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Abstract. We show that, if we allow general admissible integrands
as trading strategies, the three dimensional Bessel process, Bes3, admits
arbitrage possibilities. This is in contrast with the fact that the inverse
process is a local martingale and hence is arbitrage free.

This leads to some economic interpretation for the analysis of the
property of arbitrage in foreign exchange rates. This notion (relative
to general admissible integrands) does depend on the fact, which of the
two currencies under consideration is chosen as numéraire.

The results rely on a general construction of strictly positive local
martingales. The construction is related to the Föllmer measure of a
positive super-martingale.

Introduction.
In our paper Delbaen-Schachermayer [DS1], we showed that the inverse of the

Bes3 process, an example of a strict local martingale, doesn’t allow arbitrage pos-
sibilities. In the present paper we investigate the Bes3 process itself. The methods
used in Delbaen-Schachermayer [DS1] show that with respect to simple integrands,
the Bes3 process satisfies the no-arbitrage property. It is therefore not unreason-
able to investigate if also with respect to general admissible integrands, the Bes3

process keeps this no-arbitrage property. We show that this is not the case, i.e. the
Bes3 process permits arbitrage with respect to general admissible integrands, and
we will show that there is a general statement behind this phenomenon.

We will make use of the notation and definitions as in the book by Revuz and
Yor [RY]. Especially for the definition of Bessel processes, the theory of continu-
ous martingales and Girsanov transformations, we will use this book as the basic
reference.
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1. Construction of Strictly Positive Strict Local Martingales
Let us first introduce some notation. We will use a filtered probability space

(Ω, (Ft)0≤t≤1, P ), where the filtration F is supposed to satisfy the usual assump-
tions. This means that F0 contains all null sets of F1 and that the filtration is right
continuous.

The continuous martingale M (with respect to P ), defined on the interval [0,1]
has value 1 at time 0 and is supposed to be P uniformly integrable. Most of the
time we suppose that it has a strictly positive probability to become zero. The
stopping time T is defined as

T = inf{t |Mt = 0}.

If the martingale does not hit zero then T is simply equal to 1. The measure R
is defined on F1 as the measure with Radon-Nikodym derivative equal to MT =
dR/dP . From the optional stopping time theorem it follows that on Ft the Radon-
Nikodym density is simply Mt∧T . We remark that if P [MT > 0] < 1, the measure
R is only absolutely continuous with respect to P . A local martingale that is not
a uniformly integrable martingale will be called a strict local martingale. This
terminology was introduced by Elworthy, Li and Yor [ELY], where an analysis of
strict local martingales is given.

We shall always denote by N the process defined as

Nt = Mt −
∫ t

0

(1/Mu) d〈M,M〉u.

It follows from Lenglart’s extension of the Girsanov formula (see, e.g. Revuz-Yor
[RY] p.303 or [L]) that N is an R- local martingale and that

dMt = dNt +
1
Mt

d〈Nt, Nt〉

is the Dob-Meyer decomposition of the semi-martingale M under R.
The usual setting in the applications of probability theory to mathematical fi-

nance is that of a stochastic process S describing the (discounted) price of a stock.
A basic problem then is to decide whether there is an equivalent local martingale
measure for the process S and to investigate the set of all such measures (see, e.g.
Delbaen-Schachermayer [DS2] and references given there).

The idea of this paper is to turn things upside down. The role of the price
process S will be taken by the process M under the measure R.

If P and R happen to be equivalent then, of course, the process M (considered
with respect to R) admits at least one equivalent martingale measure, namely P .
The interesting aspect arises if R is only absolutely continuous with respect to P ,
but not equivalent to P . In this case P fails to be an equivalent martingale measure
for the process M (considered with respect to R), as P is not absolutely continuous
with respect to R. If we can deduce from martingale representation arguments
that P is the only candidate for a martingale measure, then we may conclude that
there is no R−equivalent martingale measure. As a consequence we deduce that
M under R does not satisfy the property of No Free Lunch with Vanishing Risk, a
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concept introduced in Delbaen-Schachermayer [DS2] and for locally bounded semi-
martingales equivalent to the existence of an equivalent local martingale measure.
We will show that in the case under consideration, M (seen under R) allows arbi-
trage for general admissible integrands. As shown in Delbaen-Schachermayer [DS2]
this is strictly stronger than the non-existence of an R−equivalent local martingale
measure.

The reason for proceeding in this way lies in the fact that it is well suited to
analyse Bessel processes and allows to exhibit a general phenomenon occurring in
this setting. Let B = (Bt)0≤t be a one-dimensional standard Brownian Motion
starting at B0 = 1 and defined on (Ω, (Gt)0≤t, P ). We define T as the first instant
the Brownian Motion B hits 0 with the convention that T = 1 if B did not hit 0
before time t = 1. The process M is defined as M = BT , the Brownian Motion
stopped at time T . By (Ft) we denote the natural filtration generated by M .
Clearly M is the P−martingale associated to a P−absolutely continuous measure
R on F1 whose density is given by M1 = MT . As the probability that M1 equals
zero is strictly positive, R fails to be equivalent to P . Under the measure R the
continuous martingale N , as defined above, is a stopped Brownian Motion since
〈N,N〉t = 〈M,M〉t = t. The natural filtration, under the measure R, of the process
N is the filtration Ft augmented with the subsets of {MT = 0}. Under R, the
process M satisfies the differential equation

dMt = dNt +
1
Mt

dt.

It is therefore a Bes3 process starting at the point 1.
In addition, in the present example we have martingale representation theorems

at hand, which will allow us to carry out the program sketched above.
The previous description of the Bes3 process is well known, see for instance

Revuz-Yor [RY] p. 294 and Ex 1.2.2, question 2 p. 419. This description is an
example of a more general procedure known as the construction of the h−process.
In Biane-Yor [BY] this construction was used to study properties of the ”méandre
brownien”. In order to keep a more general framework and, in particular, to be
able to derive results for Bessel processes of dimension δ 6= 3 we place us in the
more general framework of an arbitrary P− absolutely continuous probability R on
F1 and the associated processes M and N defined above.

Theorem 1. If R is absolutely continuous with respect to P but not equivalent to
P , then the process 1/Mt is a R−strict local martingale.

Proof. Under the measure R, the process M is a special semi-martingale that is
decomposed as Mt = Nt +

∫ t
0

1/Mu d〈M,M〉u into its local martingale part and its
predictable component. Under R, the process M is almost never zero and therefore
1/M is also a semi-martingale. Stochastic calculus shows that under R, we have

d(1/Mt) = −1/M2
t dNt

and hence it is a local martingale. Since it is positive it is a supermartingale under
R. To see that it is not a martingale, it is sufficient to remark that ER[1/M1] =
P [Mt∧T > 0] < 1. ¤
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Remark. The passage from P to R poses the subsequent technical difficulty: the fil-
tration (Ft) does not satisfy the usual assumptions with respect toR. But this prob-
lem is not hard to fix: the filtration (Gt) defined as Gt = σ(Ft, all subsets of {MT =
0}) satisfies the usual assumptions. An easy exercise on monotone classes shows
that for every (Gt)−predictable process H, there is a (Ft)−predictable process K
such that {∃t | Ht 6= Kt} ⊂ {MT = 0}. For later use it is also useful to remark
that the natural filtrations of M and N under R are the same.

Theorem 2. If the martingale M has the F−predictable representation property
with respect to P then the R−local martingale N also has the G−predictable repre-
sentation property with respect to R. Consequently 1/M also has the G−predictable
representation property with respect to R.

Proof. See Th 12.22 in Jacod’s book, [J]. ¤

Corollary. If M is a local martingale with the F−predictable representation prop-
erty under P and if R and P are equivalent, i.e. P [MT = 0] = 0, then 1/M has
the F−predictable representation property under R.

Before we formulate the next theorem we recall the notion of simple integrands,
of general admissible integrands and of no-arbitrage. (see Delbaen-Schachermayer
[DS2])

Definition. We say that a predictable process H is simple if it is of the form

H =
n−1∑
k=0

fk 1]]Tk,Tk+1]]

where 0 ≤ T0 ≤ T1 . . . ≤ Tn ≤ 1 are stopping times and fk are FTk measurable
functions. A predictable process H that is S−integrable for a semi-martingale S
is called a−admissible (for a ∈ IR) if H · S ≥ −a. We say that S satisfies the
no-arbitrage property with respect to simple integrands if, for H simple predictable
and such that (H · S)1 ≥ 0 almost surely, we have that (H · S)1 = 0. The semi-
martingale S satisfies the no-arbitrage property for general admissible integrands if
H admissible and (H ·S)1 ≥ 0 a.s. imply (H ·S)1 = 0. If the underlying probability
measure P plays a role, we add the phrase ”with respect to P”.

Remark. Simple integrands are not necessarily admissible.

We remark that if S allows arbitrage for simple integrands, then the simple
predictable process used to construct the arbitrage can be taken (see Delbaen-
Schachermayer [DS1]) of the form H = f 1]]T0,T1]] where T0 ≤ T1 are two stopping
times and where f is FT0 measurable. When we split f into its positive and its
negative part, we immediately see that we can either take f = −1 or f = 1.

¿From this it easily follows that a strictly positive process S satisfies the no-
arbitrage property for simple integrands if and only if the process 1

S satisfies the
no-arbitrage property with respect to simple integrands. We warn the reader that
if we look at arbitrage with respect to admissible simple integrands the statement
is no longer true. An example will be given below.
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Theorem 3. If M has the F−predictable representation property for P and if
P [MT = 0] > 0, then the process M seen under R, admits arbitrage for general
admissible integrands.

Proof. Take the real number α so that f = 1{MT>0} − α1{MT≤0} satisfies EP [f ] =
0. Since P [MT = 0] > 0, such an α exists and we have that α ≥ 0. By the
representation property there is H predictable such that f = (H ·M)1 and H ·M ≥
−α almost surely with respect to P . It follows that under the measure R the
integrand H is admissible (the process (H ·M) is bounded from below by -α) and
produces an R almost surely positive outcome 1{MT>0}. ¤
Corollary. The Bes3 process in its natural filtration permits arbitrage.

Proof. This follows easily from the theorem and the construction of the Bes3 process
given above. ¤
Remark. As shown in Delbaen-Schachermayer [DS1] the inverse of the Bes3 process
satisfies the no-arbitrage property with respect to simple, not necessarily admissible,
integrands. The Bes3 process therefore also satisfies the property of no-arbitrage
with respect to simple integrands.

Remark. The problem whether or not M is arbitrage free under R is tricky and
depends on the kind of arbitrage used. Under the measure P , M is a uniformly
integrable martingale and hence arbitrage free in any reasonable sense and in par-
ticular for simple bounded integrands. Under the measure R, the situation changes.
The process 1

M is a R−local martingale and hence satisfies the no-arbitrage prop-
erty with respect to general admissible integrands. Under the measure R, the
process M however might allow arbitrage opportunities with respect to simple ad-
missible integrands. This in turn implies that 1

M , a local martingale under R,
allows arbitrage with respect to simple, not necessarily admissible, integrands. (see
Delbaen-Schachermayer [DS1] for another example in this direction).

The following example is another illustration. On a probability space with a
Brownian Motion B, endowed with the natural filtration, we define

St = exp(
∫ t

0

1/
√

(1− u) dBu − 1/2
∫ t

0

1/(1− u) du).

We stop S when it hits either 2 or 0. Since St tends to 0 almost surely when t tends
to 1, the stopping time is well defined and the resulting stopped process is a bounded
non-negative martingale. The measure R is defined as dR = ST dP . Under R, the
process S admits arbitrage with respect to simple admissible integrands. Indeed
S1 − S0 = 1 under R. The process 1

S is a strict R−local martingale. Under R the
outcome 1

S0
− 1

S1
is realised by a simple integrand but it is not an outcome of an

admissible integrand.
In the general setup of theorem 3, M satisfies the property that for stopping

times U ≤ V , f = MV −MU ≤ 0 R a.s. implies f = 0, R a.s.. We can see this
as follows. The relation f ≤ 0 implies that 1

MV
− 1

MU
≥ 0 R a.s. But under R,

the process 1/M is a positive local martingale and hence a supermartingale. We
therefore obtain ER[ 1

MV
− 1

MU
] ≤ 0. This implies that 1

MV
− 1

MU
= 0 R a.s. and

hence f = 0 R a.s..
To analyse the converse situation we suppose that there are two stopping times

U ≤ V such that R a.s. we have MV −MU ≥ 0. By definition of R and by the
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no-arbitrage property of M (under P ) we necessarily have that {MV −MU ≤ 0} ⊂
{MT = 0}. This means that when at time U there is still a possibility to lose
money, it is only due to the fact that M can become zero.

Theorem 3 as well as the example given above, illustrate what can happen if
we only look at survivors. In statistics one encounters the phenomenon of survivor
bias when dealing e.g. with outperformance of stocks and when investigating the
efficient market hypothesis. If a sample of today’s stocks or mutual funds is taken
and if the history of the corresponding returns is analysed, the statistician in fact
only looks at survivors. The stocks, mutual funds, investment opportunities that
performed very badly did not survive and the sample suffers from survivor bias.
(see e.g. Ross [R]). The example given is such an illustration. By looking at the
trajectories that survived we were even able to obtain arbitrage with respect to
simple integrands.

Theorem 3 shows the general case. Arbitrage with respect to simple integrands
is not always possible (see the case of the Bes3 process) but with respect to general
integrands, arbitrage is present.

2. Converse Theorems
The preceding situation is more general than it first looks. This section is devoted

to a converse of theorems 1 and 3. We will show that under certain conditions,
a strictly positive strict local martingale has the same distribution as the ones
obtained from theorem 1. We will also show that if L is a strictly positive strict
local martingale that satisfies the predictable representation property, then the
conclusion of theorem 3 always holds. When we deal with the distribution of a
process we mean the image measure on a natural space of trajectories. Because we
also need an extension theorem for measures we need a space that is big enough.

The construction is an interpretation of the construction of the Föllmer measure
of a supermartingale.(see Föllmer [F], Azéma-Jeulin [AJ] and Meyer [M]). So the
methods we use are standard. However in our approach the supermartingale is a
strictly positive continuous local martingale and this simplifies the construction and
allows us to use a natural space of trajectories. Referring to Meyer [M] we add an
extra (absorbing) point to the state space IR+, i.e. we will work with the compact
space [0,∞].

The space of trajectories is the space C∞[0,1] of continuous paths ω defined on
the time interval [0,1] with values in [0,∞] and with the extra property that if
ω(t) =∞ then ω(s) =∞ for all s ≥ t. The set C∞ is a Borel set of the space of all
continuous functions from [0,1] into [0,∞] endowed with the topology of uniform
convergence.

The evaluation functionals are denoted Lt, hence Lt(ω) = ω(t). They take values
in [0,∞]. The filtration generated by the process (Lt)0≤t≤1 is denoted by H◦t , the
superscript meaning that we do not saturate this filtration in order to satisfy the
usual conditions. The results of Föllmer, [F] and especially the presentation in
Meyer, [M] can be translated into the following theorem. We only give a sketch of
the proof.

Theorem 4. If R is a measure on C[0,1] such that L is a strictly positive strict
local martingale, then

(i) there is a probability measure on C∞[0,1] such that M = 1
L is a P martingale.

(ii) we may choose P in such a way that the measure R is absolutely continuous
with respect to P and its Radon-Nikodym derivative is given by dR = M1 dP .
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(iii) if L has the predictable representation property with respect to R then M has
the predictable representation property with respect to P . In this case the process
1
L , seen under the measure R, allows arbitrage with respect to general admissible
integrands.

Proof. The measure R is defined on H◦1 and is such that the process L is a strictly
positive strict local martingale. The strict positivity of L results in R[L1 = 0] = 0.
The stopping times Tn are defined as the first hit of the level n, Tn = inf{t | Lt ≥
n} ∧ 1. It is easy to see that Tn is a stopping time for the filtration H◦. Also
limn→∞ Tn = T , where T = inf{t | Lt = ∞} ∧ 1. The sigma algebras H◦Tn are
increasing and their union generates H◦T = H◦1.

The stopped processes LTn are bounded continuous martingales for the measure
R. On each of the sigma algebras H◦Tn we define the measure Pn as dPn = LTn dR.
By the martingale property we have that Pn+1 restricted toH◦Tn is precisely Pn. We
obtain in this way an additive set function P defined on

⋃
n≥1 H◦Tn . This additive

set function is sigma additive and can be extended to a true probability measure
on H◦1. ¤

Theorem 5. Let (Ω,(Ft)0≤t≤1,R
′) be a probability space with a filtration that sat-

isfies the usual assumptions. Let L′ be a strictly positive, continuous, strict local
martingale. Assume that F is the natural filtration of L′ and that L′ has the pre-
dictable representation property. Under these assumptions, the process 1/L′ allows
arbitrage with respect to general admissible integrands.

Proof. We define a mapping Φ: Ω → C∞ as follows Φ(ω)(t) = L′t(ω). Since L′ is
almost everywhere continuous the mapping Φ is well defined (if needed we first
throw away a set of measure zero). The mapping Φ is measurable and induces a
measure R onH0

1. We now apply the theory above and since the filtration F satisfies
the usual assumptions we see that for each t the mapping Φ is measurable for the
couple Ft−HRt . The process L defined on C∞ is strictly positive, it is a strict local
martingale and has the predictable representation property. (Here we use that F
is the natural filtration generated by L′). We therefore obtain an HR−predictable
process H that is admissible and that produces an arbitrage opportunity. The
mapping H ′ = H ◦ Φ is F−predictable, is admissible and produces arbitrage for
the original process 1/L′. The proof is now complete. ¤

3. Bessel processes

In this section we will apply the previous theorems to the particular case of
Bessel processes of dimension δ > 2. (from now on δ will denote a real number that
is strictly greater than 2). It is known that if X is a Bessel process of dimension δ,
starting at X0 = 1, then L = X2−δ is a strictly positive strict local martingale (see
Revuz-Yor [RY] p.418 ex 1.16). It is easy to see that the local martingale L has the
predictable representation property with respect to the natural filtration generated
by X. Also the method of Delbaen-Schachermayer [DS1] for the case δ = 3 can
be adapted and this yields that L satisfies the no-arbitrage property with respect
to simple integrands. The results of the preceding section therefore immediately
yields the following:

Theorem 6. If δ > 2 and X is a Bessel process of dimension δ, then L = X2−δ

is a local martingale such that 1
L allows arbitrage with respect to general admissible
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integrands. The processes L and 1
L do not allow arbitrage with respect to simple

predictable integrands.

Although the preceding result is satisfactory for applications in finance, it would
be nice if we could give an interpretation of the martingale M needed to construct
L. More precisely we want to make the construction of the preceding section more
transparent. The main ingredient for this is the Girsanov transformation for Bessel
processes. The theory is developed by Yor [Y] and in particular the formula (2.c)
there, relates Bessel processes from dimension δ > 2 with Bessel processes of (pos-
sibly negative) dimension 4− δ. An application of these results immediately gives:

Theorem 7. If η < 2 and under the measure P , X is a Besη process starting at 1
and stopped at the first time T when X hits zero, then under the measure R defined
as dR = X2−η

T dP , X is a Bes4−η process.

For δ = 3 we find the following situation. Let M be a Brownian Motion started
at M0 = 1 and stopped at zero (i.e. a Bes1 stopped at zero). The process M under
the measure dR = M1 dP is a Bes3 process. Theorem 5 now shows that M allows
arbitrage for general admissible integrands. This result was the main reason for
developing the theory of sections 1 and 2. Again the construction is an example of
an h-process.

4. Additional Comments.

We gave one way to construct strictly positive strict local martingales X such
that 1

X allows arbitrage opportunities. Financially this means that betting on the
exchange rate ECU/$ does not yield arbitrage opportunities for a European citizen,
but for an American citizen, there are such possibilities. This is counter-intuitive
but there is an explanation. For simple predictable strategies there are no arbitrage
profits for both agents. When general admissible integrands are allowed then one
of the agents can make profits. The reason can be found in the restriction that the
strategy has to be admissible. This restriction is not independent of the change of
currency. So one agent can use admissible strategies (buying and selling) that have
no equivalent admissible translation (selling and buying) for the other agent.

In Delbaen-Schachermayer [DS3] we discuss the arbitrage property when the
numéraire is changed. The results given there extend the previous results. The
method however is related to our paper [DS2] and is more involved than the con-
struction of strict local martingales given here.

We finally remark that Theorem 5 can be proved directly, i.e. without using
the projective limit construction. Of course proceeding that way does not indicate
how strict local martingales arise in a natural way. We also remark that the coun-
terexample constructed in [S] or [DS4] yields a continuous local martingale L and
a uniformly integrable strictly positive martingale Z such that LZ is a uniformly
integrable martingale. Since Z = (1/L) (LZ) is a martingale, we find that 1/L
has an equivalent martingale measure. This example shows that in theorem 5, the
hypothesis that L has the predictable representation property cannot be dropped.
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méraire, to be published in Stochastics and Stochastic Reports.

[DS4] F. Delbaen and W. Schachermayer, A simple counter-example to several problems in the

theory of asset pricing, which arises generically in incomplete markets., forthcoming.

[ELY] D. Elworthy, X.-M. Li and M. Yor, The Importance of Strict Local Martingales, forthcom-

ing.
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[M] P. A. Meyer, La mesure de Föllmer en théorie de surmartingales, Sém. de Probabilités

VI, Lecture Notes in Mathematics 258, Springer, Heidelberg, Berlin, New-York, 1972.
[R] S. Ross, Topics in Finance, Talk held during the ”6.Tagung Geld, Finanzwirtschaft,

Banken und Versicherungen”, Karlsruhe, 1993.
[RY] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Verlag,

Berlin Heidelberg New York., 1991.
[S] W. Schachermayer, A Counterexample to Several Problems in Mathematical Finance,

Mathematical Finance.
[Y] M. Yor, On some Exponential Functionals of Brownian Motion, Advances in Applied

Probability 24 (1993), 509–531.

Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels Belgium
E-mail address: fdelbaen@tena2.vub.ac.be

Universität Wien, Brünnerstrasse 72, A-1210 Wien Austria
E-mail address: wschach@ stat1.bwl.univie.ac.at

9


