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ABSTRACT
Binary code presents unique analysis challenges, particularly
when debugging information has been stripped from the ex-
ecutable. Among the valuable information lost in stripping
are the identities of standard library functions linked into
the executable; knowing the identities of such functions can
help to optimize automated analysis and is instrumental
in understanding program behavior. Library fingerprint-
ing attempts to restore the names of library functions in
stripped binaries, using signatures extracted from reference
libraries. Existing methods are brittle in the face of varia-
tions in the toolchain that produced the reference libraries
and do not generalize well to new library versions. We in-
troduce semantic descriptors, high-level representations of
library functions that avoid the brittleness of existing ap-
proaches. We have extended a tool, unstrip, to apply this
technique to fingerprint wrapper functions in the GNU C
library. unstrip discovers functions in a stripped binary
and outputs a new binary, with meaningful names added to
the symbol table. Other tools can leverage these symbols to
perform further analysis. We demonstrate that our seman-
tic descriptors generalize well and substantially outperform
existing library fingerprinting techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering
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1. INTRODUCTION
For most computer users, program binaries are a black

box, essential to running the program but not interesting
as artifacts in and of themselves. For code analysts, how-
ever, binary code provides a wealth of information about the
program. Binary code analysis provides details about the
content of the program’s code (instructions, basic blocks,
functions, and modules), structure (control and data flow),
and data (global and stack variables), all of which can pro-
vide insight into the program’s runtime behavior and intent.
Such information is essential for binary modification and
translation, performance profiling and modeling, debugging,
computer security, and forensics—domains in which source
code representations may not be appropriate (such as mea-
suring the performance impact of compiler optimizations) or
available (malware authors rarely distribute source code).

While the information contained in the binary is crucial
for these tasks, analyzing and understanding program bi-
naries is more difficult than analyzing the original source
code. This difficulty stems in large part from the binary’s
lack of types, expressive syntax, comments, and formatting
present in the source code. This lack, combined with a mod-
ern compiler’s complex transformation of the code [1], adds
significant cost and to the analysis of a binary. The problem
is compounded by the difficulty of simply finding code in
program binaries; binaries are often stripped of their debug-
ging symbols, have functions that share code and are non-
contiguous in memory, and have non-code (such as tables,
strings, and padding) interspersed with code [6, 20, 22].

A major part of a program’s behavior is its interaction
with the operating system. Knowing how the program in-
teracts with the operating system can significantly increase
the analyst’s ability to understand the semantics, intent,
and performance of the program, and is of particular im-
portance in malware analysis [2, 4]. Most programs do not
directly invoke the system calls that define the operating
system interface. Instead, they call wrapper functions pro-
vided by standard system libraries; such wrapper functions
invoke the required system call or calls, often through the
use of trap instructions. In this paper, we present a ro-
bust library fingerprinting technique that identifies wrapper
functions based on their interaction with the system call
interface. Library fingerprinting restores names to library
code that has been statically linked into program binaries
by identifying recognizable characteristics—fingerprints—
of standard library functions. A direct benefit of identifying
wrapper functions is that we help to understand and add
meaning to complex functions that call these routines.



Existing library fingerprinting techniques use simple pat-
tern matching to identify functions [13, 23]. For example,
the widely used IDA Pro disassembler stores patterns simi-
lar to byte-level regular expressions that it has derived from
existing libraries. These patterns can be used only to find
library code that is nearly bytewise identical to the library
from which the patterns are derived; such approaches are
brittle in the face of code produced by different compiler
versions or build options, and do not generalize well across li-
brary versions. Our goal is to generate patterns that are tol-
erant of these naturally occurring binary differences. There
is an essential tension, however, between specificity and gen-
eralizability: signatures must capture the details that differ-
entiate functions, but must abstract away minute differences
between versions.

Unlike the byte-level patterns of compiled code, a library
function’s semantics are not affected by different compiler
and build options. As expressions of a public interface, li-
brary function semantics also tend to be relatively stable
over time, as changes can break compatibility with exist-
ing code; this observation applies particularly to wrapper
functions, whose semantics are determined by the system
call interface. The system calls invoked by wrapper func-
tions provide a basis for behavioral library fingerprinting
that generalizes across binary code variations and the evo-
lution of system standard libraries.

System calls do not fully determine the semantics of wrap-
per functions, however, and alone are insufficient as finger-
prints. For example, the wrapper functions setcontext and
swapcontext in the GNU C Library both invoke the sig-
procmask system call on Linux platforms and are indistin-
guishable under this criterion. This multiplicity of invoca-
tions arises from the fact that system calls often implement
broad functionality, which is refined to a particular task by a
wrapper function—usually by invoking the system call with
specific, fixed arguments. These parameters further define
the semantics of wrapper functions.

However, extracting semantic patterns from compiled li-
braries is complicated by variations introduced by the com-
piler, particularly function inlining. Depending on the build
options and the compiler version, a wrapper function that is
composed of several auxilliary methods at the source level
may be realized in the binary either as several distinct func-
tions or as a single unit. Patterns derived from inlined code
will not apply to non-inlined libraries, and vice versa.

In this paper, we introduce semantic descriptors that cap-
ture the high-level semantics of wrapper functions using the
characteristics of system call invocations. Our approach
yields two contributions. First, we use semantic descrip-
tors to create fingerprints for wrapper functions; these fin-
gerprints, based on the essential, invariant characteristics
of system calls, can generalize across different library ver-
sions and compiler variations. Second, we define a flexible
pattern matching algorithm that identifies specific wrapper
functions based on library fingerprints. We use our tech-
nique to form fingerprints for the GNU C Library (glibc)
and to restore wrapper function names to stripped program
binaries, which informs our high-level workflow:

1. We obtain binaries for several versions of the glibc

library as a reference set; these binaries are obtained
from several Linux distributions, and are compiled us-
ing several compiler toolchains. The code variations

among these libraries allow us to determine the gener-
alizability of semantic descriptor-based fingerprints.

2. Using the ParseAPI parsing library [18], we extract
an instruction representation and control flow graph
(CFG) for each exported function in a particular glibc
binary. Exported functions define the public interface
of the GNU C Library, where we anticipate behavioral
stability across library versions. During parsing, we
identify wrapper functions by recording direct invoca-
tions of system calls.

3. For each wrapper function, we construct a semantic
descriptor based on the invariant characteristics of the
invoked system call(s), and record the function finger-
print. Invariant characteristics include the system call
name and any concrete parameter values.

4. To identify wrapper functions in program binaries, we
search for functions that directly invoke system calls
and construct a semantic descriptor; we then com-
pare the descriptor against a database of library finger-
prints. The fingerprint matching algorithm is a two-
stage process that tolerates slight variations in finger-
prints.

We have implemented semantic descriptor-based library
fingerprinting as an extension to unstrip, a tool that dis-
covers functions in stripped binaries and adds generic names
to the symbol table. Our extensions allow unstrip to add
meaningful names to GNU C library wrapper functions that
are discovered in stripped binaries. The benefit of unstrip
is that it creates a new binary with a symbol table, so any
tool that depends on a symbol table will be able to leverage
this information.

We compared semantic descriptors against the byte-level
fingerprinting approach of the industry standard IDA Pro
Disassembler, testing whether fingerprints generated from a
particular version of glibc can precisely identify wrapper
functions in a different version, or in a version produced by
a different compiler toolchain. Our results show that our
technique generalizes well, achieving high accuracy (99%)
and offering a significant improvement (167%) over IDA Pro.

In the following sections, we provide an overview of library
fingerprinting challenges (2), and describe semantic descrip-
tors (3) and the fingerprint matching process (4). We eval-
uate our fingerprinting techniques on a large set of glibc

binaries (5), and conclude with a review of the related liter-
ature (6).

2. PROBLEM OVERVIEW
Library fingerprinting is a pattern recognition problem

that is complicated by the binary code from which finger-
prints are generated. Binary code reflects not only the pro-
gram functionality defined by the source code, but also the
varying properties of the compiler toolchain and build en-
vironment, such as optimization strategies and conditional
compilation [1]. These variations introduce a plethora of
binary code artifacts that complicate our process. In partic-
ular, our approach addresses three complications: function
inlining, code reordering, and minor code variations.

Function inlining is illustrated in Figure 1. Although the
source code for sethostid is identical in glibc 2.3.2 and
glibc 2.5, the binary code for each reveals differences. In



mov 5, eax

int $0x80

mov 4, eax

int $0x80

mov 6, eax

int $0x80

· · · · · ·

· · · · · ·

(a) in glibc 2.3.2

call open

call write

call * dl sysinfo

· · · · · ·

· · · · · ·

(b) in glibc 2.5

Figure 1: An example of function inlining in the
wrapper function sethostid.

glibc 2.3.2, invocations of the system calls open and write
are inlined, while in glibc 2.5, sethostid instead calls the
open and write wrapper functions. Function inlining com-
plicates fingerprinting because patterns must be insensitive
to these compositional changes. To address this, our finger-
printing technique first generates the semantic descriptor for
a wrapper function, and then recursively generates seman-
tic descriptors for any wrappers called by the function. The
fingerprint for the wrapper function is then the union of its
semantic descriptor with those generated recursively. Thus,
the fingerprints for the two versions of sethostid are iden-
tical, though the binary code representations differ.

Code reordering occurs because, at the binary level, both
the layout of instructions and the order in which they are en-
countered during parsing can vary. These variations do not
impact function behavior. For instance, conditional branch
reordering, in which the branch instruction is inverted and
the taken and not taken branches are reversed, alters the bi-
nary code but does not affect behavior. Semantic descriptors
should not take these orderings into account. To accomplish
this, we store system calls in a semantic descriptor in un-
ordered sets.

Minor code variations are caused by both the build envi-
ronment and source code alterations as the library evolves.
Conditional compilation options or added utility functional-
ity do not affect the intrinsic behavior of the function, but
they do impact the binary code representation. For exam-
ple, accept in glibc 2.2.4 only invokes a single system call,
socketcall. However, in glibc 2.11.1, accept exhibits the
same behavior with slightly different source code: here, a
multithreaded option has been added, resulting in an addi-
tional system call, futex, and a second instance of socketcall.
To address these code variations, we use a flexible pattern
matching technique, described in Section 4, to evaluate pos-
sible identifications. This allows our technique to correctly
locate matches within our database, even when the semantic
descriptors may be slightly different.

3. SEMANTIC DESCRIPTORS
We construct semantic descriptors representing wrapper

functions from binary code. Semantic descriptors are de-
fined by the set of system calls invoked by a function and
their arguments. More precisely, we define a system call in-
vocation to be the tuple σ = 〈si, a1, . . . , aK(i)〉, where si is a
particular system call and a1:K(i) are the arguments of that

system call. A semantic descriptor is a multiset1 of M sys-

1A multiset extends the definition of a set by allowing mul-
tiple, identical elements.

tem call invocations {σ1, . . . , σM}. The descriptor database
(DDB) represents the set of descriptors D and wrapper func-
tions W ; we define a fingerprint function f : D 7→ W that
maps from a descriptor d ∈ D to a particular wrapper func-
tion w for function identification.

Figure 2 illustrates the semantic descriptor generation pro-
cess. We use the ParseAPI parsing library to locate system
calls, which appear in three flavors in 32-bit Linux (see Fig-
ure 3). We then identify wrapper functions, those that con-
tain one or more system calls. For each wrapper function
w, we build its semantic descriptor based from the system
call invocations in w. Once we have processed the system
calls in w, we recursively generate the semantic descriptors
for any wrapper functions called by w. This algorithm is
presented in Figure 4.

We extract system call names and arguments using the
DataflowAPI library [17]. This library provides backward
slicing [5, 14] and symbolic evaluation [3, 7] facilities that
we use to determine the system call number. First, a back-
ward slice is performed from the system call invocation site;
this slice is based on %eax, the hardware register in which the
system call number is stored. Once the slice is generated, we
perform symbolic evaluation using the ROSE [8] instruction
semantics specifications and extract the value stored in %eax.
Based on the system call number, we determine how many
arguments (and what types) should be passed to the func-
tion using the Linux kernel interface specifications. We use
a second backward slice to identify any concrete argument
values. For system calls with six arguments of fewer, argu-
ment values are placed in the hardware registers %ebx,%ecx,
%edx, %esi, %edi, and %ebp; this process is encapsulated by
the function GetArgs in Figure 4. We simply omit any
arguments for which a concrete value cannot be statically
determined. For each system call, a tuple is generated and
added to w’s semantic descriptor.

The recursive descriptor generation process is important
for two reasons. First, it allows semantic descriptors to be
robust in the face of function inlining. Second, it allows
our technique to incorporate information about these called
functions in a symmetrical manner. The semantic details of
each called function provide important distinguishing infor-
mation. For instance, both getloadavg and gethostid call
the wrapper function open, but recursively generating open’s
semantic descriptor in each case reveals distinguishing infor-
mation: in getloadavg, open is called with /proc/loadavg

as its first parameter, the pathname, whereas in gethostid,
/etc/hostid is used.

We assemble fingerprints from a set of reference libraries
to form the DDB. These libraries span several versions of
glibc, have been constructed with different build environ-
ments, and come from different Linux distributions. Al-
though the semantic descriptors capture invariant charac-
teristics of functions, the use of a set of reference libraries
allows us to be robust to naturally occurring differences,
such as minor code variations.

We use the learning mode of unstrip to create these fin-
gerprints. For each wrapper function, w, in the library, un-
strip generates the semantic descriptor, d, and stores the
fingerprint, f(d) = w. For each reference library, we store
the set of wrapper function fingerprints. These sets are then
combined to form the DDB. Because the semantic descrip-
tors record invariant function characteristics, most finger-
prints will be identical across many library versions; the



push ebp

mov esp, ebp

push ebx

sub ..., esp

mov ..., eax

test eax, eax

mov eax, 4[esp]

mov ebx, [esp]

call ...
mov eax, ecx
mov ..., eax

call *[sys]

· · · · · ·

(a) Assembly

CALL

CALL

CALL

SYSTEM CALL

(b) CFG

mov mov

mov

mov

call

esp → ebp

[ebp] → eax

eax → ebx

0x6 → eax

(c) Slice

Figure 2: The semantic descriptor generation process. From the raw instructions of the function (a), we
generate the control flow graph (b) and identify all system calls and wrapper function calls. We slice (c)
backwards over the instructions in the CFG to determine the system call number and any arguments that
can be concretely identified using symbolic evaluation. The system calls and concrete parameter values forms
the semantic descriptor for this function.

DBB stores a single copy of these duplicated fingerprints.
Further, the DDB does not store library information; our
objective is to identify wrapper functions, not the library
version from which the fingerprint came.

4. PATTERN MATCHING
We identify wrapper functions in a binary using flexible

pattern matching. Our approach balances the two goals of
precisely labeling wrapper functions and providing as much
information as possible about the contents of the binary;
this is a tradeoff between leaving functions unidentified and
providing multiple potential labels. We flexibly identify
functions by (1) using a relaxed pattern matching crite-
rion in which inexact matches are allowed and (2) returning
all matching fingerprints when multiple matches are found.
Providing multiple potential labels is preferred to an uniden-
tified wrapper function.

We generate semantic descriptors for wrapper functions in
the binary. Then, for each wrapper function, we search the
DDB for a match in two stages. First, we search for an exact
match. If none exist, we move to the second stage, where we
heuristically apply a coverage criterion. Coverage examines
how much of a semantic descriptor can be explained by a
potential match; we use this heuristic to locate the most

(a)
mov ..., eax

int $0x80

(b)
mov ..., eax

call *%gs:SYSINFO OFFSET

(c)
mov ..., eax

call * dl sysinfo

Figure 3: Three forms of trap-based system calls in
32-bit Linux: (a) a special interrupt instruction, (b)
an indirect call through the gs register, and (c), an
indirect call through the _dl_sysinfo symbol.

similar match in the database. We define coverage as

coverage(A,B) =
|A eB|
|B| ,

where fingerprint A is a potential match for semantic de-
scriptor B, and A e B = {b ∈ B | b ∈ A}. Coverage is
non-symmetric. For example, the accept wrapper function
has the following semantic descriptors in two different in-
stances of glibc:

(d1) {〈socketcall,5〉}
(d2) {〈socketcall,5〉,〈socketcall,5〉,〈futex〉}.

The coverage depends on which descriptor is used as the fin-
gerprint: coverage(d1, d2) = 2/3, while coverage(d2, d1) =
1. This asymmetry allows us to more accurately evaluate
how each potential match relates to the semantic descrip-
tor and find the unique, correct match more frequently than
simple intersection.

We compute the fingerprint that maximizes coverage of
the descriptor for the candidate wrapper function. If two or
more different fingerprints are tied under the coverage crite-
rion, we select the fingerprint with the smallest descriptor;
this choice expresses a preference for simpler explanations.
As for exact fingerprint matches, more than one fingerprint
may match a given function candidate. We return the set of

function SemanticDescriptor(w)
d← ∅
for all s ∈ Syscalls(w) do

a1, . . . , ak(s) ← GetArgs(s, w)
d← d ∪ {〈s, a1, . . . , ak(s)〉}

for all c ∈ Calls(w) do
if Syscalls(c) 6= ∅ then

d← d ∪ SemanticDescriptor(c)

Figure 4: An algorithm for building semantic de-
scriptors.



matching fingerprints in this case. To prevent false matches,
we require the final match or matches to have coverage of at
least .5.

Infrequently, multiple matches exist. In these cases, when
two or more fingerprints have identical semantic descrip-
tors or coverage results for a given wrapper function, we
label the wrapper function with the set of possible names
discovered by our pattern matching algorithm. In our ex-
perience, however, indistinguishable fingerprints are usually
closely related, and thus assigning multiple names still pro-
vides useful information about the wrapper function. For
example, the wrapper functions setcontext and swapcon-

text faciliate the manipulation of program state for signal
handling. Both invoke a single system call, sigprocmask,
with one identical argument. Labeling a wrapper function
with both possible identities still provides the analyst with
useful information for most tasks.

5. EVALUATION
We have incorporated semantic descriptor generation and

flexible pattern matching as an extension to unstrip [19].
There are now two operation modes: learning and identifi-
cation. Learning mode takes as input a reference library
and generates a DDB based on fingerprints from this li-
brary. Identification mode labels wrapper functions in a
stripped binary. For each wrapper function in this binary,
unstrip generates a semantic descriptor and applies our pat-
tern matching technique to obtain a match or set of matches.
If no such match exists, the function remains unidentified.
unstrip outputs a new binary with this function identifica-
tion information added to the symbol table.

We conducted a multidimensional evaluation of the gener-
alizability of semantic descriptor-based fingerprints for glibc
using unstrip. We compared the results with the Fast Li-
brary Identification and Recognition Technology (FLIRT)
from the industry standard IDA Pro Disassembler (version
6.0) [12]. Our results demonstrate that our technique is
able to precisely identify wrapper functions. Further, our
semantic descriptors have significantly better generalizabil-
ity characteristics than the current state of the art.

5.1 Methodology
The binary code in a particular library can differ due to

changes to the source code, compilation toolchain, or build
environment. To evaluate how well different library finger-
printing techniques handle such variation, we constructed
three glibc data sets, each representing a different source
of variation:

Toolchain Different compilers and compiler versions can
have pronounced effects on binary code [21]. We com-
piled glibc 2.5 source code with GNU C Compiler
(GCC) versions 3.4.4., 4.0.2, 4.1.2, and 4.2.1 to con-
struct libraries with varying toolchain characteristics.

Library version Source code changes that accrete as the
library evolves can significantly impact the resulting
binary, both due to the code changes and also due to
constraints on the compiler that can be used to build
a particular library version. We use glibc versions
2.2.4, 2.3.2, 2.3.4, 2.5, and 2.11.1 from the Red Hat En-
triprise Linux (RHEL) distribution and different cor-
responding GCC versions to construct these libraries.

Distribution Variations introduced by library vendors de-
rive from vendor-specific code patches and the particu-
lar build environment, including the compiler version.
We collected pre-compiled versions of glibc 2.11.1/2
from the Fedora, Mandriva, OpenSuse, and Ubuntu
Linux distributions.

We conducted a three-dimensional study, comparing the
library fingerprinting performance of unstrip and IDA Pro
on each. For each data set, we:

1. constructed a set of glibc libraries within this dimen-
sion,

2. computed the ground truth for this dimension, the set
of wrapper functions common to all libraries within
the dimension,

3. compiled a test binary for each glibc instance by stat-
ically linking in all functions from the library,

4. used the learning mode of unstrip to extract finger-
prints from a single library instance and build a DDB,

5. applied the identification mode of unstrip to the bi-
naries linked against the remaining library instances
within the data set, and

6. evaluated how well unstrip was able to identify wrap-
per functions in these binaries. We use the ground
truth within the dimension as the basis for evaluation.

Because we are searching a database for information about
particular functions, we evaluate function identification as
an information retrieval task. We measure true positives
(correctly identified wrapper functions), false positives (in-
correctly identified wrapper functions), and false negatives
(unidentified wrapper functions). We then use precision and
recall metrics to evaluate the effectiveness of an algorithm.
The precision

precision =
true positives

true positives+ false positives

measures how well the fingerprinting technique avoids as-
signing spurious labels, while recall

recall =
true positives

true positives+ false negatives

measures how well a technique finds all relevant information.

5.2 Results
We present evaluation results for each dimensional study,

with precision and recall results for both unstrip and IDA
Pro. Because unstrip provides multiple labels for a func-
tion when we cannot distinguish between potential matches,
we present results both with and without these multiple
matches. When evaluating results in which multiple matches
are allowed, we count a wrapper function as correctly iden-
tified if the correct wrapper function label is present.

Table 1 shows the results from the toolchain study. un-
strip achieves high precision (.98) and recall (1.00) when
multiple matches are included; when we exclude these multiple-
match results, unstrip still achieves recall of .90. In con-
trast, IDA Pro achieves high precision, but recall between
.61 and .79. These results demonstrate that while our ap-
proach is able to generalize across variations, IDA Pro is not.



Reference
Library

unstrip (mult) unstrip IDA Pro

Prec. Rec. Prec. Rec. Prec. Rec.

3.4.4 0.98 1.00 0.98 0.90 1.00 0.61
4.0.2 0.99 1.00 0.99 0.90 1.00 0.63
4.1.2 0.98 1.00 0.98 0.90 1.00 0.79
4.2.1 0.98 1.00 0.98 0.90 1.00 0.66

Table 1: Results for the toolchain study. Refer-
ence libraries are identified by GCC version, and
results are averaged across the remaining libraries
in the set. For unstrip, multiple match results are
presented first, followed by results without multiple
matches.

Byte-level patterns almost always preclude the possibility of
false positives, so IDA Pro’s precision is high. However, such
an approach cannot overcome the binary differences intro-
duced by compiler version.

Table 2 shows the results of the library version study. un-
strip achieves similar results to the toolchain study; when
we exclude multiple-match results, recall is slightly higher
than before (.93-.96), because unstrip is able to locate a
single best match for more wrapper functions. IDA Pro,
however, has lower recall than the previous study, between
.12 and .31. These results demonstrate that our approach is
able to generalize across binary differences caused by chang-
ing library versions. In the evolution of glibc, we observe
that our approach is able to generalize both forwards and
backwards along this continuum.

Table 3 shows the results from the distribution study. As
with the first two dimensional studies, unstrip achieves high
precision and recall when multiple matches are included, and
slightly lower recall (.84-.87) when multiple matches are ex-
cluded; IDA Pro achieves low recall, between .20 and .34.
We observe more dramatic code changes between libraries
from different distributions; both source code and also build
environment differences have been introduced by the dis-
tributor. Our approach is able to generalize across these
changes.

Byte-level fingerprinting techniques degrade rapidly as com-
piler or source code changes are introduced. Figure 5 depicts
the accuracy of using fingerprints from glibc 2.2.4 to pre-
dict the other more recent libraries within the library version
study. In contrast to IDA Pro, unstrip maintains a high
level of accuracy across all versions, even as the distance
between library versions increases.

In each study, we allowed unstrip to return multiple
matches; in almost all cases, the correct label was found,
always within the top 3 results. These results provide prac-
tical benefits to an analyst. Further, we recorded the fre-
quency and size of multiple-label sets returned by unstrip;
overall, 8% of the identifications included indistinguishable
functions, with an average set size of 2.05. Often, when mul-
tiple matches exist, they still provide reasonable information
to the analyst. pwrite and pwrite64 are an example of such
a set; these two functions have nearly identical semantics
but accommodate different parameter sizes (here, pwrite64
takes a 64-bit file offset). setegid and setresgid are an-
other: both manipulate the group ID of the current process.
These types of patterns are common. Infrequently, the set
of multiple matches is more ambiguous: for instance, close

Reference
Library

unstrip (mult) unstrip IDA Pro

Prec. Rec. Prec. Rec. Prec. Rec.

2.2.4 1.00 0.99 1.00 0.96 1.00 0.12
2.3.2 1.00 0.99 1.00 0.94 1.00 0.31
2.3.4 1.00 0.99 1.00 0.94 1.00 0.31
2.5 0.99 0.99 0.99 0.93 1.00 0.17

2.11.1 0.99 0.99 0.99 0.93 1.00 0.17

Table 2: Results for the library version study. Ref-
erence libraries are identified by glibc version.

Reference
Library

unstrip (mult) unstrip IDA Pro

Prec. Rec. Prec. Rec. Prec. Rec.

Fedora 0.99 0.99 0.99 0.84 1.00 0.22
Mandrivia 0.99 1.00 0.99 0.87 1.00 0.34
OpenSuse 0.99 1.00 0.99 0.87 1.00 0.20
Ubuntu 0.99 1.00 0.99 0.87 1.00 0.34

Table 3: Results for the distribution study. Refer-
ence libraries are identified by vendor.

is identified as close, netlink_close, and alloc_dir. Even
in this case, however, the analyst is provided with a small
set of matches, among which is the correct label.

These results demonstrate that our approach is able to
generalize across library versions in several dimensions. We
achieve both high precision and recall, illustrating that we
are able to correctly identify almost all wrapper functions,
neither introducing false labels or leaving functions uniden-
tified. We presented results both with and without multiple
matches. Because we focus on supplying the analyst with
as much function information as possible, unstrip always
returns multiple matches if they exist; it is up to the ana-
lyst to decide what to do with this information. IDA Pro’s
byte-level approach is unable to identify most wrapper func-
tions, across all three dimensions of variation. These results
support our hypothesis that a behavioral pattern approach
is necessary to provide generalizability.

5.3 Discussion
Our evaluation focuses on binaries containing only library

functions; however, we expect these results will generalize to
more common binaries, containing a mixture of application-
and library-level functions, also. Although many application-
level functions invoke system calls, they do so via the stan-
dard interface provided by wrapper functions. Because we
only fingerprint functions that directly invoke system calls,
i.e., wrapper functions, our technique will not spuriously la-
bel application-level functions.

Currently, there are two limitations to our approach. First,
our fingerprinting approach is limited to wrapper functions.
However, this technique could be expanded to apply to other
library functions, using wrapper functions as a foundation
and leveraging additional structural information [4, 11, 15].
Second, our study was performed on Linux and this tech-
nique has not been evaluated on other platforms; however,
wrapper functions exist on other platforms as well, so our
technique could easily be extended.
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Figure 5: Identification results for unstrip with mul-
tiple matches ( ), unstrip without multiple matches
( ), and IDA Pro ( ) using fingerprints from glibc

2.2.4 and the binaries from the library version study.

unstrip incurs a few additional limitations because of the
libraries on which it is built. unstrip assumes the ability to
extract information from a binary, requiring that ParseAPI
locate functions in the binary code. Function location iden-
tification is a well-studied problem and can be difficult. IDA
Pro faces this challenge as well. Further, unstrip relies on
the ROSE instruction semantics specifications for symbolic
evaluation, which are currently only available for 32-bit bi-
naries.

6. RELATED WORK
Previous library fingerprinting approaches have relied on

byte-level pattern matching, forming signatures from the
bytes underlying the initial instructions of library functions
[12, 23]. The IDA Pro disassembler builds signatures of li-
brary functions [12] from the first 32 bytes of a function, with
wildcards for bytes that vary when the library is loaded; Van
Emmerik [23] proposed a similar approach using variable-
length signatures. Byte-level fingerprints can be made ar-
bitrarily precise by extending the signatures; as we have
shown in this paper, however, such approaches generalize
poorly to minor variations across different binary instances
of a library.

Alternative binary code representations that elide byte-
level details have been used in polymorphic malware detec-
tion and to detect changes between versions of program bi-
naries [9, 10, 16]. These techniques use a graph-based repre-
sentation of code, abstracting away much of the instruction-
level detail in favor of structural properties of program. This
representation is effective for detecting the introduction or
removal of code due to patches [10], but is less well suited for
describing system call wrapper functions, whose semantics
are determined by instruction-level properties like parame-
ter values; a control flow-based representation also remains
subject to minor code variations between library versions.

Several approaches have used semantic or behavioral pat-
terns to characterize binary code in the anti-malware com-
munity [4, 11, 15]. These approaches identify patterns in
the externally visible behavior of programs, such as interac-
tions with the operating system (through system calls or
standard libraries) or manipulation of the filesystem; for
example, Fredrikson et al. [11] form malware specifications
based on the sequence of system calls and their arguments
observed at runtime. While there is some overlap between
the objective of malware identification and library finger-
printing (recognizing specific functionality while tolerating
binary code variation), the techniques are largely orthogo-
nal. Our library fingerprinting technique statically identifies
system call wrapper functions in program binaries; behav-

ioral malware identification is an essentially dynamic task,
identifying patterns in the ordered execution trace of mali-
cious code.

7. CONCLUSION
We have presented a technique for accurately identifying

library wrapper functions using semantic descriptors and
flexible pattern matching. In contrast to traditional byte-
pattern techniques, we take a semantic approach, using in-
voked system calls and their associated arguments to create
fingerprints. Our tool, unstrip, allows analysts to both ex-
tract fingerprints from binaries and also label wrapper func-
tions in stripped binaries. The results of the evaluation of
unstrip strongly support our hypothesis that a behavioral
approach to library fingerprinting is necessary to provide
generalizability. Our approach achieves on average 99% ac-
curacy when identifying wrapper functions in a variety of
glibc instances. Any binary tool that relies on symbol ta-
ble information can benefit from unstrip.
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