
A Space-Efficient Algorithm for Segment Intersection

Eric Y. Chen∗ Timothy M. Chan∗†

Abstract

We examine the space requirement for the classic line-
segment intersection problem. Using so-called implicit
data structures, we show how to make the standard
sweep-line algorithm run in O((n+ k) log2 n) time with
only O(log2 n) extra space, where n is the number of
line segments and k is the number of intersections. If
division is allowed and input can be destroyed, the algo-
rithm can run in O((n + k) log n) time with O(1) extra
space.

1 Introduction

Recently, Brönnimann et al. [4] revisited a basic geo-
metric problem (namely, planar convex hulls) from the
point of view of minimizing space: the input is initially
given in an array; algorithms can modify the array but
are allowed only a small amount of extra memory (usu-
ally O(1) or O(polylogn)). In the “non-destructive”
model, we insist further that the final array holds a
permutation of the original input elements. Such space-
efficient algorithms are analogous to “in-place” sorting
algorithms (e.g., heapsort). They are important in prac-
tice, because they enable larger problem instances to be
solved in main memory.

In this paper, we reconsider another basic geomet-
ric problem, segment intersection, from the same point
of view. Given an array of n line segments in the
plane (each stored as a record of four coordinates),
we would like to print all k pairs of intersections; the
output need not be stored in memory. The brute-
force method requires only O(1) extra space but runs
in O(n2) time. A practical output-sensitive algorithm
running in O((n + k) log n) time was first obtained by
Bentley and Ottmann [3] using the sweep-line technique.
Time-optimal algorithms, with O(n log n+ k) complex-
ity, were later given by Chazelle and Edelsbrunner [6]
and Balaban [2]. Chazelle and Edelsbrunner’s algorithm
required O(n + k) extra space, whereas Bentley and
Ottmann’s and Balaban’s required O(n) extra space.

In contrast to Brönnimann et al. [4], we face greater
challenges in making these segment intersection algo-
rithms space-efficient. Bentley and Ottmann’s sweep-

∗School of Computer Science, University of Waterloo, Water-

loo, ON N2L 3G1, Canada, {y28chen,tmchan}@uwaterloo.ca
†Supported by an NSERC Research Grant and the Premier’s

Research Excellence Award of Ontario.

line algorithm [3], for example, requires the maintenance
of more than one tree structures: a balanced search tree
and a priority queue. The search tree alone poses prob-
lems, as storing even a single pointer per segment would
require Ω(n) extra space!

We observe that techniques from the area of implicit
data structures can help in meeting these challenges.
For example, Munro [11] had given search trees that
used only O(log2 n) extra space and supported query
and update operations in O(log2 n) time. The main idea
is to encode pointers implicitly by permuting elements
within blocks of logarithmic size.

In our application, we need to further “overlay” a pri-
ority queue with the implicit tree in a way that does not
introduce extra space. We show that such a combina-
tion is possible with Munro’s structure. The result is a
segment intersection algorithm with O((n + k) log2 n)
time and O(log2 n) space under the non-destructive
model.

We also notice a space-saving trick for storing line seg-
ments under the destructive model if division is allowed
(or alternatively if segments are given in slope-intercept
form). With this trick, our algorithm can be simpli-
fied and made to run in O((n+ k) log n) time and O(1)
space. We have implemented this version of the algo-
rithm and report on the test results. Because of the use
of division, the implementation is not guaranteed to be
robust, though.

2 The Sweep-Line Algorithm

Our algorithm follows Bentley and Ottmann’s ap-
proach [3, 7] and keeps all segments intersecting a ver-
tical sweep line ordered from top to bottom in a search
tree T . As the sweep line moves from left to right, the
next event (change to T ) occurs when the sweep line
encounters a left endpoint, a right endpoint, or the in-
tersection of an adjacent pair along the sweep line. This
next event can be determined using a priority queue Q;
we alter the usual description of Q here, with space con-
siderations in mind:

First, by pre-sorting the given array according to the
x-coordinates of the left endpoints (e.g., by heapsort),
we can easily identify the next left-endpoint event. So,
we only need Q to store right-endpoint and intersection
events.

For each segment ` intersecting the sweep line, define
`’s event to be the intersection of ` with its successor

1



in T , if the intersection exists and is to the right of the
sweep line; otherwise, define `’s event to be the right
endpoint of `. Clearly, the leftmost of these segments’
events gives us the next right-endpoint/intersection
event. We keep all segments’ events in Q, with x-
coordinates as priorities.

Let `+ and `− denote the successor and predecessor
of ` in T . The algorithm can be expressed as follows:

Initialize T and Q
Repeat:

Let e be the leftmost among the events in Q
and the next left endpoint
Move the sweep line to e
Case 1: e is the left endpoint of a segment `

Add ` to T
Add `’s event to Q
Update `−’s event in Q

Case 2: e is the right endpoint of a segment `
Remove ` from T
Remove e from Q
Update `−’s event in Q

Case 3: e is the intersection of segments ` and `+

Print e
Switch the order of `, `+ in T
Update `−’s, `’s, and `+’s events in Q

Naively, T and Q take up O(n) extra space. We de-
scribe a more space-efficient way to handle these data
structures, following the rough organization of the array
as depicted in Figure 1.

Part of Line Segments in the
combine implicit structure

for queue and tree

Unprocessed line
segments

Part of the implicit
structure in the

extra space at the
end of the array

Next left endpoint event

Figure 1: The memory layout of our algorithm.

3 The Implicit Search Tree

We use Munro’s implicit tree structure [11] to store T .
His structure is similar to standard balanced search
trees but avoids extra space for pointers. It has two
parts: a balanced binary tree and an auxiliary set of
s− 1 lists. Each tree node, called a tree block , holds ex-
actly s elements rather than one. Elements within each
block are kept basically sorted. All elements in one tree
block must be greater than all elements another block
or vice versa. To support insertion/deletion of a single
element, we allow gaps between successive tree blocks.
Gaps may have size ranging from 1 to s − 1. Gaps of
the same size are stored in a common list. Each list is
divided in list blocks of size exactly s and resides in the

given array, with the exception of the list’s head block
(which is not necessarily full).

In addition to the usual left/right/successor/prede-
cessor pointers, each tree block has a pointer to a list
block that stores the gap between the tree block and its
successor. In an insertion/deletion, a gap size is incre-
mented/decremented, and consequently a gap has to be
removed from one list and moved to another; this can be
accomplished by manipulating O(s) elements and O(1)
pointers. When a gap reaches size s, a list block is
deleted and a new tree block is formed. Further de-
tails of the query and update algorithm can be found in
Munro’s paper [11].

We can avoid storing the necessary pointers (array in-
dices) for each block by encoding them in a permutation
of the block’s elements. Specifically, we can represent
a 0 or 1 by placing a pair of adjacent elements in or-
der or not in order. We can thus represent s/2 bits
with a block of s elements, as suggested in Figure 2.
Setting s = c log n for a sufficiently large constant c is
good enough for the implicit structure. Only O(s2) ex-
tra space is needed for the head blocks of the s−1 lists.
Each query/update requires O(log n

s
) pointer operations

and takes O(s log n

s
) time.

2 10129765431

01 0 0 1

Encoded value is 10001

Figure 2: The bit-encoding strategy.

4 The Combined Priority Queue and Search Tree

We now show that the priority queue Q can also be
embedded within the implicit tree structure T without
using additional space. The key idea is to keep track
of a priority value per block rather than per segment.
Define a tree block’s event to be the leftmost among the
events of the segments in the block and the gap between
the block and its successor. Clearly, the leftmost of the
tree block’s events gives us the leftmost of all segments’
events. We keep a priority queue of the tree blocks’
events, by encoding two more pointers per block (with
a larger constant c). Within each tree block, we also
keep pointers to the segment and successor defining the
block’s event.

Each update to a segment’s event only affects a sin-
gle block’s event, which can be recalculated in O(s)
time (as the successors of the segments involved can
all be identified in O(s) time); the leftmost event in the

2



priority queue can be maintained by O(log n

s
) pointer

operations and thus takes O(s log n

s
) time. Each in-

sertion/deletion only changes a constant number of
blocks/gaps in the implicit search tree; the leftmost
event can again be maintained in O(s log n

s
) time. The

cost per update/query thus remains O(s log n

s
).

5 Analysis

Our segment intersection algorithm uses only O(s2) ex-
tra space. Since there are O(n + k) events, the total
number of updates and queries performed by the al-
gorithm is O(n + k) and the overall running time is
O(s(n + k) log n

s
). With s = Θ(log n), the time bound

is O((n+k) log2 n) and the extra space used is O(log2 n).

6 Implementation

In the destructive model, we observe a trick that eases
implementation and improves the time bound at the
same time. Convert each line segment to a 4-tuple con-
sisting of the left/right x-coordinates, the slope, and
the intercept. When the sweep line passes its left end-
point and the segment is being stored in T , its left x-
coordinate is no longer needed. We can thus gain one
free space per segment in the tree. With this trick,
we can afford to use a sufficiently large constant as
the block size and still have space to store the O(1)
pointers needed for each block. We can also bypass
the bit-encoding/decoding strategy which makes pro-
gramming difficult. With s = O(1), the time bound is
O((n + k) log n) and the extra space used is O(1).

For the implementation, instead of using the more
well-known AVL or red-black tree, we decide to adopt
Andersson’s balanced tree [1], which has simplicity as
its main advantage (where the update procedures are
expressed elegantly in terms of two operations called
skew and split). We use doubles to store all values; we
find that a block size of s = 9 is enough to keep the
necessary pointers within the array.

Table 1 gives a comparison of the running time and
space requirement of our version of the sweep-line algo-
rithm with a version that uses regular data structures.
The experiments were conducted on a PC with a Pen-
tium 4 2.4 GHz processor, with randomly generated line
segments. (More precisely, one of the endpoints is uni-
formly distributed inside the unit square, the direction
is uniformly distributed as well, but the length is fixed
at 1/

√
n.)

The space-efficient version is slower, as can be ex-
pected, due to a larger constant factor in the big-O
bound, but the implementation is still at a preliminary
stage and we haven’t explored ways to speed up the code
yet.

Time (mSec) Space (double)
n,k Our Old Our Old

Alg. Alg. Alg. Alg.
1000,285 516 125 324 621272
10K,3K 3184 641 324 1374968
100K,32K 92375 7468 324 9225856
1M,319K 1197016 crash 324 n/a

Table 1: Experimental results.

7 Conclusions

We have shown how to obtain a space-efficient algo-
rithm for the segment intersection problem by adopt-
ing implicit data structures and overlaying multiple or-
dered structures. This technique is quite general and
might have applications to other problems in computa-
tional geometry, especially those solved by the sweep-
line approach. One obvious candidate is red/blue seg-
ment intersection [5]. We are currently investigating
space-efficient solutions to proximity problems such as
planar Voronoi diagrams.

Faster implicit tree structures have recently been dis-
covered by Franceschini et al. [8, 9, 10]. Another inter-
esting question is whether it is possible to reduce our
time and space bounds using these more complicated
structures.

References

[1] Andersson, A. Balanced search trees made sim-
ple. In Proc. 3rd Workshop on Algorithms and Data
Structures (1993), vol. 709 of Lect. Notes in Com-
put. Sci., Springer, pp. 60–72.

[2] Balaban, I. J. An optimal algorithm for finding
segments intersections. In Proc. 11th Sympos. on
Comput. Geom. (1995), pp. 211–219.

[3] Bentley, J. L., and Ottmann, T. A. Algo-
rithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. C-28 (1979), 643–
647.

[4] Brönnimann, H., Iacono, J., Katajainen, J.,

Morin, P., Morrison, J., and Toussaint,

G. Space-efficient planar convex hull algorithms.
In Proc. Latin American Theoretical Informatics
(2002), pp. 494–507. Theoret. Comput. Sci., to ap-
pear.

[5] Chan, T. M. A simple trapezoid sweep algo-
rithm for reporting red/blue segment intersections.
In Proc. 6th Canad. Conf. Comput. Geom. (1994),
pp. 263–268.

3



[6] Chazelle, B., and Edelsbrunner, H. An opti-
mal algorithm for intersecting line segments in the
plane. J. ACM 39 (1992), 1–54.

[7] de Berg, M., van Kreveld, M., Overmars,

M., and Schwarzkopf, O. Computational Ge-
ometry: Algorithms and Applications, 2nd ed.
Springer-Verlag, 1998.

[8] Franceschini, G., and Grossi, R. Im-
plicit dictionaries supporting searches and amor-
tized updates in O(log n log log n) time. In Proc.
14th ACM-SIAM Sympos. on Discrete Algorithms
(2003), pp. 670–678.

[9] Franceschini, G., and Grossi, R. Optimal
worst-case operations for implicit cache-oblivious
search trees. In Proc. 8th Workshop on Algorithms
and Data Structures (2003). To appear.

[10] Franceschini, G., Grossi, R., Munro, J. I.,

and Pagli, L. Implicit B-trees: New results for
the dictionary problem. In Proc. 43rd IEEE Sym-
pos. Found. of Comput. Sci. (2002), pp. 145–154.

[11] Munro, J. I. An implicit data structure sup-
porting insertion, deletion, and search in O(log2 n)
time. J. Comput. Sys. Sci. 33 (1986), 66–74.

4


