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Abstract. The RSA public key cryptosystem is based on a single mod-
ular equation in one variable. A natural generalization of this approach is
to consider systems of several modular equations in several variables. In
this paper we consider Patarin’s Hidden Field Equations (HFE) scheme,
which is believed to be one of the strongest schemes of this type. We
represent the published system of multivariate polynomials by a single
univariate polynomial of a special form over an extension field, and use it
to reduce the cryptanalytic problem to a system of εm2 quadratic equa-
tions in m variables over the extension field. Finally, we develop a new
relinearization method for solving such systems for any constant ε > 0 in
expected polynomial time. The new type of attack is quite general, and
in a companion paper we use it to attack other multivariate algebraic
schemes, such as the Dragon encryption and signature schemes. However,
we would like to emphasize that the polynomial time complexities may
be infeasibly large for some choices of the parameters, and thus some
variants of these schemes may remain practically unbroken in spite of
the new attack.

1 Introduction

The problem of developing new public key encryption and signature schemes had
occupied the cryptographic research community for the last 20 years. A particu-
larly active line of research was based on the observation that solving systems of
modular multivariate polynomial equations is NP-complete. Consider, for exam-
ple, a public encryption key consisting of n random quadratic polynomials in n
variables over the two element field F2. To encrypt an n bit cleartext, you assign
each bit to a variable, and evaluate the n quadratic polynomials modulo 2. To
decrypt this ciphertext, you use it as a right hand side and solve the resultant
system of n quadratic equations in n unknowns. When n = 100, the encryption
process is extremely fast, while the decryption process (by an eavesdropper)
seems to be completely infeasible.

The system of equations must contain a trapdoor, whose knowledge makes it
possible to solve the system of equations efficiently for any right hand side. The
main difference between the various multivariate schemes is the type of trapdoor
structure they embed into the published polynomials.
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An early example of a multivariate signature scheme was developed by Ong
Schnorr and Shamir [OSS84], and was broken shortly afterwards by Pollard and
Schnorr [PS87]. Fell and Diffie [FD85] published another multivariate scheme,
but observed that it was insecure for any practical key size. A different type of
trapdoor was developed by Matsumoto and Imai [MI88], but their scheme was
shown to be insecure in Patarin [P95]. Shamir [S93] proposed two multivariate
schemes modulo large n = pq, which were shown to be insecure by Coppersmith
Stern and Vaudenay [CSV97]. In an attempt to revive the field, Patarin had
developed several new types of trapdoors. The simplest of his new constructions
was the Oil and Vinegar signature scheme [P97], which was broken by Kipnis
and Shamir [KS98]. A more secure construction was the Dragon encryption and
signature schemes, described in Patarin [P96b] and Koblitz [K98]. A simplified
version of this scheme (called Little Dragon) was broken by Coppersmith and
Patarin, but the original Dragon scheme remained unbroken. The Hidden Field
Equations (HFE) was published in Patarin [P96a], and conjectured by its au-
thor to be the strongest among his various constructions. In spite of extensive
cryptanalytic effort, no attacks on the HFE scheme had been published so far.

In this paper we develop a new cryptanalytic approach and use it to attack
both the HFE scheme (as shown in this paper) and the Dragon scheme (as shown
in a companion paper). The asymptotic complexity of the attack is polynomial
(when some of the parameters grow to infinity while others are kept fixed), but
the basic implementation described in this paper may be impractical for suffi-
ciently large keys. Both the scheme and the attack can be enhanced in numerous
ways, and thus it is too early to decide whether some variant of the HFE scheme
can survive an optimized version of the attack.

The attack is based on the observation that any given system of n multi-
variate polynomials in n variables over a field F can be represented by a single
univariate polynomial of a special form over K which is an extension field of
degree n over F. We analyze the effect of the trapdoor hiding operations on this
representation, and use it in order to translate the original problem of solving n
quadratic equations in n variables over the small field F into a new problem of
solving a system of εm2 quadratic equations in m variables over the large field
K, where m is a small multiple of n. The standard linearization technique for
solving such systems is to replace any product of variables xixj by a new variable
yij, and to solve the resultant system of εm2 linear equations in the m2/2 new
yij variables. However, in our attack ε < 0.5, and thus the linearization tech-
nique creates exponentially many parasitic solutions which do not correspond
to solutions of the original quadratic equations. We overcome this problem by
developing a general new technique (called relinearization) which is expected
to solve random systems of equations of this type in polynomial time for any
fixed ε > 0. Since no previously published technique could handle such sys-
tems, we expect the relinearization technique to have additional applications in
cryptanalysis, algorithm design, and operations research.
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2 The HFE Scheme

The HFE encryption algorithm was presented by Jacques Patarin at Eurocrypt
’96. It uses a small field F with q elements (the recommended choice is q = 2), and
a large extension field K of degree n over F (the recommended choice is n = 128,
yielding a field K with 2128 elements). The field K can be viewed as a vector space
of dimension n over F, and the mapping between the two representations is de-
fined by a basis of n elements ω0, . . . , ωn−1 in K via

∑n−1
i=0 xiωi ↔ (x0, . . . , xn−1).

To construct his public key, the user picks a random univariate polynomial
P (x) over K of the form

P (x) =
r−1∑
i=0

r−1∑
j=0

pijx
qi+qj

where r is some small constant which guarantees that the degree of P (x) is
bounded by several thousand (the highest recommended value of r is 13, which
for q = 2 gives rise to a polynomial of degree 8192). The bound on the degree
is required in order to make it possible to invert P (x) efficiently (e.g., by using
Berlekamp’s probabilistic algorithm for solving a univariate polynomial equation
over a finite fields).

The univariate polynomial P over K can be expressed as a system of n mul-
tivariate polynomials P1, . . . , Pn−1 in the n variables x0, . . . , xn−1 over F. The
restricted choice of exponents in P guarantees that all the P ′

is are homogeneous
quadratic polynomials. The trapdoor consists of two random invertible linear
transformations S and T over n-tuples of values in F. The user applies S to the
inputs and T to the outputs of the n multivariate polynomials, and publishes
the evaluated homogeneous quadratic polynomials in n variables, denoted by
G0, . . . , Gn−1.

To solve the published system of quadratic equations with a given ciphertext
as the right hand side, the user applies T−1 to the ciphertext, interprets the
result as an element of K, solves his secret univariate polynomial with this right
hand side, and applies S−1 to the components of the solution. The attacker
cannot use this procedure since he does not know the S and T transformations.
These mixing operations have natural interpretation over F but not over K,
and it is not clear a priori that the n published polynomials over F can be
described by a single univariate polynomial G over K. Even if it exists, it may
have an exponential number of coefficients, and even if it is sparse, it may have
an exponentially large degree which makes it practically unsolvable.

Remark: In this paper we simplify the original HFE scheme in several
inessential ways. In particular, we consider only homogeneous polynomials (the
attacker can ignore lower degree monomials), and assume that the representation
of K over F is fixed (by using a different representation, the attacker obtains a
different but equally useful version of the secret key).
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3 Univariate Representations of Systems of Multivariate
Polynomials

The starting point of our attack is the observation that any system of n mul-
tivariate polynomials of bounded degree d in n variables over a field F can be
represented as a single sparse univariate polynomial of a special form over an
extension field K of degree n over F.

We first consider the case of linear multivariate mappings. The mapping
x → xq is a linear function over K, and thus any mapping of the form x →∑n−1

i=0 aix
qi

for fixed coefficients a0, . . . , an−1 in K is also a linear mapping. We
need the converse of this result:

Lemma 1. : Let A be a linear mapping from n-tuples to n-tuples of values in F.
Then there are coefficients a0, . . . , an−1 in K such that for any two n tuples over
F, (x0, . . . , xn−1) (which represents x =

∑n−1
i=0 xiωi in K) and (y0, . . . , yn−1)

(which represents y =
∑n−1

i=0 yiωi in K), (y0, . . . , yn−1) = A(x0, . . . , xn−1) if and
only if y =

∑n−1
i=0 aix

qi

.

Proof: There are q(n2) n×n matrices over F and (qn)n sums of n monomials
over K, and thus the number of linear mappings and the number of polynomials
of this form is identical. Each polynomial represents some linear mapping, and
two distinct polynomials cannot represent the same mapping since their differ-
ence would be a non zero polynomial of degree qn−1 with qn roots in a field.
Consequently, each linear mapping is represented by some univariate polynomial
of this type over the extension field. 2

We now generalize this characterization from linear functions to any system
of multivariate polynomials:

Lemma 2. Let P0(x0, . . . , xn−1), . . . , Pn−1(x0, . . . , xn−1) be any set of n mul-
tivariate polynomials in n variables over F. Then there are coefficients a0, . . . ,
aqn−1 in K such that for any two n tuples (x0, . . . , xn−1) and (y0, . . . , yn−1)
of elements in F, yj = Pj(x0, . . . , xn−1) for all 0 ≤ j ≤ n − 1 if and only if
y =

∑qn−1
i=0 aix

i, where x =
∑n−1

i=0 xiωi and y =
∑n−1

i=0 yiωi are the elements of
K which correspond to the two vectors over F.

Proof: The mere existence of the coefficients a0, . . . , aqn−1 in K is obvious,
since any mapping over a finite field can be described by its interpolation poly-
nomial. However, we provide a different proof which enables us to prove in the
next lemma the relationship between the degree of the polynomials over F and
the sparsity of the polynomials over K.

Without loss of generality, we can assume that the first basis element is
ω0 = 1. The mapping (x0, . . . , xn−1) → (xi, 0, . . . , 0) over F is linear, and thus
has a univariate polynomial representation over K. To represent the mapping
(x0, . . . , xn−1) → (

∏n−1
i=0 xci

i , 0, . . . , 0), multiply all the univariate polynomials
which represent the mappings (x0, . . . , xn−1) → (xi, 0, . . . , 0), with their multi-
plicities ci (note that this can only be done at the first coordinate, which corre-
sponds to the basis element ω0 = 1; at at any other coordinate k we would get a
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power of ωk which would spread the resultant monomial all over the vector). By
summing the univariate polynomial representations of such monomials with ap-
propriate coefficients we can represent the mapping defined by any multivariate
polynomial in the first coordinate of the vector, and zeroes elsewhere. To move
the multivariate polynomial to the k-th coordinate of the vector, we multiply all
the coefficients of its univariate representation (which are elements of K) by ωk.
Finally, to represent a system of n (unrelated) multivariate polynomials at the
n coordinates of the vector, we construct a representation of each polynomial at
the first coordinate, shift it to its proper coordinate and add all the resultant
univariate polynomials. 2.

An important corollary of this proof is:

Lemma 3. : Let C be any collection of n homogeneous multivariate polynomials
of degree d in n variables over F. Then the only powers of x which can occur with
non-zero coefficients in its univariate polynomial representation G(x) over K are
sums of exactly d (not necessarily distinct) powers of q: qi1 + qi2 + . . .+ qid. If d
is a constant, then G(x) is sparse, and its coefficients can be found in polynomial
time.

Proof: Mappings defined by a single variable are linear functions, and thus
can be represented as the sum of monomials of the form xqi

, and each monomial
contains a single power of q. When we multiply d such polynomials and evaluate
the result, we get only powers of x which are the sums of exactly d powers of
q. Since G(x) is the sum of such polynomials (multiplied by constants from K),
the same is true for G(x).

The degree of G(x) over K can be exponentially large, but at most O(nd)
of its coefficients can be non-zero, and for any fixed value of d this is a polyno-
mial number. Once we know that a sparse univariate polynomial representation
exists, we can find its coefficients in polynomial time by interpolation based on
sufficiently many input/output pairs. 2

The problem of solving a system of multivariate quadratic equations over a
finite field is known to be NP complete. This lemma implies that the problem of
solving a single univariate polynomial equation over a finite field is also NP com-
plete. This is a very natural computational problem, and we were thus surprised
to discover that its status was not mentioned in any of the standard references
on NP completeness. Note that the problem is NP complete when the (sparse)
polynomial is represented by the list of its non zero coefficients, but solvable
in probabilistic polynomial time by Berlekamp’s algorithm if the polynomial is
represented by the list of ALL its coefficients.

Consider the published system of quadratic polynomials G0, . . . , Gn−1 in
x0, . . . , xn−1. Each polynomial can be written as the quadratic form xGix

t

where Gi is an n × n matrix of coefficients 1, x is the row vector of variables
1 The matrix representation of quadratic forms is not unique, and has to be sym-

metrized by averaging the matrix and its transpose. In fields of characteristic 2 we
just add the matrix and its transpose, (since we cannot divide by 2), and use the
result. More details on these fine points will be given in the final version of the paper.
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(x0, . . . , xn−1), and xt is its transpose. However, our attack does not use this
standard representation. Instead, it uses Lemma 3.3 to efficiently find the fol-
lowing representation of the public key:

G(x) =
n−1∑
i=0

n−1∑
j=0

gijx
qi+qj

= xGxt where G = [gij] and x = (xq0
, xq1

, . . . , xqn−1
)

Note that this is an unusual type of quadratic form since the vector x consists
of related rather than independent variables, and that x is a vector of elements
from F whereas x is a vector of elements from K. It is this representation which
makes it possible to analyze the secret hiding operations in a clean mathematical
form.

4 The Effect of S and T on P

Due to their special form, both the original polynomial P (x) over K chosen
by the user and the new polynomial G(x) over K derived by the cryptana-
lyst from the public key can be represented by the (non standard) quadratic
forms xPxt and xGxt. The linear mappings S and T can be represented as
univariate polynomials, and thus the public key is represented by the univariate
polynomial composition G(x) = T (P (S(x))) over K. We rewrite this equation as
T−1(G(x)) = P (S(x)), where S has the form S(x) =

∑n−1
i=0 six

qi

and T−1 (which
is also a linear mapping) has the form T−1(x) =

∑n−1
i=0 tix

qi

. Our goal now is to
study the effect of the polynomial compositions T−1(G(x)) and P (S(x)) on the
matrices of their (non standard) quadratic form representations.

Theorem 4. : The matrix of the quadratic form in x which represents the poly-
nomial composition T−1(G(x)) is

∑n−1
k=0 tkG∗k where G∗k is obtained from the

n×n matrix representation of G by raising each one of its entries to the power qk

in K, and cyclically rotating forwards by k steps both the rows and the columns
of the result. The matrix of the quadratic form in x which represents the poly-
nomial composition P (S(x)) is WPW t in which W = [wij] is an n × n matrix
defined by wij = (sj−i)qi

, where j − i is computed modulo n.

Proof (Sketch): The polynomial representation of T−1(x) is
∑n−1

k=0 tkxqk

and the polynomial representation of G(x) is
∑n−1

i=0

∑n−1
j=0 gijx

qi+qj

. Their poly-
nomial composition can be evaluated by using the fact that raising sums to the
power qi is a linear operation:

T−1(G(x)) =
n−1∑
k=0

tk(
n−1∑
i=0

n−1∑
j=0

gijx
qi+qj

)qk

=
n−1∑
k=0

tk

n−1∑
i=0

n−1∑
j=0

(gij)qk

x(qi+qj)qk

The exponents of q can be reduced modulo n since xqn

= xq0
= x, and the

summation indices can be cyclically rotated if they are computed modulo n:

T−1(G(x)) =
n−1∑
k=0

tk

n−1∑
i=0

n−1∑
j=0

(gij)qk

xqi+k+qj+k

=
n−1∑
k=0

tk

n−1∑
i=0

n−1∑
j=0

(gi−k,j−k)qk

xqi+qj
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The matrix of the quadratic form representation of this polynomial in terms of
x is exactly G′ =

∑n−1
k=0 tkG∗k, where the (i, j)-th entry of G∗k is gqk

i−k,j−k, as
specified.

The proof of the other type of composition is similar:

P (S(x))=
n−1∑
i=0

n−1∑
j=0

pij(
n−1∑
k=0

skxqk

)(q
i+qj )=

n−1∑
i=0

n−1∑
j=0

pij(
n−1∑
u=0

suxqu

)qi

)(
n−1∑
v=0

svxqv

)qj

)

Again we use linearity and cyclic index shifting to evaluate P (S(x)) as:

n−1∑
i=0

n−1∑
j=0

pij(
n−1∑
u=0

sqi

u xqu+i

)(
n−1∑
v=0

sqj

v xqv+j

) =
n−1∑
i=0

n−1∑
j=0

pij(
n−1∑
u=0

sqi

u−ix
qu

)(
n−1∑
v=0

sqj

v−jx
qv

)

By rearranging the order of the summation and the multiplied terms we get:

P (S(x)) =
n−1∑
u=0

n−1∑
i=0

n−1∑
j=0

n−1∑
v=0

xqu

sqi

u−ipijs
qj

v−jx
qv

= xWPW txt

where W is the specified matrix. 2

5 Recovering the Secret Key from the Public Key

The attack on a given public key is based on the matrix equation over K, G′ =
WPW t, which we call the fundamental equation. The matrix G can be easily
computed by representing the public key as a univariate polynomial over K,
and then representing the univariate polynomial as the quadratic form xGxt.
All the G∗k variants of G can be computed by raising the entries of G to various
powers and cyclically rotating its rows and columns. We can thus consider G′ =∑n−1

k=0 tkG∗k as a matrix whose entries are linear combinations of known values
with unknown coefficients t0, . . . , tn−1 from K. The matrix P is mostly known,
since only the top left r × r block in the n × n matrix can be non zero, and
r << n. The matrix W is unknown, but there are many relations between its n2

entries since they are all determined by just n parameters via wij = sqi

j−i. Our
goal is to use all these observations in order to solve the fundamental equation
in polynomial time.

5.1 Recovering T

We first describe the process of recovering t0, . . . , tn−1 from the fundamental
equation G′ = WPW t, where each entry in G′ is a linear combination of the tk
variables. The matrix P contains at most r non zero rows, and thus both its rank
and the rank of WPW t cannot exceed r. For random choices of tk values the
expected rank of the evaluated G′ matrix is close to n. What makes the correct
choice of tk values special is that they force G′ to have the unusually small rank
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r. To simplify the asymptotic analysis, we assume that r is a constant and n
grows to infinity, and argue that the attack should run in expected polynomial
time (even though we cannot formally prove this claim).

The basic approach is to express this rank condition as a large number of
equations in a small number of variables. Consider the matrix G′ evaluated
with the correct choice of tk values. Its rank is at most r, and thus its left
kernel (defined as the set of all row vectors x̃ over K satisfying x̃G′ = 0) is a
n − r dimensional linear subspace. We thus expect to find in it n − r linearly
independent vectors x̃1, . . . , x̃n−r even if we force the first n−r entries in each x̃k

to have some arbitrarily specified values. The remaining r entries in each one of
the n− r vectors x̃k are defined as new variables. Each vector equation x̃G′ = 0
can be viewed as n scalar equations over K, and thus we get a total of n(n− r)
equations in the r(n− r) + n variables (the original tk coefficients in G′ and the
new unspecified entries in all the x̃k vectors).

The bad news is that the equations are quadratic, and we don’t know how to
solve large systems of quadratic equations in polynomial time (in fact, this was
the original problem of deriving cleartexts from ciphertexts!). The good news
is that instead of a marginally defined system of n equations in n variables, we
get an overdefined system of about n2 equations in about rn variables where
r << n.

Consider the general problem of solving e randomly generated homogeneous
quadratic equations in m variables. The well known linearization technique for
solving such equations is to replace any product of two variables xixj for i ≤ j
by a new variable yij . The total number of new variables is n(n + 1)/2. Each
quadratic equation in the original x variables can be rewritten as a linear equa-
tion in the new y variables. If the number of equations satisfies e ≥ n(n + 1)/2,
we expect the system to be uniquely solvable, but if e << n(n+1)/2, we expect
the linear system to have an exponential number of parasitic y solutions which
do not correspond to any real x solution.

Unfortunately, in our problem we have m ≈ rn variables but only e ≈ εm2

quadratic equations where ε = 1/r2 is smaller than 1/2, and thus the lineariza-
tion method would fail. In the next subsection we describe a novel heuristic tech-
nique called relinearization which is expected to solve such systems of quadratic
equations for any fixed ε > 0 in polynomial time. The technique seems to have
many other applications in cryptography, optimization, and computer algebra,
and should be studied carefully.

5.2 The Relinearization Technique

Consider a system of εm2 homogeneous quadratic equations in the m variables
x1, . . . , xm. We rewrite it as a new system of εm2 linear equations in the (approx-
imately) m2/2 new variables yij = xixj for i ≤ j. Its solution space is a linear
subspace of expected dimension (1/2−ε)m2, and each solution can be expressed
as a linear function of (1/2− ε)m2 new variables zk. Such a parametric solution
can be efficiently found by Gauss elimination.
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Most of the yij solutions found in this way do not correspond to any possible
xi solutions. We want to add additional constraints which relate the various yij

variables to each other in the way implied by their definition as yij = xixj. To
do this, consider any 4-tuple of indices 1 ≤ a ≤ b ≤ c ≤ d ≤ m. Then xaxbxcxd

can be parenthesized in three different ways:

(xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc) =⇒ yabycd = yacybd = yadybc

There are about m4/4! different ways to choose sorted 4-tuples of distinct indices,
and each choice gives rise to 2 equations 2. We thus get about m4/12 quadratic
equations in the m2/2 yij variables, and it is not difficult to prove that they are
linearly independent (even though they are algebraically dependent). We can
lower the number of variables to (1/2 − ε)m2 by replacing each one of the yij

variables by its parametric representation as a linear combination of the new zk

variables.
The relinearization technique is based on the observation that the new m4/12

quadratic equations in the new (1/2− ε)m2 zi variables can be linearized again
by replacing each product zizj for i ≤ j by a new variable vij. The new system
has m4/12 linear equations in ((1/2 − ε)m2)2/2 vij variables. We expect this
linear system to be uniquely solvable when m4/12 ≥ ((1/2 − ε)m2)2/2. This is
satisfied whenever ε ≥ 1/2 − 1/

√
6 ≈ 0.1, which is one fifth of the number of

equations required by simple linearization.
Two small demonstrations of this procedure can be found in the appendix.

There are many possible optimizations of the basic technique: we can use re-
linearization recursively, consider additional constraints, etc. For example, there
are about m6/6! possible choices of indices in xaxbxcxdxexf , and each one gives
rise to 14 different equations of degree 3 in the (1/2− ε)m2 parameters zi. If we
relinearize every product of the form zizjzk for i ≤ j ≤ k, we get about 14m6/720
linear equations in ((1/2 − ε)m2)3/6 new variables, which can be solved when-
ever ε ≥ 0.008. In the full version of this paper we show that for any fixed ε > 0
there is a relinearization scheme which is expected to solve in polynomial time
random systems of εm2 quadratic equations in m variables.

We now return to the original problem of extracting T from the fundamental
equation G′ = WPW t. Since we have about n2 quadratic equations in about
rn variables, we get ε ≈ 1/r2. The worst case happens when q = 2 and r = 13,
yielding ε ≈ 0.006, which is marginally smaller than the threshold stated above.
We thus have to use the relinearization scheme which considers products of 8 xi

values, and to solve a huge system of O(n8) linear equations in O(n8) variables,
which is polynomial but impractical. For larger fields F, both r and n drop
considerably if we keep fixed both the degree qr of the secret polynomial and
the size qn of the cleartext space (for example, when we replace F2 by F7, r drops
from 13 to 4 and n drops from 100 to 36). The smaller r increases ε and makes
it possible to use simpler relinearization schemes which result in smaller systems
of O(n6) or even O(n4) equations, and the smaller n make their solution more
2 There are additional 4-tuples of non-distinct indices, which give either one or no

additional equations. We ignore them in our asymptotic analysis.
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feasible. The practical details are messy, and will be omitted from this extended
abstract.

One final complication is the fact that the quadratic equations have multi-
ple solutions (due to two symmetries of the fundamental equation: we can raise
all the ti to the power q and cyclically rotate the vector to the right, and we
can multiply all of them by a common constant). Any linearized technique to
find these solutions will necessarily return the n dimensional linear subspace
they span. Almost all the points on this subspace are parasitic solutions, which
do not solve the original quadratic equations, and cannot be used to break the
scheme. To avoid this problem, we want to force the system of quadratic equa-
tions to have a unique solution. The standard way to do this is to choose random
additional constraints until only one of the original solutions remains. However,
the equations are over the large field K, and each additional equation kills all
but 1/qn ≈ 2−100 of the original solutions, which is too severe. Instead, we can
reexpress the quadratic equations over the large field K as quadratic equations
over the small field F, and arbitrarily fix the values of some of the new variables
in F. Each additional choice reduces the number of solutions by the small factor
q, and with reasonable probability the number of solutions will pass through
1. Working over F instead of K increases the number of variables by another
factor of n, but we can avoid this higher complexity by translating to F only the
O(n) parameters of the linear solution space rather than the O(n8) variables of
the linearized problem. We can then express some of the algebraic relationships
between the O(n8) linearized variables as quadratic equations in the new O(n2)
variables over F. The number of quadratic equations we get exceeds the square
of the number of new variables, and thus we can solve them efficiently by simple
linearization.

5.3 Recovering S

The last part of the attack recovers S and P when T is known. The matrix
G′ =

∑n−1
k=0 tkG∗k in the fundamental equation G′ = WPW t is now a completely

known matrix. The matrix P contains at most r non zero rows, and thus both
its rank and the rank of G′ = WPW t cannot exceed r. Assume without loss of
generality that the rank of P is exactly r, and that the rank of W is exactly n.
Let v1, . . . , vn−r be a basis for the left kernel of G′. Since W t is invertible the left
kernel of WPW t is equal to the left kernel of WP . The left kernel of P consists
of exactly those vectors which are zero in their first r entries, and thus each vi is
mapped by W to a vector of this form. Since G′ is known, its left kernel can be
easily computed, and each one of the n− r basis vectors gives rise to r equations
in the unknown entries of W .

The problem seems to be underdefined, with r(n − r) linear equations in
n2 variables. We can reduce the number of variables from n2 to n by replacing
each wij by sqi

j−i, but then we get nonlinear equations. The crucial observation
is that these nonlinear equations over K become linear if we reinterpret them as
equations over F: Replace each si by

∑n−1
j=1 sijωj where the sij is a new set of n2
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variables over F. Each sqi

j−i becomes a linear combination of the suv variables,
and each equation over K becomes a collection of n linear equations over F.
Altogether there are r(n− r)n equations in the n2 new variables over F, and for
any r > 1 the system is greatly overdefined since r(n− r)n >> n2. The solution
of the homogeneous equations can be defined at most up to multiplication by a
constant, but as explained earlier any solution of this type is satisfactory.

A Appendix: A Relinearization Example

We demonstrate the complete relinearization technique on a toy example of 5
random quadratic equations in three variables x1, x2, x3 modulo 7:

3x1x1 + 5x1x2 + 5x1x3 + 2x2x2 + 6x2x3 + 4x3x3 = 5

6x1x1 + 1x1x2 + 4x1x3 + 4x2x2 + 5x2x3 + 1x3x3 = 6

5x1x1 + 2x1x2 + 6x1x3 + 2x2x2 + 3x2x3 + 2x3x3 = 5

2x1x1 + 0x1x2 + 1x1x3 + 6x2x2 + 5x2x3 + 5x3x3 = 0

4x1x1 + 6x1x2 + 2x1x3 + 5x2x2 + 1x2x3 + 4x3x3 = 0

After replacing each xixj by yij , we solve the system of 5 equations in 6 variables
to obtain a parametric solution in a single variable z:

y11 = 2 + 5z, y12 = z, y13 = 3 + 2z, y22 = 6 + 4z, y23 = 6 + z, y33 = 5 + 3z

This single parameter family contains 7 possible solutions, but only two of them
also solve the original quadratic system. To filter out the parasitic solutions, we
impose the additional constraints: y11y23 = y12y13, y12y23 = y13y22, y12y33 =
y13y23. Substituting the parametric expression for each yij , we get:

(2+5z)(6+z) = z(3+2z), z(6+z) = (3+2z)(6+4z), z(5+3z) = (3+2z)(6+z)

These equations can be simplified to:

3z2 + z + 5 = 0, 0z2 + 4z + 4 = 0, 1z2 + 4z + 3 = 0

The relinearization step introduces two new variables z1 = z and z2 = z2, and
treats them as unrelated variables. We have three linear equations in these two
new variables, and their unique solution is z1 = 6, z2 = 1. Working backwards
we find that y11 = 4, y22 = 2, y33 = 2, and by extracting their square roots
modulo 7 we find that x1 = ±2, x2 = ±3, x3 = ±3. Finally, we use the values
y12 = 6 and y23 = 5 to combine these roots in just two possible ways to obtain
x1 = 2, x2 = 3, x3 = 4 and x1 = 5, x2 = 4, x3 = 3, which solve the original
quadratic system.

A larger example of a solvable system consists of 5 randomly generated homo-
geneous quadratic equations in 4 variables, Note that this is barely larger than
the minimum number of equations required to make the solution well defined.
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The number of linearized variables yij = xixj for 1 ≤ i ≤ j ≤ 4 is 10, and the
solution of the system of 5 linear equations in these 10 variables can be defined
by affine expressions in 5 new parameters zi. There are 20 equations which can
be derived from fundamentally different ways of parenthesizing products of 4 xi

variables:
y12y34 = y13y24 = y14y23

y11y23 = y12y13, y11y24 = y12y14, y11y34 = y13y14

y22y13 = y12y23, y22y14 = y12y24, y22y34 = y23y24

y33y12 = y13y23, y33y14 = y13y34, y33y24 = y23y34

y44y12 = y14y24, y44y13 = y14y34, y44y23 = y24y34

y11y22 = y12y12, y11y33 = y13y13, y11y44 = y14y14

y22y33 = y23y23, y22y44 = y24y24, y33y44 = y34y34

When we substitute the affine expressions in the 5 new zi parameters and relin-
earize it, we get 20 linear equations in the 5 zi and their 15 products zizj for
1 ≤ i ≤ j ≤ 5, which is just big enough to make the solution unique (up to ±
sign) with reasonable probability. 2
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