
Automated Tracing and Visualization of Software Security
Structure and Properties

Wenbin Fang Barton P. Miller James A. Kupsch
Computer Sciences Department, University of Wisconsin

Madison, WI, USA
{wenbin,bart,kupsch}@cs.wisc.edu

ABSTRACT

Visualizing a program’s structure and security characteris-
tics is the intrinsic part of in-depth software security as-
sessment. Such an assessment is typically an analyst-driven
task. The visualization for security analysis is usually labor-
intensive, since analysts need to read documents and source
code, synthesize trace data from multiple sources (e.g., sys-
tem utilities like lsof or strace). To help address this prob-
lem, we propose SecSTAR, a tool that dynamically collects
the key information from a system and automatically pro-
duces the necessary diagrams to support the first steps of
widely-used security analysis methodologies, such as Mi-
crosoft Threat Modeling and UW/UAB First Principles Vul-
nerability Assessment (FPVA). SecSTAR uses an efficient
dynamic binary instrumentation technique, self-propelled in-
strumentation, to collect trace data from production sys-
tems during runtime then automatically produces diagrams.
Furthermore, SecSTAR allows analysts to interactively view
and explore diagrams in a web browser. For example, ana-
lysts can navigate the diagrams through time and at differ-
ent levels of detail. We demonstrated the usefulness of us-
ing SecSTAR to produce FPVA-style diagrams for a widely
used and complex distributed middleware system, the Con-
dor high-throughput scheduling system. Compared with the
original manual approach in FPVA, SecSTAR shortened the
initial diagram construction time from months to hours and
constructed a more accurate diagram visualizing the com-
plete runtime structure of Condor.

1. INTRODUCTION

In-depth assessment of software security is typically an
analyst-driven task, and visualization of the program’s struc-
ture and security characteristics is the intrinsic part of this
assessment task. For example, two widely used assessment
methodologies, Microsoft Threat Modeling (MTM) [15] and
the UW/UAB First Principles Vulnerability Assessment (FP-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VizSec’12 October 15 2012, Seattle, WA, USA
Copyright 2012 ACM 978-1-4503-1413-8/12/10 ...$15.00.

VA) [5] both require developers or analysts to construct di-
agrams of software systems to represent key architectural
components of the system, interactions between these com-
ponents, the privilege levels of each component, delegation of
privilege, and how components interact with high-value re-
sources such as files, databases and external services. These
diagrams are used as a road map for later in depth (often
manual) inspection of the code.

However, constructing such diagrams requires extensive
manual effort, causing the analyst to conduct a careful read-
ing of source code looking for key operations such as those
that operate on files and sockets or modify privilege levels.
These manual static inspections of the source code are of-
ten augmented by trace data from a variety of tools such
as lsof or strace. Data is collected and synthesized from a
variety of sources, in different formats, to provide the ba-
sis for the analyst to manually draw the various structural
diagrams. To help address this problem, we are developing
an approach to dynamically collect the key information for
such diagrams and automatically produce the necessary di-
agrams to support the first steps of MTM or FPVA. This
approach is embodied in a tool called the Security System
Tracing, Analysis and Reporting (SecSTAR).

SecSTAR operates in two steps, data collection and vi-
sualization. We leverage a flexible and efficient dynamic
binary instrumentation technique, self-propelled instrumen-
tation [9], to collect trace data from production systems. Us-
ing self-propelled instrumentation, SecSTAR produces trace
data for analyst-specified events in unmodified production
systems during runtime. We monitor and trace key events,
such as those involved with process creation and destruction,
socket creation and connection, privilege level changes, and
file I/O operations. The trace data also contains temporal
information, so that the later analysis and visualization steps
can analyze for time-based risks such as race conditions and
animate the visualizations of the program structure.

The second step of SecSTAR is a postmortem operation
that visualizes the trace data generated from the data collec-
tion step. In the visualization, the trace data is used to gen-
erate SVG [18] diagrams using Graphviz dot layout [2], then
these diagrams can be interactively viewed and explored in a
web browser. The SecSTAR visualizer allows the analyst to
navigate the diagrams through time and at different levels
of detail. This process is summarized in Figure 1.

To evaluate the effectiveness of SecSTAR, we conducted a
case study by using it to automatically produce FPVA analy-
sis diagrams for a real world, widely used, and complex dis-
tributed middleware system: the Condor high-throughput

Data Collection

Binary Code Trace Data

Visualization

 Diagram Display Interface
Analyst

Figure 1: Data flow of SecSTAR

scheduling system [6, 16]. We had previously conducted an
in depth, manual FPVA assessment on Condor. This as-
sessment was conducted over a nine month period by an
experienced analyst, and resulted in finding several serious
vulnerabilities that were not able to be found using current
source code analysis tools [4]. As part of the FPVA assess-
ment, the analyst manually produced the associated analy-
sis diagrams. Our use of SecSTAR allowed us to compress
these initial steps of FPVA to a brief and interactive task,
significantly improving the productivity of security analysts.
This paper is organized as follows. Section 2 surveys re-

lated topics on visualization for security analysis and intro-
duces FPVA and MTM. Section 3 and Section 4 describe
the two steps of SecSTAR: data collection and visualization.
The case study on constructing FPVA diagrams is presented
in Section 5. We conclude and list our path for future work
in Section 6.

2. RELATED WORK

This section first surveys previous work on visualization
in security analysis, then we introduce two widely-used se-
curity analysis methodologies that could benefit from Sec-
STAR, Microsoft Threat Modeling (MTM) and UW/UAB
First Principles Vulnerability Assessment (FPVA).

2.1 Visualization for Security Analysis
Visualization in security analysis is typically divided into

two phases, data collection and visualization. We survey
four pieces of related work [3, 17, 19, 20] and compare our
SecSTAR with them.
Xia et al. [19] visualize program flow to aid forensics ex-

perts in detecting and identifying significant events for intru-
sion detection and recovery. For the data collection phase,
they modify the Linux kernel to trace system calls related to
process creation and file access. By contrast, our SecSTAR
performs lightweight data collection using self-propelled in-
strumentation that collects data only for user-specified pro-
cesses and directly instruments the program binary without
modifying the kernel. In addition, they store trace data
in a relational database system for ease of data analysis,
while SecSTAR stores trace data in XML files that are both
program- and human-readable and can be easily dissemi-
nated to the public. For the visualization, they show pro-
cess trees, where each process is a node, and its child pro-
cesses and accessed files are child nodes of it. They highlight
the processes and files that are tainted after taint propaga-
tion for estimation of damage suffered following an intru-
sion. They do not include information about interprocess
communication or privilege level of each process. Their vi-
sualization is static, showing temporal information only for

file access events.
Yurcik et al. [20] designed and implemented a visualiza-

tion framework, NVisionCC, to help system administrators
monitor the security status of a cluster. NVisionCC only
monitors and visualizes process status, because they believe
that an attacker cannot gain access to cluster nodes with-
out running at least some processes, and the appearance of
unexpected processes on a cluster node is a strong indicator
that the security of the node has been compromised. The
visualization in NVisionCC is coarse-grained, showing only
the presence or absence of certain processes. NVisionCC
does not visualize relationships among processes (e.g., the
parent-child relationship and communications) or other se-
curity characteristics (e.g., privilege level changes).

Fink et al. [3] designed a tool to help system administra-
tors visually correlate process activities and network traffic
for ease of identifying processes that have communication
patterns outside their normal behaviors. The data collec-
tion step is performed by either using a modified Linux ker-
nel or third party tools on Windows such as IP Helper [7]
and WinPcap [13] that can monitor only a limited number
of events. For the visualization, they show a client/server
layout of communications, where client processes are on the
left side in the display and server processes are on the right.
Edges connecting two processes represent network communi-
cations. Their visualization does not show process hierarchy
and other important security characteristics (e.g., privilege
level).

Trinius et al. [17] designed an automatic technique to an-
alyze and visualize malware behavior. In the data collec-
tion phase, a single process runs in a sandboxed environ-
ment, where the system calls made by the process, such as
changes to the filesystem or network activity, are recorded.
Their visualization approach uses a treemap to summarize
the actions performed by the malware sample and a thread
graph to summarize the temporal behavior of each thread
in the sample. Their approach does not support distributed
systems and animation.

2.2 MTM and FPVA
MTM [15] is a security analysis methodology that is aimed

at identifying and rating the most likely threats affecting an
application. This methodology requires developers to use
the Threat Modeling Tool [8] to manually create a high-
level architecture diagram that depicts the structure of soft-
ware systems, including subsystems and physical deploy-
ment characteristics. Figure 2a1 is an example of such di-
agram. After developing the architectural overview of the
application, this methodology applies a list of pre-defined
and known possible threats and tries to see if the applica-
tion is vulnerable to these threats. Microsoft suggests that
the developers participate in the threat identification.

FPVA [5] is an analyst-centric (often manual) technique.
It aims to focus the analyst’s attention on the parts of the
software system and its resources that are most likely to con-
tain vulnerabilities. Initial steps in FPVA produce diagrams
that show the system’s key architectural components, inter-
actions between these components, each component’s privi-
lege level, privilege delegation, and how components interact
with high-value resources. These diagrams form the basis for

1From http://technet.microsoft.com/en-us/security/
hh855044.aspx

(a) MTM

!"#$%&'()**$+&(,-.)(./&)

!"#$(0-)1.$2&'()**

*&3
2'*.4&)*50

$6!$2&-7-0)4)*$

/*)&

!"#$(0-)1.$,'*.

!"#$89*.)&

!"#$*)&7)&$,'*.

:;+<$%'*.4&)!=>

:;+<$,'*.

!"#$94)1.

?@$('11)(.

A@$B'&C

D@$9/.,)1.-(9.)

DEF@$/*)$:;+<

F@G'H'&C

(b) FPVA

Figure 2: Sample Diagrams of MTM and FPVA

a risk assessment of the system, identifying which parts in
the system most immediately need evaluation. Figure 2b is
an example of such diagrams, showing the key components of
the Storage Resource Broker (SRB) [1, 14], the interactions
between these components, and each component’s privilege
level. FPVA has a different philosophy from MTM, as it is
performed by an assessment team independent from the de-
velopers. Nevertheless, the analysis products produced by
both methodologies are quite similar.
As we design SecSTAR to be general purpose for secu-

rity analysis methodologies, security analysts can apply it to
both MTM and FPVA. The case study in our paper focuses
on generating diagrams of FPVA. Nevertheless, analysts can
create diagrams in the MTM style by slightly modifying the
script in SecSTAR.

3. DATA COLLECTION

We discuss the data collection step for SecSTAR in this
section. We introduce self-propelled instrumentation as an
infrastructure, then we describe the specific tool based on
this infrastructure for collecting trace data in SecSTAR.

3.1 Self-propelled Instrumentation
Self-propelled instrumentation is a binary instrumentation

technique that dynamically injects a fragment of code into
an application process on demand [10,11]. The instrumenta-
tion is inserted ahead of the control flow within the process
and is propagated into other processes, following communi-
cation events, crossing host boundaries, and collecting a dis-
tributed function-level trace of the execution. Self-propelled
instrumentation contains two major components. The first
is the Agent. It is a shared library that automatically in-
serts and propagates a piece of payload code at function call
events in a running process, where the payload code con-
tains user-defined logic, such as generating trace data for
later inspection. The second component is the Injector. It
is a process that causes an application process to load the
Agent shared library, where the Injector should have at least
the same privilege as the application process. Self-propelled

instrumentation does binary instrumentation within the ap-
plication process’s address space, avoiding use of the de-
bugging interfaces (e.g., Linux ptrace and Windows debug
interface) and costly interprocess communications. There-
fore, self-propelled instrumentation does not add significant
overhead to a process during runtime.

To enable data collection in a system, analysts use the In-
jector to load the Agent into the system’s processes, so that
the payload code in the Agent can be triggered to collect
trace data. The earlier that analysts load the Agent into
the system in the communication flow, the more complete
trace data they can collect, thus the more complete archi-
tectural diagram they can construct from the trace data.
For example, in a client/server system, if analysts inject the
Agent into a client process that is about to make a request
to a server process, then they can capture a complete flow
of events resulting from that request.

Previously, we prototyped and used self-propelled instru-
mentation for problem diagnosis in distributed systems [9].
In our current project, we have re-engineered self-propelled
instrumentation for robustness and portability, and now we
have been applying it to security analysis.

3.2 Data Collection Tool
With self-propelled instrumentation, security analysts can

easily build custom data collection tools by writing payload
code in C or C++. The payload code is encapsulated in a
payload function that will be invoked at function call events.
In a payload function, analysts can use self-propelled instru-
mentation’s API to get the arguments and the return value
for a function call where the payload function is invoked.
The most useful functions to instrument are typically those
in system libraries. For example, when a Linux user pro-
cess invokes fork, we can get the process ID (or PID) of
the newly created child process from fork’s return value and
write a trace record with a variety of information, includ-
ing the parent and child PID’s. The payload code can also
inspect the /proc file system to get additional information
about the current process, such as the executable name and
command line arguments.

Each instrumented process produces an XML file contain-
ing trace data that records two types of information. First,
it records the static information about a process at the time
the Agent is loaded, such as the executable name and PID.
Second, it records events as they occur during operation
of the system. For each event, it records a timestamp (in
microseconds) for visualizing temporal data and the data
specific to an event type, such as PID for starting a new
process, or host and port information when initiating a net-
work connection. In our current design, SecSTAR supports
a variety of Linux events, including process creation (fork,
clone, and fork-then-exec), process destruction (exit), priv-
ilege level changes (setuid), connection establishment (con-
nect and accept), network communication (send and recv),
and file access (open, read, write and close).

4. VISUALIZATION
Visualization in SecSTAR is a postmortem operation on

the per-process XML trace data collected during runtime.
SecSTAR constructs diagrams in SVG format, mapping from
trace data to a representation that is rendered on the display.
Security analysts then use a web-based interface to view
those diagrams and interactively explore details in them for
security analysis.

4.1 Diagram Construction
SecSTAR first parses all per-process XML trace data then

extracts necessary information for generating diagrams us-
ing Graphviz dot layout that is suitable for representing hi-
erarchical or layered drawings of directed graphs.
Parsing XML trace data, SecSTAR extracts time-ordered

events (e.g., process creation and connection establishment)
and each process’s static information such as the executable
name, PID, and initial privilege level. Based on the ex-
tracted information, SecSTAR uses Graphviz to produce di-
rected diagrams in SVG format visualizing the system ar-
chitecture and security characteristics. The reason to use
SVG format is two-fold. First, as SVG is an XML-based
graphic format, we are able to render it in browsers and run
JavaScript to control the way an SVG image is displayed.
For example, we can programmatically move a packet along
a communication line in the diagram. Second, an SVG im-
age can be scaled without degrading quality because it is
vector-based.
SecSTAR aims to generate simple, informative, and com-

pact diagrams for security analysis. Figure 3 shows a sam-
ple diagram generated by SecSTAR. The major elements in
the diagram are concise, including only circle nodes (pro-
cesses), edges (relationships among processes), and rectan-
gles (hosts). A variety of security characteristics can be
visualized on the same diagram by augmenting basic ele-
ments with labels, colors and styles. For example, different
edge styles represent distinct relationships among processes
(e.g., the parent-child relationship and network communi-
cations), and the node color represents a process’s privilege
level. Furthermore, we apply two optimizations in the dia-
gram to make it compact, so that the display space is well
utilized. First, we use one or a few letters in a node to abbre-
viate the name of the process’s executable. By doing this,
the node size stays small, making the whole diagram com-
pact. Looking at these letters, security analysts can easily
identify the processes having the same executable and refer

Legend

abbr. for executables:
p: program1.exe
r : program2.exe
o: program3.exe

Colors for privilege level:

Nodes and edges:

 A process

 Multiple
 identical
 processes

fork

connect

clone

Host

root user1 user2

Figure 3: Sample diagram generated by SecSTAR

to the legend for the full name. Second, we use a double-
circle node to represent a group of nodes having the same
parent, the same executable, and the same privilege level.
This optimization prevents the diagram from becoming too
wide and too sparse when there are many identical child
processes in the system, for example, when a server process
forks a new child process to handle each request.

The diagrams in SVG format are the building blocks of
animating temporal data in the system. For our current
implementation, SecSTAR generates a list of static SVG di-
agrams, each of which is a snapshot of the system architec-
ture after an event is triggered. Thus, each diagram becomes
a frame in an animation that will be achieved when these
diagrams are displayed in sequence in a web browser. In
the future, we plan to directly animate elements in a SVG
diagram using JavaScript for more efficient storage and pro-
cessing.

4.2 Interactive Interfaces
SecSTAR’s web-based interface displays the architecture,

resource, and privilege diagram in the middle, descriptions
of events on the left, the legend on the right, and control
widgets on the bottom (Figure 4). SecSTAR provides five
types of controls for the security analyst, Navigate, Elab-
orate, Annotate, Filter, and Relate. In this section, we
describe these controls.

Navigate. Using SecSTAR, security analysts can navi-
gate through changes of the system’s runtime structure and
security characteristics over time, which enables analysts to
explore temporal event patterns for anomalous behaviors in
the system or to get an overview of the system’s runtime be-
havior. SecSTAR provides two forms of Navigate. First,
analysts can manually navigate by clicking on Previous and
Next buttons or adjusting the slider bar that represents the
timeline for the system’s execution lifetime. Second, they
can click on the Play button to enable animation of the his-
tory.

Elaborate. After getting an overview of the system’s
runtime behavior via Navigate, analysts can explore de-
tails of particular components in the system on demand.
SecSTAR allows analysts to zoom in or out of the diagram.
Zooming changes the scale of the diagram but does not fun-

Figure 4: A screenshot of SecSTAR interactive interface

damentally alter the representation. Furthermore, when the
analyst hovers the mouse over an element on the diagram,
a tooltip is shown that provides detailed information about
that element such as the full executable name and PID for
a process.
Annotate. It can be difficult to infer the accurate seman-

tics of elements on the diagram, e.g., the exact intention for
a specific operation such as why the system changes a pro-
cess’s privilege at a certain point, or why the system initiates
a network connection. To further improve its visualization,
SecSTAR allows analysts to annotate the diagram by creat-
ing a label for an element, incorporating information from
other sources such as development documents and source
code.
Filter. Analysts can narrow down the set of elements

being displayed on specific conditions such as showing only
processes from a particular host, having a particular privi-
lege level, running the same executable, or accessing a par-
ticular file.
Relate. When analysts click on an element on the di-

agram, SecSTAR can automatically highlight related ele-
ments, such as a node’s immediate neighbor nodes and all
edges incident to it, all nodes with the same color as a node,
and all edges with the same style as an edge. Relate saves
the analyst’s time to figure out questions like what processes
are talking to this particular one, what processes are chil-
dren of this process, and whether this process connects to
a remote host. Relate is especially useful when there are
many crossing communication edges.

5. CASE STUDY

We conducted a case study using SecSTAR to produce
FPVA-style visualization for a complex, real world middle-
ware system, the Condor high-throughput scheduling sys-
tem [5, 12]. Condor is used worldwide to enable scientists,
engineers, financiers, and social scientists to reliably exe-
cute extremely large and complex computational jobs. In
this section, we describe the use case of generating diagrams
using both SecSTAR and the original manual approach from
FPVA. We then compare the cost of constructing diagrams
and the quality of these diagrams in both approaches. Fi-
nally, we discuss the use of SecSTAR’s interactive interface.

In our study, we used SecSTAR to recreate the diagrams
created during the original manual assessment of Condor
using FPVA in 2005. The use case diagrammed is starting
the Condor system on all hosts, submission of a job by a
user, and the execution of the job. The system diagrammed
was a simple three host Condor system with one host acting
as the central manager, one as a submit host, and the last
as an execute host.

The original study using FPVA was a manual process
where an experienced security analyst collected information
about the system under study, and then assembled these ar-
tifacts into manually created diagrams. The analyst used
multiple means to collect this information including reading
documentation and presentations, and talking to develop-
ers and knowledgeable users. As the information from these
sources is often incomplete or inaccurate, the analyst refined
and enhanced this information by observing a running sys-

Legend

Abbr. for executables:
a: condor_shadow
c: condor_collector
e: condor_exec.exe
i : condor_mips
h: condor_schedd
k: condor_kflops
m: condor_master
n : condor_negotiator
p: condor_procd
s: condor_startd
r : rm
u: condor_submit
t : condor_starter

Colors for privilege level:

Nodes and edges:

 A process

 Multiple

 identical

 processes

fork

connect

clone

Host

root condor wenbin

(a) FPVA Diagram by SecSTAR

!"#$"%&'&%""(

&)*&+%,-,./0/1&

21/%

!"#$%&

3"#$"%&1245,(&6"1(

#'(%))

#(")*+

#,-!.$

78&9"%:

;8&1245,(&<"4&

3.=11>$

?8&9"%:

!"#$%&

3"#$"%&/@/!2(/&6"1(

#$"&$)

#$"&$%&

/*-

78&9"%:

?8&9"%:

7A8&1(=%(&<"4

3"#$"%&!/#(%=.&5=#=0/%&6"1(

!"#$%&

0%1*$."$*& '*22%'$*&

78&9"%: 78&9"%:

B8&C/0"(,=("%& &

&&!D!./

E8&5=!6,#/&

3.=11>$

F8&<"4&3.=11>$

B8C/0"(,=("%&

!D!./

G8H/+"%(

&&&5=(!6

G8H/+"%(&

5=(!6

I8!.=,5&6"1(

J8/1(=4.,16&!6=##/.

(b) Original FPVA Diagram

Figure 5: Comparison of FPVA diagrams between SecSTAR and the original manual approach

tem using log files, debugging techniques, and system anal-
ysis tools such as ps, strace, and lsof. Additionally the an-
alyst selectively read portions of the code to further gain
understanding of the system. Finally, after all the artifacts
were gathered and understood, the diagrams were created by
hand using a drawing tool, such as Microsoft PowerPoint.
The time to gather the information necessary to draw the

diagrams is on the order of months for a system of the com-
plexity of Condor. The Condor system has more than a
thousand pages of documentation and more than 700,000
lines of source code. Gathering information from the run-
ning system is further complicated due to the multiple pro-
cesses and especially the multiple host nature of Condor, as
system analysis tools do not operate across host boundaries.
The information gathered is in a multitude of formats in-
cluding free form notes, log files, debug output, and various
tool output. The analyst must correlate and distill these ar-
tifacts to the information required for the desired diagrams.
In contrast, an analyst using SecSTAR to create an initial

diagram just needs to be familiar enough with the system to
run it and make it perform something useful. The analyst in-
jects self-propelled instrumentation’s Agent into the system
under study. SecSTAR automatically traces system behav-
iors, and diagrams are constructed automatically. SecSTAR
is able to automatically collect data across hosts due to self-
propelled instrumentation’s ability of propagating payload
code. Moreover, SecSTAR collects data in a structured XML
format that can be automatically processed and visualized.
In SecSTAR, an analyst can create an initial diagram for

a system such as Condor in hours, with most of that time
being used to learn how to install and operate Condor, and
perform some simple tasks such as submitting a job. Once
this is learned, the subsequent creation of diagrams is on
the order of minutes. The initial diagrams created by Sec-
STAR may not be quite as useful as the initial diagrams
created by the manual approach, due to the lack of in-depth
study of the system; however, the diagram is a good start.
As analysts gain experience with the system with the aid of

these diagrams, they can iteratively improve the use case to
produce more complete diagrams. To guide the iteractive
process, the analyst will still need to consult documenta-
tion and the source code, but their initial diagrams should
reduce this burden. The low cost of diagram construc-
tion encourages analysts to visualize many more use cases.
Another technique we expect to be fruitful is to run the sys-
tem multiple times with either the same or distinct runtime
configurations, which makes it easy for analysts to compare
runtime instances and visually identify abnormal behaviors.

Figure 5 compares the Condor diagram generated by Sec-
STAR with that from the original manual study. Overall,
the diagram generated by SecSTAR (Figure 5a) captures
more information than the original FPVA diagram (Fig-
ure 5b) and faithfully reflects Condor’s runtime structure.
SecSTAR produces a more complete diagram by identifying
all processes in Condor including undocumented processes
(e.g., condor mips in Figure 5a but not in Figure 5b) that
are difficult to discover using the original approach, where
analysts fail to find these processes either from documents
or from the process of manually synthesizing trace data.

The diagrams produced by SecSTAR have two problems
that are common to any automated approach but can be
alleviated by our interactive interface. First, although the
diagram of SecSTAR is more complete, it may include some
processes in which the security analysts are not interested.
This problem can be solved by the Filter feature in Sec-
STAR’s interface, where analysts can control what to display
in the diagram and hide those distracting elements. Second,
SecSTAR diagrams lack semantic labeling of events, such as
those found on edges in Figure 5b (e.g., submit job ClassAd).
Annotate solves this problem, because it enables analysts
to annotate the diagram by incorporating information from
external sources.

Condor’s structure, including process creation and de-
struction, and security characteristics, including privilege
changes, evolve dynamically during runtime. However, the
diagrams from the original FPVA provide a static view of

Start

End

Figure 6: An animation of Condor’s runtime progression; a dotted line connecting two screenshots indicates
that intermediate screenshots are skipped

Condor showing limited progression information, with only
numbered edges to order fork and communication events
by time. By contrast, the Navigate feature in SecSTAR’s
interface allows analysts to walk through a variety of in-
formation in Condor’s progression during runtime such as

privilege changes, process creation and destruction, and file
access. Figure 6 shows a series of diagrams illustrating the
use of Navigate in SecSTAR to animate Condor’s runtime
progression.

6. CONCLUSION AND FUTURE WORK

We have presented a tool, SecSTAR that automatically
traces and visualizes software security structure and prop-
erties, to support first steps of security analysis methodolo-
gies. Using self-propelled instrumentation, SecSTAR can au-
tomatically perform data collection in a distributed system
during runtime right before important events occur. The
web-based interface provided by SecSTAR allows analysts
to interactively explore security properties in the diagrams
that are generated based on the trace data. Our case study
of using SecSTAR to produce FPVA diagrams for Condor
demonstrates the efficacy and efficiency of SecSTAR, where
the time for the initial diagram construction is shortened
from months in the original manual approach to hours. Fur-
thermore, interaction features provided by SecSTAR’s inter-
face enable analysts to view and explore diagrams through
time and at different levels of detail, significantly improving
the analyst’s productivity.
We are currently extending SecSTAR to monitor and vi-

sualize more events in the system, for example, to support
more inter-process communication mechanisms (e.g., pipe,
shared memory, and UDP). We are exploring approaches
to represent temporal order in static diagrams. We are also
improving SecSTAR’s interface by implementing more inter-
action features. Our ongoing work also includes integrating
SecSTAR into both FPVA and MTM for assessing real world
grid and cloud systems.
A demo of visualization provided by SecSTAR is online:

http://research.cs.wisc.edu/mist/projects/SecSTAR

7. ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments and
suggestions. This research funded in part by Department of
Homeland Security grant FA8750-10-2-0030 (funded through
AFRL), National Science Foundation grants OCI-1032341,
OCI-1032732, and OCI-1127210, and Department of Energy
grants DE-SC0004061 and DE-SC0002154.

8. REFERENCES
[1] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The

SDSC Storage Resource Broker. In Conference of the
Centre for Advanced Studies on Collaborative Research
(CASCON), Toronto, Ontario, Canada, Nov.–Dec.
1998.

[2] Emden Gansner and Eleftherios Koutsofios and
Stephnen North. Drawing graphs with dot.
http://www.graphviz.org/Documentation/dotguide

.pdf.

[3] G. A. Fink, P. Muessig, C. North, and C. North.
Visual correlation of host processes and network
traffic. In IEEE Workshop on Visualization for
Computer Security, Minneapolis, Minnesota, USA,
Oct. 2005.

[4] J. A. Kupsch and B. P. Miller. Manual vs. Automated
Vulnerability Assessment: A Case Study. In First
International Workshop on Managing Insider Security
Threats (MIST), West Lafayette, Indiana, USA, June
2009.

[5] J. A. Kupsch, B. P. Miller, E. Heymann, and E. César.
First Principles Vulnerability Assessment. In ACM

Cloud Computing Security Workshop (CCSW),
Chicago, Illinois, USA, Oct. 2010.

[6] M. Litzkow, M. Livny, and M. Mutka. Condor — A
Hunter of Idle Workstations. San Jose, California,
USA, June 1988.

[7] Microsoft Corporation. The Internet Protocol Helper
(IP Helper) API.
http://msdn.microsoft.com/en-us/library/

windows/desktop/aa366073(v=vs.85).aspx.

[8] Microsoft Corporation. Threat Modeling Tool.
http://www.microsoft.com/en-us/download/

details.aspx?id=2955.

[9] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller.
Problem diagnosis in large-scale computing
environments. In Supercomputing 2006, Tampa,
Florida, USA, Nov. 2006.

[10] A. V. Mirgorodskiy and B. P. Miller. Autonomous
analysis of interactive systems with self-propelled
instrumentation. In 12th Multimedia Computing and
Networking, San Jose, California, USA, Jan. 2005.

[11] A. V. Mirgorodskiy and B. P. Miller. Diagnosing
distributed systems with self-propelled
instrumentation. In ACM/IFIP/USENIX 9th
International Middleware Conference, Leuven,
Belgium, Dec. 2008.

[12] MIST Project, University of Wisconsin and UAB.
Condor Vulnerability Reports.
http://research.cs.wisc.edu/condor/security/

vulnerabilities/.

[13] Riverbed Technology. WinPcap.
http://www.winpcap.org/.

[14] SRB Team, San Diego Supercomputer Center. Storage
Resource Broker.
http://www.sdsc.edu/srb/index.php/Main_Page.

[15] F. Swiderski and W. Snyder. Threat Modeling.
Microsoft Press, First edition, 2004.

[16] D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: the Condor Experience.
Concurrency — Practice and Experience,
17(2-4):323–356, 2005.

[17] P. Trinius, T. Holz, J. Gobel, and F. Freiling. Visual
analysis of malware behavior using treemaps and
thread graphs. In Symposium on Visualization for
Cyber Security, Atlantic City, New Jersey, USA, Oct.
2009.

[18] World Wide Web Consortium. Scalable Vector
Graphics (SVG) 1.1 (Second Edition).
http://www.w3.org/TR/SVG11/.

[19] Y. H. Xia, K. D. Fairbanks, and H. Owen. Visual
Analysis of Program Flow Data with Data
Propagation. In IEEE Workshop on Visualization for
Computer Security, Cambridge, Massachusetts, USA,
Sept. 2008.

[20] W. Yurcik, X. Meng, and N. Kiyanclar. Nvisioncc: a
visualization framework for high performance cluster
security. In Workshop on Visualization and data
mining for computer security, Washington DC, USA,
Oct. 2004.

