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Abstract
Indexed families of types are a way of associating run-time data
with compile-time abstractions that can be used to reason about
them. We propose an extensible theory of indexed types, in which
programmers can define the index data appropriate to their pro-
grams and use them to track properties of run-time code. The es-
sential ingredients in our proposal are (1) a logical framework,
which is used to define index data, constraints, and proofs, and
(2) computation with indices, both at the static and dynamic levels
of the programming language. Computation with indices supports
a variety of mechanisms necessary for programming with exten-
sible indexed types, including the definition and implementation
of indexed types, meta-theoretic reasoning about indices, proof-
producing run-time checks, computed index expressions, and run-
time actions of index constraints.

Programmer-defined index propositions and their proofs can be
represented naturally in a logical framework such as LF, where
variable binding is used to model the consequence relation of the
logic. Consequently, the central technical challenge in our design
is that computing with indices requires computing with the higher-
order terms of a logical framework. The technical contributions of
this paper are a novel method for computing with the higher-order
data of a simple logical framework and the integration of such com-
putation into the static and dynamic levels of a programming lan-
guage. Further, we present examples showing how this computation
supports indexed programming.

1. Introduction
One way to enrich the expressiveness of a type system is to provide
the programmer with a rich language of data that can be used,
at compile-time, to state and verify properties of run-time code.
Compile-time data can be associated with run-time values using
an indexed family of types whose indices vary with the classified
values. For example, a programmer might define a family of types
list[n:nat], indexed by a natural number representing the
length of the list, and varying with the list constructors:

nil : list[0]
cons : ∀n:nat.elt -> list[n] -> list[n+1]

Examples of indexing include dependent types, where the indices
are the drawn from the run-time programming language (Augusts-
son, 1998; Coquand and Huet, 1988; Flanagan, 2006; McBride and
McKinna, 2004), and generalized algebraic datatypes, where the in-
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dices are other types (Cheney and Hinze, 2003; Peyton Jones et al.,
2006; Sheard, 2004; Xi et al., 2003), as well as types indexed by
static constraint domains (Chen and Xi, 2005; Dunfield and Pfen-
ning, 2004; Fogarty et al., 2007; Licata and Harper, 2005; Sarkar,
2005; Xi and Pfenning, 1998), by propositions (Nanevski et al.,
2006), and by proofs.

Indices serve as modelling types in the sense of Leino and
Müller (2004), in that they define an abstraction of program val-
ues which may be used for reasoning. With dependent types, the
available modelling types are the same as the values they model,
and data is often used as its own model. Using more general index-
ing, one can model a value with abstractions other than the value
itself, and the model need not be drawn from the run-time language.
For example, static array bounds checking, as in Xi and Pfen-
ning (1998), is possible using a family of types array[i:nat],
which does not track the contents of the array but only its length
i. Another example is Sarkar’s use of the types term[e:tm]
and typ[t:tp], which index run-time datatypes representing the
types and terms of a programming language by their LF (Harper
et al., 1993) representations. The key application of indexing is
that index information may be used to state properties of an abstract
data type in its interface. For example, Sarkar writes a certified type
checker, employing the LF representation of the language’s typing
judgement as an index constraint:

check : ∀e.∀t.term[e] -> typ[t]
-> (∃d::of e t.unit) + unit

When this function returns true, it also returns a certificate, rep-
resented as an LF derivation of the judgement of e t, that the
program is well-typed. Indexed types enable richer interfaces at
module boundaries, serve as machine-checked documentation, and
obviate some run-time checks. Proving that a program possesses
a more precise type can be harder, but in return the type tells
more about the program’s behavior. Pragmatically, the programmer
can use indexing inasmuch as it seems worthwhile to capture such
strong invariants.

An Extensible Theory of Indexing. We wish to provide an ex-
tensible theory of indexing, in which programmers can define their
own index domains and use them to give stronger interfaces. An
extensible framework must at least provide the ability to define in-
dex domains, index expressions inhabiting them, constraints on in-
dices, proofs of constraints, indexed families of types computed by
analysis of indices, and inhabitants of such families computed by
such analysis. This can be achieved by equipping a functional lan-
guage with a logical framework that is sufficiently powerful to rep-
resent index domains, index expressions, constraints, and proofs.
Representing constraints and proofs necessitates a framework such
as LF (Harper et al., 1993) that involves binding and scope, which
are used to model the consequence relation of a logic. Then in-
dexed families of types can be defined and implemented by provid-
ing structural induction, modulo α-renaming, over the terms of the
framework.

To illustrate these ideas, we define a type of queues whose con-
tents are tracked by the type system. For tracking the contents of
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signature FIN SET THY = sig

fam ind : Type % elements of sets
fam set : Type % finite sets

obj void : set.
obj sing : ind → set.
objs union, diff : set → set → set.

fam prop : Type % propositions
objs eq, neq : set → set → prop.

fam pf : prop → Type % proofs
...

end

Figure 1. LF Signature for Finite Set Theory

signature QUEUE = sig

import Sets : FIN SET THY

% elements indexed by ind
typ elt : ind ⇒ type

% queues indexed by sets
typ queue : set ⇒ type

val empty : queue[void]
val enq :
∀ i:ind ∀ s:set elt[i] → queue[s] →
∃ t:set ∃ :pf(eq(t,union(s,sing(i))))
queue[t]

val deq :
∀ s:set ∀ :pf(neq(s,void)) queue[s] →
∃ i:ind ∃ t:set
∃ :pf(eq(t,diff(s,sing(i))))
elt[i] × queue[t]

end

Figure 2. Signature for Queues Indexed by Their Contents

queues, we require a small piece of finite set theory. An appropri-
ate index domain and logic are defined in Figure 1. This LF sig-
nature specifies a two-sorted predicate logic consisting of a sort of
individuals and a sort of finite sets of individuals. It provides opera-
tions for constructing finite sets, including the empty set (void), the
singleton consisting of one individual, the union of two finite sets,
and the difference of two sets. It also specifies a logic for reason-
ing about finite sets. This consists of an LF type of propositions,
including assertions of equality and inequality of finite sets. Cru-
cially, it also consists of an LF type of proofs of propositions, as
well as inference rules for generating such proofs (which we have
elided).

Using these indices, we define a signature for run-time queue
values in Figure 2. The elements of the queue are represented by
a family of types, called elt, indexed by the LF type ind of
individuals: there is a type elt[i] for every individual i, and
different instances of the family may classify different terms. Next,
the signature defines a type of queues, indexed by the LF type set
of sets. The signature defines three operations on queues, using the
indices to state how these operations act on the queue’s contents.
For example, the dequeue operation deq consumes a queue with
non-void contents and produces an element along with a queue with
that element removed.

In another implementation of queues, a programmer might wish
to track only whether the queue is empty or not; in a third imple-
mentation, a programmer might wish to track the order of elements
in a priority queue. LF permits natural representations of both first-
order index domains such as natural numbers and sets, as well as

index domains that require variable binding, such as the syntax of
a programming language. Types indexed by abstract syntax have
been used, for example, to implement type-safe interpreters by in-
dexing the datatype of a programming language with a represen-
tation of the language’s types (Pasalic, 2004; Peyton Jones et al.,
2006).

Moreover, LF permits the definition of not just index data do-
mains, but also the propositions and proofs used for reasoning
about them, such as the LF types prop and pf above. The above
example defined only atomic propositions (equality and inequal-
ity), but in general a programmer may wish to define connec-
tives such as implication and quantification, encoded using variable
binding in LF. Adequate higher-order representations of proofs rely
crucially on the weakness of LF’s function space, which requires a
distinction between the logical framework and the computational
language.

To implement modules like the above, the programmer will
need to define indexed families of types (such as elt and queue)
and implement operations on them, which is supported by compu-
tation on indices. Computation permits:

1. Meta-theoretic reasoning about indices. For example, it may
require non-trivial reasoning to discharge the index constraint
pf(neq(s,void)) when s is a set expression consisting of
a series of unions and differences involving index variables.

2. Proof-producing run-time checks. For example, an operation
val isEmpty :
∀s:set (∃ :pf(neq(s,void)).unit) + unit

permits the safe discharge proof obligations, such as the premise
of deq, when the constraint is not statically provable, or the
cost of proving it is deemed too high.

3. Computed index expressions. For example, an alternate repre-
sentation of finite sets would provide a more limited collection
of set constructors (singleton set, empty set, union) and imple-
ment the remaining operations (such as set difference) as func-
tions from sets to sets. Computed indices are useful because
their definitions are automatically expanded by the notion of
definitional equality in the type system.

4. Run-time actions of index constraints. For example, for a partic-
ular application, a queue[s] might suffice for a queue[s’]
whenever s’ is a subset of s. This subtyping relationship can
be expressed as a constraint subset(s’,s) and witnessed
using a run-time induction over proofs to define a coercion on
queues. Such a coercion might be the identity, if the implemen-
tation of queues builds in this cumulativity, or it may remove
the extra elements in the queue[s], if the indexing tracks the
queue contents precisely.

5. The definition of indexed types by induction on their indices.
For example, the underlying implementation of queue[s]
might be a type of arrays whose representation is defined as
a function of the element type (Harper and Morrisett, 1995).

6. The implementation of such indexed types, which often require
a corresponding run-time induction on the index.

Contributions. In this paper, we define a type theory which sup-
ports extensible indexed types. It is the first type theory to provide
both (1) a logical framework for defining index data, and (2) com-
putation over the terms of the framework, both at compile-time and
at run-time. Following (Harper and Stone, 2000), our type theory is
intended as a semantically proximate target for the elaborative se-
mantics of an external language with indexed types, which we will
consider in future work.

The central technical challenge in the design of this type theory
is that the logical framework includes variable binding, so the
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method for computing with it must provide recursion over higher-
order data. To facilitate the study of this problem, we consider a
more restricted logical framework than full LF. Specifically, we
study a framework of abstract binding trees (Constable et al., 1986;
Fiore et al., 1999; Pitts, 2006) that is expressive enough to represent
higher-order abstract syntax but not judgements. We claim that this
simplification retains the essential difficulties of the problem we
need to solve, in that it requires inducting over higher-order data.

The technical contributions of our type theory are novel meth-
ods for integrating a logical framework into a programming lan-
guage and computing with higher-order data. The terms of the
framework are introduced into the programming language in a
manner that is similar in spirit, but different in technical detail, to
Pientka (2006)’s: the key idea is that the free variables of a frame-
work term are bound locally by the introduction form, so no frame-
work variables scope over programming language terms. This in-
troduction form permits a direct transcription of the induction prin-
ciple for the framework as a dependently typed recursor.

Our type theory has the following features:

The Phase Distinction. Our type theory makes a phase distinc-
tion (Harper et al., 1990) between static (compile-time) and dy-
namic (run-time) data, where static data is permitted to depend
only on other static data, but dynamic data is permitted to depend
on both static and dynamic data. The phase distinction is reflected
in the syntax of our calculus, which is stratified into a static part
of constructors classified by kinds, and a dynamic part of terms
classified by types. Indices are construed as compile-time data, as
they influence the static properties of a program, and are integrated
into the constructor and kind level. We exploit the dependence of
static data on static data to permit compile-time computation with
indices, and we exploit the dependence of dynamic data on static
data to permit run-time computation with indices.

Modularity. Modularity is the only way to manage the complex-
ity of large software systems. Modularity is achieved by separating
the implementation of a program component from its clients via an
interface, which describes everything the clients are permitted to
know about the implementation. Indexed types enrich the language
of interfaces in a way that is compatible with modularity: what is
known about an implementation is still exactly what is written in its
type. In contrast, true dependency, where programs are used as their
own models, is incompatible with modularity, as it requires that the
very implementation of an operation be revealed in its interface.

Extensibility. As we argue with the examples below, our type
theory is an extensible framework for the definition of and com-
putation with programmer-defined indices. The programmer may
define new index domains, indexed families of types, index-level
functions, proof-manipulating run-time checks, and run-time proof
actions, and he may reason about indices in the kind and construc-
tor level of the programming language, which doubles as an ade-
quate metalogic. In future work, we plan to build on the framework
we develop here to support extensible decision procedures used to
discharge proof obligations during type checking. When proofs are
taken as fundamental, decision procedures can be construed as au-
tomated assistance for constructing omitted proof information, in a
process analogous to type inference. This viewpoint has the impor-
tant advantage that it is compatible with programmer-defined de-
cision procedures, as the definition of the programming language
itself does not depend on what automation is provided.

The remainder of this paper is organized as follows. In Sec-
tion 2, we give an overview of abstract binding trees. In Section 3,
we give an informal description of our techniques for integrating
abstract binding trees into a programming language and supporting
recursion over them. In Section 4, we illustrate several of the appli-
cations of computation with indices discussed above. In Section 5,

Valence I ::= z | s I
Arity L ::= · | I × L
ABT N ::= x | x .N | o·S
Spine S ::= () |N ; S

Signature Ω ::= · |Ω, o : L⇒ z
Context Ψ ::= · |Ψ, x

Ψ ` N : I
x in Ψ

Ψ ` x : z

Ψ, x ` N : I

Ψ ` x .N : s I
o : L⇒ z in Ω Ψ ` S : L

Ψ ` o·S : z

Ψ ` S : L Ψ ` () : ·
Ψ ` N : I Ψ ` S : L

Ψ ` N ; S : I × L

Figure 3. Definition of Abstract Binding Trees

we give a formal account of the judgements and metatheory of the
calculus. In Section 6, we compare our work with the many other
proposals for indexed programming and for inducting on higher-
order data, and in Section 7, we discuss future work and conclude.

2. Overview of Abstract Binding Trees
2.1 Definition of the Framework
The logical framework that we will use in this paper, abstract
binding trees, is a simple framework sufficient for representing
syntax with binding; it is defined in Figure 3. An abstract binding
tree (ABT) is a variable (x ), an abstractor (x .N ), or an operator
applied to a spine (o·S ), where a spine is a list of terms. An ABT
is classified by a valence, which is a natural number describing the
number of variables bound by the term. The judgement Ψ ` N : I
defines this classification: A variable has valence zero, as long as
it is declared in the context Ψ. The valence of an abstractor is one
more than the valence of its body—e.g., x . y . x has valence 2. An
application of an operator has valence zero, provided the argument
spine has the arity associated with the operator. An arity is a list of
valences. A spine S has arity L if the spine is a list of terms of the
valences specified by L, as defined by the judgement Ψ ` S : L.
These typing judgements are implicitly parametrized by a signature
Ω, associating arities with operators, which is invariant throughout
a derivation. ABTs are considered up to α-equivalence of the bound
variables. For readability, we will often omit the final · and 〈〉
in non-empty arities and spines, writing, for example, z × z for
z× z× ·.

As an example object language, we can represent the syntax of
the untyped λ-calculus with the following signature Ωλ:

lam : s z⇒ z
app : z× z⇒ z

That is, the operator app takes two arguments, neither of which
bind any variables, and the operator lam takes one argument, which
binds one variable. Terms of the untyped λ-calculus are encoded as
in the following examples:

x � x

x y � app·(x ; y)

(λ x. x) y � app·(lam·(x . x ); y)

Object-language variables are represented by framework variables
using higher-order abstract-syntax, as in LF (Harper et al., 1993),
naturally representing α-equivalence classes of object-language
terms.
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2.2 Induction Principle
We can reason about ABTs using rule induction over the judgement
Ψ ` N : I . Intuitively, the induction principle for this judgement
is structural induction, modulo α-conversion, over the terms of
the framework. Formally, the hypothetical judgement Ψ ` N : I
is a simultaneous inductive definition of a family of categorical
judgements, indexed by contexts Ψ, on ABTs N and valences
I . Thus, the induction principle for this judgement permits us to
prove, all at once, a context-indexed family of propositions about
an ABTs N and valences I , which we will write as PΨ(I ,N ). We
extend this notation to spines by writing PΨ(L,S), where

PΨ(·, ()) = true
PΨ(I × L,N ; S) = PΨ(I ,N ) and PΨ(L,S)

Then the induction principle for ABTs is stated as follows::
DEFINITION 2.1: INDUCTION PRINCIPLE FOR Ψ ` N : I .
If

1. For all Ψ, for all x in Ψ, PΨ(z, x )
2. For all Ψ, I , N , for some/any x such that x /∈ Ψ, if PΨ,x(I ,N )

then PΨ(s I , x .N ).
3. For all o : L⇒ z in Ω, for all Ψ and S , if PΨ(L,S) then
PΨ(z, o·S).

then for all Ψ, for all I , for all N such that Ψ ` N : I , PΨ(I ,N ).
Intuitively, this induction principle says that to prove a property

of an arbitrary ABT of an arbitrary valence in an arbitrary context,
it suffices to give (1) a case for any variable, (2) a case for an
abstractor, for some and hence any fresh bound variable, in terms
of the inductive result on its body, and (3) a case for each operator
in terms of the inductive results on its arguments.

2.3 Computational Content
The computational content of the above induction principle for
ABTs is a recursion operation. For exposition, we first consider
a simply-typed iteration operation. Assuming a type ABT of ABTs
in a programming language, this iterator would have the following
type:

ABTiterΩ : ∀ α. {var : α,
abs : α → α,
ops : { o1 : αo1 → α, ... } }
-> abt -> α

where ops has one entry for each operator in Ω, and αo is a
product αn whose length n is the number of arguments to o.
Computationally, this iterator would analyze the provided ABT and
defer to the appropriate case, supplying the inductive calls for the
arguments to the cases.

For example, consider the function assigning a size to an un-
typed λ-term:

size(x) = 1

size(λ x. e) = 1 + size(e)

size(e1 e2) = 1 + size(e1) + size(e2)

Using the above signature for λ-terms, we could implement this
function as follows:

size : abt -> nat =
λx. ABTiter {var = 1,

abs = λx.x,
ops = { lam = λx.x+1,

app = λ(x,y).x+y+1}
} x

The abstractor case is the identity function because traversing an
abstractor does not contribute to the above definition of size. To
write more interesting functions over ABTs, such as those that

compute ABTs as results, we must describe the way ABTs are
introduced into the programming language.

3. Computing With Indices
We now give an informal description of our method for integrating
ABTs into the programming language and providing computation
with them. We focus first on the kind and constructor level of the
language. To admit a precise kinding for recursion over ABTs, the
kind and constructor language is dependently typed. In particular,
function kinds K1 → K2 are generalized to dependent function
kinds Π u::K1 .K2 , though we use the former notation as a short-
hand when the bound variable does not occur.

3.1 Introduction Forms for ABTs
To motivate the operations we provide on ABTs, consider what
would be necessary to define an inductive identity function:

id : abt -> abt =
λx. ABTiter
{var=[the given variable],
abs=λe:abt.[abstract the free variable of e],
ops={lam=λe:abt.[apply lam to e], ... }
} x

Completing this function requires constructing ABTs using vari-
ables from the programming language. In particular, in the abstrac-
tor case, the programming language variable e, representing the
result of the recursive call, must stand for an ABT with an extra
free variable x; to complete the case, we must return an ABT x.e
that reabstracts this variable.

This case exposes the key difficultly of integrating the logi-
cal framework with the programming language: variables from the
framework must, in some sense, be free in terms from the program-
ming language. One approach to this problem, studied in work on
nominal logic (Pitts, 2003), is to add a type of names to the pro-
gramming language, so that the abstractor case of the induction
principle provides both a name x as well as the recursive result,
in which x is potentially free. However, because the programmer
has access to the concrete bound name, it can require non-trivial
proof to ensure that the result of the branch is independent of the
particular choice of bound name, which is necessary to ensure that
the computation respects α-equivalence (Pitts and Gabbay, 2000;
Pottier, 2007).

In this work, we take a different approach. First, an ABTs is
introduced into the programming language using a syntactic con-
struct that locally binds its free variables; no framework variables
are free in programming language expressions. Second, a free vari-
able of a computed ABT can be reabstracted using an explicit
substitution. These mechanisms permit programming with open
terms without giving concrete access to the free variables, which
ensures syntactically that all computations respect α-equivalence.
Moreover, unlike nominal-logic-based approaches where reasoning
about freshness permeates all of the rules of the type system, our
method of adding a logical framework to a programming language
is a modular extension.

To ensure that variables are used correctly, it is necessary to
track the free variables of an ABT in its kind. To introduce ABTs,
the syntax of constructors includes an injection of the syntax of
ABTs N . This form is classified by the kind abtI (L), where L rep-
resents the context of free variables of the ABT, and I is the valence
of the ABT. The injection N binds the free variables represented by
the context L. This permits opening an abstractor x .N : abts I (L)
to term with a free variable, which we can informally write as
N : abtI (L, x : z), without binding the variable x at the level of the
programming language.

For technical reasons, we regard the free variables of the ABT
as a product structure, reusing the syntax L of arities, which we will
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also refer to as contexts, to classify it. The programmer may refer
to free variables from the context L via projections. We extend the
syntax of ABT as follows:

N ::= . . . |π1 U
U ::= it |π2 U

The construct ’it’ refers to the entire context, and projections π1 U
and π2 U decompose it. For example, app·(π1 it;π1 π2 it) has
kind abtz(z× z) and represents the application of the operator
app to the two free variables. An ABT N injected into the pro-
gramming language must be closed with respect to the ordinary
variable context Ψ; all free variables must be written as pro-
jections from L. However, locally bound variables in abstractors
are still bound in the usual manner. For example, the constructor
lam·(x . app·(x ;π1 it)) has kind abtz(z) and represents the λ-term
λ x. x y, where y is a free variable.

The free variables of an ABT can be rebound by applying a
computed ABT of kind abtI (L) to a substitution for the variables in
L. This application is represented by one additional form of ABT:

N ::= . . . |P ·S
which is the the application of a constructor P to a spine S .
Informally, P ·S has valence I if P : abtI (L) and S : L. The spine
S defines a (nameless) substitution for all of the free variables of P .
Because the spine may mention locally bound variables, this form
can be used to bind an ABT with a free variable into an abstractor
without directly mentioning the free variable. As a specific instance
of this, the following code binds the one free variable in the ABT
u:

u : abtz(z) ` x . u·x : abts z(·)
Below, we discuss the general case of abstracting one variable
in a term with arbitrary other free variables. Operationally, when
the constructor P is reduced to an actual ABT N , the form P ·S
is reduced by replacing projections from it in N with the values
supplied by the spine.

3.2 Variable Contexts and Valences
The induction principle for ABTs (DEFINITION 2.1) quantifies
over valences and contexts. For example, the abstractor case of
the induction principle quantifies over a valence I and a context
Ψ . Because valences and contexts are represented as data in the
programming language, the recursor must similarly quantify over
them. However, we have not yet introduced variable valences or
contexts. Thus, we add two new kinds, vale and ctx, classifying
valences and contexts, along with injections I and L inhabiting
them. Additionally, as with ABTs, it is necessary to extend the
syntax of valences and contexts to permit computed forms:

I ::= . . . |P
L ::= . . . |P × L
S ::= . . . | spn(U ); S

The context P × L is well-formed if P has kind ctx; i.e., P stands
for an unknown part of the context. The only operation we provide
on such an unknown context is the ability to use it in a spine, where
it stands for the identity substitution on that context. This has the
following typing rule:

U : P × L′ S : L

spn(U ); S : P × L

For example, the following code applies the variable u , which is an
ABT in variable context w , to the identity spine for that context:

w : ctx, u : abtz(w × ·) ` u·(spn(it); ()) : abtz(w × ·)

As a notational convenience, when L is P × ·, we simply write
it for spn(it); (); for example, the above ABT constructor will be
written u·it.

id :: Πw::ctx.Πi::vale.abti[w] -> abti[w]
= λw.λi.λu.

ABTRec [w0.i0. .abti0(w0)] (u,
. . π1 (π2 it),
. . .v. (x. v · (x ; it)),
.v. app · (fst v · it; snd v · it),
.v. lam · (v · it))

numBound :: Πw::ctx.Πi::vale.abti[w] -> nat
= λw.λi.λu.

ABTRec [ . . .nat] (u,
w.w’. 0,
w.i.u.v. 1 + v,
u.v. v,
u.v. fst v + snd v)

Figure 5. Examples of ABTRec

3.3 Structural Recursion over ABTs
Next, we internalize the induction principle as a recursor in the
usual manner of dependent type theory (Constable and Mendler,
1985; Constable et al., 1986; Luo, 1994). In each branch, the
recursor provides both the exposed subterm and the inductive result
on it. A recursor, rather than an iterator, is necessary to state the
fully dependent rule, as the type of the elimination form depends
on the term being eliminated.

In full generality, the ABTRec construct must be defined for any
ABT signature Ω, but for presentational reasons we first consider
the special case of ABTRec for the signature representing the
untyped λ-calculus that we discussed above. We present the rule
for the general case in Section 5.

Figure 4 contains the kinding rule for ABTRec. While at first
glance this rule may seem complex, it is simply a transcription
into dependent type theory of the induction principle for ABTs
described above in DEFINITION 2.1. The result kind K , which
corresponds to the proposition P in the induction principle, is
parametrized by a context, a valence, and an ABT in that con-
text and valence. Substitutions into the result kind K correspond to
the arguments of the property P . To improve readability, we write
K [C1 ][C2 ][C3 ] for K [C1/w0 ][C2/i0 ][C3/u0 ] for the three free
variables of K . The kinds of the inductive hypotheses and results
vary in each branch, following the proof obligations in the induc-
tion principle. This variation, which is standard in inductive family
elimination forms, propagates information by specializing the types
in each branch of the recursor.

The overall result kind in the conclusion of the rule is the
instantiation of K with the scrutinized ABT P and its valence
and context. The variable case C1 covers an arbitrary variable in
an arbitrary context by assuming left and right contexts w and w ′

and considering a variable between them. Up to associativity and
unit of products (for details, see Section 5), any variable has this
form. The abstractor case C2 is a direct analogue of the abstractor
case of the induction principle: it assumes the inductive result for
an ABT of an arbitrary valence in an arbitrary context w plus one
distinguished free variable, and it covers the case for the abstractor
formed by binding this distinguished variable. The case C3 for the
operator lam assumes an inductive result for one term of valence
s z and must cover the case for lam applied to that term. Similarly,
the case C4 for the operator app assumes a constructor-level pair
of inductive results of valence zand must cover the case for app
applied to them.

The computational behavior of ABTRec is straightforward: it
examines the scrutinized ABT and defers to the appropriate case
depending on its form, substituting ABTRecs on subterms for the
inductive variables.
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Γ,w0 : ctx, i0 : vale, u0 : abti0 (w0 ) ` K kind

Γ ` P : abtI (L)

Γ,w : ctx,w ′ : ctx ` C1 : K [w × z× w ′][z][π1 π2 it]

Γ,w : ctx, i : vale, u : abti(z× w), v : K [z× w ][i ][u] ` C2 : K [w ][s i ][x . u·(x ; it)]

Γ,w : ctx, u : abts z(w), v : K [w ][s z][u] ` C3 : K [w ][z][lam·(u·it)]
Γ,w : ctx, u : (abtz(w)× abtz(w)), v : (K [w ][z][fst u]× K [w ][z][snd u]) ` C4 : K [w ][z][app·(fst u·it; snd u·it)]

Γ ` ABTRec[w0 .i0 .u0 .K ](P ,w .w ′.C1 ,w .i .u.v .C2 ,w .u.v .C3 ,w .u.v .C4 ) : K [L][I ][P ]

Figure 4. ABTRec for Ωλ

We present two simple examples of how this recursor is used in
Figure 5. First, we complete the inductive identity function example
from the beginning of this section. In the variable case, projection
from the context is used to return the distinguished variable. In the
abstractor case, the spine application P ·S is used to rebind the extra
free variable, as we saw a special case of above. As another simple
example, assuming a kind nat of natural numbers, we could write
code to count the number of bound variables (abstractors) in an
ABT. The abstractor case increments the count, the variable case
returns 0, and the operator cases sum the inductive results.

3.4 Run-time Computation
To support run-time computation, we extend the run-time programs
of the language with an elimination form for ABTs. Instantiated to
the signature Ωλ, this elimination form has the following syntax:

ABTcase[w0 .i0 .u0 .A](P ,w .w ′.E1 ,w .i .u.E2 ,w .u.E3 .,w .u.E4 )

This construct is analogous to ABTRec, except each branch is a
run-time term E rather than a compile-time term C , and the result
classifier is a family of types A rather than kinds K . The elim-
inated ABT remains a constructor of kind abtI (L). Because the
run-time language includes general recursion, a case-analysis con-
struct, rather than a recursor, suffices, so the abstractor and operator
branches do not bind variables standing for the recursive call. The
typing and dynamic semantics of this construct are analogous to
ABTRec.

3.5 Propositional Equality
An indexed family of types (τ [i])i∈I defines a functional depen-
dency between the index domain I and the types τ [i]—every index
determines a type, and equal indices determine equal types. Type
equality in turn influences type checking. In the presence of com-
puted indices, some desired index equalities, and therefore type
equalities, may not be directly derivable using the notion of def-
initional equality built in to the type system. For example, for a
programmer-defined index addition operation plus , it requires an
inductive argument to show that the indices plus i j and plus j i
are equal, and a decidable notion of definitional equality cannot
perform arbitrary inductive reasoning. To support explicit proofs
of such equalities, we include a notion of propositional equality,
expressed as an indexed family of kinds IdK ,K ′(C ,C ′). This fam-
ily of kinds is the heterogeneous propositional equality of McBride
(2000); heterogeneous equality is useful in the presence of depen-
dency, as it allows equations between constructors whose kinds
are only propositionally equal. The introduction form is reflexivity,
which proves IdK ,K (C ,C ), and the elimination form for a proof
of IdK ,K (C ,C ′) propagates the fact that C and C ′ are equal. As
with ABTRec, we include elimination forms for equality at both
the static and dynamic levels.

4. Examples
We now present examples of programming with indexed types in
our calculus.

Defining an Index Domain and Index Expressions An index
domain is defined by an ABT signature:

prod : z× z⇒ z
sum : z× z⇒ z
one : · ⇒ z
let : z× s z⇒ z

This signature represents the types of a simple object language with
products, sums, unit, and, to illustrate programming with binding, a
lettype construct, as one finds in linguistic approaches to managing
sharing (Petersen, 2005). A richer logical framework, such as LF,
would permit the definition of index propositions and proofs as
other constants in the signature.

Rather than formally instantiating the typing rule for ABTRec
with this signature, we simply note the types of the operator cases:
the cases for prod and sum have the same typing as the case for app
above; the case for one binds two variables with kind unit (since
the operator has no subterms); and the case for let binds a pair of
subterms, one with valence z and the other with valence s z, and
the corresponding inductive results. For readability, we label the
operator cases with the syntax o : w .u.r .C .

Computing Index Expressions: Normalization. In some of the
uses of this index domain below, it will be necessary to expand
away the let bindings to see the normal form of the represented
type. Normalization is defined as a constructor-level function from
indices to indices. It uses an auxiliary function

subst::Πw::ctx.abtz[w] * abts z[w] -> abtz[w]

which substitutes the first ABT for the distinguished variable bound
by the abstractor of the second. In an informal ML-like notation
with pattern matching and recursive calls, normalization is defined
as follows:

norm::Πw::ctx.Πi::val.abti[w] -> abti[w]
fun norm w i u =
ABTcase u of
var(w,w’) => π1 (π2 it)

| abs(u :: abti[z × w]) =>
(x. (norm i [z × w] u) · (x, it))

| one => one · ()
| prod (x : abtz[w], y : abtz[w]) =>

prod · ((norm w z x) · it, (norm w z y) · it)
| sum (x : abtz[w], y : abtz[w]) =>

sum · ((norm w z x) · it, (norm w z y) · it)
| let (x, y) => subst (x,y)

The let case uses the auxiliary substitution function, and every
other case is compositional, reconstructing an ABT from the in-
ductive results, just as in the identity function above. The formal
definition in the syntax of our calculus is the following:
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norm::Πw::ctx.Πi::val.abti[w] -> abti[w] =
λw.λi.λu.
ABTRec[w.i. .abti[w]] (u,

. . π1 (π2 it),

. . . . (x. v · (x, it)),
one : . . . one · ()
prod : . .v. prod · (fst v · it,

snd v · it)),
sum : . .v. sum · (fst v · it,

snd v · it)),
let : . .v. subst v)

Substitution is defined as follows:
open::Πw::ctx.abts z[w] -> abtz[z × w] =
λw.λu. ABTRec[ . . .abtz[z × w]] (u,

. .u. . u,
else => π1 it)

subst::Πw::ctx.abtz[w] * abts z[w] -> abtz[w]
= λw.λp. (open w (snd p)) · ((fst p · it); it))

The function open passes from an abstractor with valence one to
an ABT in an extended context with valence zero: in the abstractor
case, it returns the exposed subterm. All remaining cases are im-
possible by kinding, as there is no other way to construct an ABT
with valence higher than zero. However, when programming in a
total language, some result must be specified. One possibility is to
prove the impossibility of the cases (McBride (2000) describes id-
ioms for doing so); another alternative, when desired result kind is
inhabited, is to simply return some default value, as we do here (we
use else to write a catch-all clause rather than writing each case
explicitly).

Substitution consumes a pair of an ABT and an abstractor and
returns the result of substituting the ABT for the variable bound
by the abstractor. It is implemented by opening the abstractor to a
term with a free variable and then using the spine application form
P ·S . The spine supplies the given ABT for the distinguished bound
variable and the identity spine for the remainder of the context.

Defining an Indexed Type by Induction: Tries. As an example of
an indexed type, we define a generalized trie, which is a dictionary
that optimizes its representation based on the type of the key used
to index into it, where keys may be products or sums (Hinze, 2000).
Tries are represented by indexed family of types trie k dwhere
k is an ABT representing the key and d is the associated data. In
pattern-matching notation, the family is defined on normal ABTs
as follows:
fun trie one d = d option
| trie (prod a1 a2) d = trie a1 (trie a2 d)
| trie (sum a1 a3) d = trie a1 d * trie a2 d

When the key is unit, the data may or may not be present; when
the key is a product, the dictionary is Curried as a map from the
first key to a map from the second key to the data; when the key is
a sum, the dictionary is represented as a pair of one dictionary for
each summand.

This family is defined by induction on the structure of k and
non-uniform in d, so we compute a function from types to types
with the ABTRec:
trie::abtz[·] -> type -> type = λu.
ABTRec[ . . .type -> type] (norm (·) z u,

one : . . . λa.a + 1
prod : . .v. λa. (fst v) ((snd v) a)
sum : . .v. λa. (fst v) a * (snd v) a
else => void)

Because this function inducts over a normal index, it returns the
empty type in the (impossible) variable, abstractor, and let cases. In
a richer logical framework such as LF, we could define the function
norm so that it produces a proof of the normality of the result,
and then induct over that evidence instead, which would permit
contradicting the impossible cases.

We also define a family of types key[k], classifies the run-
time keys mapped to values by the trie:

key::abtz[·] -> type = λu.
ABTRec[ . . .type] (norm (·) z u,

one : . . . unit
prod : . .v. fst v * snd v
sum : . .v. fst v + snd v
else => void)

Implementing Operations on Indexed Types: Tries. Implement-
ing tries requires run-time computation with indices. For example,
the lookup function is defined as follows (where, for space reasons,
we elide some cases):

lookup : ∀k::abtz[·].key k -> ∀d.trie k d -> (d+1)
fun lookup k =
ABTcase[ . .k.key k -> ∀d.trie k d -> (d+1)] (k,
one : λkey.Λd.λt.t,
sum : .p.λkey.Λd.λt.case key of
{ inl key1 => lookup[fst p] key1 [d] (fst t)
| inr key2 => lookup[snd p] key2 [d] (snd t)},
...)

The arguments following the ABT are bound inside the ABTRec so
that the substitution into the result types of the branches may refine
their types. For example, in the first case, unit·() is substituted
for k, which causes the type trie k d to reduce to the type d+1;
the trie itself is the value we return. In the next case, the substitution
propagates the fact that key k is a sum type and that trie k d
is a pair; so we may case-analyze the key and look up the subkey in
the appropriate dictionary. The well-typedness of this code depends
crucially on the computational equalities of the constructor level,
which we discuss further in the next section.

Run-time Actions and Indexed Datatypes. The run-time elimi-
nation form for identity may be used to retype a term on the basis
of a proof of equality. One application of this is implementing in-
dexed datatypes (i.e., inductive families (Constable and Mendler,
1985; Constable et al., 1986; Luo, 1994) or GADTs (Cheney and
Hinze, 2003; Xi et al., 2003)), which are another common way of
defining an indexed family of types.

For example, we might use the above index domain to index
the representation of a programming language with its types, so
that only well-typed terms are representable. In a surface syntax, a
small example of such a datatype is as follows:

datatype term[a::abtz[·]] =
Pair : ∀a,b::abtz[·]. term[a] -> term[b] ->

term[prod · (a · it, b · it)]
| Fst : ∀a,b::abtz[·].

term[prod · (a · it, b · it)]
-> term[a]

Note that the result types of the constructors vary in each branch.
It is well-known that indexed datatypes may be reduced to ordi-

nary datatypes with equality constraints (Cheney and Hinze, 2003;
Sheard, 2004; Sulzmann et al., 2007). We formulate this idea in
terms of two very simple type-theoretic ingredients: iso-recursive
constructors of higher kind (Crary and Weirich, 1999; Harper and
Stone, 2000) and identity proofs. Iso-recursive constructors are in-
troduced via a type µK (u.C1 ,C2 ). The constructor C1 morally
has kind (K → type)→ (K → type) (though in fact the variable
u stands for the K → type argument), and the type µK (u.C1 ,C2 )
is the application of its fixed point to C2 . Term constructors roll
and unroll witness the isomorphism between µK (u.C1 ,C2 ) and
(C1 [λ v . µK (u.C1 , v)/u]) C2 .

This type can model datatypes with varying results by using
propositional equality to capture the constraints on the result type.
For example, the above type term is defined to be the type:

7 2007/7/19



λr.µ(term
(∃a,b::abtz[·].
∃ ::Id(prod · (a · it, b · it),r).
term[a] * term[b])

+ (∃a,b::abtz[·].∃ ::Id(a,r).
term[prod · (a · it, b · it)]),

r)

Using this type, it is straightforward to implement the usual inter-
face of an indexed datatype. For the constructors Pair and Fst,
the summands are simply uncurried versions of the datatype con-
structor arguments, and the necessary equalities are true by reflex-
ivity. The substitution-based elimination form has the following
type:
termcase : ∀P::(abtz[·] -> type).

(∀a,b::abtz[·]. term[a] -> term[b]
-> P(prod · (a · it, b · it)))

-> (∀a,b::abtz[·]. term[prod · (a · it, b · it)]
-> P(a))

-> ∀u::abtz[·]. term[u] -> P(u)

This operation is implemented as follows:
termcase = ΛP.λprC.λfstC.Λu.λt.
case unroll t of
inl(pack(a,b,pf,(x,y))) => cast P pf (prC a b x y)

| inr(pack(a,b,pf,x)) => cast P pf (fstC a b x)

In each branch, we use a nested pattern pack(a,b,pf, ) to
eliminate the three existentials at once, as an abbreviation for a suc-
cession of unpacks. The auxiliary function cast uses the exposed
proof to pass from the type of the branch to the generic result type;
it is implemented as follows:
cast : ∀P::(abtz[·] -> type). ∀ ::Id(u,u’)

P(u) -> P(u’)
= ΛP.Λpf. Idrec [v. . P(u) -> P(v)] (P, λx.x)

This function uses the run-time elimination form for proofs to jus-
tify supplying the identity function as the coercion; the details of
Idrec are discussed in the next section. In a richer logical frame-
work, a programmer could define non-trivial run-time actions for
programmer-defined propositions by using the run-time ABTcase
in a similar manner.

5. Formalism
In this section, we give an abridged formal description of our
type theory. An online appendix including the full definition of
the language will soon be available.1 We employ a bidirectional
type system, inspired by the canonical forms presentations of type
theories (Watkins et al., 2002, 2004).

Syntax
In Figure 6, we present the full syntax of our calculus. The syntax
of ABTs is as we discussed above except for two technical details.
First, in signatures Ω, we use the subsyntax L̂ of L, which we define
to be those arities that are concrete lists of numerals (i.e., neither
computed valences P nor contexts P × L are permitted). Morally,
the signature is defined before any variables in the context, so it
cannot mention any computed forms; making this invariant into a
syntactic restriction is technically beneficial. Second, we annotate
the second projection from a free variable context P × L with the
constructor P being passed over, writing πP

2 U ; the role of this
annotation is discussed below.

The constructors are stratified into synthesizable constructors P
and checked constructors C ; the terms are stratified into synthesiz-
able terms R and checked terms E . Note that variables stand for
synthesizable constructors/terms. Synthesizable constructors are
included into checked constructors, and checked constructors are

1 http://www.cs.cmu.edu/∼drl/

We write N ↑ for and S ↑ for shifting each U in N by one:

(π1 U ) ↑ = π1 (π2 U )
(spn(U ); S) ↑ = spn(π2 U ); S

else defined compositionally

pivot(L,U ) decomposes L as L1×z× L2 where z corresponds to π1 U :

pivot(I × L, it) = (·,L)
pivot(I × L, π2 U ) = (I × L1 ,L2 ) if pivot(I ,L) = (L1 ,L2 )

pivot(P × L, πP′
2 U ) = (P × L1 ,L2 ) if pivot(I ,L) = (L1 ,L2 )

select(H ,Ω , o) = w .u.E looks up the branch for o (definition elided).

Each step rule has an implicit premise
· ` A[L : ctx/w ][I : vale/i ][P/u] ⇓ A⇓ : type
for the I and L in the kind resulting from the normalization of P .

· ` P ⇓ π1 U : abtz(L) pivot(L,U ) = (L1 ,L2 )

ABTcase[w .u.v .A](P ,w .w ′.E1 , , ) 7→ E1 [L1 : ctx][L2 : ctx] : A⇓

· ` P ⇓ x .N : abts I (L)
E′ = E1 [z× L : ctx][I : vale][([π1 it/x ](N ↑)) : abtI (z× L)]

ABTcase[w .i .u.A](P , ,w .i .u.E1 , ) 7→ E ′ : A⇓

o : L′ ⇒ z in Ω · ` P ⇓ o·S : abtz(L) select(H ,Ω , o) = w .u.E

ABTcase[w .i .u.A](P , , ,H ) 7→ E [L : ctx][fromspine(S) : kindL(L′)] : A⇓

Figure 10. Dynamic Semantics of ABTcase

included into synthesizable constructors with a kind annotation,
written C : K . The checked and synthesizable terms have an anal-
ogous structure. The syntax of constructor ABTRec branches B
is necessary because the number of operator cases of the ABTRec
construct varies with the signature Ω; the syntax of term branches
H plays a similar role for ABTcase.

Judgements
The calculus is defined by the following judgements:

• Valence and ABT context formation are defined by the judge-
ments Γ ` I valence and Γ ` L context. The judgements
Γ; Ψ; L ` N ⇐ I and Γ; Ψ; L ` S ⇐ L′ and Γ; L′ ` U ⇒ L
define the formation of ABTs, spines, and context projection.
These judgements require the context Γ for computed valences,
contexts, and ABTs; the ABT variable context Ψ for locally
bound variables; and the variable context L for free variables.
• The three judgements Γ ` K kind, Γ ` C ⇐ K , and

Γ ` P ⇒ K define kind and constructor formation. The
judgement Γ ` C ⇐ K checks a constructor against a known
kind, whereas the judgement Γ ` P ⇒ K synthesizes a
kind from a constructor. The judgements Γ ` K ⇓ K ′ and
Γ ` C ⇓ C ′ : K define kind and constructor normalization.
For constructor normalization, Γ, C , and K are inputs, and C ′

is the output normal form; kind normalization is similar.
• The judgements Γ ` E ⇐ A and Γ ` R ⇒ A define the static

semantics of terms. The modes are analogous to those of the
constructor judgements.
• The judgements E 7→ E ′ and R 7→ E : A define the dynamic

semantics of terms as a call-by-value transition system.

All of the judgements are implicitly parametrized by an ABT sig-
nature Ω, which is fixed throughout the program.

A central issue in the presentation of our type theory is man-
aging the non-trivial computational equalities between classifiers
(kinds and types), which, as we saw above, must influence kind-
ing and typing. In our calculus, these equalities are managed by
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Abstract Binding Trees:
Valence I ::= z | s I |P
Context L ::= · | I × L |P × L
Term N ::= x | x .N | o·S |π1 U |P ·S
Spine S ::= () |N ; S | spn(U ); S
Free Var. U ::= it |π2 U |πP

2 U

Signature Ω ::= · |Ω, o : L̂⇒ z

Kinds and Constructors:
Kind K ::= type |Π u::K1 .K2 |Σ u::K1 .K2 | unit

| IdK1 ,K2 (C1 ,C2 ) | vale | ctx | abtI (L)
Synth. Con. P ::= u |C : K |P C | fst P | snd P | IdRec[v .p.K ](P ,C )

|ABTRec[w .u.v .K ](P ,w .w ′.C1 ,w .i .u.v .C2 ,B)
Con. Branch B ::= · |w .u.r .C ,B
Constructor A, C ::= P |A1 → A2 |A1 × A2 | unit |A1 + A2 | void

| ∀ u::K .A | ∃ u::K .A |µK (u.C1 ,C2 )
|λ u.C | 〈C1 ,C2 〉 | 〈〉 | refl | I |L |N

Terms:
Synth. Term R ::= x |E : A |R E | fst R | snd R |R[C ] | unroll R | Idrec[v .p.K ](P ,E) |ABTcase[w .u.v .A](P ,w .w ′.E1 ,w .i .u.E2 ,H )
Term Branch H ::= · |w .u.E ,H
Term E ::= f |R |λ x .E | 〈E1 ,E2 〉 | 〈〉 | inl E | inr E | case(R, x1 .E1 , x2 .E2 ) | abort R

|Λ u.E | pack(C ,E) | unpack(R, u.x .E) | roll E | fix f .E

Figure 6. Full Syntax

Γ ` I valence Γ ` z valence
Γ ` I valence

Γ ` s I valence
Γ ` P :: vale

Γ ` P valence

Γ ` L context Γ ` · context
Γ ` L context

Γ ` z× L context
Γ ` P :: ctx Γ ` L context

Γ ` P × L context

Γ; Ψ; L ` N ⇐ I
x in Ψ

Γ; Ψ; L ` x ⇐ z

Γ; Ψ, x ; L ` N ⇐ I

Γ; Ψ; L ` x .N ⇐ s I

o : L→ z in Ω Γ; Ψ; L ` S ⇐ L

Γ; Ψ; L ` o·S ⇐ z

Γ; L ` U ⇒ I × L

Γ; Ψ; L ` π1 U ⇐ I

Γ ` P ⇒ abtI (L′) Γ; Ψ; L ` S ⇐ L′

Γ; Ψ; L ` P ·S ⇐ I

Γ; Ψ; L′ ` S ⇐ L Γ; Ψ; L ` ()⇐ ·
Γ; Ψ; L′ ` N ⇐ I Γ; Ψ; L′ ` S ⇐ L

Γ; Ψ; L′ ` N ; S ⇐ I × L

Γ; L′ ` U ⇒ P × L Γ; Ψ; L′ ` S ⇐ L

Γ; Ψ; L′ ` spn(U ); S ⇐ P × L

Γ; L′ ` U ⇒ L Γ; L′ ` it⇒ L

Γ; L′ ` U ⇒ I × L

Γ; L′ ` π2 U ⇒ L

Γ; L′ ` U ⇒ P ′ × L Γ ` P ⇓ P ′ : ctx

Γ; L′ ` πP
2 U ⇒ L

Γ ` K kind

Γ ` K1 kind
Γ ` K1 ⇓ K ′1 Γ, u :: K ′1 ` K2 kind

Γ ` Π u::K1 .K2 kind

Γ ` K1 kind
Γ ` K1 ⇓ K ′1

Γ ` K2 kind
Γ ` K2 ⇓ K ′2

Γ ` C1 ⇐ K1

Γ ` C2 ⇐ K2

Γ ` IdK1 ,K2 (C1 ,C2 ) kind

Γ ` I valence Γ ` L context

Γ ` abtI (L) kind

Γ ` P ⇒ K
u :: K in Γ

Γ ` u ⇒ K

Γ ` K kind
Γ ` K ⇓ K ′

Γ ` C ⇐ K ′

Γ ` C : K ⇒ K ′

Γ ` P ⇒ IdK1 ,K1 (C1 ,C2 ) Γ ` C ⇐ K ′

Γ, v :: K1 , p :: IdK1 ,K1 (C1 , v) ` K kind Γ ` K ′[C2 : K1 /v ][P/p] ⇓ K ′′

Γ ` K [C1 : K1 /v ][refl : IdK1 ,K1 (C1 ,C1 )/p] ⇓ K ′

Γ ` IdRec[v .p.K ](P ,C )⇒ K ′′

Γ ` C ⇐ K
Γ ` P ⇒ K
Γ ` P ⇐ K

Γ ` C1 ⇐ K1

Γ ` [C1 : K1 /u]K2 ⇓ K ′2 Γ ` C2 ⇐ K ′2

Γ ` 〈C1 ,C2 〉 ⇐ Σ u::K1 .K2

Γ ` K kind Γ ` K ⇓ K ′

Γ, u :: K ′ → type ` C1 ⇐ K ′ → type Γ ` C2 ⇐ K ′

Γ ` µK (u.C1 ,C2 )⇐ type

Γ ` refl⇐ IdK ,K (C ,C )
Γ ` I valence
Γ ` I ⇐ vale

Γ ` L context
Γ ` L⇐ ctx

Γ; ·; L ` N ⇐ I

Γ ` N ⇐ abtI (L)

Figure 7. Selected Kind and Constructor Formation Rules

kindL′ (·) = unit
kindL′ (I × L) = abtI (L′)× kindL′ (L)

tospine(P , ·) = ()
tospine(P , I × L) = (fst P ·spn(it)); tospine(snd P ,L)

ih(w,w0 .i0 .u0 .K)(P , ·) = unit
ih(w,w0 .i0 .u0 .K)(P , I × L) = K [w/w0 ][I : vale/i0 ][fst P/u0 ]×

(ih(w,w0 .i0 .u0 .K)(snd P ,L))

fromspine(·) = 〈〉
fromspine(N ; L) = 〈N , fromspine(L)〉

Figure 8. Auxiliary Operations
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Γ,w0 : ctx, i0 : vale, u0 : abti0 (w0 × ·) ` K kind

Γ ` P ⇒ abtI (L)

Γ,w : ctx ,w ′ : ctx ` K [w × z× w ′ × · : ctx][z : vale][π1 π2 it : abtz(w × z× w ′ × ·)] ⇓ K1

Γ,w : ctx,w ′ : ctx ` C1 ⇓ K1

Γ,w : ctx, i : vale, u : abti (z× w × ·) ` K [z× w × · : ctx][i ][u] ⇓ K2

Γ,w : ctx, i : vale, u : abti (z× w × ·) ` K [w ][s i : vale][x . u·(x ; spn(w); ()) : abts i (w)] ⇓ K ′2
Γ,w : ctx, i : vale, u : abti (z× w × ·), v : K2 ` C2 ⇐ K ′2
Γ ` B : Ω→ w0 .i0 .u0 .K

Γ ` K [L : ctx][I : vale][P ] ⇓ K ′

Γ ` ABTRec[w0 .i0 .K ](P ,w .w ′.C1 ,w .i .u.v .C2 ,B)⇒ K ′

Γ ` B : Ω→ w0 .i0 .u0 .K

Γ ` · : · → w0 .i0 .u0 .K

Γ,w : ctx, u : kindw×·(L) ` ih(w,w0 .i0 .u0 .K)(u,L) ⇓ Kih

Γ,w : ctx, u : kindw×·(L) ` K [w ][z][o·tospine(u,L)] ⇓ Kres

Γ,w : ctx, u : kindw×·(L), r : Kih ` C ⇐ Kres

Γ ` B : Ω→ w0 .i0 .u0 .K

Γ ` (w .u.r .C ,B) : (o : L⇒ z,Ω)→ w0 .i0 .u0 .K

Figure 9. Kinding of ABTRec

keeping all classifiers in a normal form, and equality is defined
to be syntactic identity of normal forms. To this end, we main-
tain several invariants: the context Γ is only permitted to contain
assumptions u : K and x : A for normal classifiers K and A; the
judgement Γ ` P ⇒ K synthesizes a normal kind, whereas the
judgement Γ ` C ⇐ K presupposes that the given kind is normal;
the term and ABT formation judgements maintain analogous in-
variants. Many of the rules contain normalization premises in order
to maintain these invariants. One advantage of this style of presen-
tation is that the typing rules are syntax-directed, which simplifies
some aspects of the calculus’s metatheory.

Formation Judgements. In Figures 7 and 9, we present selected
formation rules for the static part of the programming language. We
show the full formation rules for the ABT level, as well as abridged
kind and constructor rules. The rules we omit are straightforward
adaptations of the standard bidirectional rules to maintain our nor-
malization invariants. The ABT formation rules formalize what we
described in the intuitive discussion above. The rules for ABT con-
text formation permit variable contexts, but only permit the valence
z, as all variables have valence z. The rule for πP

2 U ensures that
the annotation P matches the synthesized (and therefore normal)
constructor P ′ in the classifier using normalization.

Kind formation is as discussed above; observe that the rule for
IdK1 ,K2 (C1 ,C2 ) admits equations between constructors of differ-
ent kinds. Among the rules for the synthesized constructors, the
elimination form for identity may merit some discussion. The con-
struct Idrec is annotated with a result kind pattern v .p.K . When
P proves IdK1 ,K1 (C1 ,C2 ), the branch is checked with C1 sub-
stituted for v , but the result kind is the substitution of C2 . Infor-
mally, this propagates the equality by permitting a C1 to be used
where a C2 is expected. See McBride (2000) for further discus-
sion of this elimination form for equality. The remaining rules in
this figure define constructor checking; observe that the reflexivity
rule ensures that the constructors are identical, and that the premise
of the the introduction form for ABTs N refers to the judgement
Γ; Ψ; L ` N ⇐ I with an empty context Ψ, ensuring that all free
variables of N are represented as projections from L.

In Figure 9, we return to constructor synthesis with the rule
for ABTRec, which is a slight variation on the rule presented
earlier in Figure 4. The differences are as follows: For preciseness,
we write out the empty spines and contexts () and ·, rather than

employing our convention of eliding them. Next, there are extra
premises normalizing the substitutions into the pattern kind K ;
this is necessary to preserve the invariants of the judgements. Note
that some of the substituted constructors are annotated with their
types, which is necessary because variables stand for synthesizable
constructors P . Finally, the rule refers to an auxiliary judgement to
check the operator branches B , which vary with the signature Ω.

The auxiliary judgement is also defined in Figure 9, and it
employs three of the auxiliary operations defined in Figure 8. The
judgement ensures that there is one branch for each operation in
Ω, and that each branch has the appropriate type. The operation
kindL′(L) maps the arity of the operator into a product kind of
ABTs of the correct valence; it is used to compute the kind of the
exposed subterms. The operation ih(w, .K)(P ,L) computes (a non-
normalized form of) the kind of the inductive hypothesis. Finally,
the operation tospine(P ,L) maps the constructor-level product P
to a spine that is used to state the result kind of the branch.

One subtlety of the ABTRec rule is that the variable case re-
quires considering ABTs up to the associativity and unit laws on
the product structure representing the context: it is only up to asso-
ciativity and unit that every free variable is the middle variable in
a context w × z× w ′ × · for some contexts w and w ′. This list-
like syntax of the contexts L and spines S is used as a canonical
representative the associativity/unit equivalence classes.

We omit the typing judgements Γ ` E ⇐ A and Γ ` R ⇒ A.
Each rule defining these judgements is either a straightforward
adaptation of the standard rule to the bidirectional setting, or, for
Idrec and ABTcase, a direct analogue of the constructor-level rule.

Normalization. Due to space restrictions, we do not present
the rules defining our normalization algorithm. The algorithm is
based on Harper and Pfenning (2005) and our previous extension
to inductive types (Licata and Harper, 2005). It is kind-directed
and computes long βη-normal forms for the kinds Π u::K1 .K2 ,
Σ u::K1 .K2 , and unit, and β-normal forms for IdK1 ,K2 (C1 ,C2 )
and abtI (L).

Additionally, the algorithm reduces computed ABTs, valences
and contexts (equating, for example, s (s i : vale) with s (s i)).
The algorithm maintains the product structure L representing the
ABT context in our chosen list-like representation. For example,
the context (ctx(z× z) : ctx) × z is normalized to the context
z × (z× (z× ·)). Because reassociating the products changes
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the meaning of the projections, the normalization algorithm must
rewrite them; the annotation on πP

2 U provides sufficient informa-
tion to perform this rewriting.

Dynamic Semantics The dynamic semantics are a standard call-
by-value operational semantics, adapted slightly to account for the
bidirectional syntax. In the auxiliary judgement R 7→ E : A,
a synthesizing term steps to a checked term E and produces a
type annotation A, which is used to annotate E if it needs to be
regarded as a synthesizing term (e.g., in the congruence rule for the
first position of application). We show the β rules for ABTcase in
Figure 10. In the rules, we use the positional substitution notation
E [C ] when the variable is clear from context. Note that the rules
use two of the operations defined in Figure 8. The interested reader
is referred to the online appendix for the remaining rules.

Metatheory
Type safety is stated as follows:
CONJECTURE 5.1. Assume · ` A⇐ type and · ` A ⇓ A : type.

Preservation If E 7→ E ′ and · ` E ⇐ A then · ` E ′ ⇐ A.
Progress If · ` E ⇐ A then E 7→ E ′ or E value.

Because we have presented the type system algorithmically,
many of the lemmas necessary for type safety, such as the inver-
sion lemmas necessary for preservation and the canonical forms
lemmas necessary for progress, are quite straightforward. The hard
part of the proof is establishing properties of the normalization
algorithm—e.g., that it commutes with substitution, that it is idem-
potent, and that every constructor has a unique normal form. We
have reduced the type safety of the language to properties of nor-
malization, but we label type safety as a conjecture because we have
not yet checked every detail of the properties of normalization. Our
proof is an adaptation of the logical relations method developed by
Harper and Pfenning (2005), which we have applied to inductive
types in previous work (Licata and Harper, 2005).

6. Related Work
Our work builds on a decade of research on integrating various
forms of dependent and indexed types into practical programming
languages and their implementations (Augustsson, 1998; Chen and
Xi, 2005; Cheney and Hinze, 2003; Chin et al., 2005; Condit
et al., 2007; Dunfield and Pfenning, 2004; Flanagan, 2006; Fogarty
et al., 2007; Licata and Harper, 2005; McBride and McKinna,
2004; Nanevski et al., 2006; Peyton Jones et al., 2006; Sarkar,
2005; Shao et al., 2005; Sheard, 2004; Westbrook et al., 2005;
Xi and Pfenning, 1998; Xi et al., 2003; Zenger, 1998). Relative
to these designs, our type theory is the first to provide both a
logical framework designed for representing higher-order index
data as well as computation over the terms of the framework at both
the static and dynamic levels. Many of these languages provide
either computation (e.g., this is standard in the dependent type
theories) or a logical framework but not both. Sarkar’s language
is the most closely related work, as he used an ML-like language
with types indexed by LF terms to implement a certified type
checker. Relative to his work, our contribution is to point out that
the LF/ML combination has many more uses than just that, and
to extend the framework with recursion over indices. Permitting
computation over indices is more general than precluding it, as we
can always decide not to use the facility in a given setting. Our
work also generalizes intensional type analysis (Crary and Weirich,
1999; Harper and Morrisett, 1995; Weirich, 2002), as the types of
a language may be represented as a particular index domain.

Another broad category of related work concerns functional
computation with higher-order data. Pientka (2006); Schürmann

et al. (2001); Schürmann et al. (2005) present approaches to in-
ducting over higher-order abstract syntax. All three of these pa-
pers consider either simply-typed or full LF; however, none con-
sider a dependently typed computational language, as we do here.
Schürmann et al. (2001) consider induction over the terms of a
modal type within the computational language, whereas we dis-
tinguish the logical framework as a separate level, which provides
greater freedom in the design of each. Both Schürmann et al. (2005)
and Pientka (2006) employ a non-deterministic operational seman-
tics that admits pattern matching failure and general recursion,
which would be problematic in the kind and constructor level of
our type theory. Our approach is quite similar in spirit to Pien-
tka (2006)’s, as both are inspired by contextual modal type the-
ory (Nanevski et al., 2007). However, Pientka follows the formal-
ism of CMTT much more closely. This results in technical differ-
ences in how framework contexts, including variable contexts, are
handled, and in what computed terms are permitted (we permit ar-
bitrary constructors in the form P·S , rather than just variables), and
in what may be abstracted (we permit variable valences but not sub-
stitutions, whereas Pientka permits variable substitutions but not
framework types).

Nominal logic (Pitts, 2003, 2006) provides another approach
to inducting on data with name binding. In the nominal induction
principle, the case for an abstractor is proved from some suitable
fresh name, which, by equivariance, shows that it holds for any
such name. When this idea is integrated into a programming lan-
guage, the entire type system must track supports in order to en-
sure that computations are equivariant, and therefore respect α-
equivalence (Pitts and Gabbay, 2000; Pottier, 2007). In contrast,
our method of integrating and computing with a logical framework
has no global effects on the type system.

7. Conclusion
In this paper, we have presented an extensible theory of indexed
types. The essential ingredients of this theory are a logical frame-
work, which permits the definition of index domains, and compu-
tation with the terms of this framework, which enables a variety of
techniques necessary for programming with and reasoning about
indices. We have shown how to integrate the logical framework
into the static level of a programming language, and we have pre-
sented a novel method of computing with higher-order index data.
We have formalized these ideas in an elegant type theory, suitable
for use as a semantically proximate target for the elaboration of a
more convenient surface language.

We have explored several technical extensions to the machinery
describe in this paper that are not presented here. One is to permit
induction over valences, which we have used for writing the result
pattern kinds of ABTRec and IdRec in some examples. Another
is an extension of ABTRec with one case for each free variable in
the scrutinized ABT (e.g., when scrutinizing a abtI (L), the recur-
sor would have one case for each variable in L), maintaining the
general variable case to cover those variables that arise via induc-
tion. This extension permits the definition of functions that have
different behavior on different free variables, such as substitution,
or testing whether a designated variable occurs.

This paper is the first step in a long-term effort to realize the
expressiveness of indexed types in a practical programming lan-
guage. Our next step is to scale the methods presented here to the
full LF logical framework. This paper shows how to induct over
data with binding; the remaining challenge in handling LF is man-
aging the types, which involve dependency, and which in turn ne-
cessitate considering induction in specified sets of contexts called
worlds (Schürmann and Pfenning, 2003). Next, we plan to consider
the extension of the calculus presented in this paper with an ML-
style module system. Because our calculus is based on indexing
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and not dependency, we believe that the module system will be a
straightforward extension, modulo the technical issues of handling
both induction over indices and singleton kinds. Finally, we plan to
design a practical external language by elaboration. An important
ingredient in this external language will be supporting programmer-
defined decision procedures that can be used at compile-time to
discharge proof obligations. The framework we have defined here
is a foundation for such decision procedures: taking proofs as the
definition of truth permits variation in decision procedures within
a single language; computation with indices may be useful for pro-
gramming such decision procedures; and programmer-defined in-
dex logics may create new opportunities for automation.
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