
Off-Path Attacking the Web

Yossi Gilad and Amir Herzberg
Department of Computer Science Bar Ilan University

Abstract
We show how an off-path (spoofing-only) attacker can
perform cross-site scripting (XSS), cross-site request
forgery (CSRF) and site spoofing/defacement attacks,
without requiring vulnerabilities in either web-browser
or server, and circumventing known defenses. The at-
tacks are practical and require a puppet (malicious script
in browser sandbox) running on a victim client machine,
and an attacker capable of IP-spoofing on the Internet.

Our attacks are based on a technique that allows an off-
path attacker to efficiently learn the sequence numbers of
both the client and server in a TCP connection. This tech-
nique exploits the fact that many computers, in particu-
lar those running (any recent version of) Windows, use
a global IP-ID counter, which provides a side channel
allowing efficient exposure of the connection sequence
numbers.

We present results of experiments evaluating the learn-
ing technique and the attacks that exploit it. We also
present practical defenses that can be deployed at the fire-
wall level, either at the client or server end; no changes
to existing TCP/IP stacks are required.

1 Introduction

TCP is the main transport protocol over the Internet,
ensuring reliable and efficient connections. TCP was
not designed to be secure against Man-in-the-Middle
(MitM); in fact, it is trivially vulnerable to MitM attacks.
However, it seems that man-in-the-middle and eaves-
dropping attacks are relatively rare in practice, since they
require the attacker to control routers or links along the
path between the victims. Instead, many practical attacks
involve malicious hosts, without MitM capabilities, i.e.,
the attackers are off-path.

In our attacks, as well as in many other off-path attacks
(e.g., SYN-flood, DNS-poisoning), the attacker sends
spoofed packets, i.e., packets with fake (spoofed) sender

IP address. Due to ingress filtering [18] and other anti-
spoofing measures, IP spoofing is less commonly avail-
able than before, but still feasible, see [1, 11]. Appar-
ently, there is still a significant number of ISPs that do
not perform ingress filtering for their clients (especially
to multihomed customers). Furthermore, with the grow-
ing concern of cyberwarfare, some ISPs may intention-
ally support spoofing. Hence, it is still reasonable to as-
sume spoofing ability.

However, there is a widespread belief that an ‘off-
path’ spoofing attacker, cannot inject traffic into a TCP
connection. The reasoning is that an incoming TCP
packet must contain a valid sequence number (or be dis-
carded); the sequence number field is 32 bits long and
initialized using randomness; therefore, it seems unlikely
that an attacker can efficiently generate a spoofed packet
which will be accepted by the recipient, i.e., inject data
into the TCP stream.

This belief is also stated in RFCs and standards, e.g.,
in RFC 4953, discussing on TCP spoofing attacks (see
[30], Section 2.2). Indeed, since its early days, most In-
ternet traffic is carried over TCP - and is not cryptograph-
ically protected, in spite of warnings, e.g., by Morris [23]
and Bellovin [6, 8].

TCP injections are easy for implementations that use
predictable initial sequence numbers (ISNs). This was
observed already by Morris at 1985 [23] and abused
by Mitnick [26]. Later, at 2001, Zalewski found that
most implementations still used predictable ISNs [34].
However, by now, most or all major implementations
ensure sufficiently-unpredictable ISNs, e.g., following
[15]. Does this imply that TCP injections are infeasible?

We show that TCP injections are still possible. We
present an efficient and practical technique based on
globally-incrementing IP-ID, allowing an off-path ad-
versary, Mallory, to inject data into a TCP connection
between two communicating peers: a client, C, and a
server, S. The IP-ID field is specified in every IPv4
packet and allows the recipient to match fragments of an

1

IP packet during reassembly. In our attacks we assume
that a globally incrementing IP-ID is employed by C, this
IP-ID increments for every packet that the C sends1. A
globally incrementing IP identifier is used in all Win-
dows versions we tested (including XP, Vista and 7) and
is also the default configuration in FreeBSD. However, it
is not implemented in all operating systems; e.g., Linux
machines use a different IP-ID counter for each destina-
tion and are immune to our attacks. The vast deployment
of Windows on client machines, more than 70% accord-
ing to browser user-agent based surveys, see [32], makes
the IP-ID attack vector very practical.

The attack is not immediate, and requires a connection
lasting a few dozens of seconds. We present experimen-
tal results, showing that our techniques allow efficient,
practical TCP injections. Furthermore, we show, that the
attacks have significant potential for abuse. Specifically,
we show how our TCP injection techniques allow cir-
cumvention of the Same Origin Policy [4, 36].

Our technique is based on the predictability of the IP-
ID (e.g., in Windows); we use the changes in the IP-ID as
a side channel to allow the attacker to detect difference
in responses for crafted probe packets that she sends to
the client.

Previous works noted that the predictable IP-ID can
be used as a side channel, allowing an attacker to use
one connection to learn about events in another connec-
tion, which is undesirable. Gont [14] mentions several
ways in which the globally-incremented IP-ID can be
abused; but, their impact is modest. In particular, the
side-channel can be used to perform the idle scan attack
[35] (implemented in nmap), and to count the number of
machines behind a NAT [7].

Our TCP injection technique improves upon the one
presented by klm [20]. The technique described by klm
had some limitations, e.g., it did not work for clients con-
nected to the Internet by a firewall. More significantly,
klm did not present experimental results; we experimen-
tally compare our technique to [20]. The experiments
show that their technique results in low injection success
rates, unless the attacker has low latency to the victim (as
when they are on the same LAN); it is doubtful that these
results could allow significant exploits, as we were able
to achieve.

1.1 Attacker and Network Model
All our attacks work in the same settings: an off-path,
IP-spoofing attacker. We also assume that the attacker is
able to control some puppets [3], i.e., scripts, applets or
other restricted (sandboxed) programs, running on client
machines accessing an adversarial web site. This is il-
lustrated in Figure 1, where C enters a site controlled

1Sever IP-ID implementation does not effect our technique.

S.comC

mallory.com

XSS, CSRF

Network

New connection formed,
HTTP referrer: mallory.com

Figure 1: Network Model. C enters www.mallory.com,
the adversarial web page. A script on that page forms a
connection with www.s.com.

by the adversary, Mallory. This allows Mallory to run
a malicious script in C’s browser sandbox. The script al-
lows Mallory to (1) form the connection between C and
S, and (2) probe C’s connection with S and avoid firewall
filtering. The first allows Mallory to choose the victim
server (S), we show how the second allows exposure of
the TCP connection’s four tuple (IP addresses and ports).
Our attacks are browser independent, as we illustrate in
experiments in the following sections.

1.2 Breaking SOP and Address-Based Au-
thentication

TCP injection attacks were key to some of the most
well known exploits, specifically, attacks against address
based client authentication, e.g., see [8]. However, as
a result, address-based client authentication has become
essentially obsolete, and mostly replaced with secure al-
ternatives such as SSH and SSL/TLS. We believe that
the only widely-deployed use of address based client au-
thentication, is to identify clients involved in DoS at-
tacks such as SYN flooding; and this threat can be dealt
with by simple challenge-response authentication, possi-
bly using cookies to avoid state-exhaustion on the server
[10].

However, current web security still relies, to large ex-
tent, on the Same Origin Policy [4, 36], i.e., on address
based server authentication; our results show that relying
on addresses to authenticate the servers is also risky.

Using TCP injections to attack address based server
authentication, e.g., to perform XSS attacks, is more
challenging than using it to attack address based client
authentication: in attacks on address based client authen-
tication, the off-path attacker sends the initial SYN to
open a new connection; hence, she knows the client’s
sequence number, as well as the source and destination
IP addresses and ports; she ‘only’ needs to predict the
server’s sequence number. In contrast, to attack address
based server authentication, the off-path attacker must
identify both sequence numbers, as well as the IP ad-

2

dresses and ports of both parties.
To circumvent the same origin policy, the off-path at-

tacker sends forged responses for requests that C sends
to another server, S. This attack is facilitated in two
phases: first, the puppet opens a connection to the vic-
tim server, allowing TCP injection into this connection;
then the puppet requests an object, allowing the attacker
to send the script in a (spoofed) response.

In particular, this allows cross site scripting (XSS). In
contrast to known XSS attacks, our attack does not rely
on server or browser vulnerability. Furthermore, our at-
tack circumvents defenses against XSS as well as against
cross-site request forgery (CSRF) [28], such as Content
Security Policy (CSP) [27].

The XSS ability also allows advanced attacks. In par-
ticular, XSS can exploit use of password managers to
learn the user password [29] and provides efficient means
for detection of browsing history, more effectively than
previous techniques, e.g., [21, 31].

1.3 Organization

Section 2 explains how an off-path attacker identifies the
victim connection between the client and server. Sec-
tions 3-5 present the TCP injection technique itself: Sec-
tion 3 presents the first step, which is exposing the
server’s sequence number. Section 4 continues the at-
tack, to expose the client’s sequence number as well.
Section 5 discusses challenges, improvements to meet
these challenges, and experimental evaluation.

Next, Sections 6 and 7 focus on the exploits of the
TCP injection technique and present our off-path attacks
on the confidentiality and integrity (authentication) of the
communication between client and server, including the
XSS, CSRF and phishing attacks.

Section 8 compares between the injection technique
presented in this paper to the one in [20].

Lastly, Section 9 proposes defenses against the attacks
and Section 10 presents a concluding discussion.

2 Identifying the Victim Connection

To launch the injection attacks, the attacker must first
identify a TCP connection between the client and server;
the connection is defined by the IP addresses and ports
of the participating peers.

Our exploits use the puppet running on the client to
open such (long-lived) connections. The server’s IP and
port are, of course, known. To find the client’s IP, the
puppet sends a request to the attacker’s site; this request
contains the client’s IP address.

The final challenge is to detect the client port. Many
clients, in particular, those running Windows, assign
ports to connections sequentially. We use the puppet to

open a connection to the attacker’s remote site before and
after opening the connection to the victim server (S); se-
quential port assignment allows the attacker to learn the
client’s port: Mallory observes p1 and p2, the client ports
used in the connection to her sites. If p2 = p1 + 2, then
she identifies that the connection to S is via port p1 +1.
For other client port allocation paradigms or when the
puppet communicates via a NAT device that randomizes
the client port, we use the technique that we presented in
Section 3 of [13] to learn the client port.

3 Server Sequence Number Exposure

In this and the following section we describe the se-
quence exposure attack where an off-path adversary,
Mallory, communicates with C and learns the current se-
quence numbers of a TCP connection between C and S.

We present a two phase attack: first, in this section we
describe how Mallory learns the server’s sequence num-
ber, σ , which S will use in the next packet sent to C.
In the second phase, presented in the following section,
we show how given σ Mallory efficiently learns the ac-
knowledgment number that C expects; this acknowledg-
ment number is the sequence number that C will next use
in packets sent to S.

In both sections we assume that Mallory had identi-
fied C and S’s IP addresses and ports as we described in
Section 2.

3.1 The Server-Sequence Test
This subsection presents the server-sequence test that al-
lows Mallory to test whether some sequence number, σ̇ ,
is in the flow control window (wnd) that C keeps for
packets from S. The key observation is that when a TCP
connection is in the established state, the recipient’s han-
dling of an empty acknowledgment packet (i.e., acknowl-
edgment with no additional data) depends on the value
of the 32-bit sequence number.

Empty-Ack packets that specify an invalid sequence
number (i.e., outside the recipient’s wnd) cause the re-
cipient to send a duplicate Ack for the last valid packet;
in the typical (i.e., legitimate) case, this duplicate Ack
indicates to the sender that a packet loss occurred. How-
ever, if the sequence number is in wnd, then the receiver
does not send any response; the reasoning is that ‘Ack-
ing’ the valid empty Ack packet will start a never-ending
series of acknowledgments. This observation does not
depend on other fields in the TCP header; in particular,
the response to an empty-Ack packet does not depend on
the actual value of the Ack field, which we show in the
next section how Mallory learns.

The server-sequence test, illustrated in Figure 2, has
three steps: in the first and third steps, Mallory sends a

3

Mallory C S
1. Query

2. Probe: Ack, src = S (spoofed) Seq = σ, no data Response,

id = i
Duplicate

Ack

3. Query

Response,
id = j

.

Figure 2: Server-Sequence Test.

query to C; this is some packet that causes C to send a
response packet back to Mallory who then saves the IP-
ID value in the response. In Section 5.1 we show how
Mallory can use the legitimate TCP connection that she
has with C to implement queries and responses (since C
has a TCP connection to www.mallory.com). In the sec-
ond step, Mallory sends C a probe: this packet is spoofed
and appears to belong to C’s connection with S. The
probe in this test is an empty Ack packet that leverages
the observation above.

When Mallory receives the responses (for steps 1 and
3 in Figure 2), she uses the IP-IDs that they specify, i
and j, to learn x = j− i. Since the IP-ID implementation
increments for every packet that C sends, x is the num-
ber of packets that C had sent between the two queries.
Mallory learns that σ̇ is in C’s wnd if x = 1, i.e., C did
not send any packet between the two queries.

3.2 Linear Search for σ

Mallory performs the server-sequence test for the se-
quences: 0, ewnd, 2ewnd, etc, until she identifies a se-
quence number in C’s wnd. The value ewnd is an estima-
tion of C’s wnd-size. In our attacks (presented in Sections
6 and 7) we use the puppet to request for some large re-
source (or few small resources) over the connection with
S before initiating the sequence exposure attack; S’s re-
sponse (i.e., the large object) increases C’s wnd-size. We
use this technique to increase wnd-size to approximately
216. Once a sequence number in wnd is detected, Mallory
performs a binary search to identify the beginning of wnd
(over the possible ewnd sequence numbers), i.e., σ .

4 Client Sequence Number Exposure

In recent Windows client versions, from XP SP2 and on-
wards, the recipient uses the acknowledgment number,
that is specified in TCP packets, together with the se-
quence number to verify that a packet is valid. In order
to inject a packet to the TCP stream, Mallory must spec-
ify α , an Ack number that is in C’s transmission win-

UNA

NXT

avg(UNA, NXT) + 231

Duplicate
Ack

Invalid Ack

Inc
rem

en
ts

clo
ck

wise

Win: silent discard,
TCP spec: process

Win + spec: discard +
send duplicate ACK

Win + spec:
process

Figure 3: Ack Number Map. UNA is the lowest unac-
knowledged sequence number, NXT is the next sequence
number that C will send. The 32-bit Ack field is cyclic.

dow; i.e., Ack for new data that C had sent. The black
area in Figure 3 represents the ‘acceptable’ acknowledg-
ment numbers (transmission window). In this section we
show how to take advantage of Ack number validation to
expose the client’s sequence number.

4.1 The Client-Sequence Test
Similarly to the test that we presented in the previous
section, we build a three step client-sequence test where
the first and last steps provide Mallory with the current
value of C’s IP-ID. In the second step Mallory sends a
spoofed probe, C’s response to this probe depends on the
Ack number that Mallory specifies.

The test is derived from another observation from the
TCP specification [25] (Section 3.9, page 72). The rele-
vant statement refers to an acknowledgment packet that
carries data and contains a valid sequence number; i.e.,
success in the previous server sequence exposing phase
is required to initiate this phase. The specification dis-
tinguishes between two cases regarding the acknowledg-
ment number in the packet, see illustration in Figure 3.

Case 1: the packet contains a duplicate Ack (gray area
in Figure 3), or acknowledges data that was sent, but not
already acknowledged (black area in Figure 3). In this
case, the recipient is supposed to continue processing the
packet regularly (see [25]). However, a Windows recipi-
ent (i.e., C) silently discards the packet if it is in the gray
area (since acknowledgment is invalid); otherwise (black
area), the data is copied to the received buffer for the ap-
plication.

Case 2: In the complementary case that the acknowl-
edgment number is for data that was not yet sent (white
area in Figure 3), the recipient discards the packet and
immediately sends a duplicate Ack that specifies his cur-
rent sequence number, i.e., NXT in Figure 3.

Hence, when C receives an acknowledgment packet
that specifies an acceptable sequence number, i.e., in his
flow control window (wnd), then: (1) in case that the
specified Ack number is after UNA, C sends an acknowl-
edgment; either since new data arrived (black area), or

4

since the packet acknowledges unsent data (white area).
(2) In case that the Ack number is before UNA (gray
area), then C (running Windows) discards it.

The probe which we use in the client sequence test
specifies the acknowledgment number that is tested and
has two important properties derived from the observa-
tion above: (1) the probe packet specifies σ , a sequence
number that is in C’s wnd (discovered in the previous
server sequence exposing phase); (2) the probe packet
carries data (‘non-empty’ packet).

4.2 Binary Search for α

The client-sequence test allows Mallory to perform a
binary search for the acknowledgment number that the
client expects. If the client-sequence test for the ac-
knowledgment number α̇ indicates that C did not send
any packet between the two queries, then α̇ is below
UNA (in the gray area in Figure 3). Otherwise, Mallory
concludes that α is above UNA (in the black or white
area in Figure 3).

The gray and white areas in Figure 3 are of equal size,
and the black area (sent bytes without acknowledgment)
is usually relatively small. This allows Mallory to per-
form a binary search for UNA; each time eliminating ap-
proximately half the possible numbers. UNA is the low-
est number in the black area, i.e., it is a valid Ack number
(α). The 32-bit length of the Ack field implies that there
are 32 iterations.

5 Implementation and Evaluation of Se-
quence Numbers Exposure

In this section we discuss the implementation of the se-
quence exposure technique and its evaluation in practice;
we assume the model presented in Section 1.1.

5.1 Implementing Test Queries/Responses
The server and client sequence tests which we described
in Sections 3 and 4 use packets that Mallory receives
from C to learn the effect of the (spoofed) probe packet.
Mallory can persuade C to send her such packets by using
the legitimate TCP connection that she has with C (since
C is ‘in’ www.mallory.com): a query is some short data
packet that Mallory sends to C, the response is C’s TCP
acknowledgment sent back to Mallory.

This method allows Mallory to bypass typical firewall
defenses since all packets in the test appear to belong to
legitimate connections: queries and responses belong to
the connection between C and Mallory; probes belong
to the connection between C and S. Specifically, we
found that Windows Firewall does not filter the queries,
responses or probes that we use.

5.2 Detecting Packet Loss

In order to succeed in sequence exposing, Mallory must
identify when test-packets (queries, responses or probes)
are lost since the corresponding and following tests will
yield a wrong result.

Mallory detects a lost probe by repeating tests which
indicate that the client did not send a response (i.e., when
the difference in response IP-IDs equals to one). There
should be only few such tests: one when probing for
the server’s sequence number, where no response to the
probe indicates that Mallory found a sequence number in
the recipient flow control window. Additionally, approx-
imately sixteen probes during the binary search for the
client sequence number should not receive a response.
Hence, repeating tests which indicate ‘no response to the
probe’ does not significantly increase the time of the at-
tack.

Mallory detects lost queries and responses by using
TCP congestion control. Since we implement the queries
as data sent over the TCP connection between C and
Mallory, we are able to detect a lost query similarly to
TCP congestion control mechanism: if a query does not
arrive (to C), then Mallory receives a duplicate Ack for
the following query; similarly, if a response does not ar-
rive (to Mallory), then the following response is an accu-
mulative Ack. In these cases, Mallory performs again the
corresponding tests.

5.3 Errors in Tests

The sequence exposure process uses the global IP-ID to
determine whether a probe caused C to respond. How-
ever, since every packet that C sends increments the IP-
ID, errors may occur. Such errors can appear only in
tests where C does not respond to the probe: if C sends
a packet, independent of the probe, between responding
to the Mallory’s test-requests, then that packet would in-
crement the IP-ID. This event will appear to Mallory as
the case where C responded to her probe; i.e., provide a
false indication. As discussed in the previous subsection,
there are only few tests where the probe does not yield a
response, i.e., where such an error is possible.

We handle errors in the server and client sequence ex-
posure phases differently. During the server sequence
exposure phase, Mallory tests many possible sequence
numbers; however, only one of these tests can yield an
error result (the one that tests for a valid sequence num-
ber, i.e., in C’s wnd). Hence, the probability of an error in
this phase is low (since there is only one ‘critical’ test).
We identify that such error had occurred after Mallory
tests the entire sequence space and all tests indicate a
negative result; in this case we restart the attack.

During the client sequence number exposure phase,

5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

8 16 32 64 128 256S
eq

ue
nc

e
E

xp
os

ur
e

S
uc

ce
ss

 R
at

e

Avg. Legitimate Packets Per Second

1. Microsoft Internet Explorer
2. Mozilla Firefox
3. Google Chrome

Figure 4: TCP sequence exposure success rate. Each
measurement is the average of 50 runs, error bars mark
standard deviations.

we perform only 32 tests (binary search for the Ack num-
ber); since approximately 16 of these tests should in-
dicate that the probe did not cause C to send a packet,
the probability for an error is greater than in the previ-
ous phase. However, since the number of tests is low in
this phase, we cope with possible errors by repeating the
tests which indicate that C responds to the probe with-
out adding a significant overhead to the entire sequence
number exposure process.

5.4 Empirical Evaluation

In this set of measurements we provide the adversary
with the IP addresses and ports that describe the vic-
tim connection and evaluate the sequence exposure tech-
nique (presented in Sections 3 and 4); in Section 6
we evaluate the full attack which requires to identify
the victim connection, expose the sequence numbers
and perform different successful ‘meaningful’ injections.
The server in these measurements runs Apache (version
2.2.14), and the client is an up to date Windows machine
(protected by Windows Firewall).

Figure 4 illustrates the probability for successful ex-
posure for different packet rates and when the puppet
runs on different browsers. The attacker and client band-
widths are respectively 1 and 10 mbps and the round trip
time between Mallory and C is 100 milliseconds. The
average time for a successful sequence exposure is 102
seconds (standard deviation 18 seconds); this is the es-
timated that time we require the client to stay in the at-
tacker’s site (www.mallory.com) to perform the XSS and
CSRF attacks described in the following sections. In
Section 8 we provide a detailed comparison between our
sequence exposure technique to the one previously pre-
sented in [20].

Figure 5: An XSS Attack. Mallory runs a script in
context of www.victim–server.com within Mozilla Fire-
fox sandbox. The address bar indicates the user is at
www.mallory.com, but the message box context indica-
tion shows that the script (that Mallory provided) runs
from www.victim–server.com.

6 XSS and CSRF Exploits

In this and the following section we present and em-
pirically evaluate exploits of TCP injections. We focus
on long-lived-connection injection attacks, where an off-
path attacker learns the sequence numbers of an existing,
long-lived, TCP connection between a client and a server
(identified by their IP addresses and ports).

We focus on two exploits: the first, presented in this
section, allows an off-path attacker to run a malicious
script in the context of an arbitrary website of the at-
tacker’s choice, without depending on a vulnerability
of the server (e.g., bug in input sanitization) or of the
browser; this is a new type of XSS attack [19, 33]. The
second exploit, which we present in the following sec-
tion, allows the same attacker to present spoofed web-
pages for clients. We evaluate these attacks on connec-
tions with popular websites.

All exploits work in the same setting, illustrated in
Figure 1.

6.1 Off-Path Injection XSS (or: XSS of the
Fourth Kind)

In a Cross-Site Scripting (XSS) attack, the attacker causes
the browser to run malicious, attacker-provided script (or
other sandboxed code), with the permissions of scripts
within a victim server web-page. Known XSS attacks,
exploit ‘bugs’ in the web application or in the browser
[19], which were (mostly) fixed.

Long-lived-connection injection attacks, allow a new,
fourth kind of XSS attacks: off-path injection XSS at-
tacks. In these attacks, the malicious script is sent by the
attacker to the browser, with (spoofed) source IP address

6

of the victim server. If the script is injected correctly,
with correct TCP/IP parameters and within correct HTTP
context, then the browser executes it in the context of the
victim site.

6.1.1 Attack Process

Like our other exploits, we assume that the user visits
a website controlled by the attacker from where he re-
ceives and executes a puppet (malicious script) [3]. Our
puppet code is available online at [12] with explanations
and documentation that refers to the text below, which
describes the five steps of the attack:

A. Establish a connection from the client to the victim
server, identify client port (see in Section 2).

B. Expose connection sequence numbers. Puppet
keeps the connection with the victim server alive by pe-
riodically sending requests for small objects. During
this time, attacker runs the sequence exposure attack de-
scribed in Sections 3 and 4.

C. Send a ‘dummy’ request. Puppet sends the victim
server a request for some web page (over the same per-
sistent connection), e.g., using an iframe (see our code
[12]), and informs the attacker on that request. Note that
the puppet runs in the context of Mallory’s site; hence,
Mallory and puppet can communicate and coordinate the
attack without restrictions.

D. Send spoofed response. Attacker sends a spoofed
response to the client, containing exact expected TCP pa-
rameters, and a web page containing the malicious script.

E. Script execution. Browser receives the spoofed re-
sponse as if it was sent by victim server, hence, executes
script with permissions of the victim server. Figure 5
shows a successful run of this attack on Mozilla Firefox.

6.2 CSRF Exploit

As indicated in [28, 33], once attackers succeed in an
XSS attack, i.e., run a malicious script in the browser, in
the context of a victim site, they can exploit it in many
ways. In particular, such XSS attack allows attackers to
send a forged (fake) request to the server on the user’s
behalf, i.e., a cross site request forgery (CSRF) attack,
circumventing all known defenses against CSRF attacks
for non-secured connections, except for (few) defenses
requiring extra user efforts for submission of each (sen-
sitive) request; see [24].

Note that since the attackers (cross site) scripts can
read the entire response that the user receives from the
victim web-server, they would even be able to circum-
vent advanced proposed defenses, which require new
browser mechanisms. In particular, they can foil the ori-
gin header proposed by Barth et al. against CSRF attacks

[5], as well as policy-based defense mechanisms against
XSS, e.g., Content Security Policy (CSP) [16, 27].

6.3 Empirical Evaluation
In this subsection we evaluate the applicability of the
XSS attack on web-users. The client machine in the
following experiments is as in the evaluation of the se-
quence exposure technique presented in Section 5.4.

The success of the XSS attack depends on success-
fully exposing the sequence numbers used in the connec-
tion that the client has with the victim server. The suc-
cess rate of the sequence exposure technique (presented
in Sections 3, 4) depends on the rate of packets that the
client sends (see Section 5.3 for details). In the measure-
ments below, C sends 32 packets per second. In Section
5 we presented another set of experiments that specifi-
cally evaluates the injection technique in different envi-
ronments.

We tested whether connections with each of the top
1000 sites in Alexa ranking (see [2]) are vulnerable to
off-path XSS attacks: our client connects to the attacker
(www.mallory.com), who then tries to run a script in con-
text of one of the top sites. The script provides an in-
dication of a successful injection by requesting an im-
age from www.mallory.com. Note that our attacker only
communicates with the client machine, and does not have
any interaction with the victim servers.

In Figure 7 we compare the results for three common
browsers and observe that the attack is browser indepen-
dent. The immune connections are generally to sites of
the following types:

1. do not support persistent HTTP connections, i.e., do
not use the HTTP keep alive option. This prevents
the attacker from keeping the long connection with
the server, which is required to expose the sequence
numbers (attack step B).

2. secured with SSL (HTTPS). This prevents the at-
tacker from injecting her script to the connection
(attack step D).

In Figure 6 we provide distribution of the top 1000
sites in Alexa ranking; showing that 80% of them ap-
pear vulnerable (line 1 in Figure 6). A comparison of
this result to those presented in Figure 7 shows that the
XSS attack was successful on roughly 75% of the sites
that appear vulnerable. Among the vulnerable sites on
which we ran a successful attack are www.facebook.

com, www.yahoo.com and www.amazon.com.
The reason that the attack does not succeed for all po-

tential victim connections is that in some attempts our
attacker failed to identify the correct client port (e.g., if
the browser re-used a port allocated in the past for the

7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8 16 32 64 128 256 512 1024

P
or

tio
n

Number of Top Sites Tested

1. Persistant HTTP connections
2. Both persistant HTTP and persistant HTTPS

Figure 6: The applicability of the injection attacks on vari-
ous sites.

0.5

0.6

0.7

0.8

0.9

1

8 16 32 64 128 256 512 1024

S
uc

ce
ss

fu
l X

S
S

 R
at

e

Number of Top Sites Tested

1. Microsoft Internet Explorer
2. Mozilla Firefox

3. Google Chrome

Figure 7: Rate of successful XSS attacks on connections to
popular sites.

same server). Employing the more elaborate technique
in [13] to identify the victim connection can improve our
results.

7 Web Spoofing/Phishing/Defacement

In addition to the XSS exploits, attackers can use TCP in-
jections to perform web spoofing (which is key to phish-
ing attacks). Namely, the attacker waits for the user to
browse to some website, e.g., www.bank.com, and in-
jects her data to the connection. In this attack, the at-
tacker provides a spoofed version of the website to the
client. This exploit can expose user-provided informa-
tion such as passwords and may trick the user to down-
load malware. A requirement of this attack is that the
initial web-page that the user receives, and which the
attacker forges, is not protected by SSL; i.e., http:

//www.bank.com. This assumption holds for most sites,
which do not use SSL/TLS at all.

The attack also works for many sites which do use
SSL/TLS, but only via a link, e.g, to the login page:
https://www.bank.com/login.php. This approach
is common since it reduces the load on the server by de-
laying setup of SSL connections until these are required
(e.g., for login); see line 2 of Figure 6. Web-spoofing
allows the attacker to circumvent the use of encrypted
connections (SSL/TLS), using techniques/tools such as
SSL-strip [22], i.e., replace links on the original page
to phony pages (on the attacker’s site). This technique
can be made unnoticeable for typical users by presenting
them a spoofed web-page with the original content, i.e.,
attacker just modifies targeted links (e.g., for the login
page) to point to her website. However, an alert user who
follows such a modified link might notice the change in
domain and detect the attack.

To succeed in a web-spoofing attack, the attacker
would best send the spoofed page as a response to a re-
quest made by the user (since then the page appears au-
thentic to the user); hence, the attacker should be able to

detect the request for the page and send a response. We
solve this problem by having the puppet open a connec-
tion to the victim server in advance providing sufficient
time to expose the sequence numbers used in the con-
nection. We leave the connection open (by periodically
sending ‘dummy’ requests); and probe for user activity
by identifying an increment in the client’s sequence num-
ber.

In order to detect this change, which indicates that the
client had sent a request to the server, the attacker peri-
odically performs a client-seq-test which we presented in
Section 4. The test allows the attacker to identify whether
the client sequence number is above some value; test-
ing using the exposed (i.e., last known) value of client
sequence number allows to detect user activity over the
connection, which we assume is a request for the server’s
home page and send a spoofed (modified) page.

This web-spoofing technique assumes that the user
opens the page for the victim-server while the puppet is
still running, e.g., in a different tab of the same browser
or in a zero-size iframe. Furthermore, it assumes that the
browser employs connection sharing between different
tabs, i.e., one TCP connection is used to communicate
with the same server via several tabs of the browser. TCP
connection sharing is employed by the current versions
of Internet Explorer, Firefox and Chrome (and possibly
other browsers).

Another assumption is that the user receives the at-
tacker’s response before the server’s; at first glance, this
appears as a race that would be difficult to win for an
attacker far from the client machine. However, the at-
tacker can avoid this race by injecting ‘dummy’ data to
the client (as the server) in advance: the injected data ar-
tificially increments the sequence number that the client
expects from the server while the true server would still
use the ‘normal’ sequence number, causing the client to
reject all data sent by the server.

The reminder of this section presents the implemen-
tation of the web-spoofing attack on the J.P. Morgan

8

Figure 8: Web Spoofing/Defacement Attack. Mallory
waits for the user to enter J.P. Morgan bank website,
when he enters he injects a phony page. In this figure
Mallory added a devil image.

bank homepage. We have also confirmed this attack to
work on the following banks web-pages: Goldman Sachs
(http://www.goldmansachs.com/), Morgan Stanly
(http://www.morganstanley.com/) and The Royal
Bank of Scotland (http://www.rbs.co.uk/). All of
these banks use a HTTP homepage (and persistent con-
nections) and only switch to HTTPS when the client
clicks the login button.

7.1 Example: Spoofing J.P. Morgan
The J.P. Morgan bank website is an example of a sensi-
tive site that uses HTTP keep alive option and its home-
page is not protected by SSL (but the login page is pro-
tected). Hence, this website is vulnerable to the web
spoofing attack above. Figure 8 shows the result of a
successful web spoofing attempt: here, the client has
two tabs open in his browser. The current tab (in focus)
shows the J.P. Morgan homepage that Mallory provided;
the devil image (does not exist in the original page) in-
dicates that this page is spoofed. J.P. Morgan home-
page contains a client log-on link that in the original site
switches to SSL. In the spoofed version, this link is to a
web-page in Mallory’s site. In another tab, the victim is
in www.mallory.com; this allows Mallory to monitor the
requests that the user (may) send J.P. Morgan and iden-
tify the correct time to inject the spoofed page.

8 Performance Comparison of TCP Injec-
tion Techniques

In this section we compare the TCP injection technique
presented in [20] to the one presented in this paper. The
significant difference is that [20] injects data to a legit-
imate existing connection between two peers (C and S)
where in this paper we make and additional assumption:

that the attacker runs a puppet on the victim machine; we
use that puppet to create the victim connection. This dif-
ference has three implications which we describe below.

First, the attacker must identify the connection be-
tween C and S and expose its parameters (IP addresses
and ports). In [20], the attacker is assumed to have previ-
ous knowledge of the client and server addresses as well
as the server’s port. In order to expose the client’s port,
in [20] the attacker performs a variant of the idle scan,
indirectly scanning all possible client ports. The scan is
as follows: the attacker sends a SYN to the server which
is spoofed as if sent by the client; if there is already a
connection through the client port specified in the SYN
packet, then the server ignores the spoofed SYN. Other-
wise the server sends a SYN/ACK packet to the client
who will respond in RST. The attacker uses the global
IP-ID to test whether the client sent a packet in response.

This technique for probing the client port has a few
challenges: (1) this technique is filtered by typical client
firewalls (e.g., Windows Firewall) that will discard the
SYN/ACK server response in case that the client did not
first send a SYN. (2) attacker must run a synchronized
attack, querying for the client IP-ID, then assume that the
server probe had arrived and query for the IP-ID again;
if during this time C sends a packet or server SYN/ACK
does not yet arrive then the test is invalid.

In contrast, we create the connection using the puppet
and identify the client port by using an insight on Win-
dows port allocation paradigm. This allows us to form
a connection with an ‘interesting’ server and efficiently
expose the connection parameters (see Section 2).

Second, the attacker in [20] must cope with traffic over
the victim connection. Such traffic disrupts the search
for the client sequence number (see Section 4) since
this phase requires specifying a valid sequence number,
which keeps changing due to traffic over the connection
between the client and the server. Moreover, [20] does
not describe how to implement the queries to: (1) avoid
firewall filtering and (2) detect network losses. In the ap-
proach presented in this paper, the attacker controls the
connection (since puppet communicates with the server).
Hence, she is able to avoid traffic on the connection while
exposing the sequence numbers. The legitimate TCP
connection with the client is used to implement queries
(see Section 5).

In Figure 9 we compare the success rates of our se-
quence exposure technique to that described in [20]
where the victim connection in while running the attack
in [20] has only a modest 10 kbps traffic rate. The com-
parison is for different network delays between the client
and attacker; the longer the delay, the more time until
the attacker receives feedback and the more traffic that
passes on the connection. Since [20] does not specify
how to implement the queries, we used our method, i.e.,

9

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128 256S
eq

ue
nc

e
E

xp
os

ur
e

S
uc

ce
ss

 R
at

e

Attacker Client Round-Trip Time (milliseconds)

1. This paper (puppet runs on Internet Explorer)
2. Previous result

Figure 9: Comparison of sequence exposure techniques.
Each measurement is the average of 50 runs, error bars
mark standard deviations.

on a TCP connection between the client and the attacker.
We assume that the attacker in [20] successfully detects
the client port (despite the challenges above). We also
assume that the client sends an average of 32 packets per
second to other peers.

The third difference between our approach to [20] re-
gards to the practical challenge of performing a ‘mean-
ingful’ injection. That is, after a successful exposure of
sequence numbers, the attacker should identify the right
time to inject her data. For example, to perform the XSS
attack, the spoofed response must arrive after the client
had sent a request; it is hard for an off-path attacker to
detect that time. In contrast, the attacks in this paper ini-
tiate the request using the puppet and inject the response
(see Section 6).

9 Defense Mechanisms
The attacks in this paper relay on successful exposure of
the sequence numbers; the technique that we presented
for this task uses the global counter property of the IP-ID
implementation in Windows machines. Deployment of
IPv6 mitigates this attack vector since the IPv6 fragmen-
tation header (that specifies the IP-ID) is only present
in fragmented packets. In most implementations, TCP
employs path MTU discovery to avoid IP-fragmentation.
Hence, TCP connections over IPv6 are usually immune
to our attacks.

In this section we propose defenses that prevent off-
path sequence exposing. Our mechanisms are of two
types, those deployed at the client-end, and those de-
ployed at the server-end. Each mechanism blocks the
attack even if the other peer is vulnerable; i.e., servers
and clients can independently protect themselves.

9.1 Server-End Defense
This defense uses feedback that the client machine (that
runs the puppet) involuntarily sends as a side effect of
the ID-exposing process. For every wrong guess of the
server sequence number, the client sends to the server
a duplicate Ack (see Section 3 and Figure 2) with no

data. A firewall can monitor these empty Ack packets
and verify that: in no point in time the server received
more ‘empty-Acks’ than the number of un-Acked data
packets that he had sent to the client. The firewall tears
down the connection after several alerts by this rule.

9.2 Client-End Defense
In this subsection we propose modifying the IPv4 identi-
fier at the client’s firewall (to replace the global counter).
Since the identifier is only used by the recipient to match
packet fragments, then when a packet arrives at the
sender’s firewall, the firewall can modify the IP-ID field
without any implications on the sender or recipient (even
if the packet will be fragmented later on the route).

The first, intuitively appealing direction seems to be
using random identifiers; however, this will often cause
IP-IDs of packets ‘in-transit’ to collide. Such collisions
may cause packet loss in case that these packets are frag-
mented since fragments of different packets will be mis-
associated together.

The IP standards specify that IP fragments are as-
sociated with a packet according to four parameters:
source and destination addresses, transport layer proto-
col (e.g., TCP), and the IP identifier. The global IP-
ID side channel can be eliminated by assigning each
source, destination, protocol tuple a different identifier
counter, initialized by a keyed pseudo random function
f (e.g., keyed hash function); i.e., the initial identifier
is fk(source, dest, protocol), where k is a secret key. In
Linux, the choice of IP-ID is similar, but is only based
on the source and destination addresses.

FreeBSD supports using random IPv4 IDs which are
permuted locally: a packet is assigned with a random
IP-ID that was not specified in one of the recent (8192)
packets that were sent2.

Both Linux and FreeBSD approaches immune the
TCP connection to our attacks.

10 Conclusions
In this work we show that the folklore belief that TCP
is secure against spoofing-only, off-path attackers is un-
founded. We show practical, realistic injection attacks.
We further show that this allows crucial abuses, breaking
the same-origin policy defense, which is critical to web
security.

One important conclusion is that Bellovin [8] was
right: TCP was never designed for security, and should
not be expected to provide it. To ensure authentica-
tion and confidentiality, even against (only) spoofers,
we should use secure protocols such as SSL/TLS [9] or
IPsec [17].

2However, the default FreeBSD configuration uses a globally incre-
menting IP-ID, as in Windows.

10

Acknowledgments

Many thanks to Amit Klein, Daniele Perito and the
anonymous referees for their invaluable comments. This
work was supported by grant 206703 of the Israeli Sci-
ence Foundation.

References

[1] Advanced Network Architecture Group. ANA
Spoofer Project. http://spoofer.csail.mit.

edu/summary.php, 2012.

[2] Alexa Web Information Company. Top Sites.
http://www.alexa.com/topsites, 2012.

[3] Spiros Antonatos, Periklis Akritidis, Vinh The
Lam, and Kostas G. Anagnostakis. Puppetnets:
Misusing Web Browsers as a Distributed Attack
Infrastructure. ACM Transactions on Information
and System Security, 12(2):12:1–12:15, December
2008.

[4] A. Barth. The Web Origin Concept. RFC 6454
(Proposed Standard), December 2011.

[5] Adam Barth, Collin Jackson, and John C. Mitchell.
Robust Defenses for Cross-Site Request Forgery.
In Peng Ning, Paul F. Syverson, and Somesh Jha,
editors, ACM Conference on Computer and Com-
munications Security, pages 75–88. ACM, 2008.

[6] S. M. Bellovin. Security Problems in the TCP/IP
Protocol Suite. Computer Communication Review,
19(2):32–48, apr 1989.

[7] Steven M. Bellovin. A Technique for Counting
Natted Hosts. In Internet Measurement Workshop,
pages 267–272. ACM, 2002.

[8] Steven M. Bellovin. A Look Back at ”Security
Problems in the TCP/IP Protocol Suite”. In ACSAC,
pages 229–249. IEEE Computer Society, 2004.

[9] T. Dierks and C. Allen. The TLS Protocol Version
1.0. RFC 2246 (Proposed Standard), January 1999.
Obsoleted by RFC 4346, updated by RFCs 3546,
5746, 6176.

[10] W. Eddy. TCP SYN Flooding Attacks and Com-
mon Mitigations. RFC 4987 (Informational), Au-
gust 2007.

[11] Toby Ehrenkranz and Jun Li. On the State of IP
Spoofing Defense. ACM Transactions on Internet
Technology (TOIT), 9(2), 2009.

[12] Yossi Gilad and Amir Herzberg. Puppet Code (Java
Script). http://u.cs.biu.ac.il/~herzbea/

security/code/puppet-example.js, 2012.

[13] Yossi Gilad and Amir Herzberg. Spying in the
Dark: TCP and Tor Traffic Analysis. In Privacy
Enhancing Technologies Symposium (PETS), 2012.

[14] F. Gont. Security Assessment of the Internet Pro-
tocol Version 4. RFC 6274 (Informational), July
2011.

[15] F. Gont and S. Bellovin. Defending against Se-
quence Number Attacks. RFC 6528 (Proposed
Standard), February 2012.

[16] Trevor Jim, Nikhil Swamy, and Michael Hicks.
Defeating Script Injection Attacks with Browser-
Enforced Embedded Policies. In Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-
Schneider, and Prashant J. Shenoy, editors, Pro-
ceedings of the 16th International Conference on
World Wide Web, pages 601–610. ACM, 2007.

[17] S. Kent and K. Seo. Security Architecture for the
Internet Protocol. RFC 4301 (Proposed Standard),
December 2005.

[18] T. Killalea. Recommended Internet Service
Provider Security Services and Procedures. RFC
3013 (Best Current Practice), November 2000.

[19] Amit Klein. DOM Based Cross Site Scripting or
XSS of the Third Kind. Technical report, Web Ap-
plication Security Consortium: Articles, July 2005.

[20] klm. Remote Blind TCP/IP Spoofing. Phrack mag-
azine, http://www.phrack.org/issues.html?
id=15&issue=64, 2007.

[21] Gunnar Kreitz. Timing Is Everything: The Impor-
tance of History Detection. In Vijay Atluri and
Claudia Dı́az, editors, ESORICS, volume 6879 of
Lecture Notes in Computer Science, pages 117–
132. Springer, 2011.

[22] M. Marlinspike. New Tricks for Defeating SSL in
Practice. In BlackHat DC, February 2009.

[23] Robert T. Morris. A Weakness in the 4.2BSD Unix
TCP/IP Software. Technical report, AT&T Bell
Laboratories, February 1985.

[24] Paul Petefish, Eric Sheridan, and Dave Wichers.
Cross-Site Request Forgery (CSRF) Prevention
Cheat Sheet. https://www.owasp.org/index.

php/Cross-Site_Request_Forgery_(CSRF)

_Prevention_Cheat_Sheet, 2011.

11

[25] J. Postel. Transmission Control Protocol. RFC 793
(Standard), September 1981.

[26] Tsutomu Shimomura and John Markoff. Take-
down: The Pursuit and Capture of Kevin Mitnick,
America’s Most Wanted Computer Outlaws - by the
Man Who Did It. Hyperion Press, 1st edition, 1995.

[27] Sid Stamm, Brandon Sterne, and Gervase
Markham. Reining in the Web with Content
Security Policy. In Michael Rappa, Paul Jones,
Juliana Freire, and Soumen Chakrabarti, editors,
Proceedings of the 19th International Conference
on World Wide Web, pages 921–930. ACM, 2010.

[28] The Open Web Application Security Project.
Cross-Site Request Forgery.
https://www.owasp.org/index.php/

Cross-Site_Request_Forgery_(CSRF),
2010.

[29] Ben Toews. Abusing password managers with xss.
http://labs.neohapsis.com/2012/04/25/abusing-
password-managers-with-xss/, 2012.

[30] J. Touch. Defending TCP Against Spoofing At-
tacks. RFC 4953 (Informational), July 2007.

[31] Zachary Weinberg, Eric Yawei Chen,
Pavithra Ramesh Jayaraman, and Collin Jack-
son. I Still Know What You Visited Last Summer:
Leaking Browsing History via User Interaction
and Side Channel Attacks. In IEEE Symposium
on Security and Privacy, pages 147–161. IEEE
Computer Society, 2011.

[32] Wikipedia. Usage Share of Operating Systems.
http://en.wikipedia.org/wiki/Usage_

share_of_operating_systems, December
2011.

[33] Jeff Williams and Jim Manico. Cross Site Scripting
Prevention Cheat Sheet.
https://www.owasp.org/index.php/XSS_

(Cross_Site_Scripting)_Prevention_

Cheat_Sheet, January 2012.

[34] Michal Zalewski. Strange Attractors and TCP/IP
Sequence Number Analysis. http://lcamtuf.

coredump.cx/newtcp/, 2001.

[35] Michal Zalewski. Silence on the Wire: A Field
Guide to Passive Reconnaissance and Indirect At-
tacks. No Starch Press, 2005.

[36] Michal Zalewski. The Tangled Web: A Guide to Se-
curing Modern Web Applications. No Starch Press,
San Francisco, CA, USA, 1st edition, 2011.

12

