on Security (HotSec), 2011.

[32] S. Willison. Understanding the Greasemonkey vul-
nerability. http://simonwillison.net/2005/

Jul/20/vulnerability/.

[33] C. Wuest and E. Florio. Firefox and Malware:
When Browsers Attack. Technical report, Syman-
tec, 2009.

A. List of Extensions

We selected 100 extensions from the official Chrome ex-
tension directory. We have coded extensions as follows:
vulnerable and fixed (†), vulnerable but not fixed (‡), and
created by Google (*). We last checked whether exten-
sions are still vulnerable on February 7, 2012.

Most Popular Extensions
The 50 most popular extensions (and versions) that we
reviewed are as follows: AdBlock 2.4.6, FB Photo Zoom
1.1105.7.2, FastestChrome - Browse Faster 4.0.6†, Ad-
block Plus for Google Chrome? (Beta) 1.1.3†, Google
Translate 1.2.3.1*‡, Google Dictionary (by Google)
3.0.0*†, Downloads 1, Turn Off the Lights 2.0.0.7,
Google Chrome to Phone Extension 2.3.0*, Firebug Lite
for Google Chrome 1.3.2.9761†, Docs PDF/PowerPoint
Viewer (by Google) 3.5*, RSS Subscription Exten-
sion (by Google) 2.1.3*‡, Webpage Screenshot 5.2†,
Mail Checker Plus for Google Mail 1.2.3.3, Awesome
Screenshot: Capture & Annotate 3.0.4‡, Google Voice
(by Google) 2.2.3.4*†, Speed Dial 2.1‡, Smooth Ges-
tures 0.15.2, Xmarks Bookmark Sync 1.0.14, Send from
Gmail (by Google) 1.12*, SocialPlus! 2.5.4‡, Flash-
Block 0.9.31, AddThis - Share & Bookmark (new) 2.1†,
WOT 1.1, Add to Amazon Wish List 1.0.0.4†, Stumble-
Upon 3.5.18.1†, Google Calendar Checker (by Google)
1.2.1*, Clip to Evernote 5.0.14.9248, Google Quick
Scroll 1.8*, Stylish 0.7, Silver Bird 1.9.7.9†, Smooth-
Scroll 1.0.1, Browser Button for AdBlock 0.0.13, TV
2.0.5, Fast YouTube Search 1.2‡, Slideshow 1.2.9†, bit.ly
— a simple URL shortener 1.2.1.9, Web Developer
0.3.1, LastPass 1.73.2, SmileyCentral 1.0.0.3‡, Select
To Get Maps 1.1.1‡, TooManyTabs for Chrome 1.6.5,
Blog This! (by Google) 0.1.1*, TinEye Reverse Im-
age Search 1.1, ESPN Cricinfo 1.8.3†, MegaUpload
DownloadHelper 1.2, Forecastfox 2.0.10‡, PanicButton

0.13.1†, AutoPager Chrome 0.6.2.12, RapidShare Down-
loadHelper 1.1.1.

Randomly Selected Extensions
The 50 randomly selected extensions (and versions) that
we reviewed are as follows: The Independent 1.7.0.3†,
Deposit Files Download Helper 1.2, The Huffington Post
1.0.5‡, Bookmarks Menu 3.4.6, X-notifier (Gmail, Hot-
mail, Yahoo, AOL ...) 0.8.2‡, SmartVideo For YouTube
0.94, PostRank Extension 0.1.7, Bookmark Sentry
1.6.5†, Print Plus 1.0.5.0‡, 4chan 4chrome 9001.47‡,
HootSuite Hootlet 1.5, Cortex 1.8.3, ScribeFire 1.7‡,
Chrome Dictionary Lite 0.2.6†, Taberareloo 2.0.17, SEO
Status Pagerank/Alexa Toolbar 1.6, ChatVibes Facebook
Video Chat! 1.0.7†, PHP Console 2.1.4, Blank Can-
vas Script Handler 0.0.17‡, Reddit Reveal 0.2, Greplin
1.7.3, DropBox 1.1.5, Speedtest.or.th 1, Happy Status
1.0.1‡, New Tab Favorites 0.1, Ricks Domain Cleaner for
Chrome 1.1.1, Fazedr 1.6†, LL Bonus Comics First! 2.2,
Better Reddit 0.0.4, (non-English characters) 1, turl.im
url shortener 1.1, Wooword Bounce 1.2, ntust Library
0.7, me2Mini 0.0.81‡, Back to Top 1.1, Favstar Tally by
@paul shinn 1.0.0.0, ChronoMovie 0.1.0, AutoPagerize
0.3.1, Rlweb’s Bitcoin Generator 0.1, Nooooo button 1‡,
The Bass Buttons 1.95, Buttons 1.4, OpenAttribute 0.6†,
Nu.nl TV gids 1.1.3‡, Hide Sponsored Links in Gmail?
1.4, Short URL 4, Smart Photo Viewer on Facebook
1.3.0.1‡, Airline Checkin (mobile) 1.2102, Democracy
Now! 1.1‡, Coworkr.net Chrome 0.9.

