
Tracing Compilation by Abstract Interpretation

Stefano Dissegna
Dipartimento di Matematica
University of Padova, Italy

Francesco Logozzo
Microsoft Research

Redmond, WA, USA

Francesco Ranzato
Dipartimento di Matematica
University of Padova, Italy

Abstract
Tracing just-in-time compilation is a popular compilation schema
for the efficient implementation of dynamic languages, which is
commonly used for JavaScript, Python, and PHP. It relies on two
key ideas. First, it monitors the execution of the program to detect
so-called hot paths, i.e., the most frequently executed paths. Then,
it uses some store information available at runtime to optimize hot
paths. The result is a residual program where the optimized hot
paths are guarded by sufficient conditions ensuring the equivalence
of the optimized path and the original program. The residual pro-
gram is persistently mutated during its execution, e.g., to add new
optimized paths or to merge existing paths. Tracing compilation
is thus fundamentally different than traditional static compilation.
Nevertheless, despite the remarkable practical success of tracing
compilation, very little is known about its theoretical foundations.

We formalize tracing compilation of programs using abstract
interpretation. The monitoring (viz., hot path detection) phase cor-
responds to an abstraction of the trace semantics that captures the
most frequent occurrences of sequences of program points together
with an abstraction of their corresponding stores, e.g., a type en-
vironment. The optimization (viz., residual program generation)
phase corresponds to a transform of the original program that pre-
serves its trace semantics up to a given observation as modeled by
some abstraction. We provide a generic framework to express dy-
namic optimizations and to prove them correct. We instantiate it
to prove the correctness of dynamic type specialization. We show
that our framework is more general than a recent model of trac-
ing compilation introduced in POPL 2011 by Guo and Palsberg
(based on operational bisimulations). In our model we can naturally
express hot path reentrance and common optimizations like dead-
store elimination, which are either excluded or unsound in Guo and
Palsberg’s framework.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – correctness proofs, formal
methods; D.3.4 [Programming Languages]: Processors – compil-
ers, optimization; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages – program analysis

Keywords tracing compilation; abstract interpretation; trace se-
mantics

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535866

1. Introduction
Efficient traditional static compilation of popular dynamic lan-
guages like JavaScript, Python and PHP is very hard if not impos-
sible. In fact those languages present so many dynamic features
which make all traditional static analyses used for program opti-
mization very imprecise. Therefore, practical implementations of
dynamic languages should rely on dynamic information in order to
produce an optimized version of the program. In particular, tracing
just-in-time compilation (TJITC) [1, 3–6, 15, 16, 24] has emerged
as a valuable implementation and optimization technique for dy-
namic languages. For instance, the Facebook HipHop virtual ma-
chine for PHP and the V8 JavaScript engine of Google Chrome
use some form of tracing compilation [19, 20]. The Mozilla Fire-
fox JavaScript engine used to have a tracing engine, TraceMon-
key, which has been later substituted by whole-method just-in-time
compilation engines (initially JägerMonkey and then IonMonkey)
[13, 14].

1.1 The Problem
Tracing JIT compilers leverage runtime profiling of programs to
detect and record often executed paths, called hot paths, and then
they optimize and compile only these paths at runtime. A path is a
linear sequence of instructions through the program. Profiling may
also collect information about the values that the program variables
may assume during the execution of that path, which is then used
to specialize/optimize the code. Of course, this information is not
guaranteed to hold for all the subsequent executions of the hot
path. Since optimizations rely on that information, the hot path
is augmented with guards that check the profiled conditions, such
as, for example, variable types. When a guard fails, execution
jumps back to the old, non-optimized code. The main hypotheses of
tracing compilers, confirmed by the practice, are: (i) loop bodies are
the only interesting code to optimize, so they only consider paths
inside program loops; and (ii) optimizing straight-line code is easier
than a whole-method analysis (involving loops, goto, etc.).

Hence, tracing compilers look quite different than traditional
compilers. These differences raise some natural questions on trace
compilation: (i) what is a viable formal model, which is generic
yet realistic enough to capture the behavior of real optimizers?
(ii) which optimizations are sound? (iii) how can one prove their
soundness? In this paper we answer the above questions.

Our formal model is based on program trace semantics [9] and
abstract interpretation [10, 12]. Hot path detection is modeled just
as an abstraction of the trace semantics of the program, which only
retains: (i) the sequences of program points which are repeated
more than some threshold; (ii) an abstraction of the possible pro-
gram stores, e.g., the type of the variables instead of their concrete
values. As a consequence, a hot path does not contain loops nor join
points. Furthermore, in the hot path, all the correctness conditions
(i.e., guards) are explicit, for instance before performing integer ad-
dition, we should check that the operands are integers. If the guard

condition is not satisfied then the execution leaves the hot path, re-
verting to the non-optimized code. Guards are essentially elements
of some abstract domain, which is then left as a parameter in our
framework. The hot path is then optimized using standard compi-
lation techniques — we only require the optimization to be sound.

We define the correctness of the residual (or extracted) program
in terms of abstraction of the trace semantics: the residual program
is correct if it is indistinguishable, up to some abstraction of the
trace semantics, from the original program. Examples of abstrac-
tions are the program store at the exit of a method, or the stores at
loop entry and loop exit points.

1.2 Main Contributions
This paper puts forward a formal model of TJITC whose key
features are as follows:

– We provide the first model of tracing compilation based on
abstract interpretation of trace semantics of programs.

– We provide a more general and realistic framework than a re-
cent model of TJITC by Guo and Palsberg [17] based on pro-
gram bisimulations: we employ a less restrictive correctness
criterion that enables the correctness proof of actually imple-
mented optimizations; hot paths can be annotated with runtime
information on the stores, notably type information; optimized
hot loops can be re-entered.

– We formalize and prove the correctness of type specialization
of hot paths.

Our model focusses on source-to-source program transforma-
tions and optimizations of a low level imperative language with
untyped global variables, which may play the role of intermediate
language of some virtual machine. Our starting point is that pro-
gram optimizations can be seen as transformations that lose some
information on the original program, so that optimizations can be
viewed as approximations and in turn can be formalized by abstract
interpretation. More precisely, we rely on the insight by Cousot and
Cousot [12] that a program source can be seen as an abstraction of
its trace semantics, i.e. the set of all possible execution sequences,
so that a source-to-source optimization can be viewed as an abstrac-
tion of a transform of the program trace semantics. In our model,
soundness of program optimizations is defined as program equiva-
lence w.r.t. an observational abstract interpretation of the program
trace semantics. Here, an observational abstraction induces a cor-
rectness criterion by describing what is observable about program
executions, so that program equivalence means that two programs
are indistinguishable by looking only at their observable behaviors.

A crucial part of tracing compilation is the selection of the
hot path(s) to optimize. Of course, this choice is made at run-
time based on program executions, so it can be seen once again as
an abstraction of trace semantics. Here, a simple trace abstraction
selects cyclic instruction sequences, i.e. loop paths, that appear at
least N times within a single execution trace. These instruction
sequences are recorded together with some property of the values
assumed by program variables at that point, which is represented as
a value of a suitable store abstraction, which in general depends on
the successive optimization.

A program optimization can be seen as an abstraction of a
semantic transformation of program execution traces, as described
by the Cousots in [12]. The advantage of this approach is that
optimization properties, such as their soundness, are easier to prove
at a semantic level. The optimization itself can be defined on the
whole program or, as in the case of real tracing JIT compilers, can
be restricted to the hot path. This latter restriction is achieved by
transforming the original program so that the hot path is extracted,
i.e. made explicit: the hot path is added to the program as a path

with no join points that jumps back to the original code when
execution leaves it. A guard is placed before each command in this
hot path that checks if the necessary conditions, as selected by the
store abstraction, are satisfied. A program optimization can be then
confined to the hot path only, making it linear, by ignoring the parts
of the program outside it. The guards added to the hot path allows
us to retain precision.

We apply our TJITC model to type specialization. Type special-
ization is definitely the key optimization for dynamic languages
such as Javascript [15], as they provide generic operations whose
execution depends on the type of run-time values of their operands.

1.3 Related Work
A formal model for tracing JIT compilation has been put forward
in POPL 2011 by Guo and Palsberg [17]. It is based on operational
bisimulation [23] to describe equivalence between source and op-
timized programs. In Section 11 we show how this model can be
expressed within our framework through the following steps: Guo
and Palsberg’s language is compiled into ours; we then exhibit an
observational abstraction which is equivalent to Guo and Palsberg’s
correctness criterion; finally, after some minor changes that address
a few differences in path selection, the transformations performed
on the source program turn out to be the same. Our framework over-
comes some significant limitations in Guo and Palsberg’s model.
The bisimulation equivalence model used in [17] implies that the
optimized program has to match every change to the store made by
the original program, whereas in practice we only need this match
to hold in certain program points and for some variables, such as in
output instructions. This limits the number of real optimizations
that can be modeled in the theoretical framework. For instance,
dead store elimination is proven unsound in [17], while it is imple-
mented in actual tracing compilers [15, Section 5.1]. Furthermore,
their formalization fails to model some important features of actual
TJITC implementation: (i) traces are simple linear paths of instruc-
tions, i.e., they cannot be annotated with store properties; (ii) hot
path selection is completely non-deterministic, they do not model
a selection criterion; and, (iii) once execution leaves an optimized
hot path the program will not be able to re-enter it.

It is also worth citing that abstract interpretation of program
trace semantics roots at the foundational work by Cousot [8, 9]
and has been widely used as a successful technique for defining
a range of static program analyses [2, 7, 18, 22, 26–28]. Abstract
interpretation has been used to describe static compilation and opti-
mizations. In particular, Rival [25] describes various optimizations
as trace abstractions they preserve. In the Cousot and Cousot termi-
nology [12], Rival approach corresponds to offline transformations
whereas tracing compilation is an online transformation.

2. Language and Concrete Semantics
2.1 Syntax
Following [12], we consider a basic low level language with un-
typed global variables, a kind of elementary dynamic language.
Program commands range in C and consist of a labeled action
which specifies a next label (Ł is the undefined label, where the
execution becomes stuck).

Labels: L ∈ L Ł 6∈ L
Values: v ∈ Value

Variables: x ∈ Var
Expressions: Exp 3 E ::= v | x | E1 + E2

Boolean Expressions: BExp 3 B ::= tt | ff | E1 ≤ E2 |
¬B | B1 ∧B2

Actions: A 3 A ::= x := E | B | skip
Commands: C 3 C ::= L : A→ L′ (L′ ∈ L ∪{Ł})

For any command C ≡ L : A → L′, we use the following
notation: lbl(C) , L, act(C) , A and suc(C) , L′. Commands
L : B → L′ whose action is a Boolean expression are called
conditionals. A program P ∈ ℘(C) is a (possibly infinite, at least
in theory) set of commands, with a distinct initial label Lin from
which execution starts, so that Pin denotes the commands in P
labeled by Lin (Pin consists of two commands when the initial
command is a conditional). If a program P includes a conditional
C ≡ L : B → L′ then P must also include a unique complement
conditional L : ¬B → L′′, which is denoted by cmpl(C) or Cc,
where ¬¬B is taken to be equal to B, so that cmpl(cmpl(C)) =
C. For simplicity, we consider deterministic programs, i.e., we
require that for any C1, C2 ∈ P such that lbl(C1) = lbl(C2):
(1) if act(C1) 6= act(C2) then C1 = cmpl(C2); (2) if act(C1) =
act(C2) then C1 = C2. The set of well-formed programs is
denoted by Program.

2.2 Transition Semantics
The language semantics relies on the following type values, where
Char is a nonempty set of characters and undef represents a
generic error.

Int , Z Bool , {true, false}
String , Char∗ Undef , {undef }

In turn, Value and type names in Types are defined as follows:

Value , Int∪String∪Undef

Types , {Int, String,Undef,Any,∅}

while type : Value→ Types provides the type of any value. Here,
the type name Any plays the role of top type, which is the supertype
(i.e., contains) all types, while ∅ is the bottom type, which is a
subtype for all types.

Let ρ ∈ Store , Var → Value denote the set of possible
program stores. The semantics of expressions and program actions
is standard and goes as defined in Fig. 1. Let us remark that: the
binary function +Int denotes integer addition; · is string concate-
nation; logical negation and conjunction are extended in order to
handle undef values, i.e., ¬undef = undef and undef ∧ b =
undef = b ∧ undef . With a slight abuse of notation we also con-
sider the so-called collecting versions of the semantic functions in
Fig. 1:

E : Exp→ ℘(Store)→ ℘(Value)

EJEKS , {EJEKρ | ρ ∈ S}

B : BExp→ ℘(Store)→ ℘(Store)

BJBKS , {ρ ∈ S |BJBKρ = true}

A : A→ ℘(Store)→ ℘(Store)

AJAKS , {AJAKρ | ρ ∈ S,AJAKρ 6∈ {⊥, undef }}

Program states are pairs of stores and commands: State ,
Store×C. If P is a program then StateP , Store×P . We extend
lbl, act and suc to be defined on states, meaning that they are
defined on the command component of a state. Also, store(s)
returns the store of a state s. Given P ∈ Program, the program
transition relation SJP K : StateP → ℘(StateP) between states is
defined as follows:

SJP K〈ρ,C〉 , {〈ρ′, C′〉 ∈ StateP | ρ′ ∈ AJact(C)K{ρ},
C′ ∈ P, suc(C) = lbl(C′)}.

It is worth remarking that, according to the above definition, if
C ≡ L : A→ L′, C1 ≡ L′ : B → L′′ and Cc1 ≡ L′ : ¬B → L′′′

are all commands that belong to P and ρ′ ∈ AJAKρ then we have
that SJP K〈ρ,C〉 = {〈ρ′, C1〉, 〈ρ′, Cc1〉}.

2.2.1 Trace Semantics
A partial (forward) trace is a finite sequence of program states
which are related by the transition relation S. If P is a program
then we define

TraceP , {σ ∈ (StateP)∗ | ∀i ∈ [1, |σ|). σi ∈ SJP Kσi−1}

A trace σ ∈ TraceP is maximal if for any state s ∈ StateP ,
σs 6∈ TraceP . Let us note that according to the above definitions,
if a trace σ ∈ TraceP has a last state σ|σ|−1 = 〈ρ, L : B → L′〉
with a conditional command such that BJBKρ = false then σ is
maximal. Also, if a trace σ ∈ TraceP has a last state σ|σ|−1 =
〈ρ, L : A → Ł〉 whose next label is the undefined label then σ is
maximal as well.

The trace semantics TJP K is the set of all the partial (includ-
ing maximal) traces of the program P . This set is defined as the
least fixed point of a monotonic operator F [P] : ℘(TraceP) →
℘(TraceP), called trace transition operator, defined as follows:

F [P]X , {〈ρ,Cin〉 | ρ ∈ Store, Cin ∈ Pin}∪
{σss′ ∈ TraceP | σs ∈ X, s′ ∈ SJP Ks}

TJP K , lfp(F [P]) ∈ ℘(TraceP)

The function F [P] is trivially monotone on the complete lattice
〈℘(TraceP),⊆〉, so that its least fixpoint TJP K is well defined.

Example 2.1. Let us consider the program below written in some
while-language:

x := 0;
while (x ≤ 20) do
x := x+ 1;
if (x%3 = 0) then x := x+ 3;

Its translation in our language is given below, where, with a little
abuse, we assume that the syntax of arithmetic and Boolean expres-
sion is extended to allow expressions like x%3 = 0.

P =
˘
C0 ≡ L0 : x := 0→ L1,

C1 ≡ L1 : x ≤ 20→ L2, C
c
1 ≡ L1 : ¬(x ≤ 20)→ L5,

C2 ≡ L2 : x := x+ 1→ L3,

C3 ≡ L3 : (x%3 = 0)→ L4, C
c
3 ≡ L3 : ¬(x%3 = 0)→ L1

C4 ≡ L4 : x := x+ 3→ L1,

C5 ≡ L5 : skip → Ł
¯

The trace semantics TJP K includes the following partial traces,
where ? stands for any integer value and stores are denoted within
square brackets.

〈[x/?], C0〉 ∈ F [P]∅
〈[x/?], C0〉〈[x/0], C1〉
〈[x/?], C0〉〈[x/0], Cc1〉 (maximal)
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], C3〉 (maximal)
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], C1〉
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], Cc1〉 (maximal)
〈[x/?], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], C1〉〈[x/2], C2〉
· · ·
· · ·
〈[x/?], C0〉 · · · 〈[x/21], C4〉〈[x/24], C1〉 (maximal)
〈[x/?], C0〉 · · · 〈[x/21], C4〉〈[x/24], Cc1〉〈[x/24], C5〉 (maximal)

E : Exp→ Store→ Value

EJvKρ , v EJxKρ , ρ(x) EJE1 + E2Kρ ,

8><>:
EJE1Kρ+Int EJE2Kρ if type(EJEiKρ) = Int

EJE1Kρ ·EJE2Kρ if type(EJEiKρ) = String

undef otherwise

B : BExp→ Store→ {true, false, undef }

BJ tt Kρ , true BJ ff Kρ , false BJE1 ≤ E2Kρ ,

(
EJE1Kρ ≤ EJE2Kρ if type(EJEiKρ) = Int

undef otherwise

BJ¬BKρ , ¬BJBKρ BJB1 ∧B2Kρ , BJB1Kρ ∧BJB2Kρ

A : A→ Store→ Store∪{⊥, undef }

AJx := EKρ , ρ[x := EJEKρ] AJskipKρ , ρ AJBKρ ,

8><>:
ρ if BJBKρ = true
⊥ if BJBKρ = false
undef if BJBKρ = undef

Figure 1. Semantics of program expressions and actions.

3. Abstract Interpretation Background
In standard abstract interpretation [10, 11], abstract domains (or ab-
stractions) are specified by Galois connections/insertions (GCs/GIs
for short) or, equivalently, adjunctions. Concrete and abstract do-
mains, 〈C,≤C〉 and 〈A,≤A〉, are assumed to be complete lattices
which are related by abstraction and concretization maps α : C →
A and γ : A → C that give rise to an adjunction (α,C,A, γ),
that is, for all a and c, α(c) ≤A a ⇔ c ≤C γ(a). A GC is a
GI when α ◦ γ = λx.x. It is well known that a join-preserving α
uniquely determines γ as follows: γ(a) = ∨{c ∈ C | α(c) ≤A a};
conversely, a meet-preserving γ uniquely determines α as follows:
α(c) = ∧{a ∈ A | c ≤C γ(a)}.

Let f : C → C be some concrete monotone function —
for simplicity, we consider 1-ary functions — and let f] : A→ A
be a corresponding monotone abstract function defined on some
abstraction A related to C by a GC. Then, f] is a correct abstract
interpretation of f on A when α ◦ f v f] ◦ α holds, where v
denotes the pointwise ordering. Moreover, the abstract function
fA , α ◦ f ◦ γ : A→ A is called the best correct approximation
of f on A because any abstract function f] is correct iff fA v f].
Hence, for any abstractionA, fA plays the role of the best possible
approximation of f on the abstract domain A.

4. Store Abstractions
As usual in abstract interpretation, a store property is modeled by
some abstraction Store] that we assume to be encoded through a
Galois connection

(αstore , 〈℘(Store),⊆〉, 〈Store],≤〉, γstore).

For instance, as we will see later, the static types of program
variables give rise to a simple store abstraction.

Given a program P , a store abstraction Store] also induces a
corresponding state abstraction State]P , Store]×P and, in turn,
a trace abstraction Trace]P , (State]P)∗.

4.1 Nonrelational Abstractions
Nonrelational store abstractions can be easily designed by a stan-
dard pointwise lifting of some value abstraction. Let Value] be a
value abstraction as formalized by a Galois connection

(αvalue , 〈℘(Value),⊆〉, 〈Value],≤Value]〉, γvalue).

The abstract domain Value] induces a nonrelational store abstrac-
tion

Store]value , 〈Var→ Value],v〉

wherev is the pointwise ordering induced by≤Value] : ρ]1 v ρ
]
2 iff

for all x ∈ Var, ρ]1(x) ≤Value] ρ
]
2(x). Here, the bottom and top

abstract stores are, respectively, λx.⊥Value] and λx.>Value] . The
abstraction map αvvalue : ℘(Store)→ Store]value is thus defined as
follows:

αvvalue(S) , λx.αvalue({ρ(x) ∈ Value | ρ ∈ S})

while the corresponding concretization map γvvalue : Store]value →
℘(Store) is defined by adjunction from αvvalue as recalled in Sec-
tion 3 and it is easy to check that it turns out to be defined as fol-
lows:

γvvalue(ρ
]) = {ρ ∈ Store | ∀x ∈ Var . ρ(x) ∈ γvalue(ρ

](x))}.

5. Hot Path Selection
A loop path is a sequence of program commands which is repeated
in some execution of a program loop, together with a store prop-
erty which is valid at the entry of each command in the path. A
loop path becomes hot when, during the execution, it is repeated
at least a fixed number N of times. In a TJITC, hot path selection
is performed by a loop path monitor that also records store prop-
erties (see, e.g., [15]). Here, hot path selection is not operationally
defined, it is instead modeled as an abstraction map over program
traces, i.e., program executions.

We first define a mapping loop : TraceP → ℘(TraceP) that
returns all the loop paths in some execution trace of a program P .
Formally, a loop path is a substring (i.e., a segment) τ of a trace
σ such that: (1) the successor command in σ of the last state in τ
exists and coincides with the command – or its complement, when
this is the last loop iteration – of the first state in τ ; (2) there is
no other such command within τ (otherwise the sequence τ would
contain multiple iterations); (3) the last state of τ performs a back-
ward jump in the program P . To recognize backward jumps, we
consider a topological order on the control flow graph of commands

in P , here denoted by l:

loop(〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,˘
〈ρi, Ci〉〈ρi+1, Ci+1〉 · · · 〈ρj , Cj〉 | 0 ≤ i ≤ j < n, Ci l Cj ,

lbl(Cj+1) = lbl(Ci), ∀k ∈ (i, j]. Ck 6∈ {Ci, cmpl(Ci)}
¯
.

Let us remark that a loop path

〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(〈ρ0, C0〉 · · · 〈ρn, Cn〉)

may contain some sub-loop path, namely it may happen that
loop(〈ρi, Ci〉 · · · 〈ρj , Cj〉) 6= ∅ so that some commands Ck, with
k ∈ [i, j], occur more than once in 〈ρi, Ci〉 · · · 〈ρj , Cj〉. We abuse
notation by using αstore to denote a map αstore : TraceP →
Trace]P which “abstracts” program traces in Trace]P :

αstore(〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,

〈αstore({ρ0}), C0〉 · · · 〈αstore({ρn}), Cn〉.

Given a static parameter N > 0, we define a function

hotN : TraceP → ℘(Trace]P)

which returns the set of Store]-abstracted loop paths appearing at
leastN times in some program trace. To count the number of times
a loop path appears within a trace we use an auxiliary function
count : Trace]P ×Trace]P → N such that count(σ, τ) yields the
number of times an abstract path τ occurs in a abstract trace σ:

count(〈a0, C0〉 · · · 〈an, Cn〉, 〈b0, C′0〉 · · · 〈bm, C′m〉) ,
n−mX
i=0

(
1 if 〈ai, Ci〉 · · · 〈ai+m, Ci+m〉 = 〈b0, C′0〉 · · · 〈bm, C′m〉
0 otherwise

Hence, hotN can be defined as follows:

hotN (σ ≡ 〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,˘
〈ai, Ci〉 · · · 〈aj , Cj〉 | ∃〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(σ) s.t.

i ≤ j, αstore(〈ρi, Ci〉 · · · 〈ρj , Cj〉) = 〈ai, Ci〉 · · · 〈aj , Cj〉,
count(αstore(σ), 〈ai, Ci〉 · · · 〈aj , Cj〉) ≥ N

¯
.

Finally, an abstraction map αNhot : ℘(TraceP) → ℘(Trace]P)
collects the results of applying hotN to a set of traces:

αNhot(T) , ∪σ∈T hotN (σ).

A hot path hp ∈ αNhot(TJP K) is also called a N -hot path and
is compactly denoted as hp = 〈a0, C0, ..., an, Cn〉. Let us observe
that if the hot path is the body of some while loop then its first
command C0 is a conditional, namely C0 is the Boolean guard
of the while loop. We define the following successor function for
indices in hot paths: next , λi. i = n ? 0 : i + 1. For a N -hot
path 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TJP K), for any i ∈ [0, n], if Ci
is a conditional command Li : Bi → Lnext(i) then throughout the
paper its complement Cci = cmpl(Ci) will be also denoted by
Li : ¬Bi → Lcnext(i).

Example 5.1. Let us consider the program P in Example 2.1.
We consider a trivial one-point store abstraction Store] = {>},
where all the stores are abstracted to the same abstract store>, i.e.,
αstore = λS.>. Here, we have two 2-hot paths in P , that is, it turns

out that α2
hot(TJP K) = {hp1, hp2} where:

hp1 = 〈>, C1 ≡ L1 : x ≤ 20→ L2,

>, C2 ≡ L2 : x := x+ 1→ L3,

>, Cc3 ≡ L3 : ¬(x%3 = 0)→ L1〉;

hp2 = 〈>, C1 ≡ L1 : x ≤ 20→ L2,

>, C2 ≡ L2 : x := x+ 1→ L3,

>, C3 ≡ L3 : (x%3 = 0)→ L4,

>, C4 ≡ x := x+ 3→ L1〉.

6. Trace Extraction
For any abstract store a ∈ Store], a corresponding Boolean ex-
pression “guard Ea” ∈ BExp is defined (where the notation Ea
should hint at an expression which is induced by the abstract store
a) , whose semantics is as follows: for any ρ ∈ Store,

BJguard EaKρ , ρ ∈ γstore(a).

Thus, in turn, we also have program actions guard Ea such that:

AJguard EaKρ ,

(
ρ if ρ ∈ γstore(a)

⊥ if ρ 6∈ γstore(a)

Let P be a program and hp = 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TJP K)
be a hot path on some store abstraction Store]. We define a
synctatic transform of P where the hot path hp is explicitly ex-
tracted from P . This is implemented by a suitable relabeling of
each command Ci in hp which is in turn preceded by the condi-
tional guard Eai induced by the store property ai. To this aim, we
consider three injective relabeling functions

` : [0, n]→ L1

l : [1, n]→ L2

(·) : L→ L

where L1, L2 and L are pairwise disjoint sets of fresh labels, so
that labels(P) ∩ (L1 ∪ L2 ∪ L) = ∅. The transformed program
extrhp(P) for the hot path hp is defined as follows and a graphical
example of this transform is depicted in Fig. 2.

Definition 6.1 (Trace extraction transform). The trace extraction
transform of P for the hot path hp is:

extrhp(P) , P r
`
{C0} ∪ {cmpl(C0) | cmpl(C0) ∈ P}

´
∪ {L0 : act(C0)→ L1}
∪ {L0 : ¬act(C0)→ Lc1 | cmpl(C0) ∈ P}
∪ stitchP (hp)

where the stitch of hp into P is defined as follows:

stitchP (hp) ,

∪ {L0 : guard Ea0 → `0, L0 : ¬guard Ea0 → L0}
∪ {`i : act(Ci)→ li+1 | i ∈ [0, n− 1]}∪{`n : act(Cn)→ L0}
∪ {`i : ¬act(Ci)→ Lcnext(i) | i ∈ [0, n], cmpl(Ci) ∈ P}
∪ {li : guard Eai → `i, li : ¬guard Eai → Li | i ∈ [1, n]}.

The new command L0 : guard Ea0 → `0 is therefore the
entry conditional of the stitched hot path stitchP (hp), while any
command C ∈ stitchP (hp) such that suc(C) ∈ labels(P) ∪ L is
a potential exit (or bail out) command of stitchP (hp).

...

L0

B0
Lc

1

L1

A1

L2

...

...

...

Ln

An

...

...

...

L0

guard Ea0
L0

B0
Lc

1

`0

B0
Lc

1

l1

guard Ea1
L1

A1

L2

...

...

...

`1

A1

l2

...

...

...

ln

guard Ean
Ln

An
`n

An

Figure 2. An example of trace extraction transform: on the left, a hot path hpwith commands in pink (in black/white: loosely dotted) shapes;
on the right, the corresponding trace transform extrhp(P) with new commands in blue (in black/white: densely dotted) shapes.

Lemma 6.2. If P is well-formed then, for any hot path hp,
extrhp(P) is well-formed.

Let us remark that the stitch of the hot path hp into P is always a
linear sequence of different commands, namely, stitchP (hp) does
not contain loops nor join points. Furthermore, this happens even if
the hot path hp does contain some inner sub-loop. Technically, this
comes as a consequence of the fact that the above relabeling func-
tions are required to be injective. Hence, even if some command C
occurs more than once inside hp then these multiple occurrences
of C in hp are transformed into differently labeled commands in
stitchP (hp).

Example 6.3. Let us consider the program P in Example 2.1
and the hot path hp1 = 〈>, C1,>, C2,>, Cc3〉 in Example 5.1,
where stores are abstracted to the trivial one-point abstraction
Store] = {>}. Here, we have that for any store ρ ∈ Store,
BJguard E>Kρ = true . The trace extraction transform of P w.r.t.
hp is therefore as follows:

extrhp(P) = P r {C1, C
c
1}

∪ {L1 : x ≤ 20→ L2, L1 : ¬(x ≤ 20)→ L5}
∪ stitchP (hp)

where stitchP (hp) =

{H0 ≡ L1 : guard E> → `0, H
c
0 ≡ L1 : ¬guard E> → L1}

∪ {H1 ≡ `0 : x ≤ 20→ l1, H
c
1 ≡ `0 : ¬(x ≤ 20)→ L5}

∪ {H2 ≡ l1 : guard E> → `1, H
c
2 ≡ l1 : ¬guard E> → L2}

∪ {H3 ≡ `1 : x := x+ 1→ l2}
∪ {H4 ≡ l2 : guard E> → `2, H

c
4 ≡ l2 : ¬guard E> → L3}

∪ {H5 ≡ `2 : ¬(x%3 = 0)→L1, H
c
5 ≡ `2 : (x%3 = 0)→L4}.

Hence, extrhp(P) can be rewritten at a high-level representation
using while loops and gotos as follows:

x := 0;
L1 : while guard E> do

if ¬(x ≤ 20) then goto L5;
if ¬guard E> then goto L2;
x := x+ 1;
if ¬guard E> then goto L3;
if (x%3 = 0) then goto L4;

if ¬(x ≤ 20) then goto L5;
L2 : x := x+ 1;
L3 : if ¬(x%3 = 0) then goto L1;
L4 : x := x+ 3;
goto L1;
L5 : skip;

7. Correctness
As advocated by Cousot and Cousot [12, par. 3.8], correctness
of dynamic program transformations and optimizations should be
defined with respect to some observational abstraction of program
trace semantics: a program transform is correct when, at some
level of abstraction, the observation of the execution of the subject
program is equivalent to the observation of the execution of the
transformed program. The approach by Guo and Palsberg [17]
basically relies on a notion of correctness that requires the same
store changes in both the transformed/optimized program and the
original program. This can be easily encoded by an observational
abstraction αsc : ℘(TraceP)→ ℘(Store∗) of trace semantics that
observes store changes in execution traces of a program P :

sc : TraceP → Store∗

sc(σ) ,

8>>><>>>:
ε if σ = ε

ρ if σ = 〈ρ,C〉
sc(〈ρ,C1〉σ′) if σ = 〈ρ,C0〉〈ρ,C1〉σ′

ρ0 sc(〈ρ1, C1〉σ′) if σ =〈ρ0, C0〉〈ρ1, C1〉σ′, ρ0 6= ρ1

αsc(T) , {sc(σ) | σ ∈ T}

Since αsc obviously preserves arbitrary set unions, it admits a right
adjoint γsc : ℘(Store∗) → ℘(TraceP) defined as γsc(S) ,
∪{T ∈ ℘(TraceP) | αsc(T) ⊆ S}, that gives rise to a GC
(αsc , 〈℘(TraceP),⊆〉, 〈℘(Store∗),⊆〉, γsc).

However, the store changes abstraction αsc may be too strong
in practice. This condition can be thus relaxed and generalized
to an observational abstraction that demands to have the same
stores (possibly just for some subset of variables) only at some
specific program points. For example, these program points may
depend on the language. In a language without output primitives
and functions, as that considered in [17], we could be interested
just in the final store of the program (when it terminates), or in the
entry and exit stores of any loop containing an extracted hot path. If
a more general language includes a sort of primitive “put X ” that
“outputs” the value of program variables ranging in some set X
then we may want to have stores with the same values for variables
in X at each output point. Moreover, the same sequence of outputs
should be preserved, i.e. optimizations must not modify the order
of output instructions.

We therefore consider an additional sort of actions: put X ∈ A,
where X ⊆ Var is a set of program variables. The seman-
tics of put X obviously does not affect program stores, i.e.,
AJput X Kρ , ρ. Correspondingly, an observational abstraction
αo : ℘(TraceP) → ℘(Store∗) of trace semantics observes pro-
gram stores at output program points only (we use ρ|X to denote
store restriction to variables in X):

out : TraceP → Store∗

out(σ) ,

8><>:
ε if σ = ε

out(σ′) if σ = sσ′ ∧ act(s) 6= put X
ρ|X out(σ′) if σ = 〈ρ, L : put X → L′〉σ′

αo(T) , {out(σ) | σ ∈ T}

Similarly to αsc , here again we have a GC (αo, 〈℘(TraceP),⊆〉,
〈℘(Store∗),⊆〉, γo). This approach is clearly more general be-
cause the above store changes abstraction αsc is more precise than
αo, i.e., for any set of traces T , γsc(αsc(T)) ⊆ γo(αo(T)), or,
equivalently, αsc(T1) = αsc(T2)⇒ αo(T1) = αo(T2).

Example 7.1 (Dead store elimination). The above approach
based on a generic observational abstraction allows us to prove
the correctness of program optimizations that are unsound in Guo

and Palsberg [17]’s framework, such as dead store elimination. For
example, in a program fragment such as

while (x ≤ 0) do
z := 0;
x := x+ 1;
z := 1;

one can extract the hot path

hp = 〈x ≤ 0, z := 0, x := x+ 1, z := 1〉
and perform dead store elimination by optimizing hp to hp′ =
〈x ≤ 0, x := x+1, z := 1〉. As observed by Guo and Palsberg [17,
Section 4.3], this is clearly unsound in bisimulation-based correct-
ness because this hot path optimization does not output bisimilar
code. By contrast, this optimization can be made sound in our
framework by choosing an observational abstraction that records
store changes at the beginning and at the exit of loops containing
extracted hot paths.

7.1 Correctness Proof
It turns out that observational correctness of the hot path extrac-
tion transform can be proved w.r.t. the more precise observational
abstraction αsc .

Theorem 7.2 (Correctness of trace extraction). For any P ∈
Program, hp ∈ αNhot(TJP K), we have thatαsc(TJextrhp(P)K) =
αsc(TJP K).

In the rest of this section we outline a proof sketch of this result.
Let us fix a hot path hp = 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TJP K) and
let Php , extrhp(P). The proof relies on a mapping of traces of
the program P into corresponding traces of Php that unfolds the
hot path hp (or any its initial fragment) according to the hot path
extraction strategy given by Definition 6.1.

We define two functions trinhp, tr
out
hp : TraceP → TracePhp in

Fig. 3. The first function, trouthp (sσ), on the trace sσ begins to unfold
in Php the hot path hp when: (i) s = 〈ρ,C0〉 where C0 is the first
command of hp; and (ii) the condition guard Ea0 is satisfied in
the store ρ. If this unfolding for the trace sσ is actually started
by applying trouthp (sσ) then it is carried on by applying trinhp(σ),
i.e., with a in-modality. The second function application, trinhp(sσ),
carries on the unfolding of hp in Php when: (i) s = 〈ρ,Ci〉 where
i ∈ [1, n− 1], namely the command Ci in hp is different from C0

and Cn; and (ii) the condition guard Eai holds for the store ρ. If
this is not the case then trinhp(〈ρ,Ci〉σ), after a suitable unfolding
step for 〈ρ,Ci〉, jumps back to the out-modality by progressing
with trouthp (σ). It turns out that these two functions are well defined
and trouthp does not alter store change sequences.

Lemma 7.3.

(1) trouthp and trinhp are well-defined, i.e., for any σ ∈ TraceP ,
trouthp (σ), trinhp(σ) ∈ TracePhp .

(2) For any σ ∈ TraceP , sc(trouthp (σ)) = sc(σ).

Proof sketch of Theorem 7.2. Let us define trhp : ℘(TraceP) →
℘(TracePhp) as trhp(T) , {trouthp (σ) | σ ∈ T}. Technically, the
proof consists in showing the following two points.

(A) trhp(TJP K) ⊆ TJPhpK: this shows that for any execution trace
σ of P , trouthp (σ) is an execution trace of Php; this is not hard to
prove.

(B) αsc(TJPhpK) ⊆ αsc(TJP K): this is proved by the following
statement: σ ∈ TJPhpK r trhp(TJP K) ⇒ F [Php]{σ} ∈
trhp(TJP K). The proof relies on the fact that one such trace
σ is necessarily of the following shape: σ = σ′〈ρ,C〉 where

trouthp (ε) , ε

trouthp (sσ) ,

8>>>>><>>>>>:

〈ρ, L0 : guard Ea0 → `0〉〈ρ, `0 : act(C0)→ l1〉 trinhp(σ) if s = 〈ρ,C0〉, αstore({ρ}) ≤ a0

〈ρ, L0 : ¬guard Ea0 → L0〉〈ρ, L0 : act(C0)→ L1〉 trouthp (σ) if s = 〈ρ,C0〉, αstore({ρ}) 6≤ a0

〈ρ, L0 : guard Ea0 → `0〉〈ρ, `0 : ¬act(C0)→ Lc1〉 trouthp (σ) if s = 〈ρ, cmpl(C0)〉, αstore({ρ}) ≤ a0

〈ρ, L0 : ¬guard Ea0 → L0〉〈ρ, L0 : ¬act(C0)→ Lc1〉 trouthp (σ) if s = 〈ρ, cmpl(C0)〉, αstore({ρ}) 6≤ a0

s · trouthp (σ) otherwise

trinhp(ε) , ε

trinhp(sσ) ,

8>>>>>>><>>>>>>>:

〈ρ, li : guard Eai → `i〉〈ρ, `i : act(Ci)→ li+1〉 trinhp(σ) if s = 〈ρ,Ci〉, i ∈ [1, n− 1], αstore({ρ}) ≤ ai
〈ρ, ln : guard Ean → `n〉〈ρ, `n : act(Cn)→ L0〉 trouthp (σ) if s = 〈ρ,Cn〉, αstore({ρ}) ≤ an
〈ρ, li : ¬guard Eai → Li〉〈ρ,Ci〉 trouthp (σ) if s = 〈ρ,Ci〉, i ∈ [1, n], αstore({ρ}) 6≤ ai
〈ρ, li : guard Eai → `i〉〈ρ, `i : ¬act(Ci)→ Lcnext(i)〉 trouthp (σ) if s = 〈ρ, cmpl(Ci)〉, i ∈ [1, n], αstore({ρ}) ≤ ai
〈ρ, li : ¬guard Eai → Li〉〈ρ, cmpl(Ci)〉 trouthp (σ) if s = 〈ρ, cmpl(Ci)〉, i ∈ [1, n], αstore({ρ}) 6≤ ai
s · trouthp (σ) otherwise

Figure 3. Definition of trouthp and trinhp.

act(C) ∈ {guard Eai ,¬guard Eai}; then, it is not hard to
prove that F [Php]{σ′〈ρ,C〉} ∈ trhp(TJP K). In words, one
such trace σ of Php can be extended through an execution step
in Php to a trace in trhp(TJP K).

We therefore obtain:

αsc(TJP K) = [By Lemma 7.3 (2), αsc ◦ trhp = αsc]
αsc(trhp(TJP K)) ⊆ [By point (A)]

αsc(TJPhpK) ⊆ [By point (B)]
αsc(TJP K)

and this closes the proof.

8. Type Specialization
One key optimization for dynamic languages like JavaScript and
PHP is type specialization, that is, using type-specific primitives in
place of generic untyped operations whose runtime execution can
be very costly. As a paradigmatic example, a generic addition oper-
ation could be defined on more than one type, so that the execution
environment must check the type of its operands and execute a dif-
ferent operation depending on these types: this is the case of the ad-
dition operation in JavaScript (see its semantics in the ECMA-262
standard [21, Section 11.6]) and of the semantics of + in our lan-
guage as given in Section 2.2. Of course, type specialization avoids
the overhead of dynamic type checking and dispatch of generic un-
typed operations. When a type is associated to each variable before
the execution of a command in some hot path, this type environ-
ment can be used to replace generic operations with type-specific
primitives.

8.1 Type Abstraction
Let us recall that the set of type names is

Types = {Int,String,Undef,Any,∅}.
Type names can be therefore viewed as the following finite lattice
〈Types,⊆〉:

∅

Int String Undef

Any

The abstraction map αtype : ℘(Value)→ Types takes a set of val-
ues and returns the smallest type containing it. Since Types viewed
as a subset of ℘(Value) is closed under intersections (where Any
is interpreted as the top element Value and ∅ is the bottom el-
ement), αtype can be indeed defined as a simple closure oper-
ator (i.e., a monotonic, increasing and idempotent function) on
〈℘(Value),⊆〉:

αtype(V) , ∩{T ∈ Types | V ⊆ T}.

Given a value v ∈ Value, αtype({v}) thus coincides with type(v).
Here, the concretization function γtype : Types → ℘(Value) is
simply the identity map (with Any = Value).

Following the general approach described in Section 4.1, we
consider a simple nonrelational store abstraction for types

Storet , 〈Var→ Types, ⊆̇〉

where ⊆̇ is the usual pointwise lifting of the ordering ⊆ for Types,
so that λx.∅ and λx.Any are, respectively, the bottom and top
abstract stores in Storet . The abstraction and concretization maps
αstore : ℘(Store) → Storet and γstore : Storet → ℘(Store) are
defined as a straight instantiation of the definitions in Section 4.1.

The abstract type semantics Et : Exp → Storet → Types
of expressions is defined as best correct approximation of the cor-
responding concrete semantics E on the type abstractions Storet

and Types, i.e., EtJEKρt , αtype(EJEKγstore(ρ
t)). This defini-

tion leads to the following equalities:

EtJvKρt = type(v) EtJxKρt = ρt(x)

EtJE1 + E2Kρt =8>>><>>>:
∅ if ∃i.EtJEiKρt = ∅
EtJE1Kρt else if EtJE1Kρt = EtJE2Kρt ∈ {Int,String}
Undef else if ∀i.EtJEiKρt < Any

Any otherwise

For instance, we have that:

EtJx+ yK[x/String, y/∅] = ∅,
EtJx+ yK[x/String, y/ String] = String,

EtJx+ yK[x/ Int, y/ String] = Undef,

EtJx+ yK[x/ Int, y/Any] = Any.

According to Section 6, for any abstract type store [xi/Ti | xi ∈
Var] we consider a corresponding Boolean action guard

guard x0 : T0 · · ·xn : Tn ∈ BExp

whose corresponding program action has the following semantics,
which is automatically induced (as defined in Section 6) by the
Galois connection (αstore , ℘(Store),Storet , γstore): for any ρ ∈
Store,

AJguard x0 : T0 · · ·xn : TnKρ ,

(
ρ if ∀i. type(ρ(xi)) ⊆ Ti
⊥ ∃i. type(ρ(xi)) 6⊆ Ti

8.2 Type Specialization of Hot Paths
Let us consider some hot path hp = 〈ρt0, C0, . . . , ρ

t
n, Cn〉 ∈

αNhot(TJP K) on the type abstraction 〈Storet , ⊆̇〉, where each ρti
is therefore a type map. The trace extraction transform extrhp(P)
of P for hp gives rise to the set stitchP (hp) of commands that
stitches the hot path hp into P . Hence, for any i ∈ [0, n],
stitchP (hp) contains a typed guard that we simply denote as
guard ρti . Typed guards allow us to define type specialization of
commands in the stitched hot path: this is defined as a program
transform that instantiates most type-specific addition operations
in place of generic untyped additions by exploiting the type in-
formation dynamically recorded by typed guards in stitchP (hp).
Note that if C ∈ stitchP (hp) and act(C) ≡ x := E1 + E2

then C ≡ `i : x := E1 + E2 → L′, for some i ∈ [0, n], where
L′ ∈ {li+1, L0}. Let Ct denote the set of commands that permits
type specific additions +Int and +String and, in turn, Programt

denote the possible type specialized programs over Ct. The func-
tion tshp : stitchP (hp)→ Ct is defined as follows:

tshp(C) , C if act(C) 6= x := E1 + E2

tshp(`i : x := E1 + E2 → L′) ,8><>:
`i : x := E1 +Int E2 → L′ if EtJE1 + E2Kρti = Int

`i : x := E1 +String E2 → L′ if EtJE1 + E2Kρti = String

`i : x := E1 + E2 → L′ otherwise

Hence, hot path type specialization TS is defined by

TS(stitchP (hp)) , {tshp(C) | C ∈ stitchP (hp)} ∈ Programt.

The correctness of this program transform is quite straightforward.
Let Tracet be the set of traces for type specialized programs in
Programt and let tt : Tracet → Trace be defined as follows:

tt(ε) , ε

tt(sσ) ,8><>:
〈ρ, L : x := E1 + E2 → L′〉tt(σ)

if s = 〈ρ, L : x := E1 +Type E2 → L′〉
s · tt(σ) otherwise

Theorem 8.1 (Correctness of type specialization). For any typed
hp ∈ αNhot(TJP K), we have that tt(TJTS(stitchP (hp))K) =
TJstitchP (hp)K.

Typed trace extraction extr thp(P) consists in extracting and
simultaneously type specializing a typed hot path hp in a program
P , i.e., it can be defined as follows:

extr thp(P) , extrhp(P) r stitchP (hp) ∪ TS(stitchP (hp)).

Correctness of typed trace extraction extr thp is a straight conse-
quence of Theorems 7.2 and 8.1.

Corollary 8.2 (Correctness of typed trace extraction). For any
typed hp ∈ αNhot(TJP K), we have that αsc(TJextr thp(P)K) =
αsc(TJP K).

Example 8.3. Let us consider the following sieve of Eratosthenes
in a Javascript-like language – this is taken from the running exam-
ple in [15] – where primes is initialized to an array of 100 true
values. With a slight abuse, we assume that our language is ex-
tended with Boolean values and arrays. The semantics of arrays
load and stores is as usual: first the index expression is checked to
be in bounds, then the value is read or stored into the array. If the
index is out of bounds, we assume the program is aborted.

for (var i = 2; i < 100; i = i + 1) do
if (!primes[i]) then continue;
for (var k = i + i; k < 100; k = k + i) do primes[k] = false;

This program is encoded in our language as follows:

P =
˘
C0 ≡ L0 : i := 2→ L1,

C1 ≡ L1 : i < 100→ L2, C
c
1 ≡ L1 : ¬(i < 100)→ L8,

C2 ≡ L2 : primes[i] = tt → L3,

Cc2 ≡ L2 : ¬(primes[i] = tt)→ L7,

C3 ≡ L3 : k := i+ i→ L4,

C4 ≡ L4 : k < 100→ L5, C
c
4 ≡ L4 : ¬(k < 100)→ L7,

C5 ≡ L5 : primes[k] := ff → L6,

C6 ≡ L6 : k := k + i→ L4,

C7 ≡ L7 : i := i+ 1→ L1, C8 ≡ L8 : skip → Ł
¯
.

Let us consider the type environment ρt defined as

ρt , {primes[n]/Bool, i/ Int, k/ Int} ∈ Storet

where primes[n]/Bool is a shorthand for primes[0]/Bool, . . . ,
primes[99]/Bool. Then the first traced 2-hot path on the type
abstraction Storet is:

hp1 , 〈ρt, C4, ρ
t, C5, ρ

t, C6〉.
As a consequence, the typed transform extraction of hp1 yields:

P1 , extr thp1(P) = P r {C4, C
c
4}

∪ {L4 : k < 100→ L5, L4 : ¬(k < 100)→ L7}
∪ TS(stitchP (hp))

where TS(stitchP (hp)) =
˘

H0 ≡ L4 : guard (primes[n] : Bool, i : Int, k : Int)→ `0,

Hc
0 ≡ L4 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L4,

H1 ≡ `0 : k < 100→ l1, H
c
1 ≡ `0 : ¬(k < 100)→ L7,

H2 ≡ l1 : guard (primes[n] : Bool, i : Int, k : Int)→ `1,

Hc
2 ≡ l1 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L5,

H3 ≡ `1 : primes[k] := ff → l2,

H4 ≡ l2 : guard (primes[n] : Bool, i : Int, k : Int)→ `2,

Hc
4 ≡ l2 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L6,

H5 ≡ `2 : k := k +Int i→ L4

¯
.

9. A General Correctness Criterion
Abstract interpretation allows us to view type specialization in
Section 8 just as a particular correct hot path optimization that can
be easily generalized. Guarded hot paths are a key feature of our
tracing compilation model, where guards are dynamically recorded
by the hot path monitor and range over abstract values in some
store abstraction. An abstract guard for a command C in some hot
path hp thus encodes a store property which is modeled in some
abstract domain Store] and is guaranteed to hold at the entry of C.
This store information encapsulated by abstract guards can then be

used to transform and optimize hp, i.e., all the commands in the
stitched hot path stitchP (hp).

This provides a modular approach to proving the correctness of
some hot path optimization O. In fact, since correctness has to be
proved w.r.t. some observational abstraction αo of trace semantics
and Theorem 7.2 ensures that this correctness holds for the store
changes abstraction αsc of the unoptimized trace extraction trans-
form, we just need to prove the correctness of the optimization O
on the whole stitched hot path stitchP (hp), which thus includes
the abstract guards of the hot path hp. Hence, fixing a program P ,
a hot path optimization O is modeled as a program transform

O : {stitchP (hp) | hp ∈ αNhot(TJP K)} → Program

where Program may permit new expressions and/or actions, like
the case of type-specific addition operations in type specialization.
O is required to be correct according to the following definition.

Definition 9.1 (Correctness of hot path optimization). O is cor-
rect if for any P ∈ Program and for any hp ∈ αNhot(TJP K),
αo(TJO(stitchP (hp))K) = αo(TJstitchP (hp)K).

As an example, it would be quite simple to formalize the vari-
able folding optimization of hot paths considered by Guo and Pals-
berg [17] and to prove it correct in our framework w.r.t. the store
changes abstraction αsc.

10. Nested Hot Paths
Once a first hot path hp1 has been extracted by transforming P to
P1 , extrhp1(P), it may well happen that a new hot path hp2 in
P1 contains hp1 as a nested sub-path. Following TraceMonkey’s
trace recording strategy [15], we attempt to nest an inner hot path
inside the current trace: during trace recording, an inner hot path
is called as a subroutine, this executes a loop to a successful com-
pletion and then returns to the trace recorder that may therefore
register the inner hot path as part of a new hot path.

To this aim, let us reshape the definitions in Section 5. Let P be
the original program and P ′ be some hot path transform of P so
that P ′rP contains all the commands (guards included) in the hot
path. We define a function hotcut : TraceP ′ → (StateP ′)∗ that
cuts from a trace in P ′ all the states whose commands appear in
(some previous) hot path hp except the entry and exit states of hp:

hotcut(σ) ,8>>><>>>:
ε if σ = ε

hotcut(〈ρ1, C1〉〈ρ3, C3〉σ′)
if σ = 〈ρ1, C1〉〈ρ2, C2〉〈ρ3, C3〉σ′&C1, C2, C3 6∈ P

σ0 hotcut(σ1 · · ·σ|σ|−1) otherwise

In turn, we define outerhotN : TraceP ′ → ℘((State]P ′)
∗) as

follows:

outerhotN (σ) , {〈ai, Ci〉 · · · 〈aj , Cj〉 ∈ (State]P ′)
∗ |

∃〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(hotcut(σ)) s.t. i ≤ j,
αstore(〈ρi, Ci〉 · · · 〈ρj , Cj〉) = 〈ai, Ci〉 · · · 〈aj , Cj〉,
count(αstore(hotcut(σ)), 〈ai, Ci〉 · · · 〈aj , Cj〉) ≥ N}.

Clearly, when P ′ = P we have that hotcut = λσ.σ so that
outerhotN = hotN . Finally, we define the collecting version
αNouterhot , λT. ∪σ∈T outerhotN (σ).

Example 10.1. Let us consider again Example 6.3, where Store]

is the trivial one-point store abstraction {>}. In Example 6.3, we
first extracted hp1 = 〈>, C1,>, C2,>, Cc3〉 by transforming P to
P1 , extrhp(P).

We then consider the following trace in TJP1K:

σ = 〈[x/?], C0〉〈[x/0], H0〉〈[x/0], H1〉〈[x/0], H2〉〈[x/0], H3〉
〈[x/1], H4〉〈[x/1], H5〉 · · · 〈[x/2], H3〉〈[x/3], H4〉〈[x/3], Hc

5〉
〈[x/3], C4〉〈[x/6], H0〉 · · · 〈[x/9], Hc

5〉〈[x/9], C4〉〈[x/12], H0〉 · · ·
Thus, here we have that

hotcut(σ) = 〈[x/?], C0〉〈[x/0], H0〉〈[x/3], Hc
5〉〈[x/3], C4〉

〈[x/6], H0〉〈[x/9], Hc
5〉〈[x/9], C4〉 · · ·

so that

hp2 = 〈>, H0,>, Hc
5 ,>, C4〉 ∈ α2

outerhot(TJP1K)

Hence, hp2 contains a nested hot path, which is called at the begin-
ning of hp2 and whose entry and exit commands are, respectively,
H0 and Hc

5 .

Let hp = 〈a0, C0, . . . , an, Cn〉 ∈ αNouterhot(TJP ′K) be a N -
hot path in P ′, where, for all i ∈ [0, n], Ci ≡ Li : Ai → Lnext(i).
Let us note that:

– If for all i ∈ [0, n], Ci ∈ P then hp actually is a hot path in P ,
i.e., hp ∈ αNhot(TJP K).

– Otherwise, there exists some Ck 6∈ P . If Ci ∈ P and Ci+1 6∈
P then Ci+1 is the entry command of some inner hot path; on
the other hand, if Ci 6∈ P and Ci+1 ∈ P then Ci is the exit
command of some inner hot path.

The transform of P ′ for extracting hp is a generalization of
Definition 6.1.

Definition 10.2 (Nested trace extraction transform). The nested
trace extraction transform of P ′ for the hot path hp is:

extrhp(P
′) , P

(1) r ({C0 | C0 ∈ P} ∪ {cmpl(C0) | cmpl(C0) ∈ P})
(2) ∪ {L0 : act(C0)→ L1 | C0 ∈ P}
∪ {L0 : ¬act(C0)→ Lc1 | cmpl(C0) ∈ P}

(3) ∪ {L0 : guard Ea0 → `0, L0 : ¬guard Ea → L0 | C0 ∈ P}
(4) ∪ {`i : act(Ci)→ li+1 | i ∈ [0, n− 1], Ci, Ci+1 ∈ P}
∪ {`n : act(Cn)→ L0 | Cn ∈ P}

(5) ∪ {`i : ¬act(Ci)→ Lcnext(i) | i ∈ [0, n], Ci, cmpl(Ci) ∈ P}
(6) ∪ {li : guard Eai → `i, li : ¬guard Eai → Li |

i ∈ [1, n], Ci ∈ P}
(7) ∪ {`i : act(Ci)→ Li+1 | i ∈ [0, n− 1], Ci ∈ P,Ci+1 6∈ P}
(8) r {Ci | i ∈ [0, n− 1], Ci 6∈ P,Ci+1 ∈ P}
(9) ∪ {Li : act(Ci)→ li+1 | i ∈ [0, n− 1], Ci 6∈ P,Ci+1 ∈ P}

while stitchP ′(hp) , (3) ∪ (4) ∪ (5) ∪ (6) ∪ (7) ∪ (9).

Let us observe that:

– Clauses (1)–(6) are the same clauses of Definition 6.1, with the
additional constraints that Ci and cmpl(Ci) are all commands
in P , conditions which are trivially satisfied in Definition 6.1.

– Clause (7) where Ci ∈ P and Ci+1 6∈ P , namely next(Ci)
is the call program point of a nested hot path nhp and Ci+1 is
the entry command of nhp, performs a relabeling that allows to
correctly nest nhp in hp.

– Clauses (8)–(9) whereCi 6∈ P andCi+1 ∈ P , i.e.,Ci is the exit
command of a nested hot path nhp that returns to the program
point lbl(Ci+1), performs the relabeling of suc(Ci) in Ci in
order to return from nhp to hp;

– L0, `i and li are fresh labels, i.e., they have not been used in
P ′.

Example 10.3. Let us go on with Example 10.1. The second traced
hot path in α2

outerhot(TJP1K) is:

hp2 = 〈>, H0 ≡ L1 : guard E> → `0,

>, Hc
5 ≡ `2 : (x%3 = 0)→ L4,>, C4 ≡ L4 : x := x+3→ L1〉.

According to Definition 10.2, trace extraction of hp2 in P1 yields
the following transform:

extrhp2(P1) ,

[by clause (8)] P1 r {Hc
5}

[by clause (9)] ∪ {`2 : (x%3 = 0)→ h2}
[by clause (6)] ∪ {h2 : guard E> → ~2,h2 : ¬guard E> → L4}
[by clause (4)] ∪ {~2 : x := x+ 3→ L1}
where we used additional fresh labels in h2 and ~2.

Example 10.4. Let us consider again Example 8.3. After the trace
extraction of hp1 that transforms P to P1, a second traced 2-hot
path is the following:

hp2 , 〈ρt, C1, ρ
t, C2, ρ

t, C3, ρ
t, H0, ρ

t, Hc
1 , ρ

t, C7〉

where ρt = {primes[n]/Bool, i/ Int, k/ Int} ∈ Storet. hp2

contains a nested hot path which is called at suc(C3) = L4 and
whose entry and exit commands are, respectively, H0 and Hc

1 .
Here, typed trace extraction according to Definition 10.2 provides
the following transform of P1:

P2 , extr thp2(P1) , P1 r {C1, C
c
1} ∪

˘
L1 : i < 100→ L2, L1 : ¬(i < 100)→ L8,

H6 ≡ L1 : guard (primes[n] : Bool, i : Int, k : Int)→ `3,

Hc
6 ≡ L1 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L1,

H7 ≡ `3 : i < 100→ l4, H
c
7 ≡ `3 : ¬(i < 100)→ L8,

H8 ≡ l4 : guard (primes[n] : Bool, i : Int, k : Int)→ `4,

Hc
8 ≡ l4 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L2,

H9 ≡ `4 : primes[i] = tt → l5,

Hc
9 ≡ `4 : ¬(primes[i] = tt)→ L7,

H10 ≡ l5 : guard (primes[n] : Bool, i : Int, k : Int)→ `5,

Hc
10 ≡ l5 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L3,

H11 ≡ `5 : k := i+Int i→ L4

¯
r {Hc

1} ∪
˘
(Hc

1)′ ≡ `0 : ¬(k < 100)→ l6,

H12 ≡ l6 : guard (primes[n] : Bool, i : Int, k : Int)→ `6,

Hc
12 ≡ l6 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L7,

H13 ≡ `6 : i := i+Int 1→ L1

¯
.

Finally, a third traced 2-hot path in P2 is the following:

hp3 , 〈ρt, H6, ρ
t, Hc

9 , ρ
t, C7〉

which contains a nested hot path which is called at the beginning of
hp3 and whose entry and exit commands are, respectively, H6 and
Hc

9 . Here, typed trace extraction of hp3 yields:

P3 , extrhp3(P2) , P2 r {Hc
9} ∪

˘
(Hc

9)′ ≡ `4 : ¬(primes[i] = tt)→ l7,

l7 : guard (primes[n] : Bool, i : Int, k : Int)→ `7,

l7 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L7,

`7 : i := i+Int 1→ L1

¯
.

We have thus obtained the same three trace extraction steps as
described by Gal et al. [15, Section 2]. In particular, in P1 we
specialized the typed addition operation k := k +Int i, in P2

we specialized k := i +Int i and i := i +Int 1, while in P3 we
specialized once again i := i +Int 1 in a different hot path. Thus,
in P3 all the addition operations have been type specialized.

11. Comparison with Guo and Palsberg’s
Framework

A formal model for tracing JIT compilation has been put forward in
POPL 2011 by Guo and Palsberg [17]. Its main distinctive feature
is the use of bisimulation [23] to describe operational equivalence
between source and optimized programs. In this section we show
how this model can be expressed within our framework.

11.1 Language and Semantics
Guo and Palsberg [17] employ a simple imperative language with
while loops and a so-called bail construct.

E ::= n | x+ 1

B ::= x = 0 | x 6= 0

Cmd 3 c ::= skip | x := E | if B then S |
while B do S | bail B to S

Stm 3 S ::= ε | c;S
The baseline small-step operational semantics→B⊆ State× State,
where State , Store×Stm, is standard. Let us just recall the se-
mantics of bail commands:

〈ρ, (bail B to S);K〉 →B 〈ρ,K〉 if JBKρ = false
〈ρ, (bail B to S);K〉 →B 〈ρ, S〉 if JBKρ = true

If TraceGP , {σ ∈ State∗ | ∀i ∈ [0, |σ|). σi →B σi+1}
denotes the set of program traces for Guo and Palsberg’s lan-
guage then given a program S ∈ Stm, the trace transition operator
GP [S] : ℘(TraceGP)→ ℘(TraceGP) is defined as usual:

GP [S](X) , {〈ρ, S〉 | ρ ∈ Store} ∪ {σss′ | σs ∈ X, s→B s′}

so that the trace semantics of S is TGPJSK , lfp(GP [S]) ∈
℘(TraceGP).

11.2 Language Compilation
Programs in Stm can be easily compiled into Program by resort-
ing to an injective labeling function ` : Stm → L that assigns
different labels to different statements.

Definition 11.1 (Language compilation). The compilation func-
tion C : Stm → ℘(C) is recursively defined by the following
clauses:

C(ε) , {`(ε) : skip→ Ł}
C(S ≡ skip;K) , {`(S) : skip→ `(K)} ∪ C(K)

C(S ≡ x := E;K) , {`(S) : x := E → `(K)} ∪ C(K)

C(S ≡ (if B then S′);K) ,

{`(S) : B → `(S′;K), `(S) : ¬B → `(K)} ∪ C(S′;K) ∪ C(K)

C((while B do S′);K) , C((if B then (S′; while B do S′));K)

C(S ≡ (bail B to S′);K) ,

{`(S) : B → `(S′), `(S) : ¬B → `(K)} ∪ C(S′) ∪ C(K)

Example 11.2. Consider the following program S ∈ Stm in Guo
and Palsberg’s syntax:

x := 0;
while B1 do x := 1;
x := 2;
bail B2 to x := 3;
x := 4;
ε

S is then compiled in our language by C in Definition 11.1 as
follows:
C(S) =

˘
`0 : x := 0→ `while,

`while : B1 → `1, `while : ¬B1 → `2,

`1 : x := 1→ `while, `2 : x := 2→ `bail,

`bail : B2 → `3, `bail : ¬B2 → `4,

`3 : x := 3→ `ε, `4 : x := 4→ `ε, `ε : skip→ Ł
¯
.

Correctness for the above compilation function C means that
for any S ∈ Stm: (i) C(S) ∈ Program and (ii) program
traces of S and C(S) have the same store sequences. If st :
TraceGP ∪Trace → Store∗ returns the store sequence of a trace,
i.e., st(ε) , ε and st(〈ρ, S〉σ) , ρ · st(σ), and, for a set X
of traces αst(X) , {st(σ) | σ ∈ X}, then correctness goes as
follows:

Theorem 11.3 (Correctness of language compilation). For any
S ∈ Stm, C(S) ∈ Program and αst(TGPJSK) = αst(TJC(S)K).

11.3 Bisimulation
Correctness of trace extraction in [17] relies on the following notion
of bisimulation, which is parameterized by program stores.

Definition 11.4 ([17]). A relation R ⊆ Store× Stm× Stm is
a bisimulation when R(ρ, S1, S2) implies: (1) if 〈ρ, S1〉 →B

〈ρ′, S′1〉 then 〈ρ, S2〉 →∗B 〈ρ′, S′2〉, for some 〈ρ′, S′2〉 such that
R(ρ′, S′1, S

′
2); (2) R(ρ, S2, S1).

S1 is bisimilar to S2 for a given store ρ, denoted by S1 ≈ρ S2,
ifR(ρ, S1, S2) for some bisimulationR. It is simple to characterize
this program equivalence through an abstraction map of traces that
observes store changes (this is analogous to the definition of sc in
Section 7).

stc : Store∗ → Store∗ stc(ε) , ε stc(ρ) , ρ

stc(ρ1ρ2σ) ,

(
stc(ρ2σ) if ρ1 = ρ2

ρ1 · stc(ρ2σ) if ρ1 6= ρ2

Given ρ ∈ Store, αρstc : ℘(TraceGP) → ℘(Store∗) is defined as
follows: αρstc(X) , {stc(σ) | σ ∈ αst(X), σ0 = ρ}.
Theorem 11.5. For any S1, S2 ∈ Stm, ρ ∈ Store, we have that
S1 ≈ρ S2 iff αρstc(TGPJS1K) = αρstc(TGPJS2K).

11.4 Hot Paths and Trace Extraction
In Guo and Palsberg’s model [17]: (i) hot paths always begin with
an entry while-loop conditional, which is however not included in
the hot path; (ii) the store of a hot path is recorded at the end of the
first loop iteration and is a concrete store; and (iii) hot paths actually
are 1-hot paths according to our definition. Guo and Palsberg’s
hot loops can be modeled in our framework by relying on a loop
selection map loopGP : Trace → ℘(C∗ × Store) defined as
follows:

loopGP (〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,
˘
〈CiCi+1 · · ·Cj , ρj+1〉 |

0 ≤ i ≤ j < n, Ci l Cj , lbl(Cj+1) = lbl(Ci),

∀k ∈ (i, j]. Ck 6∈ {Ci, cmpl(Ci)}
¯
.

Notice that, for simplicity, the above definition includes the entry
loop conditional in the hot path. The map αGP

hot : ℘(Trace) →
℘(C∗ × Store) then lifts loopGP to sets of traces: αGP

hot (T) ,
∪σ∈T loopGP (σ).

Let us thus consider a hot path hp = 〈C0C1 · · ·Cn, ρ〉 ∈
αGP

hot (TJP K), for someP ∈ Program (whereP may coincide with
a compiled C(S) for some S ∈ Stm) and let us follow the same
notation used in Section 6. Guo and Palsberg’s [17] trace extraction
scheme is defined as follows, where the hot path hp cannot be re-
entered once execution leaves hp.

Definition 11.6 (GP trace extraction transform). The GP trace
extraction transform of P for the hot path hp is:

extrGP
hp (P) , P r {C0}
∪ {L0 : act(C0)→ `1}
∪ {`i : act(Ci)→ `i+1 | i ∈ [1, n)} ∪ {`n : act(Cn)→ L0}
∪ {`i : ¬act(Ci)→ Lcnext(i) | i ∈ [1, n], cmpl(Ci) ∈ P}.

Clearly, extrGP
hp (P) remains a well-formed program. The cor-

rectness of this GP trace extraction transform, which is stated and
proved in [17, Lemma 3.6], goes as follows.

Theorem 11.7 (Correctness of GP trace extraction). For any
P ∈ Program, hp = 〈C0 · · ·Cn, ρ〉 ∈ αGP

hot (TJP K), we have
that αρstc(TJextrGP

hp (P)K) = αρstc(TJP K).

Example 11.8. Let us consider the program P in Example 2.1 and
the GP-hot path

hp = 〈C1C2C
c
3 , ρ = [x/1]〉 ∈ αGP

hot (TJP K).

A corresponding 2-hot path hp1 with the same sequence of com-
mands has been selected in Example 5.1 and extracted in Exam-
ple 6.3. Here, the GP trace extraction of hp provides the following
program transform:

extrGP
hp (P) , P r {C1}

∪ {L1 : x ≤ 20→ `1, `1 : x := x+ 1→ `2}
∪ {`2 : ¬(x%3 = 0)→ L1, `2 : (x%3 = 0)→ L4}.

12. Further Work
We have put forward a formal model of tracing compilation and
correctness of hot path optimization based on program trace se-
mantics and abstract interpretation. We see a number of interesting
avenues for further work on this topic. We aim at making use of
this framework to study and relate the foundational differences be-
tween traditional static vs dynamic tracing compilation. We then
expect to formalize and prove the correctness of most beneficial
optimizations employed by tracing compilers of practical dynamic
languages like JavaScript, PHP and Python. For example, we plan
to cast in our model the allocation removal optimization for Python
described in [5] in order to formally prove its correctness. Fi-
nally, we plan to adapt our framework in order to provide a model
of whole-method just-in-time compilation, as used, e.g., by Ion-
Monkey [14], the current JIT compilation scheme in the Firefox
JavaScript engine.

Acknowledgments
We are grateful to the anonymous referees for their helpful com-
ments. The work of Francesco Ranzato was partially supported
by Microsoft Research Software Engineering Innovation Founda-

tion 2013 Award (SEIF 2013) and by the University of Padova un-
der the project BECOM.

References
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent

dynamic optimization system. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2000), pages 1–12, New York, NY, USA, 2000. ACM.

[2] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini. Abstract
interpretation of trace semantics for concurrent calculi. Information
Processing Letters, 70(2):69–78, 1999.

[3] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. SPUR: a trace-based JIT compiler for
CIL. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOP-
SLA 2010), pages 708–725, New York, NY, USA, 2010. ACM.

[4] I. Böhm, T.J.K. Edler von Koch, S.C. Kyle, B. Franke, and N. Topham.
Generalized just-in-time trace compilation using a parallel task farm
in a dynamic binary translator. In Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2011), pages 74–85, New York, NY, USA, 2011. ACM.

[5] C.F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni, and
A. Rigo. Allocation removal by partial evaluation in a tracing JIT.
In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Eval-
uation and Program Manipulation (PEPM 2011), pages 43–52. ACM,
2011.

[6] C.F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS 2009), pages 18–
25, New York, NY, USA, 2009. ACM.

[7] C. Colby and P. Lee. Trace-based program analysis. In Proceedings
of the 23rd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL 1996), pages 195–207, New York,
NY, USA, 1996. ACM.

[8] P. Cousot. Constructive design of a hierarchy of semantics of a transi-
tion system by abstract interpretation (extended abstract). Electronic
Notes in Theoretical Computer Science, 6(0):77–102, 1997. Proceed-
ings of the 13th Annual Conference on Mathematical Foundations of
Progamming Semantics (MFPS XIII).

[9] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theoretical Computer
Science, 277(1-2):47–103, 2002.

[10] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 1977),
pages 238–252, New York, NY, USA, 1977. ACM.

[11] P. Cousot and R. Cousot. Systematic design of program analy-
sis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 1979),
pages 269–282, New York, NY, USA, 1979. ACM.

[12] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Proceedings of the 29th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL 2002), pages 178–190, New York, NY, USA, 2002.
ACM.

[13] Mozilla Foundation. TraceMonkey. wiki.mozilla.org, October
2010.

[14] Mozilla Foundation. IonMonkey. wiki.mozilla.org, May 2013.
[15] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M.R.

Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruder-
man, E.W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz.
Trace-based just-in-time type specialization for dynamic languages. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2009), pages 465–478,
New York, NY, USA, 2009. ACM.

[16] A. Gal, C.W. Probst, and M. Franz. HotPathVM: an effective JIT
compiler for resource-constrained devices. In Proceedings of the 2nd
International Conference on Virtual Execution Environments (VEE
2006), pages 144–153. ACM, 2006.

[17] S. Guo and J. Palsberg. The essence of compiling with traces. In
Proceedings of the 38th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL 2011), pages 563–574, New
York, NY, USA, 2011. ACM.

[18] M. Handjieva and S. Tzolovski. Refining static analyses by trace-
based partitioning using control flow. In Proceedings of the 5th
International Static Analysis Symposium (SAS 1998), volume 1503 of
LNCS, pages 200–214. Springer, 1998.

[19] Facebook Inc. The HipHop Virtual Machine, Facebook Engineering,
December 2011.

[20] Google Inc. A new crankshaft for V8, The Chromium Blog, December
2010.

[21] Ecma International. ECMAScript Language Specification. Standard
ECMA-262, Edition 5.1, June 2011.

[22] F. Logozzo. Class invariants as abstract interpretation of trace seman-
tics. Computer Languages, Systems and Structures, 35(2):100–142,
2009.

[23] R. Milner. Communication and Concurrency. Prentice Hall, 1995.
[24] M. Pall. The LuaJIT Project. luajit.org, 2005.
[25] X. Rival. Symbolic transfer function-based approaches to certified

compilation. In Proceedings of the 31st ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL 2004),
New York, NY, USA, 2004. ACM.

[26] X. Rival and L. Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), 2007.

[27] D.A. Schmidt. Trace-based abstract interpretation of operational se-
mantics. Lisp Symb. Comput., 10(3):237–271, 1998.

[28] F. Spoto and T. Jensen. Class analyses as abstract interpretations of
trace semantics. ACM Trans. Program. Lang. Syst., 25(5):578–630,
2003.

https://wiki.mozilla.org/JavaScript:TraceMonkey
https://wiki.mozilla.org
https://wiki.mozilla.org/IonMonkey
https://wiki.mozilla.org
https://www.facebook.com/notes/facebook-engineering/the-hiphop-virtual-machine/10150415177928920
https://www.facebook.com/Engineering
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://blog.chromium.org
http://ecma-international.org/ecma-262/5.1
http://ecma-international.org/ecma-262/5.1
http://luajit.org

	Introduction
	The Problem
	Main Contributions
	Related Work

	Language and Concrete Semantics
	Syntax
	Transition Semantics
	Trace Semantics

	Abstract Interpretation Background
	Store Abstractions
	Nonrelational Abstractions

	Hot Path Selection
	Trace Extraction
	Correctness
	Correctness Proof

	Type Specialization
	Type Abstraction
	Type Specialization of Hot Paths

	A General Correctness Criterion
	Nested Hot Paths
	Comparison with Guo and Palsberg's Framework
	Language and Semantics
	Language Compilation
	Bisimulation
	Hot Paths and Trace Extraction

	Further Work

