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Abstract. We extend the study of non-interactive statistical zero-
knowledge proofs. Our main focus is to compare the class NISZK of
problems possessing such non-interactive proofs to the class SZK of
problems possessing interactive statistical zero-knowledge proofs. Along
these lines, we first show that if statistical zero knowledge is non-trivial
then so is non-interactive statistical zero knowledge, where by non-trivial
we mean that the class includes problems which are not solvable in prob-
abilistic polynomial-time. (The hypothesis holds under various assump-
tions, such as the intractability of the Discrete Logarithm Problem.)
Furthermore, we show that if NISZK is closed under complement, then
in fact SZK = NISZK, i.e. all statistical zero-knowledge proofs can be
made non-interactive.
The main tools in our analysis are two promise problems that are natural
restrictions of promise problems known to be complete for SZK. We
show that these restricted problems are in fact complete for NISZK
and use this relationship to derive our results comparing the two classes.
The two problems refer to the statistical difference, and difference in
entropy, respectively, of a given distribution from the uniform one. We
also consider a weak form of NISZK, in which only requires that for
every inverse polynomial 1/p(n), there exists a simulator which achieves
simulator deviation 1/p(n), and show that this weak form of NISZK
actually equals NISZK.
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1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Rackoff [29], are
fascinating and extremely useful constructs. Their fascinating nature is due to
their seemingly contradictory nature; they are both convincing and yet yield
nothing beyond the validity of the assertion being proven. Their applicability in
the domain of cryptography is vast; they are typically used to force malicious par-
ties to behave according to a predetermined protocol (which requires parties to
provide proofs of the correctness of their secret-based actions without revealing
these secrets). Zero-knowledge proofs come in many flavors, and in this paper we
focus on two parameters: The first parameter is the underlying communication
model, and the second is the type of the zero-knowledge guarantee.

The communication model. When Goldwasser, Micali, and Rackoff proposed
the definition of zero-knowledge proofs, it seemed that interaction was crucial to
achieving zero knowledge – that the possibility of zero knowledge arose through
the power of interaction. Indeed, it was not unexpected when [24] showed zero
knowledge to be trivial (i.e., only exists for proofs of BPP statements) in the
most straightforward non-interactive models. Surprisingly, however, Blum, Feld-
man, and Micali [7], showed that by changing the model slightly, it is possible
to achieve zero knowledge in a non-interactive setting (i.e. where only unidi-
rectional communication can occur). Specifically, they assume that both Prover
and Verifier have access to a shared truly random string, called the reference
string. Aside from this assumption, all communication consists of one message,
the “proof,” which is generated by the Prover (based on the assertion being
proved and the reference string) and sent from the Prover to the Verifier.

Non-interactive zero-knowledge proofs, on top of being more communication-
efficient by definition, have several applications not offered by ordinary interac-
tive zero-knowledge proofs. They have been used, among other things, to build
digital signature schemes secure against adaptive chosen message attack [3],
public-key cryptosystems secure against chosen-ciphertext attack [34, 18], and
non-malleable cryptosystems [18].

The zero-knowledge guarantee. For ordinary interactive zero-knowledge proofs,
the zero-knoweldege requirement is formulated by saying that the transcript of
the Verifier’s interaction with the Prover can be simulated by the Verifier itself.
Similarly, for the non-interactive setting described above, the zero-knowledge
condition is formulated by requiring that one can produce, knowing only the
statement of the assertion, a random reference string along with a “proof” that
works for the reference string. More precisely, we require that there exists an ef-
ficient procedure that on input a valid assertion produces a distribution which is
“similar” to the joint distribution of random reference strings and proofs gener-
ated by the Prover. The key parameter is the interpretation of “similarity.” Two
notions have been commonly considered in the literature (cf., [29, 23, 21, 6, 5]).
Statistical zero knowledge requires that these distributions be statistically close
(i.e., the statistical difference between them is negligible). Computational zero
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knowledge instead requires that these distributions are computationally indistin-
guishable (cf., [28, 41]). In this work, we focus on the stronger security require-
ment of statistical zero knowledge.

Since its introduction in [7], most work on non-interactive zero knowledge
has focused on the computational type (cf., [7, 15, 16, 6, 20, 31]). With non-
interactive statistical zero knowledge, the main objects of investigation have
been the specific proof system for Quadratic Nonresiduosity and variants [6,
14, 11].1 Recently, De Santis et. al. [12] opened the door to a general study of
non-interactive statistical zero-knowledge by showing that it contains a complete
(promise2) problem.

Notation. Throughout the paper, SZK denotes the class of promise prob-
lems having statistical zero-knowledge interactive proof systems (defined in Ap-
pendix A), and NISZK denotes the class of promise problems having non-
interactive statistical zero-knowledge proof systems (defined in Section 1.1).

Our Contribution. In this work, we seek to understand what, if any, additional
power interaction gives in the context of statistical zero knowledge. Thus, we con-
tinue the investigation of NISZK, focusing on its relationship with SZK. Our
first result is that the non-triviality of SZK implies non-triviality of NISZK,
where by non-trivial we mean that a class includes problems which are not
solvable in probabilistic polynomial-time. The hypothesis holds under various
assumptions, such as the intractability of Discrete Logarithm Problem [22] (or
Quadratic Residuosity [29] or Graph Isomorphism [23]), but variants of these
last two problems are already known to be in NISZK [6, 5]).

Furthermore, we show that if NISZK is closed under complement, then in
fact SZK = NISZK — i.e., all statistical zero-knowledge proofs can be made
non-interactive. We note that [12] have claimed that NISZK is closed under
complement (and OR), but these claims have been retracted [13].

We also show the equivalence of NISZK with a variant in which the statis-
tical zero knowledge requirement is weakened somewhat.

Complete Problems. Central to our methodology is the use of simple and natural
complete problems to understand classes, such as SZK and NISZK, whose
definitions are rather complicated. In particular, we exhibit two natural promise
problems and prove that they are complete for NISZK. The two problems refer
to the “distance” (in two different senses) of a given distribution from the uniform
one. These two problems are natural restrictions of two promise problems shown
complete for SZK, in [38] and [27], respectively. Indeed, our results about the
1 The only exception is an unpublished manuscript of Bellare and Rogaway [5] who

proved some basic results about non-interactive perfect zero-knowledge and showed
a non-interactive perfect zero-knowledge proof for the language of graphs with trivial
automorphism group.

2 A promise problem Π is a pair Π = (Πyes, Πno) of disjoint sets of strings, corre-
sponding to yes and no instances of a decision problem.
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relationship between SZK and NISZK come from relating the corresponding
complete problems. This general theme of using completeness to simplify the
study of a class, rather than as evidence for computational intractability (as is the
traditional use of NP-completeness), has been evidenced in a number of recent
works (cf., [23, 33, 40, 1, 2]) and has been particularly useful in understanding
statistical zero knowledge (cf., [38, 39, 12, 27]).

1.1 The Non-interactive Model

Let us recall the definition of a non-interactive statistical zero-knowledge proof
system from [6].3 We will adapt the definition to promise problems. Note that our
definition will capture what [6] call a bounded proof system, in that each shared
reference string can only be used once. In contrast to non-interactive computa-
tional zero knowledge (cf., [6, 20]), it is unknown whether every problem that
has such a (bounded) non-interactive statistical zero-knowledge proof system
also has one in which the shared reference string can be used an unbounded
(polynomial) number of times.

A non-interactive statistical zero-knowledge proof system for a promise prob-
lem Π is defined by a triple of probabilistic machines P , V , and S, where V and
S are polynomial-time and P is computationally unbounded, and a polynomial
r(n) (which will give the size of the random reference string σ), such that:

1. (Completeness:) For all x ∈ Πyes, the probability that V (x, σ, P (x, σ)) ac-
cepts is at least 2/3.

2. (Soundness:) For all x ∈ Πno, the probability that V (x, σ, P (x, σ)) accepts
is at most 1/3.

3. (Zero Knowledge:) For all x ∈ Πyes, the statistical deviation between the
following two distributions is at most β(|x|):
(A) Choose σ uniformly from {0, 1}r(|x|), sample p from P (x, σ), and output

(p, σ).
(B) S(x) (where the coins for S are chosen uniformly at random.)

where β(n) is a negligible function,4 termed the simulator deviation, and the
probabilities in Conditions 1 and 2 are taken over the random coins of V and
P , and the choice of σ uniformly from {0, 1}r(n). Note that non-interactive sta-
tistical zero knowledge is closed under parallel repetition, so the completeness
and soundness errors (i.e. the probability of rejection (resp., acceptance) for yes
(resp., no) instances) can be made exponentially small in |x|.

We also define a weaker notion of zero knowledge, known as a weak non-
interactive statistical zero-knowledge proof system, where we ask only that for
every polynomial g(n), there exists a probabilistic polynomial-time simulator
3 Actually, only non-interactive perfect and computational zero-knowledge proofs were

defined in [6]. The definition we are using, previously given in [5, 12], is the natural
non-interactive analogue of (interactive) statistical zero knowledge [29].

4 Recall that a function is negligible if it is eventually less than 1/g(n) for any poly-
nomial g.
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Sg (whose running time may depend on g), such that the simulator deviation
as defined above is at most 1/g(|x|). This is the natural analogue of a notion
defined in the interactive setting for statistical zero knowledge [17] as well as
concurrent zero knowledge [19].

The class of promise problems that possess non-interactive statistical zero-
knowledge proof systems is denoted NISZK, and we denote by weak-NISZK
the class of promise problems that possess weak non-interactive statistical zero-
knowledge proof systems. Note that by definition, NISZK ⊂ weak-NISZK.
De Santis et. al. [12] recently began a general investigation of the class NISZK.
They introduced a promise problem, called Image Density, and claimed that is
complete for NISZK and that the latter class is closed under OR and comple-
ment. We were able to verify that some variants of Image Density are NISZK-
complete, and indeed the ideas used towards this goal are important to our work.
However, they have retracted their claims that NISZK is closed under OR and
complement [13].

In this paper, in addition to examining NISZK on its own, we also con-
sider the relationship non-interactive statistical zero-knowledge proofs have with
interactive statistical zero-knowledge proofs. In the context of interactive zero-
knowledge proofs, another issue that arises in the zero-knowledge condition is
the behavior of the verifier. The general definition of zero knowledge requires
that the zero-knowledge requirement hold for any probabilistic polynomial-time
verifier. A weaker requirement, called honest-verifier zero knowledge, requires the
zero-knowledge condition to hold only if the verifier behaves honestly. However,
it is known that these two conditions are equivalent for statistical zero knowl-
edge, in the sense that every statistical zero-knowledge proof against the honest
verifier can be transformed into one that is statistical zero knowledge against
any verifier [25]. Thus, we write SZK for the class of promise problems possess-
ing statistical zero-knowledge proofs (against any polynomial-time verifier or,
equivalently, against just the honest verifier).

Note that in the case of non-interactive zero knowledge, the issue of honest
verifiers does not arise since the verifier does not interact with the prover. Also,
note that we can always transform a non-interactive zero-knowledge proof into
an honest verifier zero-knowledge proof, since we could have the honest verifier
supply a random string which can replace the common reference string required
for non-interactive zero knowledge. That is, NISZK ⊂ SZK (recalling the
equivalence of SZK with honest-verifier SZK).

1.2 Our Results

The primary tools we use in our investigation are promise problems that are
complete for SZK or NISZK. In [38], a promise problem called Statistical
Difference (SD) was introduced and proved complete for SZK, providing the
first completeness result for SZK. Recently, it was shown in [27] that another
natural problem, called Entropy Difference (ED), is complete for SZK as well.
In this work, we show that “one-sided” versions of these problems, which we
call Statistical Difference from Uniform (SDU) and Entropy Approximation (EA), are
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complete for NISZK. To define these problems more precisely, we first recall
that that statistical difference between two random variables X and Y on a finite
set D, denoted ∆(X , Y ), is defined to be

∆(X , Y ) def= max
S⊂D

|Pr [X ∈ S] − Pr [Y ∈ S]| =
1
2
·
∑

α

|Pr [X = α] − Pr [Y = α] |.

All the promise problems we consider involve distributions which are encoded
by circuits which sample from them. That is, if X is a circuit mapping {0, 1}m

to {0, 1}n, we identify X with the probability distribution induced on {0, 1}n by
feeding X the uniform distribution on {0, 1}m. Since circuits can be evaluated in
time polynomial in their size, yet are rich enough to encode general (e.g., Turing
machine) computations, they effectively capture the notion of an “efficiently
sampleable distribution.”

Definition 1.1. (Problems involving statistical difference): The promise prob-
lem Statistical Difference, denoted SD = (SDyes, SDno), consists of

SDyes
def= {(X, Y ) : ∆(X , Y ) < 1/3}

SDno
def= {(X, Y ) : ∆(X , Y ) > 2/3}

where X and Y are distributions encoded as circuits which sample from them.
Statistical Difference from Uniform, denoted SDU = (SDUyes, SDUno), consists of

SDUyes
def= {X : ∆(X , U) < 1/n}

SDUno
def= {X : ∆(X , U) > 1 − 1/n}

where X is a distribution encoded as a circuit outputting n bits, and U is the
uniform distribution on n bits.

For the two problems related to entropy, we recall that the (Shannon) entropy
of a random variable X, denoted H(X), is defined as

H(X) def=
∑

α

Pr [X = α] · log2(1/ Pr [X = α])

Definition 1.2. (Problems involving entropy): The promise problem Entropy
Difference, denoted ED = (EDyes, EDno), consists of

EDyes
def= {(X, Y ) : H(X) > H(Y ) + 1}

EDno
def= {(X, Y ) : H(Y ) > H(X) + 1}

Entropy Approximation, denoted EA = (EAyes, EAno), consists of

EAyes
def= {(X, k) : H(X) > k + 1}

EAno
def= {(X, k) : H(X) < k − 1}

In these problems, k is a positive integer and X and Y are distributions encoded
as circuits which sample from them.
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Our first theorem, which is the starting point for our other results, is:

Theorem 1.3. (EA and SDU are NISZK-complete) The promise problems EA
and SDU are complete for NISZK. That is, EA, SDU ∈ NISZK and for every
promise problem Π ∈ NISZK, there is a polynomial-time Karp (many-one)
reduction from Π to EA and another from Π to SDU.

From the proof of this theorem, we also obtain a method for transforming
weak non-interactive statistical zero knowledge proofs into standard ones.

Theorem 1.4. weak-NISZK = NISZK.

Armed with our complete problems, we then begin the work of comparing
SZK and NISZK. First we show that the non-triviality of NISZK is equiv-
alant to the non-triviality of SZK. This is shown by giving a Cook reduction
from ED to EA.

Theorem 1.5. (non-triviality of NISZK) SZK 6= BPP ⇐⇒ NISZK 6=
BPP .

In this theorem (and throughout the paper), BPP denotes the class of promise
problems solvable in probabilistic polynomial time.

In fact, it turns out that the type of Cook reduction we use is a special
one, and by examining it further, we are able to shed more light on the SZK vs.
NISZK question. Specifically, we observe that the reduction we give from ED to
EA is an AC0 truth-table reduction. That is, it is a nonadaptive Cook reduction
in which the postprocessing is done in AC0. (Formal definitions are given in
Section 5.2.) Further, we can prove that if NISZK is closed under complement,
then NISZK is closed under AC0 truth-table reductions. Thus we deduce that
NISZK being closed under complement implies that NISZK = SZK. In fact,
we can show that closure under complement and a number of other natural
conditions are equivalent to SZK = NISZK:

Theorem 1.6. (conditions for SZK = NISZK) The following are equivalent:

1. SZK = NISZK.
2. NISZK is closed under complement.
3. NISZK is closed under NC1 truth-table reductions.
4. ED (resp., SD) Karp-reduces to EA (resp., SDU). (“general versions reduce

to one-sided ones”)
5. EA (resp., SDU) Karp-reduces to its complement. (“one-sided versions reduce

to their complements”)

Theorem 1.6 can be interpreted as saying that if NISZK has a relatively
weak closure property (closure under complement), then the class is surprisingly
rich (equals SZK) and has a much stronger closure property (closure under
NC1 truth-table reductions.) At first, it might seem implausible that a class like
NISZK with such an assymetric definition would be closed under complement.
But SZK, which has a similarly assymetric definition, is known to be closed
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under complement [35]. In light of this, the closure of NISZK under complement
would not be quite as unexpected, and Theorem 1.6 illustrates that proving it
would have wider consequences.

The last two conditions in Theorem 1.6 show that these questions about non-
interactive versus interactive statistical zero-knowledge proofs are actually equiv-
alent to basic questions about relationships between natural computational prob-
lems whose definitions have no a priori relationship to zero-knowledge proofs.

The equality of SZK and NISZK has interesting consequences not just
for NISZK, but also for SZK. Currently, the best known generic protocol
for SZK (against cheating verifiers, making no computational assumptions)
requires a polynomial number of rounds [35, 25].5 For NISZK, however, by
[10], it is known that every problem in NISZK has a constant round statis-
tical zero-knowledge proof system (against general, cheating verifiers) with in-
verse polynomial soundness error. Whether every problem in SZK has such a
proof system is still an open question, which would be resolved in the positive
if SZK = NISZK.

1.3 A Wider Perspective

The study of non-interactive statistical (rather than computational) zero-know-
ledge proofs may be of interest for two reasons. Firstly, statistical zero-knowledge
proofs provide an almost absolute level of security, whereas computational zero-
knowledge proofs only provide security relative to computational abilities (and
typically under complexity theoretic assumptions). Secondly, by analogy from
the study of zero-knowledge interactive proofs, we believe that techniques de-
veloped for the “cleaner” statistical model can be applied or augmented to yield
results for computational zero-knowledge: The proof that one-way functions are
necessary for SZK to be non-trivial [36] was later generalized to CZK [37].
More recently, the transformations of honest-verifier zero knowledge to general
zero knowledge, presented in [8, 10, 9, 25], apply both to statistical and com-
putational zero knowledge (whereas the original motivation was the study of
statistical zero knowledge). It is our hope that the current study of NISZK
will eventually lead to a better understanding of NICZK, where there are still
important open questions such as the minimal conditions under which NP has
NICZK proofs.

2 Preliminaries

Recall that a promise problem Π is a pair Π = (Πyes, Πno) of disjoint sets
of strings, corresponding to the following decision problem: Given a string x ∈
Πyes∪Πno, decide whether it is in Πyes (i.e. is a yes instance) or in Πno (i.e.
is a no instance). A string in Πyes ∪Πno is said to satisfy the promise, and all
5 Under the assumption that the Discrete Logarithm is hard, however, there is a con-

stant round, cheating verifier SZK proof system with inverse polynomial soundness
error for all of SZK [35, 4].
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other strings are said to violate the promise. A function f is said to be a Karp (or
polynomial-time many-one) reduction from a promise problem Π to a promise
problem Γ if f is polynomial-time computable, x ∈ Πyes ⇒ f(x) ∈ Γyes, and
x ∈ Πno ⇒ f(x) ∈ Γno. If such a reduction exists, we write Π≤KarpΓ .

Recall that all the promise problems we are considering involve distributions
which are encoded by circuits which sample from them. That is, if X is a circuit
mapping {0, 1}m to {0, 1}n, we identify X with the probability distribution
induced on {0, 1}n by feeding X the uniform distribution on {0, 1}m. The support
of X is the set of strings in {0, 1}n which have nonzero probability under X,
i.e. {y ∈ {0, 1}n : ∃r ∈ {0, 1}m s.t. X(r) = y}. For any distribution X on a set
D, we write ⊗kX to denote the distribution on Dk consisting of k independent
copies of X.

3 EA is in N ISZK
In this section, we show that EA has a non-interactive statistical zero-knowledge
proof system.

Lemma 3.1. EA ∈ NISZK. Moreover, there is a non-interactive statistical
zero-knowledge proof system for EA in which the completeness error, soundness
error, and simulator deviation are all exponentially vanishing (specifically 2−s,
where s is the length of the input).

The transformation given by the following lemma will be applied at the start
of the proof system:

Lemma 3.2. There is a polynomial-time computable function that takes an in-
stance (X, k) of EA and a parameter s (in unary) and produces a distribution Z
on {0, 1}` (encoded by a circuit which samples from it) such that

1. If H(X) > k + 1, then Z has statistical difference at most 2−s from the
uniform distribution on {0, 1}`, and

2. If H(X) < k − 1, then the support of Z is at most a 2−s fraction of {0, 1}`.

The proof of Lemma 3.2 uses 2-universal hashing and the Leftover Hash
Lemma [30] and is the most technically involved part of this work. However, due
to space constraints, the construction and proof are deferred to the full version
of the paper [26]. Lemma 3.2 essentially transforms an instance of Entropy
Approximation into an instance of Image Density, the complete problem of
[12]. Given this transformation, it is straightforward to give a noninteractive
statistical zero-knowledge proof system for EA:

Non-interactive proof system for EA, on input (X, k)

1. Let Z be the distribution on {0, 1}` obtained from (X, k) as in Lemma 3.2
taking s to be the total description length of (X, k) in bits. Let σ ∈ {0, 1}`

be the reference string.
2. P selects r uniformly among {r′: Z(r′) = σ} and sends r to V .
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3. V accept if Z(r) = σ and rejects otherwise.

It is immediate from Lemma 3.2 that the completeness error and sound-
ness error of this proof system are 2−s. For zero-knowledgeness, we consider the
following probabilistic polynomial-time simulator:

Simulator for EA proof system, on input (X, k)

1. Let Z be obtained from (X, k) as in the proof system.
2. Select an input r to Z uniformly at random and let σ = Z(r).
3. Output (σ, r).

It follows from Part 1 of Lemma 3.2 that this simulator has statistical differ-
ence at most 2−s from the distribution of transcripts of (P, V ). Thus, assuming
Lemma 3.2, we have established Lemma 3.1. In fact, we need not require that s
be the length of (X, k). Instead, s can be taken to be an arbitrary security param-
eter, and the completeness, soundness, and simulation error will be exponentially
small in s, while the running time of the protocol only depends polynomially on
s. We can use this to prove the following, which will be useful to us later.

Proposition 3.3. If any promise problem Π reduces to EA by a Karp (i.e. many-
one) reduction (even if it is length-reducing), then Π ∈ NISZK.

Proof. A noninteractive statistical zero-knowledge proof system for Π can be
given as follows: On an instance x of Π , both parties compute the image (X, k)
of x under the reduction Π≤KarpEA and execute the proof system for EA on
(X, k), except that we take s to be the length of x. Hence, the completeness and
soundness errors and simulator deviation of this proof system are exponentially
small in |x| (rather than |(X, k)| which could be shorter than x). ut

4 EA and SDU are N ISZK-complete

In this section, we complete the proof of Theorem 1.3. First, we establish that
SDU ∈ NISZK by showing:

Lemma 4.1. SDU≤KarpEA. In particular, SDU ∈ NISZK.

Proof. Let X be an instance of SDU. We assume that log(n) > 5, where n is
the output length of the circuit X (otherwise, once can decide in probabilistic
polynomial time whether X is a yes or no instance of SDU by random sampling).
Let U denote the uniform distribution on n bits. We claim the map X 7→ (X, n−
3) is the reduction required by the lemma.

If X ∈ SDUyes, then δ = ∆(X , U) < 1/n. Now we use the fact (see, e.g.,
[27]) that for any two random variables, Y and Z, ranging over domain D it
holds that

|H(Y ) − H(Z)| ≤ (log |D|) · ∆(Y , Z) + H2 (∆(Y , Z)) ,
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where H2(θ) denotes the entropy of a 0–1 random variable with mean θ. Applying
this with Y = U and Z = X, we have

n − H(X) < n · 1/n + H2(1/n) < 2.

Hence (X, n − 3) ∈ EAyes.
If X ∈ SDUno, then ∆(X , U) ≥ 1 − 1/n. By the definiton of statistical

difference, this implies the existence of a set S ⊂ {0, 1}n such that Pr [X ∈ S]−
Pr [U ∈ S] > 1 − 1/n. This implies that

Pr [X ∈ S] > 1 − 1/n and Pr [U ∈ S] < 1/n.

Thus, H(X) ≤ Pr [X ∈ S] · log(|S|)+Pr [X /∈ S] ·n < 1 · (n− logn)+ (1/n) ·n <
n − 4, and we have that (X, n − 3) ∈ EAno.

The “in particular” part of Lemma 4.1 follows immediately from Proposi-
tion 3.3. ut
Now, we establish both Theorem 1.3 and Theorem 1.4 by showing that all
promise problems in weak-NISZK (and hence all promise problems inNISZK)
are reducible to SDU (and hence by the previous lemma to EA).

Lemma 4.2. Every promise problem in weak-NISZK Karp-reduces to SDU.

Proof. Let Π be any promise problem in weak-NISZK. As weak-NISZK is
preserved under parallel repetition, we may assume that Π has a weak-NISZK
proof system (P, V ) with completeness and soundness errors at most 2−n on in-
puts of length n. Let r(n) = poly(n) be the length of the random reference string
in (P, V ), and let S be a randomized polynomial-time simulator S such that the
statistical difference between the output distribution of S and the distribution
of true transcripts of P is at most 1/(3r(n)). (Such an S is guaranteed by the
weak-NISZK property.) Let U denote the uniform distribution on r(n) bits.

Let x be an instance of Π . Define Mx to be a circuit which does the following
on input s:
Mx(s): Simulate S(x) with randomness s to obtain a transcript (σ, p). If V (x, σ, p)
accepts, then output σ, else output 0r(n).

We claim that the map x 7→ Mx is the reduction required by the lemma.
Suppose x ∈ Πyes. In this case, we know that the random reference string σ in
the output of S has statistical difference less than 1/3r(n) from U . In addition,
since the completeness error of protocol P is at most 2−n, S(x) can output
rejecting transcripts with probability at most 1/(3r(n)) + 2−n ≤ 2/(3r(n)).
Hence, ∆(Mx , U) < 2/(3r(n)) + 1/(3r(n)) ≤ 1/r(n), and Mx ∈ SDUyes.

Suppose x ∈ Πno. Since the soundness error of protocol P is bounded by
2−n, for at most a 2−n fraction of reference strings σ does there exist an accept-
ing transcript (σ, p). Since Mx only outputs reference strings corresponding to
accepting transcripts or 0r(n), ∆(Mx , U) ≥ 1 − (2−n + 2−r(n)) > 1 − 1/r(n).
Thus, Mx ∈ SDUno. ut
Clearly, Lemmas 3.1, 4.1, and 4.2 combine to prove Theorem 1.3. Lemmas 4.2
and 4.1 show that any promise problem Π in weak-NISZK reduces to EA; by
Proposition 3.3, this implies that Π ∈ NISZK and establishes Theorem 1.4.
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5 Comparing N ISZK and SZK
Armed with NISZK-complete promise problems so closely related to problems
known to be complete for SZK, we can quickly begin relating the two classes.

5.1 Nontriviality of NISZK
First, we establish Theorem 1.5 by giving a Cook reduction from Entropy
Difference (ED), complete for SZK, to Entropy Approximation (EA), com-
plete for NISZK.

Lemma 5.1. Suppose (X, Y ) is an instance of ED. Let X′ = ⊗4X (resp., Y ′ =
⊗4Y ) consist of 4 independent copies of X (resp., Y ), and let n denote the
maximum of the output sizes of X′ and Y ′. Then,

(X, Y ) ∈ EDyes =⇒
n∨

k=1

[((X′, k) ∈ EAyes) ∧ ((Y ′, k) ∈ EAno)]

(X, Y ) ∈ EDno =⇒
n∧

k=1

[((X′, k) ∈ EAno) ∨ ((Y ′, k) ∈ EAyes)]

Proof. Suppose (X, Y ) ∈ EDyes, so that H(X′) > H(Y ′)+4. Let k = bH(X′)c−
2. Then H(X′) > k+1. On the other hand, k+3 > H(X′) > H(Y ′)+4, and hence
H(Y ′) < k − 1. Suppose instead (X, Y ) ∈ EDno, so that H(Y ′) > H(X′) + 4.
Then for all k > dH(X′)e+1, we have H(X′) < k−1. So, for all k ≤ dH(X′)e+1,
we have k + 1 < H(X′) + 3 < H(Y ′).

From this reduction, we conclude that SZK 6= BPP ⇐⇒ NISZK 6= BPP ,
which is Theorem 1.5. Again, by BPP we mean the class of promise problems
solvable in probabilistic polynomial time.

Proof of Theorem 1.5. By definition, NISZK ⊂ SZK (recall that SZK equals
honest-verifier SZK [25]). Hence if SZK = BPP , then NISZK = BPP .

Now suppose NISZK = BPP , so in particular there is a probabilistic
polynomial-time machine M which decides EA (with exponentially small error
probability). To show SZK = BPP , it suffices to show that ED ∈ BPP since ED
is SZK-complete. We now describe how to decide instances of ED: Let (X, Y )
be an instance of ED. Letting X′ and Y ′ be as stated in Lemma 5.1, we run
M(X′, k) and M(Y ′, k) for all k ∈ [1, n]. If for some k, we see that M(X′, k) = 1
and M(Y ′, k) = 0, we output 1. Otherwise, we output 0. By Lemma 5.1, this is
a correct BPP algorithm for deciding ED. ut.

5.2 Conditions under which NISZK = SZK
The reduction given by Lemma 5.1 is a very special type of Cook reduction,
which we call an AC0 truth-table reduction. In this section, we use the special
properties of this reduction to show that ifNISZK is closed under complement,
then in fact NISZK = SZK. We now precisely define the types of reductions
we are using, taking care how they are defined for promise problems.
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Definition 5.2. (truth-table reduction [32]): We say a promise problem Π truth-
table reduces to a promise problem Γ , written Π≤ttΓ , if there exists a (deter-
ministic) polynomial-time computable function f, which on input x produces a
tuple (x1, x2, . . . , xk) and a circuit C, such that

1. If x ∈ Πyes then for all valid settings of b1, b2, . . . , bk, C(b1, b2, . . . , bk) = 1,
and

2. If x ∈ Πno then for all valid settings of b1, b2, . . . , bk, C(b1, b2, . . . , bk) = 0.

where a setting for bi is considered valid when bi = 1 if xi ∈ Γyes and bi = 0 if
xi ∈ Γno (and bi is unrestricted when xi violates the promise).

In other words, a truth-table reduction for promise problems is a non-adaptive
Cook reduction which is allowed to make queries which violate the promise, but
must be able to tolerate both yes and no answers in response to queries that vi-
olate the promise. We further consider the case where we restrict the complexity
of computing the output of the reduction from the queries:

Definition 5.3. (AC0 and NC1 truth-table reductions): A truth-table reduction
f between promise problems is an AC0 (resp., NC1) truth-table reduction if the
circuit C produced by the reduction on input x has depth bounded by a constant
cf independent of x (resp., has depth bounded by cf log |x|). If there is an AC0

(resp., NC1) truth-table reduction from Π to Γ , we write Π≤AC0−ttΓ (resp.,
Π≤NC1−ttΓ ).

With this definition, we observe that Lemma 5.1 in fact gives an AC0 truth-
table reduction, since the formula given in the lemma can be expressed as an
AC0 circuit, and the statement of the lemma shows that the reduction has the ro-
bustness properties against promise violations that are required in Definition 5.3.
Thus, we have:

Proposition 5.4. ED≤AC0−ttEA.

We say that a class C of promise problems is closed under a class of reductions
≤∗ if Π≤∗Γ and Γ ∈ C implies that Π ∈ C. By the above, if NISZK is closed
under AC0 truth-table reductions, then ED ∈ NISZK and hence NISZK =
SZK. Thus, we would like to capture the minimal conditions necessary for a
promise class to be closed under AC0 truth-table reductions. Here, care must be
taken to because of the possibility of promise violations. Keeping this in mind,
we define the following operator on promise problems to capture the notion of
an unbounded fan-in AND gate for promise problems:

Definition 5.5. (unbounded AND): For any promise problem Π, we define
AND(Π) to be the promise problem:

ANDyes(Π) def= {(x1, x2, . . . , xk) : k ≥ 0, ∀i ∈ [1, k]xi ∈ Πyes}
ANDno(Π) def= {(x1, x2, . . . , xk) : k ≥ 0, ∃i ∈ [1, k]xi ∈ Πno}

We say a class of promise problems C is closed under unbounded AND if Π ∈ C
implies that AND(Π) ∈ C.
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We have defined AND so that it has the weakest promise condition possible to
remain well-defined. In particular, we see that ANDno(Π) is defined to include
xi’s that violate Π ’s promise, as long as just one of them is in Πno. Π ∈ C,
AND(Π) ∈ C. We also need a way of combining two promise problems:

Definition 5.6. (disjoint union): For any pair of promise problems Π and Γ ,
we define the disjoint union of Π and Γ to be the promise problem DisjUn(Π, Γ )
defined as follows:

DisjUnyes(Π, Γ ) def= {0} × Πyes ∪ {1} × Γyes

DisjUnno(Π, Γ ) def= {0} × Πno ∪ {1} × Γno

We say a class of promise problems C is closed under disjoint union if Π, Γ ∈ C
implies that DisjUn(Π, Γ ) ∈ C.

With these definitions, we can give the following lemma which gives some
conditions sufficient to give closure under AC0 truth-table reductions.

Lemma 5.7. A promise class C is closed under AC0 truth-table reductions if
the following conditions hold:

1. C is closed under Karp (i.e., many-one) reductions.
2. C is closed under unbounded AND.
3. C is closed under disjoint union.
4. C is closed under complementation.

Lemma 5.7 can be proven by a straightforward induction on the depth of
the circuits. Details are given in the full version of the paper [26]. Which of the
conditions of Lemma 5.7 does NISZK satisfy? We argue that Conditions 1, 2,
and 3 are satisfied by NISZK: Closure under Karp reductions and disjoint
union follows readily from Proposition 3.3 and the completeness of EA. For closure
under unbounded AND, note that to give an NISZK proof for the AND of many
statements, one can give individual NISZK proofs for each of the statements
in parallel. The only technical difficulty is that the lengths of the statements
are not guaranteed to be polynomially related, but this can be dealt with as in
the proof of Proposition 3.3 or by noting that instances of EA can be trivially
padded. Thus, we have the following lemmas (whose full proofs are given in the
full version of this paper [26]):

Lemma 5.8. NISZK is closed under Karp reductions.

Lemma 5.9. NISZK is closed under unbounded AND.

Lemma 5.10. NISZK is closed under disjoint union.

Combining everything, we can give a condition under which SZK = NISZK.
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Proposition 5.11. If NISZK is closed under complementation, then SZK =
NISZK.

Proof. Suppose NISZK is closed under complementation. Combining this with
Lemmas 5.7, 5.8, 5.9, and 5.10, it follows that NISZK is closed under AC0

truth-table reductions. Applying Proposition 5.4 (ED≤AC0−ttEA) and Lemma 3.1
(EA ∈ NISZK), we conclude that ED ∈ NISZK. Since ED is complete for
SZK [27] and NISZK is closed under Karp reductions (Lemma 5.8), we have
SZK ⊂ NISZK. As NISZK ⊂ SZK is true from the definition of NISZK,
we conclude that NISZK = SZK. ut

Finally, we deduce Theorem 1.6, which gives a number of conditions equiva-
lent to NISZK = SZK.

Proof of Theorem 1.6:
1 ⇒ 3. This follows from the result of [39] that SZK is closed under NC1 truth-
table reductions.
3 ⇒ 2 ⇒ 1. The first is trivial and the second is Proposition 5.11.
1 ⇔ 4. This follows from Theorem 1.3 (which asserts that that EA and SDU are
complete for NISZK), the fact that ED and SD are complete for SZK [38, 27],
and Lemma 5.8 (that NISZK is closed under Karp reductions).
2 ⇔ 5. This follows from Theorem 1.3 (that EA and SDU are complete for
NISZK) and Lemma 5.8 (that NISZK is closed under Karp reductions).
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A Definitions

Following [22], we extend the standard definition of interactive proof systems
to promise problems Π = (Πyes, Πno). That is, we require the completeness
condition to hold for yes instances (i.e., x ∈ Πyes), require the soundness
condition to hold for no instances (i.e., x ∈ Πno), and do not require anything
for inputs which violate the promise (i.e., x /∈ Πyes ∪Πno).

We are mainly interested in such proof systems which are statistical zero
knowledge:

Definition A.1. (Statistical Zero Knowledge – SZK): Let (P, V ) be an inter-
active proof system for a promise problem Π = (Πyes, Πno).

– We denote by 〈P, V 〉(x) the view of the verifier V while interacting with P
on common input x; this consists of the common input, V ’s internal coin
tosses, and all messages it has received.

– (P, V ) is said to be (general) statistical zero knowledge if, for every probabilis-
tic polynomial-time V ∗, there exists a probabilistic polynomial-time machine
(called a simulator), S, and a negligible function µ : N 7→ [0, 1] (called the
simulator deviation) so that for every x ∈ Πyes the statistical difference
between S(x) and 〈P, V ∗〉(x) is at most µ(|x|).

– SZK denotes the class of promise problems having statistical zero-knowledge
interactive proof systems.

Honest-verifier statistical zero-knowledge proof systems are such where the
zero-knowledge requirement is only required to hold for the prescribed/honest
verifier V , rather than for every polynomial-time computable V ∗. Every honest-
verifier statistical zero-knowledge proof system can be transformed into a general
statistical zero-knowledge proof system (actually meeting an even stronger zero-
knowledge requirement) [25].
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