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Abstract

In the first part of the paper, we reexamine the all-pairs shortest paths (APSP) problem and
present a new algorithm with running time O(n3 log3 log n/ log2 n), which improves all known
algorithms for general real-weighted dense graphs.

In the second part of the paper, we use fast matrix multiplication to obtain truly subcubic
APSP algorithms for a large class of “geometrically weighted” graphs, where the weight of an
edge is a function of the coordinates of its vertices. For example, for graphs embedded in Eu-
clidean space of a constant dimension d, we obtain a time bound near O(n3−(3−ω)/(2d+4)), where
ω < 2.376; in two dimensions, this is O(n2.922). Our framework greatly extends the previously
considered case of small-integer-weighted graphs, and incidentally also yields the first truly sub-
cubic result (near O(n3−(3−ω)/4) = O(n2.844) time) for APSP in real-vertex-weighted graphs, as
well as an improved result (near O(n(3+ω)/2) = O(n2.688) time) for the all-pairs lightest shortest
path problem for small-integer-weighted graphs.

1 Introduction

The all-pairs shortest paths (APSP) problem is unquestionably one of the most well known problems

in algorithm design, frequently studied in textbooks; yet, the complexity of the problem has remained

open to this day. For arbitrary dense (directed and undirected) real-weighted graphs with n vertices,

the classical Floyd–Warshall algorithm [13] runs in O(n3) time. Fredman [17] was the first to realize

the possibility of a subcubic algorithm, and since improvements have appeared in a number of

papers; Table 1 summarizes the fascinating history. Notable among the more recent results are the

O(n3/ log n) algorithm of this author [10], which is based on a simple geometric approach and does

not require explicit table lookup or word tricks; and the O(n3 log5/4 log n/ log5/4 n) algorithm of

Han [19], which amazingly breaks the O(n3/ logn) barrier by exploiting sophisticated word-packing

tricks (implementable by table lookups), and is the best result known to date.

(We have ignored APSP algorithms for sparse graphs in the above discussion. Repeated ap-

plications of Dijkstra’s single-source algorithm [13], combined with Johnson’s preprocessing step if

negative weights are permitted, imply an O(n2 log n+mn) time bound for any graph with m edges;

the first term has been lowered to O(n2 log logn) and O(n2α(m,n)) for directed and undirected

graphs respectively, by Pettie [28] and Pettie and Ramanchandran [29].)
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time ref. year

O(n3) Dijkstra/Floyd–Warshall 1959/1962

O(n3 log1/3 log n/ log1/3 n) Fredman [17] 1976

O(n3 log1/2 log n/ log1/2 n) Takaoka [34] 1991

O(n3/ log1/2 n) Dobosiewicz [15] 1990

O(n3 log5/7 log n/ log5/7 n) Han [18] 2004

O(n3 log2 log n/ logn) Takaoka [35] 2004

O(n3 log log n/ logn) Takaoka [36] 2005

O(n3 log1/2 log n/ logn) Zwick [42] 2004

O(n3/ logn) Chan [10] 2005

O(n3 log5/4 log n/ log5/4 n) Han [19] 2006

O(n3 log3 log n/ log2 n) this paper 2007

Table 1: APSP algorithms for general dense real-weighted graphs. (“Year” refers to the earliest

conference publications if exist.)

The first main result of this paper (Section 2) is an even faster algorithm for dense graphs with

a running time of O(n3 log3 log n/ log2 n). As in the previous algorithms, the model of computation

is the standard RAM with logn word size, with the standard instruction set. The new algorithm

interestingly blends elements from the previous algorithms by the author [10] and by Han [19]: we

use a different (yet remarkably simple) geometric approach and combine it with more word-packing

tricks. The result not only improves a long line of earlier work, but the near-log2 n factor speedup

also seems to approach a natural limit of what purely “combinatorial” algorithms can accomplish—

if one isn’t too particular about log logn factors. For example, the Boolean matrix multiplication

problem is a special case of (undirected unweighted) APSP, and for a long time, the fastest Boolean

matrix multiplication algorithm known that does not rely on “algebraic” techniques (e.g., as used in

Strassen’s or Coppersmith and Winograd’s algorithm) was the classical “four-Russians” algorithm [6]

from the 70s, with running time O(n3/ log2 n).1 (For APSP in undirected unweighted graphs, the

previous purely combinatorial algorithm by Feder and Motwani [16] has a worse running time of

O(n3/ log n); see also [8] for the sparse graph case.)

The most tantalizing question in the area is whether in general the APSP problem could be

solved in truly subcubic time (O(n3−δ) for some specific constant δ > 0), by using fast matrix mul-

tiplication algorithms (like Strassen’s or Coppersmith and Winograd’s) as subroutines. Regrettably,

this question will remain unanswered here. Nevertheless, in the second part of the paper (Section 3),

we will describe new results along these lines for an important class of special cases.

Previously [4, 32, 33, 41], the case of graphs with small integer weights has been the most

extensively studied, where the weights lie in the range {1, . . . , c} for a constant c. In this case, Alon,

Galil, and Margalit [4] gave an Õ(nω) algorithm for undirected graphs and an Õ(n(3+ω)/2) = O(n2.688)

algorithm for directed graphs. Here, ω < 2.376 denotes the matrix multiplication exponent, and the

Õ notation hides polylogarithmic and, in some cases, nε factors for an arbitrarily small constant ε > 0.

The bound for directed graphs was improved to O(n2.575) by Zwick [41], while the dependence of the

constant factor on c for undirected graphs was improved by Shoshan and Zwick [33].

1However, see Section 4 regarding a recent development.
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In this paper we investigate another class of (directed and undirected) weighted graphs that

naturally arise in applications. In our framework, we assume that each vertex is associated with a

constant number of parameters (coordinates), and that if an edge e exists from u to v, the weight of

e is determined by evaluating a fixed algebraic function at the parameters at u and v (see Section 3

for a more precise formulation). Slightly more generally, we allow the weight of e to be determined

by one of c possible functions, for any constant c (for simplicity, we ignore dependence of hidden

constant factors on c, but they are of the form cO(1)). Under these assumptions, we describe an

algorithm with running time Õ(n3−(3−ω)/(2κ+2)), where κ is a specific constant that depends on the

particular family of functions (again see Section 3 for the precise definition of κ). The algorithm is

obtained by using fast matrix multiplication, like previous algorithms, but with a somewhat different

strategy, combined with geometric range searching techniques.

We also describe improvements in further special cases: If the ratio of the largest weight to the

smallest weight is bounded by a constant, the running time can be reduced to Õ(n3−(3−ω)/(κ+1)).

Without this ratio assumption, we can also obtain an Õ(n3−(3−ω)/(κ+1)) algorithm for the related

problem of finding the shortest (i.e., minimum-weight) cycle in the graph.

To illustrate the generality of our framework, we mention a few consequences and relationships

with known results:

• The prototypical instance of our framework is the Euclidean case, where points are embedded

in two dimensions and the weight of an edge, if it exists, is taken to be the straight-line distance

between its endpoints. (Edges may cross.) This is arguably one of the most natural settings

for the APSP problem. In this case, κ = 3 and we obtain an O(n2.922) algorithm. In a higher

constant dimension d, the bound becomes Õ(n3−(3−ω)/(2d+4)).

Euclidean graphs and geometric graphs of course are of considerable interest and have been

studied extensively in the literature through the years; for example, see [31] for an early paper

about APSP in such graphs. For a more recent example, Narasimhan and Smid [27] investigated

the problem of approximating the stretch factor of a Euclidean graph; our result immediately

implies a subcubic exact algorithm for the stretch factor.

It should be mentioned that the input graph need not be complete. Otherwise, Chan and

Efrat [11] have already shown how to solve the single-source shortest path problem for geometric

weight functions in subquadratic time, by using only range searching techniques without fast

matrix multiplication; this automatically implies a (truly) subcubic algorithm for APSP. If

the existence of an edge between two given points is also determined by some fixed algebraic

expression evaluated at the points, then again the same previous techniques apply. Thus, the

main feature behind the new algorithm is its ability to handle situations where the weights are

geometrically determined but the graph (the edge set) itself is arbitrary.

• Our framework clearly extends the previously studied case of small integer weights, as we can

simply take the c possible functions to be constants. Here, κ = 1 and we get a time bound

of Õ(n(3+ω)/2) = O(n2.688), which is not as good as Zwick’s algorithm [41] (but matches Alon

et al..’s original result [4]). However, unlike the previous algorithms for small integer weights,

our framework applies more generally to the case where weights are taken from any fixed set

of c real values—with the same running time O(n2.688) if the maximum-to-minimum ratio is

bounded, and Õ(n3−(3−ω)/4) = O(n2.844) if not. Even more generally, the same can be said for

the case where the number of distinct weights out of each vertex is at most c.
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• As another byproduct, we improve the main result of Zwick’s STOC’99 paper [40] on the all-

pairs lightest shortest path (APLSP) and the all-pairs shortest lightest path (APSLP) problem:

for each pair (i, j), among all shortest paths from i to j, we seek one with the smallest length;

or similarly, for each pair (i, j), among all paths from i to j of the shortest length, we seek one

with the smallest weight. Zwick showed that both problems can be solved in O(n2.747) time

for directed graphs with weights from {1, . . . , c}. In this case, we can immediately solve both

problems by running our APSP algorithm, with the weight of each edge changed from x to

x+ δ for APLSP, or to 1+ δx for APSLP, for a sufficiently small fixed value δ = O(1/n); since

the number of distinct edge weights and the maximum-to-minimum weight ratio are bounded

by a constant, we get an O(n2.688) algorithm, which is faster than Zwick’s algorithm.

• Very recently, vertex-weighted graphs have been the subject of several papers (where the weight

of a path/cycle is defined as the sum of the weights of its vertices). At STOC’06, Vassilevska and

Williams [37] showed that a problem related to APSP, namely, the minimum-weight triangle

problem, can be solved in truly subcubic time, namely, O(n2.688) time, for arbitrary real vertex

weights. Subsequently, Vassilevska, Williams, and Yuster [38] improved this bound to O(n2.575),

and Czumaj and Lingas [14] further to O(n2.376). Related problems have also been considered

(like finding fixed subgraphs besides triangles), but we are not aware of any nontrivial results for

cycles of length beyond 3, or for APSP itself. Our framework includes vertex-weighted graphs

as special cases with κ = 1, and implies an O(n2.844) algorithm for APSP and an O(n2.688)

algorithm for finding the shortest cycle of any fixed-constant length, or for finding the shortest

cycle of unrestricted length, for arbitrary vertex-weighted graphs. This extends significantly,

in a way, the original result of Vassilevska and Williams.

2 APSP for General Graphs in Near O(n3/ log2 n) Time

It is well known [2] that the APSP problem for an arbitrary real-weighted graph with n vertices can

be reduced to the problem of computing the distance product of two arbitrary real-valued, square

n × n matrices (also known as the “min-plus matrix multiplication problem”): given two matrices

A = {aij}i,j and B = {bij}i,j , their distance product is defined as the matrix C = {cij}i,j with

cij := the index k that minimizes aik + bkj .

We denote this matrix by A ∗B. The reduction is done via a clever recursion and does not increase

the asymptotic running time (if it exceeds n2+ε).

In the author’s previous paper [10], we observe that the problem of computing the distance

product of a rectangular n× d matrix and a rectangular d× n matrix can be viewed as a geometric

range searching problem and can be solved in O(n2) time for dimensions up to d ≈ logn by using

known techniques from computational geometry (specifically, a simple divide-and-conquer algorithm

for computing dominance [30]). The distance product of two n × n matrices can then be solved

in O(n2 · n/d) = O(n3/ log n) time by performing n/d such rectangular products and taking the

element-wise minimum of the resulting matrices.

Here, we take a different geometric view of the problem of computing the distance product of

n × d and d × n matrices, by thinking in terms of so-called cuttings, and propose a new solution

for dimensions up to d ≈ log n/ log log n. Although the value of d is marginally worse than the

previous geometric approach, the rectangular product actually is computed in subquadratic time!
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(The previous approach does not share this feature.) It is this feature that leads to the ultimate

improvement for APSP.

How is it possible to compute the rectangular product in o(n2) time when the product itself has

n2 entries? Entries of this matrix are small integers from {1, . . . , d}, so we can pack multiple entries

in a single word. To be precise, let w denote the word size (w = Ω(log n)). We can store a list of

n integers from {1, . . . , d} in compressed form in O((n/w) log d) words, with bw/ log dc elements per

word. Similarly, we can store a matrix C = {cij}i,j∈{1,...,n} of integers from {1, . . . , d} as a compressed

list 〈c11, . . . , c1n, . . . , cn1, . . . , cnn〉, in O((n2/w) log d) words, which is subquadratic for small d. We

will describe an algorithm that requires time proportional to the number of words.

In the following, we will express running times in terms of both n and w and assume that

certain nonstandard operations on words of size w can be performed in constant time. Although

this assumption may not be “reasonable”, it is without loss of generality if we set w = δ logn, for a

constant δ > 0. This is because we can implement table lookup on the standard RAM, i.e., we can

precompute a table storing the outputs for all possible combinations of inputs in time 2O(w), which

is sublinear for a sufficiently small δ. To simplify presentation, we will ignore degenerate cases.

2.1 Geometry

We begin with a well-known geometric cutting lemma that is useful for solving range-searching-type

problems. We state just one (very!) special case which is sufficient for our purposes, and include a

proof to make the presentation self-contained.

Lemma 2.1 Let r ≤ n. Given a set H of n hyperplanes in IRd whose normals are parallel to c

different directions, we can divide IRd into O(cdrd) cells (convex polyhedra with O(c) facets) so that

each cell intersects at most n/r hyperplanes.

In addition, given a set P of n points, we can do the following in O(cn logn+ cdnrd−1) time: for

each cell ∆ that contains at least one point, we can compute the set P∆ of all points of P inside ∆

and a set H∆ of size O(n/r) that contains all hyperplanes of H intersecting ∆ (and possibly other

hyperplanes).

Proof: For each direction ξ, let Hξ be the subset of hyperplanes orthogonal to ξ, sorted along ξ;

put the b|Hξ|/rc-th, (b2|Hξ|/rc)-th, . . . hyperplanes of Hξ in a subset R. Then |R| ≤ cr. Simply

take the O(|R|d) cells of the arrangement of R. Every cell of the arrangement clearly intersects at

most
∑

ξ |Hξ|/r = n/r hyperplanes.

For our purposes, it is not necessary to construct explicitly the arrangement of R, nor the poly-

hedral description of the cells. We can assign points of P to their corresponding cells directly by

sorting the points and the hyperplanes along each direction ξ in time O(cn logn) (this can actually

be reduced to O(cn log r) with more care). A list H∆ can be easily generated in O(n/r) time for

each of the O(cdrd) cells ∆. 2

Remark : By more powerful techniques from computational geometry [12, 26], the same result

(ignoring dependences of the constant factors on d) actually holds for arbitrary hyperplanes with no

restrictions on directions.

We now describe a new but surprisingly simple way of looking at the rectangular product problem

geometrically, which leads to a slightly subquadratic algorithm:
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Theorem 2.2 Set d = δ log n/ logw for a sufficiently small constant δ > 0. Given an n×d real ma-
trix A and a d×n real matrix B, we can compute the compressed matrix C = A∗B in O((n2/w) log d)

time.

Proof: Form a set of n points P = {pi}i∈{1,...,n} from the matrix A, by letting

pi := (ai1, . . . , aid).

Form a set of O(d2n) hyperplanes H = {hjk`}j∈{1,...,n},k,`∈{1,...,d} from the matrix B, by letting

hjk` := {(x1, . . . , xd) ∈ IRd | xk + bkj = x` + b`j}.

Observe that for a connected region ∆ and index j,

if hjk` does not intersect ∆ for all k and `, then the index k that minimizes xk + bkj is

the same for all (x1, . . . , xd) ∈ ∆.

This observation suggests the following algorithm.

Apply Lemma 2.1 to H to obtain dO(d)rd cells, as well as the lists P∆ and H∆, in O(dO(1)n logn+

dO(d)nrd−1) time (noting that the hyperplanes in H admit only O(d2) directions). For each cell ∆

containing at least one point and for each j = 1, . . . , n, arbitrarily choose a point (x1, . . . , xd) ∈ P∆

and set c∆j to the index k ∈ {1, . . . , d} that minimizes xk + bkj (computable in O(d) time each); the

total time for this step is at most dO(d)nrd.

Fix a point pi ∈ P∆. Set the i-th row tentatively to 〈ci1, . . . , cin〉 := 〈c∆1, . . . , c∆n〉; this step

takes time proportional to the length of the row, i.e., O((n/w) log d) time per point pi. For each

hjk` ∈ H∆, correct the value of cij by computing the actual index k ∈ {1, . . . , d} that minimizes

aik + bkj (in O(d) time) and resetting cij to this index; since |H∆| ≤ dO(1)n/r, the cost is dO(1)n/r

per point pi. At the end, all cij values would be correct.

The total time is

O(dO(d)nrd + dO(1)n2/r + (n2/w) log d).

Setting r = n1/(d+1)/dc for a sufficiently large constant c yields a time bound of

O(dO(1)n2−1/(d+1) + (n2/w) log d).

The second term dominates for d = δ log n/ logw for a sufficiently small δ. 2

Remarks: Compared to the geometric approach in [10], the new approach is more direct and does

not need divide-and-conquer.

Although the geometric interpretation is important in the analysis (in regards to bounding the

number of cells in the arrangement of R), the algorithm itself can actually be described entirely

without any reference to geometry. In particular, the only primitive operations on the real numbers

required are comparisons of differences/sums of pairs, as in all previous algorithms from Table 1.
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2.2 Word Tricks

In order to use Theorem 2.2 effectively to compute the distance product of square matrices, we need

to tackle one remaining issue: how to take the element-wise minimum of matrices in subquadratic

time. To be precise, given two n×n matrices X = {xij}i,j and Y = {yij}i,j whose entries are indices,
we want to compute the matrix C = {cij}i,j with

cij :=

{
xij if aixij

+ bxijj ≤ aiyij
+ byijj

yij otherwise.

We denote this matrix by X ∧A,B Y .

This subproblem is encountered also in Han’s paper [19], but his solution appears to be designed

specifically for the matrices X and Y generated within his algorithm. The solution we describe below

is more general, although it is marginally slower (costing another log logn factor) and is inspired by

the ideas outlined by Han.

We first state a few handy subroutines on manipulating compressed lists (some are well known,

e.g., see [3] concerning (a)).

Lemma 2.3 Given compressed lists X = 〈x1, . . . , xm〉 and Y = 〈y1, . . . , ym〉, where xi, yi ∈
{1, . . . , u},

(a) we can sort X in O(dm/we log u logm) time;

(b) we can compute the list 〈(x1, y1), . . . , (xm, ym)〉 in O(dm/we log u) time;

(c) for a fixed mapping f : {1, . . . , u} → {1, . . . , u}, we can compute the list 〈f(x1), . . . , f(xm)〉 in
O(dm/we log u) time;

(d) for any given array f [1], . . . , f [u] ∈ {1, . . . , u}, we can compute the list 〈f [x1], . . . , f [xm]〉 in
O(dm/we log(mu) logm+ u) time.

Proof:

(a) Let w̄ = bw/ log uc. We first show how to merge two sorted compressed lists X and Y by

imitating the standard linear-time merging algorithm: In each iteration, we grab the next w̄

elements of X, stored in a word z1, and the next w̄ elements of Y , stored in a word z2. By a

new word operation on z1 and z2, we can obtain a word z containing the w̄ smallest elements

in sorted order among the elements in z1 and z2. By another word operation on z1 and z2, we

can also obtain the number j1 (resp. j2) of elements of z1 (resp. z2) that appear in z. After

shifting over j1 elements in X and j2 elements in Y , we can continue to the next iteration. The

running time is O(dm/w̄e).
Now, we show how to sort a compressed list X by imitating mergesort: just divide X into

two sublists of m/2 elements, recursively sort each sublist, and merge. The running time is

O(dm/w̄e logm).

(b) Reset w̄ = bw/(2 log u)c. We simply apply the following word operation m/w̄ times: given a

word 〈x1, . . . , xw̄〉 and 〈y1, . . . , yw̄〉, output the word 〈(x1, y1), . . . , (xw̄, yw̄))〉.

(c) We simply apply the following word operation m/w̄ times: given a word 〈x1, . . . , xw̄〉, output
the word 〈f(x1), . . . , f(xw̄)〉.
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(d) Reset w̄ = bw/ log(mu)c. We first form the list of pairs {(i, xi)}i∈{1,...,m} by (b), and sort the

list by (a) using xi as the key.

We then split the sorted list into at most u sublists so that elements within the same sublists

have the same xi value. This can be done by repeated applications of the following word

operation (and repeated shifting): given a word 〈(i1, xi1), . . . , (iw̄, xiw̄)〉, output the largest

index j such that xi1 = · · · = xij .

For each sublist 〈(i1, x), (i2, x), . . .〉, change it to 〈i1, i2, . . .〉 by (c), look up the value of z = f [x],

and change the sublist to 〈(i1, z), (i2, z), . . .〉 by (b).

We then sort the union of the sublists by (a), this time, using i as the key, and finally map

each element (i, z) to z by (c).
2

We now provide a slightly subquadratic algorithm for computing the element-wise minimum of

two matrices:

Theorem 2.4 Suppose m ≥ q2w. Given an m × q matrix A and a q × m matrix B with real

entries, and compressed m×m matrices X and Y with entries from {1, . . . , q}, we can compute the
compressed matrix C = X ∧A,B Y in O((m2/w) log2m) time.

Proof: Sort the O(mq2) elements aik−ai` and bj`−bjk over all i, j ∈ {1, . . . ,m} and k, ` ∈ {1, . . . , q};
this step takes O(mq2 log(mq)) time. Let α[i, k, `] be the rank of aik − ai` and β[j, k, `] be the rank

of b`j − bkj in the sorted list; these ranks are integers between 1 and O(mq2). Observe that

aik + bkj ≤ ai` + b`j iff α[i, k, `] ≤ β[j, k, `].

This observation suggests the following algorithm.

First generate the (compressed) m × m matrices {(i, xij , yij)}i,j and {(j, xij , yij)}i,j by

Lemma 2.3(b) in O((m2/w) logm) time. Next compute {αij := α[i, xij , yij ]}i,j and {βij :=

β[j, xij , yij ]}i,j by Lemma 2.3(d) in O((m2/w) log2m + mq2) time, since the number of distinct

tuples [i, xij , yij ] is O(mq2); the first term dominates for m ≥ q2w. Now, generate the matrix

{(αij , βij , xij , yij)}i,j by Lemma 2.3(b) and map (αij , βij , xij , yij) to xij if αij ≤ βij , and yij other-

wise, by Lemma 2.3(c) in O((m2/w) logm) time. 2

Corollary 2.5 Suppose n ≥ q2w. Given an n× q matrix A and a q × n matrix B with real entries,

and compressed n×n matrices X and Y with entries from {1, . . . , q}, we can compute the compressed
matrix C = X ∧A,B Y in O((n2/w) log2(qw)) time.

Proof: Set m = q2w. Divide X and Y into O((n/m)2) m×m submatrices, and apply Theorem 2.4

to every corresponding pair. The total time is O((n/m)2 · (m2/w) log2m). 2

2.3 The APSP Algorithm

We can now put Theorem 2.2 and Corollary 2.5 together to get the final result.

Corollary 2.6 Suppose w = o(n1/3). Set q = w log n/ log3w. Given an n× q matrix A and a q× n

matrix B, we can compute C = A ∗B in O(n2) time.
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Proof: Divide A into n×d matrices A1, . . . , Aq/d and B into d×n matrices B1, . . . , Bq/d. Compute

Ci = Ai ∗ Bi for all i by Theorem 2.2. Compute C = C1 ∧A,B · · · ∧A,B Cq/d by Theorem 2.4. The

total time is O((q/d) · (n2/w) log2(qw)), which is O(n2) for q = O(dw/ log2w). We can uncompress

the resulting matrix with O(n2) additional time. 2

Corollary 2.7 Suppose w = o(n1/3). Given n × n matrices A and B, we can compute C = A ∗ B
in O(n3(log3w)/(w log n)) time. Consequently, we can solve the APSP problem for arbitrary real-

weighted directed graphs with n vertices within the same time bound.

Proof: Divide A into n×q matrices A1, . . . , An/q and B into q×n matrices B1, . . . , Bn/q. Compute

Ci = Ai ∗Bi for all i by Corollary 2.6 in O(n2 ·n/q) total time. Compute C = C1 ∧A,B · · · ∧A,B Cn/q

naively in O(n2 · n/q) time. 2

3 APSP for Geometric Graphs in Truly Subcubic Time

In the previous section, we have used low-dimensional geometric techniques to solve a graph problem.

In this section, we turn to geometric special cases of the graph problem.

LetW be a fixed set of c piecewise-algebraic functions over IRd× IRd, each with a constant degree

and a constant number of pieces, where the dimension d is now assumed to be a constant, and so is c.

Consider a graph G, where the vertices are points p1, . . . , pn ∈ IRd, and the weight of the edge from

pi to pj is chosen from the set {w(pi, pj) | w ∈ W} ∪ {∞}. Such a graph G, and the corresponding

weight matrix, are said to be geometrically weighted . We present a truly subcubic algorithm for

APSP in geometrically weighted graphs.

As in several previous APSP algorithms for integer-weighted graphs (e.g., [4, 41]), the first idea is

to divide shortest paths into two categories: those having lengths larger than a certain parameter `,

and those having lengths smaller than `. Paths of large lengths are hit by a small subset of vertices

and can therefore be found quickly. Previous algorithms like [4, 41] handle paths of small lengths

by repeated-squaring-like strategies, but such strategies do not work here, because the square of a

geometrically weighted matrix is no longer geometrically weighted.

We propose a different strategy: we show how to compute the distance product of a geometrically

weighted matrix with an arbitrary matrix; paths of small lengths can then be found by computing

such a product ` times. Although the resulting algorithm is not as good as previous algorithms in

the case of small integer weights, it is more general; and in at least one scenario (namely, the APLSP

problem), this strategy actually beats repeated squaring [40].

In the following, we abuse notation slightly and redefine A ∗ B to be the matrix C = {cij}i,j
with cij = mink(aik + bkj). Let A ∧ B be the matrix C = {cij}i,j with cij = min{aij , bij}. Let

δG(pi, pj) denote the shortest path distance from i to j. For simplicity, we will only describe how to

compute shortest-path distances; it is a straightforward matter to modify our algorithms to generate

the predecessor matrix used for retrieving the shortest paths. In this section we will work with the

real-RAM model, as is standard in the computational geometry literature; in particular, we will

ignore thorny issues about sums of square roots in the case of Euclidean distances.

3.1 Geometry

We begin with another well-known geometric tool, a partition theorem, which plays a central role in

range searching. Matoušek [25] established the original version; the version we need below follows
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from Agarwal and Matoušek’s work on semialgebraic range searching [1].

Lemma 3.1 Let W be a set of c piecewise-algebraic functions over IRd× IRd of constant complexity.

There is a specific constant κ for which the following statement holds: Given any set P of n points

in IRd+1 and parameter 1 ≤ r ≤ n, we can partition P into r subsets P1, . . . , Pr, each of size O(n/r),

and find r cells ∆1 ⊃ P1, . . . ,∆r ⊃ Pr, each of complexity O(1), such that any surface of the form

{(x, z) ∈ IRd+1 | w(p, x) + z = a} (w ∈ W, p ∈ IRd, a ∈ IR)

intersects at most Õ(r1−1/κ) cells. The subsets and cells can be constructed in Õ(n) time.

The best possible value of κ depends on the combinatorial complexity of a decomposition of an

arrangement of surfaces (currently an open problem in general for dimensions greater than 4). Let

dact be the actual dimension, i.e., the number of variables that appear in the expression w(p, x) + z

for a fixed p and a fixed piece of a function w ∈ W. Let dlin be the linearization dimension [1]

(roughly speaking, the number of variables needed to transform the expression w(p, x) + z ≤ a into

linear inequalities). It is known [1, 23] that the following value of κ works:

κ =

{
dact if dact ≤ 4

min{b(dact + dlin)/2c, 2dact − 4} otherwise.

For example, suppose that w(·, ·) is the Euclidean distance function. Then dact = d + 1, since

w(p, x) + z depends on d+ 1 variables (x, z); and dlin = d+ 2, since w(p, x) + z ≤ a can essentially

be rewritten as ‖x− p‖2 ≤ (a− z)2, i.e., ‖x‖2 − z2 − 2p · x+ 2az ≤ a2 − ‖p‖2, which is linear in the

d+ 2 variables (x, z, ‖x‖2 − z2). Thus, κ = d+ 1.

For vertex-weighted graphs, each vertex is a point in IR1 and w(p, q) = p, so w(p, x) + z depends

only on one variable z. Thus, κ = dact = 1. For L1 or L∞ distances, κ = 1 similarly.

We now present a truly subcubic algorithm for computing the distance product of a geometrically

weighted matrix and an arbitrary matrix, by combining fast matrix multiplication with the use of

the partition theorem.

Theorem 3.2 Given a geometrically weighted n× n matrix A and an arbitrary n× n matrix B, we

can compute C = A ∗B in Õ(n3−(3−ω)/(κ+1)) time.

Proof: For simplicity, assume thatW consists of a single function w(·, ·). Let p1, . . . , pn ∈ IRd be the

points that define A. For each j ∈ {1, . . . , n}, apply Lemma 3.1 to the point set {(pk, bkj)}k∈{1,...,n}
to obtain r subsets {P`j}` of size O(n/r) and r cells {∆`j}`; the total time so far is Õ(n2). Slightly

abusing notation, we let P`j contain indices k rather than points (pk, bkj).

Let Si = {k | aik = w(pi, pk)}. We want to compute cij = mink∈Si
(w(pi, pk) + bkj) for each i

and j.

For every i, j ∈ {1, . . . , n}, ` ∈ {1, . . . , r}, first determine whether Si intersects P`j . This step

reduces to multiplying an n × n Boolean matrix (whose rows correspond to bit vectors of the Si’s)

and an n × nr Boolean matrix (whose columns correspond to bit vectors of the P`j ’s). Thus, this

preprocessing can be done in O(nωr) time.

Now fix i and j. Let ĉij be the minimum of sup(x,z)∈∆`j
(w(pi, x) + z) over all ` such that P`j

intersects Si; this value is an upper bound on the actual value of cij and can be computed in O(r)

time (O(1) time per `). Let γij be the region {(x, z) ∈ IRd+1 | w(pi, x) + z ≤ ĉij}. Set cij to be the
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minimum of w(pi, pk) + bkj over all k ∈ P`j ∩ Si and over all ` with ∆`j intersecting the boundary

of γij . Since the number of such `’s is Õ(r1−1/κ) and each P`j has O(n/r) size, this step takes

Õ(r1−1/κ · n/r) = Õ(n/r1/κ) time.

To see why this correctly computes cij , note that since the actual value of cij is at most ĉij , we

can safely ignore all k ∈ P`j with ∆`j strictly outside γ. On the other hand, we can ignore all k ∈ P`j

with ∆`j strictly inside γ, since by definition of ĉij , such a subset P`j cannot intersect Si.

The total running time is

Õ(nωr + n3/r1/κ).

Setting r = n(3−ω)/(1+1/κ) yields the time bound. Note that if W contains c functions, we can run

the above algorithm for each w ∈ W in turn and return the element-wise minimum of the results. 2

Remarks: In the simple case of vertex-weighted graphs with d = 1, we of course do not need the

partition theorem (we can divide a sorted list of n numbers in IR1 into r sublists of size O(n/r) in the

obvious way). The resulting Õ(n(3+ω)/2) algorithm bear superficial resemblance with some previous

Õ(n(3+ω)/2) algorithms, like Matoušek’s dominance method [24].

The combination of geometric range searching techniques with fast matrix multiplication is rather

interesting, although examples of such combinations have appeared before (e.g., see [9, 21, 22]).

Instead of the partition theorem, it is possible to prove Theorem 3.2 alternatively using a cutting

lemma, as in the previous section, along with randomization. (Known proofs of the partition theorem

actually uses cuttings as a subroutine.)

3.2 The APSP Algorithm

We need one more ingredient to deal with shortest paths of large lengths. The following lemma has

been used in previous APSP algorithms (e.g., [4, 41]), and can be proved by random sampling, or

deterministically by running the standard greedy algorithm for the hitting set problem (i.e., set cover

in the dual).

Lemma 3.3 Given a collection of N subsets of {1, . . . , n} where each subset has size exactly `, we
can find a subset R of size O((n/`) log n) that hits all subsets in the collection, in O(N`) time.

We now derive an APSP algorithm from Theorem 3.2 and the preceding lemma:

Theorem 3.4 We can solve the APSP problem for a geometrically weighted graph G with n vertices

and m edges in Õ(n2−(3−ω)/(2κ+2)√m) = Õ(n3−(3−ω)/(2κ+2)) time.

Proof: Let A(1) = A be the weight matrix of G. For each s = 2, . . . , `, compute A(s) = A ∗A(s−1).

This process requires `− 1 applications of Theorem 3.2 and produces the weight a
(s)
ij of the shortest

length-s path from i to j.

Next find a subset R that hits all O(n2) shortest length-` paths found, by Lemma 3.3 in O(n2`)

time. Let B(0) = B = {bij}i,j where bij := δG(pi, pj) if pi ∈ R, and ∞ otherwise. This matrix can

be computed by |R| = Õ(n/`) applications of Dijkstra’s single-source shortest path algorithm, each

of which takes O(n logn+m) time.

For each s = 1, . . . , `, compute B(s) = A ∗ B(s−1). This requires another ` applications of

Theorem 3.2.
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Finally return A(1)∧· · ·∧A(`)∧B(0)∧· · ·∧B(`). Correctness follows from the fact that a shortest

path from pi to pj of length greater than ` can be decomposed into a shortest path from pi to some

pk ∈ R of length at most ` and a shortest path from pk to pj .

The total running time is

Õ(`n3−(3−ω)/(κ+1) +mn/`).

Setting ` =
√
m/n1−(3−ω)/(2κ+2) yields the result. 2

3.3 Further Special Cases

We show how to improve Theorem 3.4 in two special cases. The key new ingredient is a variant of

Theorem 3.2 that is sensitive to the sparseness of one of the input matrices and the sparseness of the

desired output:

Theorem 3.5 Given a geometrically weighted n × n matrix A and an arbitrary n × n matrix B

where B has O(m) finite entries, we can compute any O(m) specified entries of C = A ∗ B in

Õ(nω +mn1−(3−ω)/(κ+1)) time.

Proof: We modify the proof of Theorem 3.2. For each j, let Tj = {k | bkj 6= ∞}. We apply

Lemma 3.1 to the point set {(pk, bkj)}k∈Tj
but with a change of parameter: we still insist that each

subset P`j has size O(n/r), but the number of subsets is now reduced to rj := O(r|Tj |/n). Since the

total number of subsets is
∑

j rj = O(rm/n), the preprocessing step—multiplying an n× n Boolean

matrix and an n× rm/n matrix—can now be done in O(
⌈
rm/n2

⌉
nω) = O(nω + rmnω−2) time. Like

before, each entry cij can be computed in time Õ(rj + r
1−1/κ
j · n/r), which is at most Õ(r+ n/r1/κ).

The total running time is

Õ(nω + rmnω−2 +mn/r1/κ).

Setting r = n(3−ω)/(1+1/κ) yields the result. 2

The first special case is when the ratio of maximum to minimum weight is bounded by a constant c.

We apply Theorem 3.5 in an interesting way to obtain this result:

Theorem 3.6 We can solve the APSP problem for a geometrically weighted graph G with n vertices

in Õ(n3−(3−ω)/(κ+1)) time if all weights are between 1 and c.

Proof: For each s = 1, . . . , c`, we will compute a matrix A(s) = {a(s)ij }i,j , where a
(s)
ij is equal to

δG(pi, pj) if the value is in the range [s, s+ 1), and ∞ otherwise.

To do so, first let A = {aij}i,j be the weight matrix of G. Assuming that A(1), . . . , A(s−1)

have been computed correctly, we generate A(s) as follows. Define X(s) = {(i, j) |
a
(s−b)
ik 6=∞ and akj ∈ (b− 1, b+ 1) for some k and for some b ∈ {1, . . . , c}}. Computing X (s) re-

duces to c Boolean matrix multiplications and thus takes O(nω) time each. Define Y (s) =

X(s) − {(i, j) | a(t)ij 6=∞ for some t ∈ {1, . . . , s− 1}}. By definition, this set Y (s) satisfies the

following properties: (i) if δG(i, j) ∈ [s, s + 1), then (i, j) ∈ Y (s); and (ii) if (i, j) ∈ Y (s), then

δG(i, j) ∈ [s, s+ 2).

Now compute the product A ∗ (A(s−c) ∧ · · · ∧A(s−1)) restricted to Y (s)—i.e., for (i, j) 6∈ Y (s), the

corresponding entry of the returned matrix need not be generated and is set to ∞. To obtain A(s),
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we take this resulting matrix further restricted to entries in the range [s, s + 1). By Theorem 3.2,

the matrices A(s) for all s = 1, . . . , c` can be computed in total time

Õ

(
`nω +

c∑̀

s=1

(|Y (s−c) ∪ · · · ∪ Y (s−1)|+ |Y (s)|)n1−(3−ω)/(κ+1)

)
= Õ(`nω + n3−(3−ω)/(κ+1)),

since (ii) implies
∑

s |Y (s)| = O(n2).

Next find a subset R that hits all shortest paths found of length exactly `, by Lemma 3.3 in

O(n2`) time. Let B = {bij}i,j and B′ = {b′ij}i,j where bij := δG(pi, pj) if pi ∈ R and ∞ otherwise,

and b′ij := δG(pi, pj) if pj ∈ R and∞ otherwise. The two matrices can be computed by |R| = Õ(n/`)

applications of Dijkstra’s single-source/single-sink algorithm.

To finish, compute B′ ∗ B naively in O(n2|R|) time and return A(1) ∧ · · · ∧ A(c`) ∧ (B′ ∗ B).

Correctness follows from the fact that a shortest path from pi to pj of weight greater than c` has

length greater than ` and thus can be decomposed into a shortest path from pi to some pk ∈ R and

a shortest path from pk to pj .

The total running time is

Õ(`nω + n3−(3−ω)/(κ+1) + n3/`).

Setting ` = n(3+ω)/2 yields the result. 2

Next, we consider the shortest cycle problem, which trivially reduces to APSP. We solve the

cycle problem directly, using Theorem 3.5 and Lemma 3.3, to obtain a faster algorithm:

Theorem 3.7 We can find the shortest (i.e., minimum-weight) cycle for a geometrically weighted,

directed graph G with n vertices with positive weights in Õ(n3−(3−ω)/(κ+1)) time.

Proof: Assume that ` is a power of 2. For each t = 1, 2, 4, 8, . . . , `, we will compute a vertex subset

R(t) of size Õ(n/t) that hits all shortest paths of length t, and for each s = 1, . . . , t, we will compute

the matrix A(t,s) = {a(t,s)ij }i,j , where a(t,s)ij is the weight of the shortest length-s path from i to j if

i ∈ R(t/2), and ∞ otherwise.

Given R(t/2), we can easily initialize A(t,1). We set A(t,s) to the product A(t,s−1) ∗A restricted to

the Õ(n2/t) entries in {(i, j) | i ∈ R(t/2)}. By Theorem 3.5 (with the roles of A and B reversed), all

the A(t,s) matrices can be generated in total time

Õ




∑

t=1,2,4,...,`

t · [nω + (n2/t) · n1−(3−ω)/(κ+1)]


 = Õ(`nω + n3−(3−ω)/(κ+1)).

Having computed A(t,t/2), we set R(t) to be a subset of size Õ(n/t) that hits all Õ(n2/t) shortest

length-(t/2) paths found that start at vertices in R(t/2), by Lemma 3.3 in Õ(n2) time. Then indeed

R(t) hits every shortest path π of length t, since the first t/2 vertices of π contain a vertex pi of R
(t/2)

by induction, and the t/2 vertices of π after pi contain a vertex of R(t).

Let B = {bij}i,j where bij = δG(pi, pj) if i ∈ R(`), and ∞ otherwise. This matrix can

be computed by Õ(n/`) applications of Dijkstra’s single-source algorithm. Let C = {cij}i,j =∧
t=1,2,4,...,`

∧
s=1,...,tA

(t,s) ∧B. Return mini,j(cij + aji) as the weight of the shortest cycle (the cycle

itself can be easily retrieved afterwards). Correctness follows since if the shortest cycle γ has length

between t/2 and t for some t ≤ `, it must contain a vertex pi ∈ R(t/2), and if γ has length greater
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than `, it must contain a vertex pi ∈ R(`). The weight of the path that starts at pi and ends at pi’s

predecessor pj along γ is correctly computed as cij .

The total running time is

Õ(`nω + n3−(3−ω)/(κ+1) + n3/`).

Setting ` near n(3+ω)/2 yields the result. 2

The above algorithm does not work immediately for undirected graphs, since it permits directed

cycles of length 2. Fortunately, we show that a modification of the algorithm can still achieve roughly

the same time bound for undirected graphs, by using randomization in an interesting way:

Theorem 3.8 We can find the shortest cycle for a geometrically weighted, undirected graph G with

n vertices with positive weights by a Monte Carlo algorithm in Õ(n3−(3−ω)/(κ+1)) time.

Proof: Let C[G] = {cij [G]}i,j denote the matrix C computed in the proof of Theorem 3.7. For

each t ≤ n a power of 2, let Gt be a random subgraph of G where each edge of G is removed with

probability 1/t. We can compute C[Gt] for all t in Õ(n3−(3−ω)/(κ+1) log n) time as before. Return

min{cij [G] + cij [Gt] | cij [G] 6= cij [Gt] over i, j, t} as the shortest cycle weight. (For simplicity, treat

two path weights as identical only if the paths themselves are identical.)

For the analysis, first observe that the returned value is at least the weight of the shortest cycle:

cij [G] represents the weight of some simple path from pi to pj in G, and the concatenation of two

nonidentical simple paths between pi and pj must contain a simple cycle (of length at least 3).

For the other direction, let γ be the shortest cycle, and suppose its length is between t/2 and t

for t a power of 2. If t ≤ `, then γ must contain a vertex pi ∈ R(t/2); otherwise, γ must contain a

vertex pi ∈ R(`). In any case, let pj be a vertex on γ so that either portion of γ from pi to pj has

length between t/4 and t/2. Let γ ′ be the shorter of the two portions (in terms of weight), and let

γ′′ be the longer. Consider the event E that some edge of γ ′ is not in Gt and all edges of γ′′ are in

Gt. Note that E holds with probability Ω(t/4 · 1/t · (1− 1/t)t/2) = Ω(1). Under this event, we know

that cij [G] is at most the weight of γ ′, cij [Gt] is at most the weight of γ ′′, and cij [G] 6= cij [Gt]. So

the weight of γ is returned correctly with probability Ω(1).

The success probability can be improved to at least 1−1/nc for any constant c, by rerunning the

algorithm for O(log n) iterations and returning the minimum of all solutions found. 2

Remark : We can also obtain the same Õ(n3−(3−ω)/(κ+1)) time bound for the problem of finding

the shortest simple (directed or undirected) cycle of a fixed length c0, for any constant c0 ≥ 3. This

follows more easily by applying Theorem 3.2 a constant number of times and using color-coding [5]

to prevent nonsimple cycles.

4 Final Remarks

We briefly mention two recent results that have appeared after the initial version of this paper.

First, Yuster [39] has announced an O(n2.842) time bound for APSP in real-vertex-weighted graphs,

which slightly improves our O(n2.844) result. The improvement does not require a new algorithm, but

follows just by applying a known improved bound, due to Huang and Pan [20], for rectangular matrix

multiplication (specifically for multiplying the n× n and n× nr matrices in the third paragraph of

Theorem 3.2’s proof). Improvements for geometrically weighted graphs for κ > 1 also immediately
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follow, but are again very slight. Second, Bansal and Williams [7] have announced a new purely

combinatorial algorithm for Boolean matrix multiplication which breaks the O(n3/ log2 n) barrier.

The running time is O(n3 log2 log n/ log9/4 n). At this point, it is far from clear if O(n3/ log2+δ n)

time is possible for a problem that deals with real-valued matrices, like general APSP.

We reiterate the main open question: can the general APSP problem be solved in O(n3−δ) time

for some positive constant δ?
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