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Abstract

Black-box web vulnerability scanners are a popular

choice for finding security vulnerabilities in web appli-

cations in an automated fashion. These tools operate in

a point-and-shoot manner, testing any web application—

regardless of the server-side language—for common se-

curity vulnerabilities. Unfortunately, black-box tools

suffer from a number of limitations, particularly when

interacting with complex applications that have multi-

ple actions that can change the application’s state. If

a vulnerability analysis tool does not take into account

changes in the web application’s state, it might overlook

vulnerabilities or completely miss entire portions of the

web application.

We propose a novel way of inferring the web applica-

tion’s internal state machine from the outside—that is, by

navigating through the web application, observing dif-

ferences in output, and incrementally producing a model

representing the web application’s state.

We utilize the inferred state machine to drive a black-

box web application vulnerability scanner. Our scanner

traverses a web application’s state machine to find and

fuzz user-input vectors and discover security flaws. We

implemented our technique in a prototype crawler and

linked it to the fuzzing component from an open-source

web vulnerability scanner.

We show that our state-aware black-box web vulnera-

bility scanner is able to not only exercise more code of

the web application, but also discover vulnerabilities that

other vulnerability scanners miss.

1 Introduction

Web applications are the most popular way of delivering

services via the Internet. A modern web application is

composed of a back-end, server-side part (often written

in Java or in interpreted languages such as PHP, Ruby,

or Python) running on the provider’s server, and a client

part running in the user’s web browser (implemented in

JavaScript and using HTML/CSS for presentation). The

two parts often communicate via HTTP over the Internet

using Asynchronous JavaScript and XML (AJAX) [20].

The complexity of modern web applications, along

with the many different technologies used in various ab-

straction layers, are the root cause of vulnerabilities in

web applications. In fact, the number of reported web

application vulnerabilities is growing sharply [18, 41].

The occurrence of vulnerabilities could be reduced

by better education of web developers, or by the use

of security-aware web application development frame-

works [10, 38], which enforce separation between struc-

ture and content of input and output data. In both cases,

more effort and investment in training is required, and,

therefore, cost and time-to-market constraints will keep

pushing for the current fast-but-insecure development

model.

A complementary approach for fighting security vul-

nerabilities is to discover and patch bugs before mali-

cious attackers find and exploit them. One way is to use

a white-box approach, employing static analysis of the

source code [4, 15, 17, 24, 28]. There are several draw-

backs to a white-box approach. First, the potential ap-

plications that can be analyzed is reduced to only those

applications that use the target programming language.

In addition, there is the problem of substantial false pos-

itives. Finally, the source code of the application itself

may be unavailable.

The other approach to discovering security vulnera-

bilities in web applications is by observing the applica-

tion’s output in response to a specific input. This method

of analysis is called black-box testing, as the applica-

tion is seen as a sealed machine with unobservable in-

ternals. Black-box approaches are able to perform large-

scale analysis across a wide range of applications. While

black-box approaches usually have fewer false positives

than white-box approaches, black-box approaches suffer
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Figure 1: Navigation graph of a simple web application.

from a discoverability problem: They need to reach a

page to find vulnerabilities on that page.

Classical black-box web vulnerability scanners crawl

a web application to enumerate all reachable pages and

then fuzz the input data (URL parameters, form values,

cookies) to trigger vulnerabilities. However, this ap-

proach ignores a key aspect of modern web applications:

Any request can change the state of the web application.

In the most general case, the state of the web applica-

tion is any data (database, filesystem, time) that the web

application uses to determine its output. Consider a fo-

rum that authenticates users, an e-commerce application

where users add items to a cart, or a blog where visitors

and administrators can leave comments. In all of these

modern applications, the way a user interacts with the

application determines the application’s state.

Because a black-box web vulnerability scanner will

never detect a vulnerability on a page that it does not

see, scanners that ignore a web application’s state will

only explore and test a (likely small) fraction of the web

application.

In this paper, we propose to improve the effectiveness

of black-box web vulnerability scanners by increasing

their capability to understand the web application’s inter-

nal state. Our tool constructs a partial model of the web

application’s state machine in a fully-automated fashion.

It then uses this model to fuzz the application in a state-

aware manner, traversing more of the web application

and thus discovering more vulnerabilities.

The main contributions of this paper are the following:

• A black-box technique to automatically learn a

model of a web application’s state.

• A novel vulnerability analysis technique that lever-

ages the web application’s state model to drive

fuzzing.

• An evaluation of our technique, showing that both

code coverage and effectiveness of vulnerability

analysis are improved.
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Figure 2: State machine of a simple web application.

2 Motivation

Crawling modern web applications means dealing with

the web application’s changing state. Previous work in

detecting workflow violations [5, 11, 17, 30] focused on

navigation, where a malicious user can access a page that

is intended only for administrators. This unauthorized

access is a violation of the developer’s intended work-

flow of the application.

We wish to distinguish a navigation-based view of the

web application, which is simply derived from crawling

the web application, from the web application’s internal

state machine. To illustrate this important difference, we

will use a small example.

Consider a simple web application that has only three

pages, index.php, login.php, and view.php. The

view.php page is only accessible after the login.php

page is accessed. There is no logout functionality. A

client accessing this web application might make a series

of requests like the following:

〈index.php, login.php, index.php, view.php,

index.php, view.php〉
Analyzing this series of requests from a navigation

perspective creates a navigation graph, shown in Fig-

ure 1. This graph shows which page is accessible from

every other page, based on the navigation trace. How-

ever, the navigation graph does not represent the infor-

mation that view.php is only accessible after accessing

login.php, or that index.php has changed after re-

questing login.php (it includes the link to view.php).

What we are interested in is not how to navigate the

web application, but how the requests we make influence

the web application’s internal state machine. The sim-

ple web application described previously has the internal

state machine shown in Figure 2. The web application

starts with the internal state S 0. Arrows from a state

show how a request affects the web application’s inter-

nal state machine. In this example, in the initial state,

index.php does not change the state of the application,

however, login.php causes the state to transition from

S 0 to S 1. In the new state S 1, both index.php and

view.php do not change the state of the web applica-

tion.

The state machine in Figure 2 contains important in-

formation about the web application. First, it shows that

login.php permanently changes the web application’s



state, and there is no way to recover from this change.

Second, it shows that the index.php page is seen in two

different states.

Now the question becomes: “How does knowledge of

the web application’s state machine (or lack thereof) af-

fect a black-box web vulnerability scanner?” The scan-

ner’s goal is to find vulnerabilities in the application, and

to do so it must fuzz as many execution paths of the

server-side code as possible1. Consider the simple appli-

cation described in Figure 2. In order to fuzz as many

code paths as possible, a black-box web vulnerability

scanner must fuzz the index.php page in both states S 0

and S 1, since the code execution of index.php can fol-

low different code paths depending on the current state

(more precisely, in state S 1, index.php includes a link

to view.php, which is not present in S 0).

A black-box web vulnerability scanner can also use

the web application’s state machine to handle requests

that change state. For example, when fuzzing the

login.php page of the sample application, a fuzzer will

try to make several requests to the page, fuzzing different

parameters. However, if the first request to login.php

changes the state of the application, all further requests to

login.php will no longer execute along the same code

path as the first one. Thus, a scanner must have knowl-

edge of the web application’s state machine to test if the

state was changed, and if it was, what requests to make

to return the application to the previous state before con-

tinuing the fuzzing process.

We have shown how a web application’s state machine

can be leveraged to improve a black-box web vulnerabil-

ity scanner. Our goal is to infer, in a black-box manner,

as much of the web application’s state machine as possi-

ble. Using only the sequence of requests, along with the

responses to those requests, we build a model of as much

of the web application’s state machine as possible. In

the following section, we describe, at a high level, how

we infer the web application’s state machine. Then, in

Section 4, we provide the details of our technique.

3 State-Aware Crawling

In this section, we describe our state-aware crawling ap-

proach. In Section 3.1, we describe web applications and

define terms that we will use in the rest of the paper.

Then, in Section 3.2, we describe the various facets of

the state-aware crawling algorithm at a high level.

1Hereinafter, we assume that the scanner relies on fuzzer-based

techniques. However, any other automated vulnerability analysis tech-

nique would benefit from our state-aware approach.

3.1 Web Applications

Before we can describe our approach to inferring a web

application’s state, we must first define the elements that

come into play in our web application model.

A web application consists of a server component,

which accepts HTTP requests. This server component

can be written in any language, and could use many

different means of storage (database, filesystem, mem-

cache). After processing a request, the server sends back

a response. This response encapsulates some content,

typically HTML. The HTML content contains links and

forms which describe how to make further requests.

Now that we have described a web application at a

high level, we need to define specific terms related to

web applications that we use in the rest of this paper.

• Request—The HTTP request made to the web ap-

plication. Includes anything (typically in the form

of HTTP headers) that is sent by the user to the web

application: the HTTP Method, URL, Parameters

(GET and POST), Cookies, and User-Agent.

• Response—The response sent by the server to the

user. Includes the HTTP Response Code and the

content (typically HTML).

• Page—The HTML page that is contained in the re-

sponse from a web application.

• Link—Element of an HTML page that tells the

browser how to create a subsequent request. This

can be either an anchor or a form. An anchor al-

ways generates a GET request, but a form can gener-

ate either a POST or GET request, depending on the

parameters of the form.

• State—Anything that influences the web applica-

tion’s server-side code execution.

3.1.1 Web Application Model

We use a symbolic Mealy machine [7] to model the web

application as a black-box. A Mealy machine is an au-

tomaton where the input to the automaton, along with

the current state, determines the output (i.e., the page

produced by the response) and the next state. A Mealy

machine operates on a finite alphabet of input and out-

put symbols, while a symbolic Mealy machine uses an

infinite alphabet of input and output symbols.

This model of a web application works well because

the input to a web application, along with the current

state of the web application, determines the output and

the next state. Consider a simple e-commerce web appli-

cation with the state machine show in Figure 3. In this

state graph, all requests except for the ones leaving a state
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Figure 3: The state machine of a simple e-commerce application.

bring the application back to the same state. Therefore,

this state graph does not show all the request that can be

made to the application, only the subset of requests that

change the state.

For instance, in the initial state S 0, there is only

one request that will change the state of the applica-

tion, namely POST /login.php. This change logs

the user into the web application. From the state

no items, there are two requests that can change the

state, GET /logout.php to return the user to state S 0

and POST /add item.php to add an item to the user’s

shopping cart.

Note that the graph shown in Figure 3 is not a

strongly connected graph—that is, every state cannot

be reached by every other state. In this example, pur-

chasing an item is a permanent action, it irrecoverably

changes the state (there is no link from purchased item

to item in cart). Another interesting aspect is that

one request, GET /logout.php, leads to three differ-

ent states. This is because once the web application’s

state has changed, logging out, and then back in, does

not change the state of the cart.

3.2 Inferring the State Machine

Inferring a web application’s state machine requires the

ability to detect when the state of the web application has

changed. Therefore, we start with a description of the

state-change detection algorithm, then explain the other

components that are required to infer the state machine.

The key insight of our state-change algorithm is the

following: We detect that the state of the web application

has changed when we make an identical request and get

a different response. This is the only externally visible

effect of a state-change: Providing the same input causes

a different output.

Using this insight, our state-change detection algo-

rithm works, at a high level, as follows: (1) Crawl the

web application sequentially, making requests based on

a link in the previous response. (2) Assume that the state

stays the same, because there is no evidence to the con-

trary. (3) If we make a request identical to a previous

request and get a different response, then we assume that

some request since the last identical request changed the

state of the web application.

The intuition here is that a Mealy machine will, when

given the same input in the same state, produce the same

output. Therefore, if we send the same request and get a

different output, the state must have changed. By detect-

ing the web application’s state changes only using inputs

and outputs, we are agnostic with respect to both what

constitutes the state information and where the state in-

formation is located. In this way, we are more generic

than approaches that only consider the database to hold

the state of the application, when in fact, the local file

system or even memory could hold part of the web ap-

plication’s state.

The state-change detection algorithm allows us to infer

when the web application’s state has changed, yet four

other techniques are necessary to infer a state machine:

the clustering of similar pages, the identification of state-

changing requests, the collapsing of similar states, and

navigating.

Clustering similar pages. We want to group together

pages that are similar, for two reasons: To handle infinite

sections of web applications that are generated from the

same code (e.g., the pages of a calendar) and to detect

when a response has changed.

Before we can cluster pages, we model them using the

links (anchors and forms) present on the page. The in-

tuition here is that the links describe how the user can

interact with the web application. Therefore, changes to

what a user can do (new or missing links) indicate when

the state of the web application has changed. Also, in-

finite sections of a web application will share the same

link structure and will cluster together.

With our page model, we cluster pages together based

on their link structure. Pages that are in different clusters

are considered different. The details of this approach are

described in Section 4.1.

Determining the state-changing request. The state-

change detection algorithm only says that the state has

changed, however we need to determine which request

actually changed the state. When we detect a state

change, we have a temporal list of requests with identical

requests at the start and end. One of the requests in this

list changed the state. We use a heuristic to determine

which request changed the state. This heuristic favors

newer requests over older requests, POST requests over

GET requests, and requests that have previously changed



the state over those that have never changed the state.

The details are described in Section 4.2.

Collapsing similar states. The state-change detection

algorithm detects only when the state has changed, how-

ever, we need to understand if we returned to a previ-

ous state. This is necessary because if we detect a state

change, we want to know if this is a state we have pre-

viously seen or a brand new state. We reduce this prob-

lem to a graph coloring problem, where the nodes are

the states and an edge between two nodes means that the

states cannot be the same. We add edges to this graph

by using the requests and responses, along with rules to

determine when two states cannot be the same. After the

graph is colored, states that are the same color are col-

lapsed into the same state. Details of this state-merging

technique are provided in Section 4.3.

Navigating. We have two strategies for crawling the web

application.

First, we always try to pick a link in the last response.

The rational behind choosing a link in the last response

is that we emulate a user browsing the web application.

In this way, we are able to handle multi-step processes,

such as previewing a comment before it is committed.

Second, for each state, we make requests that are the

least likely to change the state of the web application.

The intuition here is that we want to first see as much of a

state as possible, without accidentally changing the state,

in case the state change is permanent. Full details of how

we crawl the web application are provided in Section 4.4

4 Technical Details

Inferring a web application’s state machine requires con-

cretely defining aspects such as page clustering or navi-

gation. However, we wish to stress that this is one imple-

mentation of the state machine inference algorithm and

it may not be optimal.

4.1 Clustering Similar Pages

Our reason for grouping similar pages together is

twofold: Prevent infinite scanning of the website by

grouping the “infinite” areas together and detect when

the state has changed by comparing page responses in an

efficient manner.

4.1.1 Page Model

The output of a web application is usually an HTML

document (it can actually be any arbitrary content, but

we only consider HTML content and HTTP redirects).

An HTML page is composed of navigational informa-

tion (anchors and forms) and user-readable content. For

Page

/html/body/div/span/a /html/body/div/form

/user /post

profile.php edit.php

(id, page) (all, sorted) (text, email, id)

(0) (0, 1) (5) (NULL) (5)

Figure 4: Representation of a page’s link vectors stored

in a prefix tree. There are five links present on this tree,

as evidenced by the number of leaf nodes.

our state-change detection algorithm, we are not inter-

ested in changes to the content, but rather to changes in

the navigation structure. We focus on navigation changes

because the links on a page define how a user can inter-

act with the application, thus, when the links change, the

web application’s state has changed.

Therefore, we model a page by composing all the an-

chors and forms. First, every anchor and form is trans-

formed into a vector constructed as follows:

〈dompath, action, params, values〉

where:

• dompath is the DOM (Document Object Model)

path of the HTML link (anchor or form);

• action is a list where each element is from the href

(for anchors) or action (for forms) attribute split

by ‘/’;

• params is the (potentially empty) set of parameter

names of the form or anchor;

• values is the set of values assigned to the parameters

listed in params.

For instance, an anchor tag with the href attribute of

/user/profile.php?id=0&page might have the fol-

lowing link vector:

〈/html/body/div/span/a, /user, profile.php, (id, page), (0)〉

All link vectors of a page are then stored in a prefix

tree. This prefix tree is the model of the page. A prefix

tree for a simple page with five links is shown in Fig-

ure 4. The link vector previously described is highlighted

in bold in Figure 4.



APT

(/html/body/div/span/a, /html/body/div/form) REDIRECT (/html/body/table/div/a)

(/user, /post) /messages (/comments)

(profile.php, edit.php) show.php (all.php)

((id, page), (all, sorted), (text, email, id)) (id) (sorted)

((0), (0, 1), (5), (NULL), (5)) ((5), (5, 3), (1), (YES), (10)) (1) (NULL) (ASC) (DSC) (RAND)

Figure 5: Abstract Page Tree. Every page’s link vector is stored in this prefix tree. There are seven pages in this tree.

The page link vector from Figure 4 is highlighted in bold.

HTTP redirects are handled as a special case, where

the only element is a special redirect element having the

target URL as the value of the location attribute.

4.1.2 Page Clustering

To cluster pages, we use a simple but efficient algorithm.

As described in the previous section, the model of a page

is a prefix tree representing all the links contained in the

page.

These prefix trees are translated into vectors, where

every element of this vector is the set of all nodes of a

given level of the prefix tree, starting from the root. At

this point, all pages are represented by a page link vector.

For example, Figure 4 has the following page link vector:

〈(/html/body/div/span/a, /html/body/div/form),
(/user, /post),
(profile.php, edit.php),
((id, page), (all, sorted), (text, email, id)),
((0), (0, 1), (5), (NULL), (5))〉

The page link vectors for all pages are then stored in

another prefix tree, called the Abstract Page Tree (APT).

In this way, pages are mapped to a leaf of the tree. Pages

which are mapped to the same leaf have identical page

link vectors and are considered to be the same page. Fig-

ure 5 shows an APT with seven pages. The page from

Figure 4 is bold in Figure 5.

However, we want to cluster together pages whose

page link vectors do not match exactly, but are similar

(e.g., shopping cart pages with a different number of el-

ements in the cart). A measure of the similarity between

two pages is how many elements from the beginning of

their link vectors are the same between the two pages.

From the APT perspective, the higher the number of an-

cestors two pages (leaves) share, the closer they are.

Therefore, we create clusters of similar pages by se-

lecting a node in the APT and merging into one cluster,

called an Abstract Page, all the leaves in the correspond-

ing subtree. The criteria for deciding whether to cluster

a subtree of depth n from the root is the following:

• The number of leaves is greater than the median

number of leaves of all its siblings (including itself);

in this way, we cluster only subtrees which have a

larger-than-usual number of leaves.

• There are at least f (n) leaves in the subtree, where

f (n) is inversely related to n. The intuition is that

the fewer ancestors a subtree has in common (the

higher on the prefix tree it is), the more pages it must

have to cluster them together. We have found that

the function f (n) = 8(1+ 1
n+1

) works well by ex-

perimental analysis on a large corpus of web pages.

• The pages share the same dompath and the first ele-

ment of the action list of the page link vector; in this

way, all the pages that are clustered together share

the same link structure with potentially different pa-

rameters and values.

4.2 Determine the State-Changing Request

When a state change is detected, we must determine

which request actually changed the web application’s

state. Recall that we detect a state change when we make

a request that is identical to a previous request, yet has

different output. At this point, we have a list of all the

requests made between the latest request R and the re-

quest R′ closest in time to R such that R is identical to R′.

We use a heuristic to determine which request in this list

changed the web application’s state, choosing the request

i between R′ and R which maximizes the function:

score(ni,transition,ni,seen,distancei)



where:

• ni,transition is the number of times the request caused

a state transition;

• ni,seen is the number of times the request has been

made;

• distancei is how many requests have been made be-

tween request R and request i.

The function score is defined as:

score(ni,transition,ni,seen,distancei) =

1− (1−
ni,transition+1

ni,seen+1
)2 + BOOSTi

distancei+1

BOOSTi is .2 for POST requests and .1 for GET requests.

We construct the score function to capture two prop-

erties of web applications:

1. A POST request is more likely to change the state

than a GET request. This is suggested by the HTTP

specification, and score captures this intuition with

BOOSTi.

2. Resistant to errors. Because we cannot prove that

the selected request changed the state, we need to be

resistant to errors. That is why score contains the ra-

tio of ni,transition to ni,seen. In this way, if we acciden-

tally choose the wrong state-changing request once,

but then, later, make that request many times with-

out changing the state, we are less likely to choose

it as a state-changing request.

4.3 Collapsing Similar States

Running the state detection algorithm on a series of re-

quests and responses will tell us when the state has

changed. At this point, we consider each state unique.

This initial state assignment, though, is not optimal, be-

cause even if we encounter a state that we have seen in

the past, we are marking it as new. For example, in the

case of a sequence of login and logout actions, we are

actually flipping between two states, instead of entering

a new state at every login/logout. Therefore, we need

to minimize the number of different states and collapse

states that are actually the same.

The problem of state allocation can be seen as a graph-

coloring problem on a non-planar graph [27]. Let each

state be a node in the graph G. Let two nodes a and b be

connected by an edge (meaning that the states cannot be

the same) if either of the following conditions holds:

1. If a request R was made when the web application

was in states a and b and results in pages in different

clusters. The intuition is that two states cannot be

the same if we make an identical request in each

state yet receive a different response.

2. The two states a and b have no pages in common.

The idea is to err on the conservative side, thus we

require that two states share a page before collaps-

ing the states into one.

After adding the edges to the graph by following the

previous rules, G is colored. States assigned the same

color are considered the same state.

To color the nodes of G, we employ a custom greedy

algorithm. Every node has a unique identifier, which is

the incremental number of the state as we see it in the

request-response list. The nodes are ordered by identi-

fier, and we assign the color to each node in a sequential

way, using the highest color available (i.e., not used by

its neighbors), or a new color if none is available.

This way of coloring the nodes works very well for

state allocation because it takes into account the temporal

locality of states: In particular, we attempt to assign the

highest available color because it is more likely for a state

to be the same as a recently seen state rather than one

seen at the beginning of crawling.

There is one final rule that we need to add after the

graph is colored. This rules captures an observation

about transitioning between states: If a request, R, tran-

sitions the web application from state a1 to state b, yet,

later when the web application is in state a2, R transitions

the web application to state c, then a1 and a2 cannot be

the same state. Therefore, we add an edge from a1 to a2

and redo the graph coloring.

We continue enforcing this rule until no additional

edges are added. The algorithm is guaranteed to con-

verge because only new edges are added at every step,

and no edges are ever removed.

At the end of the iteration, the graph coloring output

will determine the final state allocation—all nodes with

the same color represent the same state (even if seen at

different stages during the web application crawling pro-

cess).

4.4 Navigating

Typical black-box web vulnerability scanners make con-

current HTTP requests to a web application to increase

performance. However, as we have shown, an HTTP

request can influence the web application’s state, and,

in this case, all other requests would occur in the new

state. Also, some actions require a multi-step, sequential

process, such as adding items to a shopping cart before

purchasing them. Finally, a user of the web application

does not browse a web application in this parallel fash-

ion, thus, developers assume that the users will browse

sequentially.



def fuzz_state_changing( fuzz_request ):

make_request( fuzz_request )

if state_has_changed ():

if state_is_reversible ():

make_requests_to_revert_state ()

if not back_in_previous_state ():

reset_and_put_in_previous_state ()

else:

reset_and_put_in_previous_state ()

Listing 1: Psuedocode for fuzzing state-changing

request.

Our scanner navigates a web application by mimicking

a user browsing the web application sequentially. Brows-

ing sequentially not only allows us to follow the devel-

oper’s intended path through the web application, but it

enables us to detect which requests changed the web ap-

plication’s state.

Thus, a state-aware crawler must navigate the applica-

tion sequentially. No concurrent requests are made, and

only anchors and forms present in the last visited page

are used to determine the next request. In the case of

a page with no outgoing links we go back to the initial

page.

Whenever the latest page does not contain unvisited

links, the crawler will choose a path from the current

page towards another page already seen that contains

links that have not yet been visited. If there is no path

from the current page to anywhere, we go back to the

initial page. The criteria for choosing this path is based

on the following intuitions:

• We want to explore as much of the current state as

possible before changing the state, therefore we se-

lect links that are less likely to cause a state transi-

tion.

• When going from the current page to a page with an

unvisited link, we will repeat requests. Therefore,

we should choose a path that contains links that we

have visited infrequently. This give us more infor-

mation about the current state.

The exact algorithm we employ is Dijkstra Shortest

Path Algorithm [14] with custom edge length. This edge

length increases with the number of times we have previ-

ously visited that link. Finally, the edge length increases

with how likely the link is to cause a state change.

5 State-Aware Fuzzing

After we crawl the web application, our system has in-

ferred, as much as possible, the web application’s state

machine. We use the state machine information, along

with the list of request–responses made by the crawler, to

drive a state-aware fuzzing of the web application, look-

ing for security vulnerabilities.

To fuzz the application in a state-aware manner, we

need the ability to reset the web application to the initial

state (the state when we started crawling). We do not use

this ability when crawling, only when fuzzing. It is nec-

essary to reset the application when we are fuzzing an

irreversible state-changing request. Using the reset func-

tionality, we are able to recover from these irreversible

state changes.

Adding the ability to reset the web application does

not break the black-box model of the web application.

Resetting requires no knowledge of the web application,

and can be easily performed by running the web applica-

tion in a virtual machine.

Our state-aware fuzzing starts by resetting the web ap-

plication to the initial state. Then we go through the re-

quests that the crawler made, starting with the initial re-

quest. If the request does not change the state, then we

fuzz the request as a typical black-box scanner. However,

if the request is state-changing, we follow the algorithm

shown in Listing 1. The algorithm is simple: We make

the request, and if the state has changed, traverse the in-

ferred state machine to find a series of requests to tran-

sition the web application to the previous state. If this

does not exist, or does not work, then we reset the web

application to the initial state, and make all the previ-

ous requests that the crawler made. This ensures that the

web application is in the proper state before continuing

to fuzz.

Our state-aware fuzzing approach can use any fuzzing

component. In our implementation, we used the fuzzing

plugins of an open-source scanner, w3af [37]. The

fuzzing plugins take an HTTP request and generate vari-

ations on that request looking for different vulnerabili-

ties. Our state-aware fuzzing makes those requests while

checking that the state does not unintentionally change.

6 Evaluation

As shown in previous research [16], fairly evaluating

black-box web vulnerability scanners is difficult. The

most important, at least to end users, metric for compar-

ing black-box web vulnerability scanners is true vulner-

abilities discovered. Comparing two scanners that dis-

cover different vulnerabilities is nearly impossible.

There are two other metrics that we use to evaluate

black-box web vulnerability scanners:

• False Positives. The number of spurious vulnera-

bilities that a black-box web vulnerability scanner

reports. This measures the accuracy of the scan-

ner. False positives are a serious problem for the

end user of the scanner—if the false positives are



Application Description Version Lines of Code

Gallery Photo hosting. 3.0.2 26,622

PhpBB v2 Discussion forum. 2.0.4 16,034

PhpBB v3 Discussion forum. 3.0.10 110,186

SCARF Stanford conference and research forum. 2007-02-27 798

Vanilla Forums Discussion forum. 2.0.17.10 43,880

WackoPicko v2 Intentionally vulnerable web application. 2.0 900

WordPress v2 Blogging platform. 2.0 17,995

WordPress v3 Blogging platform. 3.2.1 71,698

Table 1: Applications that we ran the crawlers against to measure vulnerabilities discovered and code coverage.

high, the user must manually inspect each vulner-

ability reported to determine the validity. This re-

quires a security-conscious user to evaluate the re-

ports. Moreover, false positives erode the user’s

trust in the tool and make the user less likely to use

it in the future.

• Code Coverage. The percentage of the web appli-

cation’s code that the black-box web vulnerability

scanner executes while it crawls and fuzzes the ap-

plication. This measures how effective the scanner

is in exercising the functionality of the web applica-

tion. Moreover, code coverage is an excellent met-

ric for another reason: A black-box web vulnera-

bility scanner, by nature, cannot find a vulnerability

along a code path that it does not execute. There-

fore, greater code coverage means that a scanner

has the potential to discover more vulnerabilities.

Note that this is orthogonal to fuzzing capability:

A fuzzer—no matter how effective—will never be

able to discover a vulnerability on a code path that

it does not execute.

We use both the metrics previously described in our

evaluation. However, our main focus is on code cover-

age. This is because a scanner with greater code cover-

age will be able to discover more vulnerabilities in the

web application.

However, code coverage is not a perfect metric. Evalu-

ating raw code coverage percentage numbers can be mis-

leading. Ten percent code coverage of an application

could be horrible or excellent depending on how much

functionality the application exposes. Some code may

be intended only for installation, may be only for ad-

ministrators, or is simply dead code and cannot be ex-

ecuted. Therefore, comparing code coverage normalized

to a baseline is more informative, and we use this in our

evaluation.

6.1 Experiments

We evaluated our approach by running our state-aware-

scanner along with three other vulnerability scanners

Scanner Description Language Version

wget GNU command-line

website downloader.

C 1.12

w3af Web Application At-

tack and Audit Frame-

work.

Python 1.0-stable

skipfish Open-source, high-

performance vulnera-

bility scanner.

C 2.03b

state-

aware-

scanner

Our state-aware vul-

nerability scanner.

Python 1.0

Table 2: Black-box web vulnerability scanners that we

compared.

against eight web applications. These web applications

range in size, complexity, and functionality. In the rest of

this section, we describe the web applications, the black-

box web vulnerability scanners, and the methodology we

used to validate our approach.

6.1.1 Web Applications

Table 1 provides an overview of the web applications

used with a short description, a version number, and lines

of executable PHP code for each application. Because

our approach assumes that the web application’s state

changes only via requests from the user, we made slight

code modifications to three web applications to reduce

the influence of external, non-user driven, forces, such as

time. Please refer to Appendix A for a detailed descrip-

tion of each application and what was changed.

6.1.2 Black-Box Web Vulnerability Scanners

This section describes the black-box web vulnerability

scanners that were compared against our approach, along

with the configuration or settings that were used. Ta-

ble 2 contains a short description of each scanner, the

scanner’s programming language, and the version num-

ber. Appendix B shows the exact configuration that was

used for each scanner.



wget is a free and open-source application that is used

to download files from a web application. While not a

vulnerability scanner, wget is a crawler that will make

all possible GET requests it can find. Thus, it provides an

excellent baseline because vulnerability scanners make

POST requests as well as GET requests and should dis-

cover more of the application than wget.

wget is launched with the following options: recur-

sive, download everything, and ignore robots.txt.

w3af is an open-source black-box web vulnerability

scanner which has numerous fuzzing modules. We en-

abled the blindSqli, eval, localFileInclude, osCommand-

ing, remoteFileInclude, sqli, and xss fuzzing plugins.

skipfish is an open-source black-box web vulnerability

scanner whose focus is on high speed and high perfor-

mance. Skipfish epitomizes the “shotgun” approach, and

boasts about making more than 2,000 requests per sec-

ond to a web application on a LAN. Skipfish also at-

tempts to guess, via a dictionary or brute-force, directory

names. We disabled this behavior to be fair to the other

scanners, because we do not want to test the ability to

guess a hidden directory, but how a scanner crawls a web

application.

state-aware-scanner is our state-aware black-box vul-

nerability scanner. We use HtmlUnit [19] to issue the

HTTP requests and render the HTML responses. Af-

ter crawling and building the state-graph, we utilize the

fuzzing plugins from w3af to generate fuzzing requests.

Thus, any improvement in code coverage of our crawler

over w3af is due to our state-aware crawling, since the

fuzzing components are identical.

6.1.3 Methodology

We ran each black-box web vulnerability scanner against

a distinct, yet identical, copy of each web application.

We ran all tests on our local cloud [34].

Gallery, WordPress v2, and WordPress v3 do not re-

quire an account to interact with the website, thus each

scanner is simply told to scan the test application.

For the remaining applications (PhpBB v2, PhpBB v3,

SCARF, Vanilla Forums, and WackoPicko v2), it is diffi-

cult to fairly determine how much information to give the

scanners. Our approach only requires a username/pass-

word for the application, and by its nature will discover

the requests that log the user out, and recover from them.

However, other scanners do not have this capability.

Thus, it is reasonable to test all scanners with the same

level of information that we give our scanner. However,

the other scanners lack the ability to provide a username

and password. Therefore, we did the next best thing: For

those applications that require a user account, we log into

the application and save the cookie file. We then instruct

the scanner to use this cookie file while scanning the web

application.

While we could do more for the scanners, like prevent-

ing them from issuing the logout request for each appli-

cation, we believe that our approach strikes a fair com-

promise and allows each scanner to decide how to crawl

the site. Preventing the scanners from logging out of the

application also limits the amount of the application they

will see, as they will never see the web application from

a guest’s perspective.

6.2 Results

Table 3 shows the results of each of the black-box web

vulnerability scanners against each web application. The

column “% over Baseline” displays the percentage of

code coverage improvement of the scanner against the

wget baseline, while the column “Vulnerabilities” shows

total number of reported vulnerabilities, true positives,

unique true positives among the scanners, and false pos-

itives.

The prototype implementation of our state-aware-

scanner had the best code coverage for every application.

This verifies the validity of our algorithm: Understand-

ing state is necessary to better exercise a web application.

Figure 6 visually displays the code coverage percent

improvement over wget. The most important thing to

take from these results is the improvement state-aware-

scanner has over w3af. Because we use the fuzzing com-

ponent of w3af, the only difference is in our state-aware

crawling. The results show that this gives state-aware-

scanner an increase in code coverage from as little as half

a percent to 140.71 percent.

Our crawler discovered three unique vulnerabilities,

one each in PhpBB v2, SCARF, and WackoPicko v2.

The SCARF vulnerability is simply a XSS injection on

the comment form. w3af logged itself out before fuzzing

the comment page. skipfish filed the vulnerable page un-

der “Response varies randomly, skipping checks.” How-

ever, the content of this page does not vary randomly, it

varies because skipfish is altering it. This random cate-

gorization also prevents skipfish from detecting the sim-

ple XSS vulnerability on WackoPicko v2’s guestbook.

This result shows that a scanner needs to understand the

web application’s internal state to properly decide why a

page’s content is changing.

Skipfish was able to discover 15 vulnerabilities in

Vanilla Forums. This is impressive, however, 14 stem

from a XSS injection via the referer header on an error

page. Thus, even though these 14 vulnerabilities are on

different pages, it is the same root cause.

Surprisingly, our scanner produced less false positives

than w3af. All of w3af’s false positives were due to

faulty timing detection of SQL injection and OS com-



Scanner Application % over Baseline Vulnerabilities

Reported True Unique False

state-aware-scanner Gallery 16.20% 0 0 0 0

w3af Gallery 15.77% 3 0 0 3

skipfish Gallery 10.96% 0 0 0 0

wget Gallery 0%

state-aware-scanner PhpBB v2 38.34% 4 3 1 1

skipfish PhpBB v2 5.10% 3 2 0 1

w3af PhpBB v2 1.04% 5 1 0 4

wget PhpBB v2 0%

state-aware-scanner PhpBB v3 115.45% 0 0 0 0

skipfish PhpBB v3 60.21% 2 0 0 2

w3af PhpBB v3 16.16% 0 0 0 0

wget PhpBB v3 0%

state-aware-scanner SCARF 67.03% 1 1 1 0

skipfish SCARF 55.66% 0 0 0 0

w3af SCARF 21.55% 0 0 0 0

wget SCARF 0%

state-aware-scanner Vanilla Forums 30.89% 0 0 0 0

w3af Vanilla Forums 1.06% 0 0 0 0

wget Vanilla Forums 0%

skipfish Vanilla Forums -2.32% 17 15 2 2

state-aware-scanner WackoPicko v2 241.86% 5 5 1 0

skipfish WackoPicko v2 194.77% 4 3 1 1

w3af WackoPicko v2 101.15% 5 5 1 0

wget WackoPicko v2 0%

state-aware-scanner WordPress v2 14.49% 0 0 0 0

w3af WordPress v2 12.49% 0 0 0 0

wget WordPress v2 0%

skipfish WordPress v2 -18.34% 1 0 0 1

state-aware-scanner WordPress v3 9.84% 0 0 0 0

w3af WordPress v3 9.23% 3 0 0 3

skipfish WordPress v3 3.89% 1 0 0 1

wget WordPress v3 0%

Table 3: Results of each of the black-box web vulnerability scanners against each application. The table is sorted by

the percent increase in code coverage over the baseline scanner, wget.

manding. We believe that using HtmlUnit prevented

our scanner from detecting these spurious vulnerabili-

ties, even though we use the same fuzzing component

as w3af.

Finally, our approach inferred the state machines of

the evaluated applications. These state machines are very

complex in the large applications. This complexity is

because modern, large, application have many actions

which modify the state. For instance, in WackoPicko v2,

a user can log in, add items to their cart, comment on

pictures, delete items from their cart, log out of the appli-

cation, register as a new user, comment as this new user,

upload a picture, and purchase items. All of these ac-

tions interact to form a complex state machine. The state

machine our scanner inferred captures this complex se-

ries of state changes. The inferred WackoPicko v2 state

machine is presented in Figure 7.

7 Limitations

Although dynamic page generation via JavaScript is sup-

ported by our crawler as allowed by the HtmlUnit frame-

work [19], proper AJAX support is not implemented.

This means that our prototype executes JavaScript when

the page loads, but does not execute AJAX calls when

clicking on links.

Nevertheless, our approach could be extended to han-

dle AJAX requests. In fact, any interaction with the web

application always contains a request and response, how-

ever the content of the response is no longer an HTML

page. Thus, we could extend our notion of a “page” to

typical response content of AJAX calls, such as JSON or

XML. Another way to handle AJAX would be to follow

a Crawljax [33] approach and covert the dynamic AJAX

calls into static pages.
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Figure 6: Visual representation of the percentage increase of code coverage over the baseline scanner, wget. Important

to note is the gain our scanner, state-aware-scanner, has over w3af, because the only difference is our state-aware

crawling. The y-axis range is broken to reduce the distortion of the WackoPicko v2 results.

Another limitation of our approach is that our scanner

cannot be used against a web application being accessed

by other users (i.e., a public web application), because

the other users may influence the state of the application

(e.g., add a comment on a guestbook) and confuse our

state change detection algorithm.

8 Related Work

Automatic or semi-automatic web application vulnera-

bility scanning has been a hot topic in research for many

years because of its relevance and its complexity.

Huang et al. developed a tool (WAVES) for assess-

ing web application security with which we share many

points [24]. Similarly to us, they have a scanner for find-

ing the entry points in the web application by mimicking

the behavior of a web browser. They employ a learn-

ing mechanism to sensibly fill web form fields and al-

low deep crawling of pages behind forms. Attempts to

discover vulnerabilities are carried out by submitting the

same form multiple times with valid, invalid, and faulty

inputs, and comparing the result pages. Differently from

WAVES, we are using the knowledge gathered by the

first-phase scanner to help the fuzzer detect the effect of

a given input. Moreover, our first-phase scanner aims not

only at finding relevant entry-points, but rather at build-

ing a complete state-aware navigational map of the web

application.

A number of tools have been developed to try to au-

tomatically discover vulnerabilities in web applications,

produced as academic prototypes [4,17,22,25,28,29,31],

as open-source projects [8,9,37], or as commercial prod-

ucts [1, 23, 26, 35].

Multiple projects [6,16,42,43] tackled the task of eval-

uating the effectiveness of popular black-box scanners

(in some cases also called point-and-shoot scanners).

The common theme in their results is a relevant discrep-

ancy in vulnerabilities found across scanners, along with

low accuracy. Authors of these evaluations acknowledge

the difficulties and challenges of the task [21, 43]. In

particular, we highlighted how more deep crawling and

reverse engineering capabilities of web applications are

needed in black-box scanners, and we also developed the

WackoPicko web application which contains known vul-

nerabilities [16]. Similarly, Bau et al. investigated the

presence of room for research in this area, and found im-

provement is needed, in particular for detecting second-

order XSS and SQL injection attacks [6].

Reverse engineering of web applications has not been

widely explored in the literature, to our knowledge.

Some approaches [13] perform static analysis on the

code to create UML diagrams of the application.

Static analysis, in fact, is the technique mostly em-

ployed for automatic vulnerability detection, often com-

bined with dynamic analysis.
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Figure 7: State machine that state-aware-scanner inferred for WackoPicko v2.

Halfond et al. developed a traditional black-box vul-

nerability scanner, but improved its result by leveraging

a static analysis technique to better identify input vec-

tors [22].

Pixy [28] employed static analysis with taint propa-

gation in order to detect SQL injection, XSS and shell

command injection, while Saner [4] used sound static

analysis to detect failures in sanitization routines. Saner

also takes advantage of a second phase of dynamic anal-

ysis to reduce false positives. Similarly, WebSSARI [25]

also employed static analysis for detecting injection vul-

nerabilities, but, in addition, it proposed a technique for

runtime instrumentation of the web application through

the insertion of proper sanitization routines.

Felmetsger et al. investigated an approach for detect-

ing a different type of vulnerability (some categories of

logic flaws) by combining execution traces and symbolic

model checking [17]. Similar approaches are also used

for generic bug finding (in fact, vulnerabilities could be

considered a subset of the general bug category). Csall-

ner et al. employ dynamic traces for bug finding and for

dynamic verification of the alerts generated by the static

analysis phase [12]. Artzi et al., on the other hand, use

symbolic execution and model checking for finding gen-

eral bugs in web applications [3].

On a completely separate track, efforts to improve web

application security push the developers toward writing

secure code in the first place. Security experts are ty-



ing to achieve this goal by either educating the devel-

opers [40] or designing frameworks which prohibit the

use of bad programming practices and enforce some se-

curity constraints in the code. Robertson and Vigna de-

veloped a strongly-typed framework which statically en-

forces separation between structure and content of a web

page, preventing XSS and SQL injection [38]. Also

Chong et al. designed their language for developers to

build web applications with strong confidentiality and

integrity guarantees, by means of compile-time and run-

time checks [10].

Alternatively, consequences of vulnerabilities in web

applications can be mitigated by trying to prevent the

attacks before they reach some potentially vulnerable

code, like, for example, in the already mentioned Web-

SSARI [25] work. A different approach for blocking at-

tacks is followed by Scott and Sharp, who developed a

language for specifying a security policy for the web ap-

plication; a gateway will then enforce these policies [39].

Another interesting research track deals with the prob-

lem of how to explore web pages behind forms, also

called the hidden web [36]. McAllister et al. monitor

user interactions with a web application to collect sen-

sible values for HTML form submission and generate

test cases that can be replayed to increase code cover-

age [32]. Although not targeted to security goals, the

work of Raghavan and Garcia-Molina is relevant for our

project for their contribution in classification of different

types of dynamic content and for their novel approach

for automatically filling forms by deducing the domain

of form fields [36]. Raghavan and Garcia-Molina car-

ried out further research in this direction, by reconstruct-

ing complex and hierarchical query interfaces exposed

by web applications.

Moreover, Amalfitano et al. started tackling the prob-

lem of reverse engineering the state machine of client-

side AJAX code, which will help in finding the web ap-

plication server-side entry points and in better understat-

ing complex and hierarchical query interfaces [2].

Finally, we need to mention the work by Berg et al.

in reversing state machines into a Symbolic Mealy Ma-

chine (SMM) model [7]. Their approach for reversing

machines cannot be directly applied to our case because

of the infeasibility of fully exploring all pages for all the

states, even for a small subset of the possible states. Nev-

ertheless, the model they propose for a SMM fits our

needs.

9 Conclusion

We have described a novel approach to inferring, as

much as possible, a web application’s internal state ma-

chine. We leveraged the state machine to drive the state-

aware fuzzing of web applications. Using this approach,

our crawler is able to crawl—and thus fuzz—more of the

web application than a classical state-agnostic crawler.

We believe our approach to detecting state change by dif-

ferences in output for an identical response is valid and

should be adopted by all black-box tools that wish to un-

derstand the web application’s internal state machine.
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A Web Applications

This section describes the web applications along with

the functionality against which we ran the black-box web

vulnerability scanner.

Gallery is an open-source photo hosting application.

The administrator can upload photos and organize them

into albums. Guests can then view and comment on

the uploaded photos. Gallery has AJAX functional-

ity but gracefully degrades (is fully functional) without

JavaScript. No modifications were made to the applica-

tion.

PhpBB v2 is an open-source forum software. It allows

registered users to perform many actions such as cre-

ate new threads, comment on threads, and message other

users. Version 2 is notorious for the amount of security

vulnerabilities it contains [6], and we included it for this

reason. We modified it to remove the “recently online”

section on pages, because this section is based on time.

PhpBB v3 is the latest version of the popular open-

source forum software. It is a complete rewrite from

Version 2, but retains much of the same functionality.

Similar to PhpBB v2, we removed the “recently online”

section, because it is time-based.

SCARF, the Stanford Conference And Research Fo-

rum, is an open-source conference management sys-

tem. The administrator can upload papers, and regis-

tered users can comment on the uploaded papers. We

included this application because it was used by previ-

ous research [5,11,30,31]. No modifications were made

to this application.

Vanilla Forums is an open-source forum software sim-

ilar in functionality to PhpBB. Registered users can cre-

ate new threads, comment on threads, bookmark in-

teresting threads, and send a message to another user.

Vanilla Forums is unique in our test set in that it uses

the path to pass parameters in a URL, whereas all other

applications pass parameters using the query part of

the URL. For instance, a specific user’s profile is GET

/profile/scanner1, while a discussion thread is lo-

cated at GET /discussion/1/how-to-scan. Vanilla

Forums also makes extensive use of AJAX, and does not

gracefully degrade without JavaScript. For instance, with

JavaScript disabled, posting a comment returns a JSON

object that contains the success or failure of the com-

ment posting, instead of an HTML response. We modi-

fied Vanilla Forums by setting an XSRF token that it used

to a constant value.

WackoPicko v2 is an open-source intentionally vulnera-

ble web application which was originally created to eval-

uate many black-box web vulnerability scanners [16]. A

registered user can upload pictures, comment on other

user’s pictures, and purchase another user’s picture. Ver-

sion 2 contains minor tweaks from the original paper, but

no additional functionality.

WordPress v2 is an open-source blogging platform. An

administrator can create blog posts, where guests can

leave comments. No changes were made to this appli-

cation.

WordPress v3 is an up-to-date version of the open-

source blogging platform. Just like the previous version,

administrators can create blog posts, while a guest can

comment on blog posts. No changes were made to this

application.

B Scanner Configuration

The following describes the exact settings that were used

to run each of the evaluated scanners.

• wget is run in the following way:

wget -rp -w 0 --waitretry=0 -nd

--delete-after --execute robots=off

• w3af settings:

misc-settings

set maxThreads 0

back

plugins

discovery webSpider

audit blindSqli, eval,

localFileInclude, osCommanding,

remoteFileInclude, sqli, xss

• skipfish is run in the following way:

skipfish -u -LV -W /dev/null -m 10
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