
Compressing Cryptographic Resources
(Extended Abstract)

Niv Gilboa and Yuval Ishai

Computer Science Department
Technion, Haifa 32000, Israel

{gilboa,yuvali}@cs.technion.ac.il

Abstract. A private-key cryptosystem may be viewed as a means by
which a trusted dealer privately conveys a large, shared pseudo-random
object to a pair of players, using little communication. Alternatively, the
messages distributed by the dealer may be viewed as a secure compression
of a pair of large identical random pads (or random functions) into a
shorter shared “key” or “seed”.
We pose the question of extending this compression problem to more
general correlation patterns among several players. Unlike the simple
case of identical pads, where the main security concern is with respect
to external eavesdroppers, in the case of general correlations partici-
pants also have to be protected from each other. That is, collusions of
computationally-bounded players should gain no additional knowledge
about the joint pads of the remaining players from the compressed mes-
sages they receive, other than what follows from the pads they generate
and from knowing the joint distribution of all pads. While this ideal re-
quirement is inherently impossible to meet using little communication,
it turns out that it can be approximated to a satisfactory level, allowing
to securely use such compressed correlated pads in a wide class of proto-
cols. We propose a simple and modular replication-based approach for se-
curely compressing any linear correlation pattern, using pseudo-random
generators or pseudo-random functions in a black-box manner. Applica-
tions include amortizing the communication costs of private multi-party
computation and proactive secret-sharing of large secrets.

1 Introduction

This work introduces and studies a natural generalization of the fundamental
notions of pseudo-randomness (cf. [28,6,12,18]) to a useful and natural notion
of privately correlated pseudo-randomness. Alternatively, our generalized notion
may be viewed as providing a secure mechanism for compressing large correlated
pads used as resources in cryptographic protocols.

1.1 Motivation

We consider a scenario in which a trusted dealer wishes to aid a group of players
in performing some cryptographic task by supplying them with a resource of
correlated messages. For instance, the dealer may allow a pair of players to

Michael Wiener (Ed.): CRYPTO’99, LNCS 1666, pp. 591–608, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



592 N. Gilboa, Y. Ishai

communicate with unconditional secrecy by sending them a sufficiently long
shared random one-time pad, or allow all players to form a secure multicast
group by sending to all of them the same random pad.

As a second and slightly more sophisticated example, the dealer may aid
the players to privately compute the modular sum of their inputs by granting
them otherwise-random pads that add up to 0. Then, if each player adds his
pad to his input and broadcasts the result, the broadcasted messages reveal
no information about individual inputs other than their sum. Moreover, even
collusions of players cannot learn from their view additional information about
inputs of other players other than what follows from their inputs and the outcome
of the computation (namely, the sum of all inputs).

The above solutions to the problems of secure communication and private
addition possess several nice properties. First, they provide information theo-
retic security. Second, they are conceptually simple and computationally super-
efficient. Finally, they induce no on-line communication overhead: all extra com-
munication is concentrated in an off-line distribution stage. Then, why aren’t
these solutions practical?

An obvious and prohibitive disadvantage of these solutions is their off-line
communication cost.1 Indeed, to maintain information theoretic security, each
pad distributed by the dealer can only be used to mask a message of the same
size; thus, if the players wish to encrypt long messages or perform many pri-
vate additions, the dealer has to communicate sufficiently long pads. Even if we
assume totally secure communication during the off-line distribution stage, the
burden on the dealer would become unmanageable.

For the first example above, namely distributing a long shared random pad
to two or more players, there is a standard way of reducing the off-line commu-
nication. The long shared pad may be replaced by a “compressed capsule” in
the form of a seed to a pseudo-random generator or a key of a pseudo-random
function. Such a seed or key may be “uncompressed” by the players holding it to
obtain a large shared pseudo-random object which cannot be distinguished from
a truly random object by external observers. However, for the second example of
correlated pads which sum up to zero there seems to be no standard compression
method.

Let us see why some simple approaches towards compressing the second kind
of correlation fail. First, observe that if the same seed is sent to all players,
it may be uncompressed to yield a distribution which is indistinguishable (by
an external observers) from the one to be generated. However, such a solution
totally fails to protect the privacy of players from each other: using this seed,
each player will be able to recover the inputs of the other players from the
broadcasted messages. A second attempt is to try to construct a pseudo-random
generator such that given independently chosen seeds s1, . . . , sn−1, it is always
possible to find a last seed sn such that the expansions of all seeds add up to

1 This is aside from other important issues such as authentication and trust manage-
ment, which should be handled by any private-key infrastructure and are indepen-
dent of the concerns of this work.



Compressing Cryptographic Resources 593

(a long) zero. However, no such pseudo-random generator exists, as this would
imply that its image forms a linear space.

In this work we pose the question of compressing more general correlation
patterns and study the special case of linear correlations, where the pads form
a random vector in a linear space.

How to Share a Zero. As paradoxical as this notion may sound, “secretly
sharing a zero” among several players (i.e., using a secret-sharing scheme with
the secret set to zero) is a common ingredient in cryptographic protocols. One
example is the abovementioned application of privately computing the sum of n
inputs. More generally, privately computing linear combinations of inputs is an
essential subprotocol in general private multi-party protocols (e.g., [5,9]). But
perhaps a better example is that of proactive secret-sharing and proactive multi-
party computation (cf. [24,13,26]), where security has to be preserved over time
against a mobile attack. In such applications, a shared representation of zero is
periodically generated, either by an external dealer or by the players themselves,
for the purpose of refreshing the distributed representation of some shared secret
without changing its value. When the secret is very long, as may be the case when
proactively sharing a large file, an expensive sharing of a “long zero” is required.
One approach towards solving this problem (in the spirit of [17]) is to disperse an
encryption of the large file among the players (without secrecy), and proactively
share the short encryption key. However, a straightforward implementation of
such a solution does not allow to retrieve or update a portion of the shared
file without compromising the secrecy of the key. Moreover, some applications
(e.g., protocols from [23]) crucially rely on the assumption that a non-encrypted
representation of the entire file is shared using some simple linear secret-sharing
scheme.

The above discussion motivates the problem of secretly sharing a “long zero”
in a communication efficient way. While secret-sharing an arbitrary secret cannot
use less communication than the length of the secret, it turns out that a shared
long zero can be compressed.

1.2 Results

We focus on the case of linear correlations, where the pads form a random vector
in a linear space. Moreover, while some of our results can be easily pushed to
more adversarial scenarios, we adhere to a minimalistic model of an honest dealer
and a passive adversary, keeping the problem as clean as possible.

We start by studying the information theoretic problem of private correlation
from replication. This problem is motivated by its suitability for replacing perfect
randomness with pseudo-randomness in a black-box manner. The setting is as
follows. A dealer generates several independent random messages Xj , 1 ≤ j ≤m,
and replicates them among n players (i.e., sends each message to a prescribed
subset of the players). Then, each player Pi performs some local computation on
the messages he received, resulting in some output value Yi. We say that such a
protocol privately generates a distribution D from replication, if: (1) the outputs
(Y1, . . . , Yn) are distributed according to D; and (2) each collusion of players



594 N. Gilboa, Y. Ishai

cannot learn from the messages Xj they receive any additional information about
(Y1, . . . , Yn) other than what follows from their outputs.

We obtain the following results:

• For the case of additively sharing a zero, we obtain an optimal2 scheme
with

(
n
2

)
messages, each sent to 2 players. This result is refined to pri-

vacy with respect to generalized adversary structures3 (in which privacy
should only be maintained with respect to specified collusions), by reducing
the problem to an interesting extremal graph-theoretic question. This re-
fined result, in turn, has application to the construction of communication-
and round-efficient (information theoretically) private protocols computing
modular sum relative to general adversary structures.
• For any linear correlation, uniform over some linear space V , we obtain an

optimal scheme whose complexity is proportional to the number of vectors
in V with minimal support sets. For some linear spaces (such as the one
corresponding to sharing a zero using Shamir’s (n/2, n)-threshold secret-
sharing scheme [27]), the complexity of this solution will be exponential in
the number of players.

We then address the possibility of replacing the random independent sources
Xj by random independent seeds to a pseudo-random generator, thereby allow-
ing to privately generate large correlated pseudo-pads using little communication.
We show that while such a substitution cannot always preserve the security of an
underlying information theoretically secure protocol, for a wide class of protocols
meeting some mild technical requirement security is guaranteed to be preserved.

A major disadvantage of most of our solutions is their poor scalability; in
some applications their complexity grows exponentially with the number of play-
ers.4 However, when the number of players is reasonably small, the advantages
of our approach arguably outweigh this unfortunate byproduct of the replication
paradigm. One such advantage is the ability to use any block- or stream-cipher
in a black-box manner, which may result in orders of magnitudes of efficiency
improvement over potential solutions based on specific number-theoretic con-
structions. Finally, we stress that the task of uncompressing correlated pads
may be done off-line. This means that the on-line efficiency of protocols using
our correlated pseudo-pads can be the same as the efficiency of protocols using
perfect pads. For instance, suppose that a proactive secret-sharing protocol re-
quires a large file to be shared using Shamir’s secret-sharing scheme (for efficient
on-line retrieval or updates of selected information). In each refreshment period
correlated pseudo-pads are uncompressed and “added” to the current shares,
and their seeds are erased. At the end of such a refreshment process, portions of

2 Here and in the following, “optimal” should be interpreted as: “optimal under the
replication paradigm”.

3 The notion of private computation with respect to general adversary structures was
first introduced and studied in [14].

4 Exceptions are resources used for private modular addition (relative to any adver-
sary structure), or (t, n)-threshold secret-sharing of zero when either t or n − t are
constant.



Compressing Cryptographic Resources 595

the shared file may be freely reconstructed or updated without any additional
communication or computation overhead.

We finally note that while the main setting we consider when describing
applications involves a trusted dealer, this is not an essential assumption. In
fact, assuming that the players are honest but curious, the replication paradigm
allows simulating the dealer by the players with no extra cost.

1.3 Related Work

The idea of treating correlated pads as useful cryptographic resources has been
recently put forward in [3] under a specialized “commodity-based” model, and is
implicit in many other works. However, to our knowledge the idea of compressing
such general resources has never been treated.

Our paradigm of realizing private correlation via replication is related to the
notion of replication-based secret-sharing schemes, which were introduced in [16]
as a means of implementing secret-sharing relative to general access structures.
Such schemes proceed by first additively sharing a secret, writing it as the sum
(over a finite group) of otherwise random shares, and then distributing each
additive share to some set of players associated with it. Replication-based secret-
sharing schemes are implicitly used in [21,22] in the related context of sharing
pseudo-random functions, and are used in [4] to realize private computation
relative to general adversary structures and in [15] for obtaining efficient private
information retrieval schemes. Some special cases of our constructions resemble
(and in a sense generalize) the secret-sharing schemes used in these works; in
general, however, both the semantics of the problem studied in this work and
the replication-based combinatorial structures which underly our solutions are
quite different. Our approach for compressing linear correlations may be viewed
as a further, differently motivated, application of the replication technique.

Organization. The rest of this paper is organized as follows. Section 2 introduces
some general notation. In Section 3 we define the information theoretic notion of
private correlation from replication and study it for linear correlation patterns. In
Section 4 we use the results of Section 3 to obtain privately correlated pseudo-
random generators. Section 5 contains some concluding remarks. Finally, the
appendices contain some definitions and a proof deferred from the main body of
text.

2 Notation

By [n] we denote the set {1, 2, . . . , n}. We use capital letters to denote random
variables or probability distributions, and small letters to denote their instances.
By x ← X we denote a random choice of an instance x from the distribution
X. All such random choices are made independently of each other. Additional
context-specific notation will be defined in subsequent sections.



596 N. Gilboa, Y. Ishai

3 The Information Theoretic Setting: Private Correlation
from Replication

In this section we study the information theoretic question of privately generat-
ing a joint distribution of correlated outputs from replicated independent random
sources. This question is motivated by the possibility of replacing the indepen-
dent random sources by seeds to a pseudo-random generator or a pseudo-random
function, which will be explored in the next section.

A formal definition of this notion of private correlation from replication is
given in the following subsection.

3.1 Definitions

Let X1, X2, . . . , Xm be independent random variables, where each Xj is uni-
formly distributed over a finite domain Xj, let X = (X1, X2, . . . , Xm) and
X = X1 × · · · × Xm. Let Y1, . . . ,Yn be some finite sets, and Y = Y1 × · · · × Yn.
For 1 ≤ i ≤ n, let fi be some mapping from X to Yi, and Si ⊆ [m] denote the set
of arguments on which fi depends (e.g., if f3(x1, . . . , xm) depends on x2 and x5

and only on these arguments, then S3 = {2, 5}). Finally, we let f = (f1, . . . , fn)
(so that f maps from X to Y), and for 1 ≤ i ≤ n we define the random variable
Yi = fi(X), and Y = (Y1, . . . , Yn) = f(X). Notice that Y is a random variable
distributed over Y.

Before proceeding with the main definition, we briefly describe the correspon-
dence between the above notation and the correlation from replication paradigm
that motivates it. The random variables Xj are the independent random sources
to be replicated among the n players. The function f (and its associated sets Si)
induces the following pad distribution protocol:

• The dealer generates x ← X and sends to each player Pi, 1 ≤ i ≤ n, all
components xj with j ∈ Si.
• Each player Pi locally computes yi = fi(x) based on the components of x

he received,5 and outputs yi as his random pad.

Notice that the function f concisely defines the entire protocol, including both
the identity of messages sent to each player and the local computations of all
players.

For any set T ⊆ [n], we let YT
def= (Yi)i∈T and XT

def= (Xj)j∈∪i∈T Si . The
random variable YT includes the joint outputs of the players Pi, i ∈ T , and XT

includes all messages they receive from the dealer.
We are now ready to define the notion of privately generating a given prob-

ability distribution from replicated independent sources.

Definition 1. Let D be a probability distribution over Y, and T ⊆ 2[n] be an
adversary structure (specifying collusions of players to protect against). We say
that a mapping f as above T -privately generates D from replication of X (or
T -privately generates D for short) if the following two conditions hold:
5 Note that by the definition of the sets Si, the xj ’s sent by the dealer are necessary

and sufficient for this local computation to be possible.



Compressing Cryptographic Resources 597

Correctness. The output n-tuple Y (= f(X)) is distributed according to D.
Privacy. For any collusion T ∈ T , the random variable Y is independent of XT

given YT ; that is, for any x ∈ X ,

Pr[Y = y | XT = xT , YT = yT ] = Pr[Y = y | YT = yT ],

where y = f(x). Intuitively, the above privacy condition asserts that the
messages XT which members of T receive from the dealer give them no ad-
ditional information about the joint output Y other than what follows from
their outputs YT .

Finally, we say that f t-privately generates D if it T -privately generates D for
the threshold structure T = {T ⊆ [n] : |T | ≤ t}, and that it privately generates
D (or generates D with full privacy) if it n-privately generates D.

3.2 Additively Sharing a Zero

Before proceeding to study the general case of linear correlations, we start with
the important special case of additively sharing a zero. Since the basic solution
we provide for this special case will be generalized in the next subsection, we
allow ourselves to omit some formal proofs and focus on the high-level intuition.
Moreover, while in the general case we mainly address the question of construct-
ing fully-private correlation generators, for the special case of additively sharing
a zero we pay more attention to realizing privacy with respect to threshold and
non-threshold adversary structures, and reduce the latter question to an inter-
esting extremal graph-theoretic problem.

Fix a finite field F ,6 and define the distribution Ds as the uniform distribution
over all n-tuples (d1, . . . , dn) ∈ F n such that

∑n
i=1 di = 0. We first address the

case of generating Ds with full privacy, and then proceed to study more general
adversary structures.

To privately generate Ds from replication, consider the clique Kn whose n
vertices are labeled by player indices, and assign an independent random source
Xe to each edge e = {u, v} in the graph. That is, let m =

(
n
2

)
, and label the m

entries of X by edge names. Moreover, assume that the edges of the graph are
arbitrarily directed (e.g., from the smaller numbered vertex to the larger one).
Such a directed version of Kn, and similarly of any other graph, induces the
following scheme for generating Ds: Each player Pi receives all sources Xe such
that e is incident to its corresponding vertex, and outputs the difference

fi(X) def=
∑

e enters vertex i

Xe −
∑

e exits vertex i

Xe.

It can be easily verified that any such graph-based scheme satisfies the cor-
rectness requirement, since the contribution of each edge to the sum

∑n
i=1 fi

is 0. An obvious necessary condition for the privacy requirement is that each
6 Results here and in the following section carry on to more general algebraic struc-

tures. For instance, here F may be replaced by any finite Abelian group.



598 N. Gilboa, Y. Ishai

collusion T of at most n − 2 players misses at least one source Xe; otherwise,
the variables Xe held by such a collusion would completely determine the joint
output Y , contradicting the privacy requirement. Indeed, this condition is met
by the above clique-based scheme since each such player set T misses at least one
edge. This necessary condition also shows that the complexity of the clique-based
solution is optimal under our replication paradigm. This is argued as follows. For
each collusion T containing exactly n− 2 players, there must exist a source Xj

(on which f depends) which T misses; moreover, Xj must be distributed to both
players outside T , for otherwise the correctness requirement prevents f from
depending on Xj . It follows that for each set T of size n−2 there exists a unique
source Xj it misses, from which it follows that m ≥

(
n
2

)
.

In the case of full privacy, it turns out that the above necessary condition
for privacy is also sufficient; however, as the following example shows, this is not
the case for other adversary structures.

Example 1. Consider the replication scheme induced by a cycle of length n
(whose edges are arbitrarily directed, as in the above case of a clique). Such
a scheme satisfies the correctness requirement, and also satisfies the above nec-
essary condition for privacy for |T | < n/2. Indeed, every set of less than n/2
vertices cannot cover all edges of the cycle. However, it is easy to see that there
exist collusions of two players which can totally determine the output of a third
player, thereby violating the privacy condition of Definition 1. For instance, in
the scheme induced by the cycle (P1, P2, P3, . . . , P1), P1 and P3 can determine
the output of P2 since they cover all edges incident to him.

A necessary and sufficient condition for privacy should assert that for any
collusion T ∈ T , the dimension of the space of possible Y values given XT is
exactly n− |T | − 1, the dimension of Y given YT . Intuitively, each of these two
dimensions corresponds to the number of “degrees of freedom” of the outputs of
the remaining players given a view of members of T . The analysis in the next
subsection (or the proof sketch of the following theorem) will show that the
above condition is indeed satisfied by the clique-based scheme.

We now reduce the problem of T -privately generating additive shares of zero
to an extremal graph theoretic problem.

Theorem 1. Let T ⊆ 2[n] be an adversary structure, and let G(V, E) be a graph
with V = [n]. Then, G induces a T -private generator of Ds if and only if for
every T ∈ T the subgraph G− T , induced by removing all T -vertices from G, is
connected.7

Proof sketch. The proof follows from the fact that the rank of the incidence
matrix8 of a graph equals its number of vertices minus its number of connected
components (cf. [7, page 38]). This implies that if T does not disconnect G, then
7 Note that the above requirement on the subgraphs G − T is not monotone with

respect to T (i.e., it is possible that T ′ ⊆ T yet only the removal of T ′ disconnects
G).

8 The incidence matrix of a graph G(V, E) is a |V | × |E| matrix M , such that for any
edge e = {u, v} ∈ E the e-th column of M contains 1 in its u-th entry, −1 in its v-th
entry (or vice versa) and 0 elsewhere.



Compressing Cryptographic Resources 599

the dimension of the space of possible Y values given XT is exactly n− |T | − 1
as required, and otherwise it is smaller. ut

The above connectivity requirement illuminates a qualitative difference be-
tween the type of combinatorial structures considered in our context and the
ones required in the related context of replication-based secret-sharing [16,21].
Crudely speaking, the latter context only induces covering-type requirements
on restricted unions of replication sets, which in our context are generally not
sufficient (as demonstrated by Example 1).

For the special case of threshold structures, Theorem 1 suggests that a t-
private generator of Ds can be based on any (t+1)-connected graph. For instance,
when t is odd, a corresponding optimal graph may be obtained by connecting
each vertex i to the (t + 1)/2 vertices with (cyclically) consecutive indices.

We end this subsection by mentioning a further application of the above
graph-theoretic characterization. By letting the players simulate the dealer (e.g.,
having each replicated source be picked and multicast by one player to which
it is assigned), the above results can be used to obtain communication-efficient,
perfectly-private two-round protocols for modular addition relative to general
adversary structures. For the case of threshold structures, this can be compared
with the (communication-optimal) private protocol of [10], which is only slightly
more communication-efficient but requires many rounds of interaction.

3.3 Optimal Construction for Linear Correlations

We now move to the general case of linear correlations, where the joint output
distribution D forms a uniformly random vector in some linear space over a finite
field F . In the following we will stick to coding theory terminology: we will refer
to the linear space as a linear code, and to a vector in this space as a codeword. To
simplify notation, we only address the case where D is uniformly distributed over
some length-n linear code C ⊆ F n; that is, we focus on generating probability
distributions in which each player Pi outputs the i-th coordinate of a uniformly
random codeword c ∈ C. More general linear correlations, in which each player
outputs several coordinates of a random codeword c, can be handled in a similar
fashion.

Let DC denote the uniform distribution over C. We will privately generate
the distribution DC using a linear generator of the form f(x) = Mx, where
M is an n-row matrix over F . Note that in order to satisfy the correctness
requirement alone, it suffices for the columns of M to generate the code C. This
is not sufficient, however, for satisfying the privacy requirement. For instance,
if M contains only nonzero entries, then each player views all of X and hence
obtains full information on Y .

Our construction of a private generator for DC will use a notion of minimal
support codewords. For any codeword c ∈ C we define the support set of c, de-
noted s(c), as the set of coordinates i such that ci 6= 0. We say that a codeword
c is of minimal support, if c 6= 0 and there is no c′ ∈ C, c′ 6= 0, such that
s(c′) ⊂ s(c). It is straightforward to observe that if two codewords c, c′ are both
of minimal support and s(c) = s(c′), then one must be a multiple of the other
(otherwise there exists a linear combination of c, c′ whose support contradicts



600 N. Gilboa, Y. Ishai

their minimality). Hence the set of minimal support codewords in C can be natu-
rally partitioned into equivalence classes, where two minimal support codewords
are equivalent if one is a multiple of the other. Finally, we define Min(C) as a
set of representatives of the above equivalence classes (e.g., Min(C) may include
all minimal support codewords whose first nonzero coordinate is 1).

The following theorem gives our construction of a private linear correlation
generator.

Theorem 2. Let C be a length-n linear code over F , and M be an n×m matrix
whose m columns consist of all codewords in Min(C) (i.e., all representatives of
minimal-support codewords in C). Then, the linear function fM : F m → F n

defined by fM (x) = Mx privately generates DC from replication.

The proof of Theorem 2 uses the following sequence of lemmas. The (straight-
forward) proofs of the first two lemmas are omitted from this version.

Lemma 1. For any linear code C, span(Min(C)) = C. ut

Lemma 2. Let U b denote the uniform distribution over F b. Then, for any a×b
matrix A over F , the random variable AU b is uniformly distributed over the
column-span of A. ut

It follows from Lemmas 1, 2 that Y = MX is uniformly distributed over C.
Hence, the function fM defined in Theorem 2 correctly generates DC . It re-
mains to show that it also satisfies the privacy requirement, with respect to any
collusion T ⊆ [n].

We Let xT , yT denote restrictions of instances x, y of the random variables
X, Y , similarly to the notation XT , YT defined in Subsection 3.1. (Note that this
restriction has a different meaning when applied to an m-tuple x than when
applied to an n-tuple y). We let Y |xT denote the conditional space induced by
conditioning the random variable Y by the event XT = xT . Similarly, by Y |yt

we denote the conditional space induced by conditioning the random variable
Y by the event YT = yT . Intuitively, Y |xT models the information learned by
members of T from their view of X, and Y |yT models what they must infer from
their outputs.

Lemma 3. For any x ∈ F m, the conditional spaces Y |xT and Y |yT are identi-
cally distributed, where y = fM (x).

Proof sketch. Let [Y |xT ] and [Y |yT ] denote the supports of the corresponding
spaces (i.e., the sets of y ∈ F n that have nonzero probability). First, writing the
corresponding systems of linear equations, it is easy to observe that both spaces
are uniformly distributed over some affine subspace of C. Hence, it suffices to
show that the supports of the two spaces are equal, i.e. that [Y |xT ] = [Y |yT ].

Let CT denote the subspace of C consisting of all codewords c such that
cT = 0, and MT denote the submatrix of M containing the rows with indices
from T = [n] \ T , restricted to columns from CT (whose T -rows are all zero).
That is, write M as

M =
(

M1 0
M2 MT

)
,



Compressing Cryptographic Resources 601

where the rows of M1 are those labeled by members of T , and every column of
M1 includes at least one nonzero entry.

We now turn to show the equality [Y |xT ] = [Y |yT ]. The “⊆” inclusion follows
immediately from the fact that xT determines yT (since yT is the result of
local deterministic computations performed on xT ). For the other inclusion,
it suffices to show that |[Y |yT ]| = |[Y |xT ]|, or equivalently that dim[Y |yT ] =
dim[Y |xT ] (where dimV denotes the dimension of an affine space V ). From the
corresponding systems of linear equations one can deduce that:

dim[Y |yT ] = dim CT (1)

dim[Y |xT ] = rank MT . (2)

It follows from the definitions of M and MT that the columns of MT (augmented
with zeros as their T -entries) include all codewords in Min(CT ). By Lemma 1
these columns span CT , hence dim CT = rank MT , and using equations (1),(2)
above we obtain that dim[Y |yT ] = dim[Y |xT ] as required. ut

It follows from Lemma 3 that the function fM defined in Theorem 2 also sat-
isfies the privacy requirement with respect to any collusion T ⊆ [n], concluding
the proof of Theorem 2.

The (fully-private) solution for additively sharing a zero, as described in the
previous subsection, may be derived as a special case of Theorem 2. Another
useful special case is a secret-sharing of zero using Shamir’s scheme.

Corollary 1. Let D be the distribution induced by sharing 0 according to
Shamir’s secret-sharing scheme with parameters (t + 1, n) over a finite field F
(|F | > n). That is, D is generated by picking a random polynomial p over F
of degree≤ t and free coefficient 0, and outputting the n-tuple (p(α1), . . . , p(αn))
(where α1, . . . , αn are some fixed distinct nonzero field elements). Then, D can
be privately generated from replication with m =

(
n

t−1

)
, where each of the m

independent field elements is sent to n− t + 1 players.

Proof. It is not hard to observe that a distribution D as above is uniform over
a linear code C such that Min(C) includes

(
n

t−1

)
codewords, each of Hamming

weight n− t +1. More generally, the same is true for any MDS code (cf. [19]) of
length n and dimension t. ut

We end this section with a couple of remarks about the above construction.

Remarks:

1. On optimality. The construction of the correlation generator fM in The-
orem 2 can be shown to be optimal (under the correlation from replication
paradigm), with respect to the communication complexity of the induced
protocol. The proof of this fact may proceed similarly to the arguments
made in the previous subsection for the special case of additively sharing
a zero, and is omitted from this version.

2. On generalization to T -privacy. The above solution can be made more
efficient if the full privacy requirement is relaxed to T -privacy. In fact,
it is possible to derive from the proof of Theorem 2 a generalization of



602 N. Gilboa, Y. Ishai

Theorem 1, providing a necessary and sufficient condition on a subset of
the columns of M so that the corresponding submatrix M ′ will T -privately
generate the distribution DC . Specifically, the relaxed privacy requirement
should assert that for every T ∈ T , dim CT = rank M ′

T
, where CT and

M ′
T

are as defined in the proof of Lemma 3.

4 The Computational Setting: Privately Correlated
Pseudo-Random Generators

In this section we exploit private correlation generators constructed in the previ-
ous section for implementing “privately-correlated pseudo-random generators”.
Intuitively, such generators should allow to securely substitute in applications
long correlated perfectly-random pads by correlated pseudo-random pads, where
these “pseudo-pads” are generated by locally uncompressing short seeds sent by
the dealer. While the results shown in this section are not particularly strong,
clean, nor elegant, we view them as an important demonstration of plausibil-
ity. We start by addressing the delicate issue of formally defining the desired
computational notion.

A first (and technical) difficulty with incorporating the results of the previous
section in a computational setting is the fact that for certain linear correlation
patterns, the complexity of their generation from replication is exponential in
n. (We stress though that for some useful correlations, such as additive shares
of zero, this is not the case.) For simplicity, throughout the remainder of this
section we fix a linear distribution D (which in particular determines the number
of players n and the size of the field F to be constants), and treat the number
of generated instances of D (corresponding to the length of the generated pads)
as the major complexity parameter. While this “resolves” the above technical
difficulty, a more inherent difficulty is discussed below.

The previous section described a procedure for privately generating a joint
distribution D of n correlated pads from m independent and replicated random
sources. Such a procedure may be defined using a more general terminology of
private multi-party computation (cf. [8,1,20]) as follows. We consider a simple
model consisting of n parties, connected to a trusted dealer via secure channels,
and a passive, static T -adversary. The function f is a T -private generator for
the distribution D (as defined in Definition 1) if it induces a perfectly T -private
protocol computing the probabilistic n-output function that takes no inputs and
outputs an n-tuple y distributed according to D.9 Now, a natural way to define
the notion of privately-correlated pseudo-random generators using general ter-
minology of private multi-party computation is the following. Let ` denote the
number of repetitions of the distribution D to be generated. The parameter `, as
well as a security parameter κ, will be given as inputs to all players. Moreover, to
9 To be consistent with the usual computationally-oriented definitions of private multi-

party computation found in the literature, one also needs to add an extra requirement
of efficient simulatability to Definition 1. However, for constant n (and arbitrarily
large F ) our solutions for linear correlations are easily seen to satisfy this extra
requirement.



Compressing Cryptographic Resources 603

simplify definitions we assume that ` = p(κ) for some polynomial p(κ) = ω(k);
that is, the length of the generated pads is some fixed superlinear polynomial of
the security parameter. The distribution D on F n induces a distribution D` on
(F `)n, generated by ` independent repetitions of D. Notice that the information
theoretic constructions of the previous section easily generalize from privately
generating a distribution D to privately generating D`. Using the above nota-
tion, we would like to define a privately-correlated pseudo-random generator as
a computationally private protocol10 computing the probabilistic function out-
putting D` (with no input), or some distribution which is indistinguishable from
D`, using little communication. Specifically, we restrict the length of messages
sent from the dealer to the players to be O(κ).

Such a definition would not only be natural but also quite useful, since it gives
hope to allow automatically plugging pseudo-pads in every application that uses
perfect pads. However, even under our relatively benign adversary model, such
a definition would be impossible to meet. To illustrate why this is the case,
let n = 2 and consider the simple distribution outputting a pair of identical
random strings. Intuitively, any low-communication protocol for computing this
distribution will reveal to P1 a “short explanation” for the output of P2 (which
is with overwhelming probability identical to his own output), whereas if this
information could be simulated based on the output of P1 alone then one could
distinguish the output of P1 from a truly random output. In the example of ad-
ditively sharing a zero, members of a collusion T will obtain a short explanation
for the sum of the outputs of the remaining players (which again, cannot be
simulated by viewing the T -outputs alone).

For the reason discussed above, we avoid specifying an explicit definition of
the general computational primitive and replace it with an ad hoc definition.
Namely, we define a privately-correlated pseudo-random generator with respect
to a protocol or a class of protocols.

Definition 2. Let P be a (perfectly or computationally) T -private protocol con-
sisting of the following two stages:

Off-line stage: The dealer sends (over secure channels) to each player Pi the
i-th component of a random instance y` ← D`. After this stage the dealer
vanishes.

On-line stage: The players interact, using their “long” random pads y`.

Now, let G be a protocol between the dealer and the players (presumably out-
putting some pseudo-pads approximating D`), with total communication O(κ).

We say that G is a privately-correlated pseudo-random generator (PCPRG)
for distribution D` with respect to the protocol P if the protocol P̃ obtained by
replacing the off-line stage in P by G is computationally T -private. We say that
G is a PCPRG for D` with respect to a protocol class C, if it is a PCPRG with
respect to every P ∈ C.

Using the above terminology, an ordinary pseudo-random generator may be
viewed as a PCPRG in which the dealer sends a κ-bit seed to one player, who
locally expands it to an `-bit pseudo-random string.
10 See Appendix A for a definition of a computationally private protocol in our setting.



604 N. Gilboa, Y. Ishai

We now use the results of the previous section to construct, for any linear
correlation DC , a PCPRG GC with respect to a wide class of protocols meeting
some mild technical requirement.

Our PCPRG GC for a linear correlation DC is defined in a straightforward
manner using the function fM constructed in Theorem 2. Specifically, the pro-
tocol proceeds as follows. Let G : {0, 1}κ → F ` be any pseudo-random generator
(i.e., the output of this generator is indistinguishable from a random `-tuple over
F ). Let S denote a uniform distribution over ({0, 1}κ)m (S represents a uniform
distribution of m independent κ-bit seeds), and let f = fM . In the protocol GC ,
the dealer first generates a seed vector s ← S, and sends each seed sj to all
players Pi with j ∈ Si (where the sets Si are determined by the information
theoretic generator f as in the previous section). Then, each player Pi evaluates
ỹi

def= fi(G(s)), where G(s) def= (G(s1), . . . , G(sm)), using the seeds it received.
The `-tuple ỹi ∈ F ` is used as Pi’s pseudo-pad.

The next step is to define a general class of protocols P for which GC is a
PCPRG generating DC . The following definition will use the notion of simulator
as used in definitions of private protocols. We refer the reader to Appendix A
for definitions of the relevant notions.

For any perfectly T -private protocol P, such that in the off-line stage of
P the dealer distributes pads generated according to D`

C , we define a protocol
P ′ obtained by replacing the original off-line stage by the distribution procedure
induced by a corresponding T -private correlation from replication generator fM .
(It can be shown that in our setting such P ′ is also perfectly T -private).

Definition 3. We say that the protocol P ′ admits a strong simulator, if for
every adversary A′ there exists a strong simulator S′ following the following
two-step procedure:

• Generates, independently of its view of the inputs and the outputs, a uni-
formly random x`

T , representing pads received from the dealer in P ′, and
outputs (the appropriate replication of) x`

T as the corresponding part of the
simulated view;
• Proceeds arbitrarily, possibly relying on the generated view x`

T in addition
to its view of the inputs and outputs.

Theorem 3. For any linear correlation DC , and any protocol P using DC such
that P ′ admits a strong simulator, GC is a PCPRG with respect to P.

Proof. See Appendix B. ut

We stress that the existence of a strong simulator in the sense of the above
definition is a very mild requirement on perfectly private protocols. For instance,
the simple information theoretic protocol for modular addition described in the
introduction, as well as much more complicated protocols such as an implemen-
tation of [5] using linearly correlated pads, satisfy this requirement.

To see why a restriction on the protocol P is at all necessary, consider a sim-
ple perfectly-private protocol P in which the dealer first additively shares a long
zero among the players, and then each player outputs his share. This protocols



Compressing Cryptographic Resources 605

computes, with perfect and full privacy, the probabilistic function outputting
some distribution DC (namely, additive sharing of zero). However, the corre-
sponding protocol GC is not a PCPRG with respect to P. (Intuitively, members
of T can generate a “short explanation”, which cannot be efficiently simulated,
for the sum of the outputs of the other players.) Indeed, the above protocol P
does not admit a strong simulator, since the messages viewed by the adversary
during the off-line stage depend on the adversary’s view of the output.

We would like to point out a few possible extensions of the results of this
section. First, pseudo-random generators can be replaced by pseudo-random
functions, thereby obtaining a stronger notion of privately-correlated pseudo-
random functions. Second, the dealer may be simulated by the players, resulting
in private protocols under a more standard dealer-less model. In the case of
a passive adversary, this can be done by picking for each seed distributed by
the dealer a single player from the set of players who should receive it, and
letting this player generate this seed and multicast it to the appropriate set of
players. Finally, while the framework discussed in this section does not apply
as is to the proactive secret-sharing application described in the introduction,
our compression technique for linear correlations can be securely used in such
context.

5 Concluding Remarks

While the correlation from replication paradigm seems to be the most general
one could expect when pseudo-randomness is used in a black-box manner, an
interesting open question is that of obtaining more efficient direct constructions
for linear correlations and other useful types of correlations. A particularly in-
teresting open problem is that of compressing (non-linear) correlations of the
type used in [3] for allowing efficient 2-party oblivious transfer (OT) [25,11].11

Acknowledgments. We wish to thank two anonymous referees for their helpful
suggestions and comments. We also thank Hugo Krawczyk, Eyal Kushilevitz, and
Moni Naor for related discussions.

References

1. D. Beaver. Foundations of secure interactive computing. In Proceedings of
CRYPTO, 1991.

2. D. Beaver. Correlated pseudorandomness and the complexity of private computa-
tion. In Proc. of 28th STOC, pages 479–488, 1996.

3. D. Beaver. Commodity-based cryptography. In Proc. of 29th STOC, pages 446–
455, 1997.

11 A seemingly related problem was studied in [2], where it is shown that an initial
“seed” of κ OT’s suffices to generate O(κc) OT’s using one-way functions alone;
however, the main concern of [2] is that of weakening the required cryptographic
assumptions rather than reducing the communication complexity of this task.



606 N. Gilboa, Y. Ishai

4. D. Beaver and A. Wool. Quorum-based secure multi-party computation. In Proc.
of EUROCRYPT’98, LNCS 1403, Springer Verlag, pages 375–390, 1998.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of 20th STOC,
pages 1–10, 1988.

6. M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

7. B. Bollobás. Graph Theory. Springer-Verlag, 1979.
8. R. Canetti. Security and composition of multi-party cryptographic protocols. The-

ory of Cryptography Library, Record 98-18, 1998.
9. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure pro-

tocols (extended abstract). In Proc. of 20th STOC, pages 11–19, 1988.
10. B. Chor and E. Kushilevitz. A communication-privacy tradeoff for modular addi-

tion. Information Processing Letters, 45(4):205–210, March 1993.
11. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Comm. of ACM, 28:637–647, 1985.
12. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

JACM, 33(4):792–807, October 1986.
13. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:

How to cope with perpetual leakage. In Proceedings of CRYPTO, 1995.
14. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in se-

cure multi-party computation (extended abstract). In Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 25–34,
1997.

15. Y. Ishai and E. Kushilevitz. Improved upper bound on information theoretic pri-
vate information retrieval. In Proc. of 31th STOC, 1999.

16. M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access
structures. In Proc. IEEE Global Telecommunication Conf., Globecom 87, pages
99–102, 1987.

17. H. Krawczyk. Secret sharing made short. In Proceedings of CRYPTO, 1994.
18. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University

Press, 1996.
19. F.J. Macwilliams and N.J. Sloane. The theory of error correcting codes. North

Holland, 1978.
20. S. Micali and P. Rogaway. Secure computation. In Proceedings of CRYPTO, 1991.
21. S. Micali and R. Sidney. A simple method for generating and sharing pseudo-

random functions with applications to clipper-like key escrow systems. In Advances
in Cryptology - CRYPTO ’95, pages 185–196, 1995.

22. M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. In Proc. of EUROCRYPT’99, LNCS 1592, Springer Verlag, pages 327–346,
1999.

23. R. Ostrovsky and V. Shoup. Private information storage. In Proc. of the 29th
Annu. ACM Symp. on the Theory of Computing, pages 294–303, 1997.

24. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. 10th
ACM Symp. on Principles of Distributed Computation, pages 51–61, 1991.

25. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

26. T. Rabin. A simplified approach to threshold and proactive RSA. In Proceedings
of CRYPTO, 1998.

27. A. Shamir. How to share a secret. Commun. ACM, 22(6):612–613, June 1979.
28. A. C. Yao. Theory and application of trapdoor functions. In Proc. of the 23th

Annu. IEEE Symp. on Foundations of Computer Science, pages 80–91, 1982.



Compressing Cryptographic Resources 607

A Definitions of Private Computation

In the following we outline definitions of perfect (aka information theoretic)
and computational privacy of protocols in our minimalistic model. We refer the
interested reader to, e.g., [8] for more general and detailed definitions.

We consider a passive, static adversary, corrupting at the beginning of the
computation some set of players T ∈ T (denoted T -players). The view of such
an adversary consists of the entire joint view of the T -players. That is, this view
includes the inputs and random tapes of the T -players, the messages exchanged
between the dealer and T -players during the off-line distribution stage, and all
messages exchanged during the on-line stage.12

We let a denote an input n-tuple, and g denote a (deterministic or probabilis-
tic, single- or multi-output) function mapping the input into an output n-tuple
denoted z. Notice that if g is deterministic, then a determines z. Otherwise,
every input a induces some probability distribution on the output z. For every
n-tuple v, vT denotes restriction of v to its T -entries.

Let P be an n-party protocol (presumably computing g). We consider two
scenarios. In the real-life scenario, an adversary A is exposed to the view de-
scribed above induced by an execution of P on some input a. In the ideal-model
scenario, an output z ← g(a) is picked, and a simulator S, viewing only aT , zT

(modeling what the adversary inevitably learns), has to efficiently “simulate”
the real-life view of A given the unknown input a and output z. We denote by
execA(a) the random variable which includes the view of the adversary A on
input a, concatenated with the outputs of the remaining players.13 Similarly, by
execS(a) we denote the random variable including the simulated output of S
(on inputs aT , zT ) along with the outputs zT .

We say that P is a perfectly (computationally) T -private protocol computing
g if for every efficient adversary A (corrupting some set of players T ∈ T ), there
exists an efficient simulator S (corrupting the same set of players), such that
the probability ensembles {execS(a)}a∈A and {execA(a)}a∈A, are identically
distributed (resp., computationally indistinguishable), where A is the (infinite)
set of all input n-tuples whose n inputs are of the same length.14

B Proof Sketch of Theorem 3

Recall that the protocol P̃ is the protocol obtained by replacing the off-line stage
of P or P ′ by the protocol GC . We prove that if P ′ admits a strong simulator,
then P̃ is computationally private.

12 The assumption that all on-line messages are broadcasted does not compromise
generality because of the existence of private channels in the off-line stage.

13 Setting T = ∅, this concatenation will capture the correctness requirement. In the
case of multi-output functions, it may also capture the adversary’s possibility of
learning computational information about the outputs of the remaining players.

14 Note that this definition effectively restricts all inputs to be of the same length and
uses the input length as the security parameter.



608 N. Gilboa, Y. Ishai

We define the following random variables for the various protocols involved.
By X we denote the independent messages sent by the dealer in P ′ (X is uni-
formly distributed over (F `)m).15 By Xc

T we denote the complement of XT , i.e.
the restriction of X to the entries not viewed by players in T (notice that Xc

T
is not the same as XT ), and similarly for other m-tuples. By S we denote the
seeds sent in P̃ (uniformly distributed over ({0, 1}κ)m) and by X̃ the m-tuple
G(S) (where G is the pseudo-random generator used by GC).

Recall that a strong simulator S′ for an adversary A′ attacking protocol P ′

proceeds as follows. On input aT , zT it first outputs a uniformly random xT

(independently of its inputs), and then exactly generates the distribution of the
remaining simulated view conditioned by a, z, xT (where the probability space of
the corresponding conditional view of A′ in the real-life protocol is over Xc

T and
the coin-tosses of all players). We now construct a simulator S̃ for an adversary
Ã attacking the protocol P̃. Simulator S̃, on input aT , zT , proceeds as follows:

• generates random seeds sT ;
• evaluates x̃T = G(sT ) and outputs an appropriate replication of x̃T as the

simulation of the off-line stage;
• invokes the second phase of the strong simulator S′ on inputs aT , zT , x̃T ,

and outputs the remaining simulated view.

To prove the validity of the simulator S̃ constructed above, it may be con-
ceptually convenient to define an intermediate protocol P̃ ′ between P̃ and P ′,
obtained by replacing the pseudo-random strings X̃c

T with perfectly random
strings of the same length, Xc

T . Note that by a standard hybrid argument, Xc
T

is computationally indistinguishable from X̃c
T . We prove that a distinguisher D

between {execS̃(a)} and {execÃ(a)} can be turned into a distinguisher between
{Xc

T } and {X̃c
T }. For any input a, construct a distinguisher D̂a as follows. On

input q, sampled either according to Xc
T or X̃c

T :

• generate random seeds sT and evaluate x̃T = G(sT );
• invoke the on-line stage of the protocol P ′ on input a, using f(x̃T , q) as cor-

related pads, and let vT denote the entire view of the T -players (including
aT and the seeds sT ) and z denote the protocol’s outputs;
• invoke the distinguisher D on exec = (vT , zT ).

It remains to make the following key observation: If q is distributed according to
Xc

T , then the random variable exec is distributed identically to the real-life view
in the intermediate protocol P̃ ′, which in turn is identical to execS̃(a) (otherwise
one could contradict the perfect simulation of S′); on the other hand, if q is
distributed according to X̃c

T , then exec is distributed identically to execÃ(a),
the real-life view in P̃. Hence, if there exists an infinite sequence of a’s on which
execS̃(a) and execÃ(a) are distinguished by D, we may use D̂a (with the same
sequence of a’s) to derive the desired contradiction to the indistinguishability of
Xc

T and X̃c
T . ut

15 The notation X` would be more appropriate than X in terms of consistency with
previous notation. We omit the superscripts ` to avoid further notation overload.


	Introduction
	Motivation
	Results
	Related Work

	Notation
	The Information Theoretic Setting: Private Correlation from Replication
	Definitions
	Additively Sharing a Zero
	Optimal Construction for Linear Correlations

	The Computational Setting: Privately Correlated Pseudo-Random Generators
	Concluding Remarks
	Definitions of Private Computation
	Proof Sketch of Theorem 3

