
A New Cell Counter Based Attack Against Tor

Zhen Ling
∗¶

, Junzhou Luo
∗
, Wei Yu

†
, Xinwen Fu

‡
, Dong Xuan

§
, Weijia Jia

¶

∗
Southeast University

2 Sipailou,
Nanjing 210096, P.R.China

{zhen_ling, jluo}@seu.edu.cn

†
Towson University
8000 York Road

Towson, MD 21252, USA
weyu@cisco.com

‡
University of Massachusetts Lowell

One University Avenue,
Lowell, MA 01854, USA

xinwenfu@cs.uml.edu
§
The Ohio State University

2015 Neil Avenue,
Columbus, OH 43210, USA

xuan@cse.ohio-state.edu

¶
City University of Hong Kong

83 Tat Chee Avenue,
Kowloon, Hong Kong SAR, China

{zhenling, wei.jia}@cityu.edu.hk

ABSTRACT
Various low-latency anonymous communication systems such
as Tor and Anoymizer have been designed to provide anonymity
service for users. In order to hide the communication of
users, many anonymity systems pack the application data
into equal-sized cells (e.g., 512 bytes for Tor, a known real-
world, circuit-based low-latency anonymous communication
network). In this paper, we investigate a new cell counter
based attack against Tor, which allows the attacker to con-
firm anonymous communication relationship among users
very quickly. In this attack, by marginally varying the counter
of cells in the target traffic at the malicious exit onion router,
the attacker can embed a secret signal into the variation of
cell counter of the target traffic. The embedded signal will
be carried along with the target traffic and arrive at the
malicious entry onion router. Then an accomplice of the
attacker at the malicious entry onion router will detect the
embedded signal based on the received cells and confirm the
communication relationship among users. We have imple-
mented this attack against Tor and our experimental data
validate its feasibility and effectiveness. There are several
unique features of this attack. First, this attack is highly
efficient and can confirm very short communication sessions
with only tens of cells. Second, this attack is effective and
its detection rate approaches 100% with a very low false pos-
itive rate. Third, it is possible to implement the attack in a
way that appears to be very difficult for honest participants
to detect (e.g. using our hopping-based signal embedding).

Categories and Subject Descriptors
C.2.0 [Computer Network]: General—Security and Pro-
tection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy ; E.3 [Data]: Encryption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

General Terms
Security, Reliability

Keywords
Cell Counter, Signal, Anonymity, Mix Networks, Tor

1. INTRODUCTION
Concerns about privacy and security have received greater

attention with the rapid growth and public acceptance of
the Internet which has been used to create our global E-
economy. Anonymity has become a necessary and legiti-
mate aim in many applications, including anonymous web
browsing, location-based services (LBS), and E-voting. In
these applications, encryption alone cannot maintain the
anonymity required by participants [32, 15, 24]. Since Chaum
pioneered the basic idea of anonymous communication tech-
niques, referred to as mixes [7], researchers have developed
numerous anonymous communication systems. Generally
speaking, mix techniques can be used for either message-
based (high-latency) or flow-based (low-latency) anonymity
applications. Email is a typical message-based anonymity
application, which has been thoroughly investigated [8, 16].
Research on flow-based anonymity applications has recently
received great attention in order to preserve anonymity in
low-latency applications, including web browsing and peer-
to-peer file sharing [30, 12, 2].

To degrade the anonymity service provided by anonymous
communication systems, traffic analysis attacks have been
studied [24, 19, 40, 23, 4, 36, 39, 1]. Existing traffic analysis
attacks can be categorized into two groups: passive traffic
analysis and active watermarking techniques. Passive traf-
fic analysis technique will record the traffic passively and
identify the similarity between sender’s outbound traffic and
receiver’s inbound traffic based on statistical measures [40,
19]. This type of technique requires a long period of obser-
vation for the traffic in order to reduce errors of attack. To
improve the accuracy of attacks, the active watermarking
technique has recently received much attention. The idea
of this technique is to actively introduce special signals (or
marks) into the sender’s outbound traffic with the intention
of recognizing the embedded signal at the receiver’s inbound
traffic [37, 39].

In this paper, we focus on the active watermarking tech-
nique, which has been active in the past few years. For ex-

578

ample, Wang et al. [37] investigated a timing watermarking
scheme to identify the encrypted peer-to-peer VoIP calls.
The idea of this scheme is to change the timing interval
of packets from Alice to Bob and then correlate the tim-
ing interval at packets received by Bob. Nevertheless, this
timing-based scheme is not effective to confirm the anony-
mous communication sessions through a mix network which
deploys batching strategies to manipulate the timing interval
of inter-packet delivery. Yu et al. [39] proposed a flow mark-
ing scheme based on the direct sequence spread spectrum
(DSSS) technique by utilizing a Pseudo-Noise (PN) code.
By interfering with the rate of a suspect sender’s traffic and
marginally changing the traffic rate, the attacker can embed
a secret spread-spectrum signal into the target traffic. The
embedded signal is carried along with the target traffic from
the sender to the receiver, so the investigator can recognize
the corresponding communication relationship, tracing the
messages despite the use of anonymous networks. However,
in order to accurately confirm the anonymous communica-
tion relationship of users, the flow marking scheme needs to
embed a signal modulated by a relatively long length of PN
code and also the signal is embedded into the traffic flow rate
changes. All these make it hard for the flow marking tech-
nique to deal with the short communication sessions which
may last for seconds.

A successful attack against anonymous communication
systems relies on accuracy, efficiency, and detectability of
active watermarking techniques. Detectability refers to the
difficulty of detecting the embedded signal by anyone other
than the attackers. Efficiency refers to the fastness of con-
firming anonymous communication relationships among users.
Although accuracy and/or detectability have received great
attention [39, 37], to the best of our knowledge, no existing
work can meet all three requirements simultaneously.

In this paper, we investigate a new cell counter based
attack against Tor, a real-world, circuit-based low-latency
anonymous communication network. This attack can con-
firm anonymous communication relationship among users
accurately and quickly and is difficult to detect. In this at-
tack, the attacker at the malicious exit router detects the
data transmitted to a suspicious destination (e.g., server
Bob). The attacker then determines whether the data is
a relay cell not a control cell in Tor. After excluding the
control cells, the attacker manipulates the number of relay
cells in the circuit queue and flushes out all cells in the cir-
cuit queue. In this way, the attacker can embed a signal
(a series of “1” or “0” bits) into the variation of cell counter
in the target traffic. An accomplice of the attacker at the
entry onion router detects and excludes the control cells,
records the counter of relay cells in the circuit queue, and
recovers the embedded signal. The signal embedded in the
target traffic might be distorted because the cells carrying
the different bits (units) of the original signal might be com-
bined or separated at middle onion routers. To address this
problem, we develop the recovery algorithms to accurately
recognize the embedded signal.

We have implemented the cell counter based attack against
Tor and performed a set of real-world Internet experiments
to validate the feasibility and effectiveness of the attack.
The attack presented in this paper is one of the first to
exploit the implementation of known anonymous communi-
cation systems such as Tor by exploiting its fundamental
protocol design. There are several unique features for this
attack. First, this attack is highly efficient and can quickly
confirm very short anonymous communication sessions with
tens of cells. Second, this attack is effective and its detec-

Alice
(OP) Bob Tor Network

Legend:

 Client or Server

Onion Router

Directory Server

Entry
(OR1) Middle

(OR2)

Exit
(OR3)

Figure 1: Tor Network

tion rate approaches 100% with very low false positive rate.
Third, the short and secret signal makes it difficult for oth-
ers to detect the presence of the embedded signal. Our time
hopping based signal embedding technique makes the attack
even harder to detect. The attack poses a great impact on
Tor, because the attack can confirm over half of communica-
tion sessions by injecting around 10% malicious onion routes
on Tor [5, 14].

The remainder of this paper is organized as follows: We
introduce the background in Section 2. We present the cell
counter based attack, including the basic idea, issues of the
attack and solutions in Section 3. At the end of Section
3, we discuss the extension, detectability and impact of the
proposed attack. In Section 4, we analyze the effectiveness
of the attack. In Section 5, we show experimental results
on Tor and validate our findings. We review related work in
Section 6 and conclude this paper in Section 7.

2. BACKGROUND
In this section, we first overview the components of Tor.

We then present the procedures of how to create circuit and
transmit data in Tor and process cells at onion routers.

2.1 Components of Tor
Tor is a popular overlay network for providing anony-

mous communication over the Internet. It is an open source
project and provides anonymity service for TCP applica-
tions [11]. Figure 1 illustrates the basic components of Tor
[10]. As shown in Figure 1, there are four basic components:
(i) Alice (i.e. Client). The client runs a local software called
onion proxy (OP) to anonymize the client data into Tor.
(ii) Bob (i.e. Server). It runs TCP applications such as
a web service and anonymously communicates with Alice
over Tor. (iii) Onion routers (OR). Onion routers are spe-
cial proxies that relay the application data between Alice
and Bob. In Tor, Transport Layer Security (TLS) connec-
tions are used for the overlay link encryption between two
onion routers. The application data is packed into equal-
sized cells (512 bytes as shown in Figure 2) carried through
TLS connections. (iv) Directory servers. They hold onion
router information such as public keys for onion routers. Di-
rectory authorities hold authoritative information on onion
routers and directory caches download directory information
of onion routers from authorities.

Figure 2 illustrates the cell format used by Tor. All cells
have a three-bytes header, which is not encrypted in the
onion-like fashion so that the intermediate Tor routers can
see this header. The other 509 bytes are encrypted in the
onion-like fashion. There are two types of cells: control cell
shown in Figure 2 (a) and relay cell shown in Figure 2 (b).

2.2 Circuit Creation and Data Transmission
In Tor, an OR maintains a TLS connection to other ORs

or OPs on demand. The OP uses a way of source rout-
ing and choosing several ORs (preferably ones with high-

579

12

Circ_id Command
Relay

Command
Recognized Stream_id Intergrity Length Data

1 2 2 4 2 498

12

Circ_id Command Data

509

(a) Tor Cell Format

(b) Tor Realy Cell Format

Figure 2: Cell Format By Tor

bandwidth and high-uptime) from the locally cached direc-
tory, downloaded from the directory caches. The number
of the selected ORs is referred as the path length. We use
the default path length of three below as an example. The
OP iteratively establishes circuits across the Tor network
and negotiates a symmetric key with each OR, one hop at a
time, as well as handle the TCP streams from client applica-
tions. Then the OR on the other side of the circuit connects
to the requested destinations and relays the data.

Figure 3 illustrates the procedure that the OP establishes
a circuit and downloads a file from the server. In Figure
3, OP first sets up a TLS connection with OR1 using the
TLS protocol. Then, tunneling through this connection, OP
sends a CELL CREATE cell and uses the Diffie-Hellman
(DH) handshake protocol to negotiate a base key K1 = gxy

with OR1, which responds with a CELL CREATED cell.
From this base key material, a forward symmetric key kf1

and a backward symmetric key kb1 are produced [10]. In
this way, a one-hop circuit C1 is created. Similarly, the OP
extends the circuit to the 2-hop circuit and 3-hop circuit.

After the circuit is setup between the OP and OR3, OP
sends a RELAY COMMAND BEGIN cell to the exit onion
router, and the cell is encrypted as {{{Begin < IP, Port >
}kf3}kf2}kf1 , where the subscript refers to the key used for
encryption of one onion skin. The three layers of onion
skin are removed one by one each time the cell traverses
an onion router through the circuit. When OR3 removes
the last onion skin by decryption, it recognizes that the re-
quest intends to open a TCP stream to a port at the desti-
nation IP, which belongs to Bob. Therefore, OR3 acts as a
proxy, sets up a TCP connection with Bob, and sends a RE-
LAY COMMAND CONNECTED cell back to Alice’s OP.
Then Alice can download the file.

2.3 Processing Cells at Onion Routers
Figure 4 illustrates the procedures of processing cells at

onion routers. Notice that the cells mentioned below are all
CELL RELAY DATA cells, which are used to carry end-to-
end stream data between Alice and Bob. To begin with,
the onion router receives the TCP data from the connection
on the given port A. After the data is processed by TCP
and TLS protocols, the data will be delivered into the TLS
buffer of the connection. When there is pending data in the
TLS buffer, the read event of this connection will be called
to read and process the data. The connection read event
will pull the data from the TLS buffer into the connection
input buffer. Each connection input buffer is implemented
as a linked list with small chunks. The data is fetched from
the head of the list and added at the tail. After the data in
the TLS buffer is pulled into the connection input buffer, the
connection read event will process the cells from the connec-
tion input buffer one by one. As stated earlier, the cell size
is 512 bytes. Thus, 512 bytes data will be pulled out from
the input buffer every time until the data remaining in the
connection input buffer is small than 512 bytes. Since each
onion router has a routing table that maintains the map

TCP Teardown
Relay C3,

{End,Reason}

Relay C2,

{{End,Reason}}

Relay C1,

{{{End,Reason}}}

Create C3,

E(g^x3)

Download File

Relay C3,

{Connected}
Relay C2,

{{Connected}}
Relay C1,

{{{Connected}}}

TCP Handshake

<IP,Port>

Relay C3,

{Begin<IP,Port>}

Relay C2,

{{Begin<IP,Port>}}

Relay C1,

{{{Begin<IP,Port>}}}

ttttt

Created C3,

g^y3,H(K3)
Relay C2,

{Extended,g^y3,H(K3)}
Relay C1,

{{Extended,g^y3,H(K3)}}

Relay C2,

{Extend,OR3,E(g^x3)}

Relay C1,

{{Extend,OR3,E(g^x3)}}

Created C2,

g^y2,H(K2)
Relay C1,

{Extended,g^y2,H(K2)}

Create C2,

E(g^x2)

Relay C1,

{Extend,OR2,E(g^x2)}

Bob

Created C1,

g^y1,H(K1)

Create C1,

E(g^x1)

Alice

(OP)

Entry OR

(OR1)

(link is TLS-encrypted)

Exit OR

(OR3)

Middel OR

(OR2)

(link is TLS-encrypted) (link is TLS-encrypted) (unencrypted)

Relay C3,

{Data, XXX }
Relay C2,

{{Data, XXX }}
Relay C1,

{{{Data, XXX }}}

 Legend:

 E(x) --- RSA encryption

 {X} --- AES encryption

 CN --- a circuit ID numbered N

Figure 3: Circuit Creation and Data Transmission
on Tor

from source connection and circuit ID to destination con-
nection and circuit ID, the read event can determine that
the transmission direction of the cell is either in the forward
or backward direction. Then the corresponding symmet-
ric key is used to encrypt the payload of the cell, replace
the present circuit ID with the destination circuit ID, and
append the cell to the destination circuit queue. If it is the
first cell added to this circuit queue, the circuit will be made
active by being added into a double-linked ring of circuits
with queued cells waiting for a room to free up on the out-
put buffer of the destination connection. Then, if there is no
data waiting in the output buffer for the destination connec-
tion, the cell will be written into the output buffer directly
and then the write event of this circuit is added to the event
queue. Therefore, the subsequent incoming cells are queued
in the circuit queue.

When the write event of the circuit is called, the data in
the output buffer is flushed to the TLS buffer of the desti-
nation connection. Then the write event will pull as many
cells as possible from the circuit queue of the currently ac-
tive circuit to the output buffer and add the write event of
this circuit to the event queue. The next write event can
carry on flushing data to the output buffer and pull the cells
to the output buffer. In other words, the cells queued in the
circuit queue can be delivered to the network via port B by
calling the write event twice.

3. CELL COUNTER BASED ATTACK
In this section, we first introduce the basic idea of the

cell counter based attack against Tor. We then list some
challenging issues related to the attack and present solutions
to address those issues. At the end, we discuss the extension,
detectability and impact of the proposed attack.

3.1 Basic Idea
As we mentioned before, this attack intends to confirm

that Alice (client) communicates with Bob (server) over Tor.
In order to do so, we assume that the attacker controls a

580

ChunksChunks

CellsCells

Scheduling Server......

......

......

Input

Buffer

TLS

Buffer

Output

Buffer

TLS

Buffer

Circuit 1: Queue of Cells

Circuit N: Queue of Cells

TCP Data from Port A TCP Data to Port B

Application Layer

Transport Layer

Figure 4: Processing the Cells at Onion Routers

Selecting the target

Encoding the signal Recording packets

Recognizing the

embedded signal

A Signal Recovered signal

Anonymous

Communication

Network

Figure 5: Workflow of Cell Counter Based Attack

small percentage of exit and entry onion routers by donat-
ing computers to Tor, similar to other studies [23, 24, 14,
5]. The assumption is valid, since Tor is operated in a vol-
untary manner [10]. The attack can be initiated at either
the malicious entry onion router or exit onion router, up to
the interest of the attacker. In the rest of the paper, we
assume that the attack is initiated at an exit onion router
connected to server Bob and intends to confirm that Alice
communicates with a known server Bob.

The basic idea is as follows: an attacker at the exit onion
router first selects the target traffic flow between Alice and
Bob. The attacker then selects a random signal (e.g., a
sequence of binary bits), chooses an appropriate time and
changes the cell counter of target traffic based on the selected
random signal. In this way, the attacker is able to embed a
signal into the target traffic from Bob. The signal will be
transmitted along with the target traffic to the entry onion
router connecting to Alice. An accomplice of the attacker
at the entry onion router will record the variation of the
received cells and recognize the embedded signal. If the
same pattern of signal is recognized, the attacker confirms
the communication relationship between Alice and Bob. As
shown in Figure 5, the workflow of the cell counter based
attack is illustrated below.

Step 1: Selecting the target. At a malicious exit
onion router connected to server Bob, the attacker will log
the information, including the server Bob’s host IP address
and port used for a given circuit, as well as the circuit ID.
The attacker uses CELL RELAY DATA cells, since those
cells transmit the stream data. According to the descrip-
tion of Tor in Section 2, we know that the attacker is able
to obtain the first cell backward to the client, which is a
CELL CREATED cell and is used to negotiate a symmetric
key with the middle onion router. The second cell backward
to the client will be a CELL RELAY CONNECTED cell.
All sequential cells will be a CELL RELAY DATA cell and
the attacker enters the encoding process shown in Step 2.

Step 2: Encoding the signal. In Section 2, we de-
scribed the procedures of how to process cells at the onion
routers. The CELL RELAY DATA cells will be waiting in
the circuit queue at the onion router until the write event

is called. Then the cells in the circuit queue are all flushed
into the output buffer. Hence, the attacker can benefit from
this and manipulate the number of cells flushed to the out-
put buffer all together. In this way, the attacker can embed
a secret signal (a sequence of binary bits, i.e., “10101”) into
the variation of the cell counter in the target traffic. Partic-
ularly, in order to encode the “1” bit of original signal, the
attacker lets three cells to be flushed from the queue. In
order to encode the “0” bit of the signal, the attacker lets
only one cell to be flushed from the queue. In order to ac-
curately manipulate the number of the cells to the circuit
queue, the attacker needs to count the number of cells in
the circuit queue. Once the number of the cells is adequate
(i.e, three cells for encoding “1” bit of the signal and one cell
for “0” bit of the signal), the attacker lets the circuit write
event to be called promptly and all the cells are flushed to
the output buffer immediately. Unfortunately, due to the
network congestion and delay, the cells may be combined or
separated at the middle onion routers, or the network link
between the onion routers. We developed reliable encoding
mechanisms to combat network dynamics in Section 3.2.

Step 3: Recording packets. After the signal is embed-
ded in the target traffic in step 2, it will be transmitted to the
entry onion router along with the target traffic. An accom-
plice of the attacker at the entry onion router will record the
received cells along with information, including Alice’s host
IP address and port used for a given circuit, as well as the
circuit ID. Since the signal is embedded in the variation of
cell counters for CELL RELAY DATA cells, an accomplice
of the attacker at the entry onion router needs to determine
whether the received cells are CELL RELAY DATA cells.
This can be done through a way similar to the one in Step
1. We know that the first two cells arrives at the entry
onion router are CELL RELAY EXTENDED cell and the
third cell is CELL RELAY CONNECTED cell. After these
three cells, all cells are a CELL RELAY DATA cell. There-
fore, starting from this point, the attacker records the cells
arriving at the circuit queue.

Step 4: Recognizing the embedded signal. With
recorded cells, the attacker enters the phase of recognizing
the embedded signal. In order to do so, the attacker uses
our developed recovery mechanisms presented in Section 3.2
to decode the embedded signal. Once the original signal is
identified, since the entry onion router knows the Alice’s host
IP address and the exit onion router knows Bob’s host IP
address of the TCP stream, the attacker can link the commu-
nication relationship between Alice and Bob. As mentioned
earlier, when the signal is transmitted through Tor, it will
be distorted because of network delay and congestion. For
example, when the chunks of the three cells for encoding
the “1” bit of the signal arrives at the middle onion router,
the first cell will be flushed to the output buffer promptly if
there is no data in the output buffer. Moreover, the subse-
quent two cells are queued in the circuit queue. When the
write event is called, the first cell is sent to the network,
while the subsequent two cells are flushed into the output
buffer. Therefore, the chunks of the three cells for carrying
the “1” bit of the signal may be changed to two portions.
The first portion contains the first cell and the second por-
tion contains the second and third cell together. Therefore,
care must be paid to take this into account in order to rec-
ognize the “1” bit of the signal in the case above. Due to the
network congestion and delay, the cells may be combined or
separated at the middle onion routers, or the network link
between the onion routers [29]. All these facts cause the
distorted version of the originally embedded signal to be re-

581

ceived at the entry onion router. To deal with this issue,
we designed mechanisms to carefully encode and robustly
recover the embedded signal in Section 3.2.

3.2 Issues and Solutions
From the above description of attack, we know that there

are two critical issues related to the attack: (i) How can an
attacker encode the signal at the exit onion router? (ii) How
can an attacker accurately decode the embedded signal at
the entry onion router? We address these two issues below.

3.2.1 Encoding Signals at Exit Onion Routers
Two cells for encoding “1” bit is not enough. As we

stated earlier, this attack intends to manipulate the counter
of cells and embed the secret signal into the variation of
cell counters in the target traffic. If the attacker uses two
cells to encode the “1” bit of the signal, the “1” bit will be
easily distorted over the network and will be hard to recover.
The reason can be explained as follows: when the two cells
arrive at the input buffer at the middle onion router, the
first cell will be pulled to the circuit queue. If the output
buffer is empty, the first cell will be flushed to the output
buffer immediately. Then the second cell will be pulled to
the circuit queue. Since the output buffer is not empty, the
second cell will stay in the circuit queue. When the write
event is called, the first cell will be delivered to the network,
while the second cell will be written to the output buffer and
wait for next write event to be called. Consequently, two
originally combined cells will be divided into two separate
cells at the middle router. Hence, the attacker at the entry
onion router will observe two separate cells arriving at the
circuit queue. Therefore, these two cells will be decoded as
two “0” bits of the signal, leading to an inaccurate detection
of the signal. To deal with this problem, the attacker should
choose at least three cells for carrying “1” bit of the signal.
If the middle onion router splits them into one cell and two
cells, the attacker can still recognize them as “1” bit of the
signal at the entry onion router.

Proper delay interval should be selected for trans-
mitting cells. Since the signal modulates the counter of
cells transmitted from the exit onion router to the entry
onion router, the delay interval among cells that carry dif-
ferent units (bits) of the signal will have impact on the ac-
curacy and detectability of the attack. Hence, care must be
taken to select a proper interval for transmitting those cells.
If the delay interval among cells is selected to be too large,
users may not be able to tolerate the slow traffic rate and
will choose another circuit to transmit the data. When this
happens, the attack will fail. When the delay interval among
cells is too small, it will increase the chance that cells may
be combined at middle onion routers. Let’s use one simple
example to clarify this. We assume that the delay interval
for three bits “0”, “1” and “0” of the signal are very small.
The first cell for carrying the first bit “0” arrives at the mid-
dle onion router and is written into the queue. This first cell
will be flushed into the output buffer if the output buffer is
empty. The write event is added to the event queue and the
cell waits to be written to the network by calling the write
event. Since the interval is small, the three cells for the sec-
ond bit “1” and the cell for the third bit “0” also arrive at
the middle onion router and stay in the circuit queue. When
the write event is called, the first cell for carrying the first
bit “0” will be written to the network, while the following
three cells for carrying the second bit of the signal and one
cell for carrying the third bit of the signal will be written
to the output buffer all together. When this happens, the

original signal will be distorted (i.e., the third bit “0” of the
signal will be lost). Therefore, the attacker needs to choose
the proper delay interval for transmitting cells. In addition,
we will discuss the types of the division and combination of
the cells with details in section 3.2.2.

We now check conditions that preserve units of the sig-
nal during transmission. Let S = {S0, S1, . . . , Sn−1} be the
signal, a series of bits, where n is the signal length and Sj

(j ∈ [0, n − 1)]) be 0 or 1. When Sj = 1, the attacker will
choose three cells to encode the bit “1”. When Sj = 0, the
attacker will choose only one cell to encode the bit “0”. Let
the time sequence of the signal S that arrives at the OR2
be T = {T0, T1, . . . , Tn−1} and let Tread be the average time
of calling the read event which can pull the data of cells for
each unit of the signal from the TLS buffer and write them
to the circuit queue. Let Twrite be the average time of calling
the write event which writes the cells in the output buffer
to the network and flushes the cells in the circuit queue to
the output buffer. Let the delay interval that the attacker
modulates cells carrying two sequential bits of the signal be
I and let the delay of the data transmitted in the network
between OR3 and OR2 be D. Therefore, the relationship
between Ti and Ti+1 can be represented by,

Ti+1 = Ti + I + D (0 ≤ i < n− 1). (1)

Let the time of the cells for the signal S that arrives at the
circuit queue be T queue, where T queue

i = Ti +Tread. Let the
time of the cells for the signal S that arrives at the output
buffer as T outbuffer, where T outbuffer

i = Ti+Tread+Twrite
1.

In order to avoid the combination of cells which belong
to different units of a signal in the circuit queue, the cells
for carrying one bit should be flushed to the output buffer
or the network, before the cells for carrying the next unit of
the signal arrives at the circuit queue. Therefore, we have

T outbuffer
i ≤ T queue

i+1 , (2)

Ti + Tread + Twrite ≤ Ti+1 + Tread, (3)

Ti + Twrite ≤ Ti + I + D, (4)

Twrite ≤ I + D. (5)

The parameter Twrite is affected by the network condition.
Suppose that the network is congested, i.e., Twrite > I + D,
the write event in the event queue cannot be called on time
to flush the cells in the output buffer and the circuit queue.
Then the following cells will be queued in the circuit queue
along with the previous cells. Therefore, the cells belonging
to different units of the signal will be combined in the circuit
queue. If the network load is light, Twrite is small, i.e.,
Twrite < I +D. The cells will be transmitted on time at the
middle onion router. In this case, when three cells carrying
“1” bit of the signal arrive at the middle onion router, the
first cell will be flushed to the output buffer since the output
buffer is empty. Then the next two cells will be queued in the
circuit queue. Therefore, the cells for “1”bit of signal will be
divided into two parts. If the network load is medium, i.e.,
Twrite ≈ I + D, when the cells for the previous unit of the
signal wait in the output buffer, the cells for the next unit of
the signal arrive at the queue. The write event will be called
to write the cells for the previous unit of the signal to the
network and flush the cells for the next unit of the signal to
the output buffer. Therefore, cells for different units of the
signal will not be combined or divided.

1Please refer to [29] for statistics of Tread, Twrite and other
related random variables.

582

j j x

i ii+k i+k

j

i

j+k j

i

j+k

i+1

j+k

j j

x

Figure 6: Signal Division and Combination

3.2.2 Decoding Signals at Entry Onion Routers
Distortion of the signal. The proper selection of de-

lay interval for transmitting cells for carrying different units
of the signal will reduce the probability that cells will be
combined or divided at middle onion routers. However, due
to unpredictable network delay and congestion, the combi-
nation and division of cells will happen anyway. This will
cause the embedded signal to be distorted and the probabil-
ity of recognizing the embedded signal will be reduced. To
deal with the distortion of the signal, we present a recovery
mechanism that robustly recognizes the embedded signal.

The combination or division of the cells for different units
of the signal can be categorized into four types. Figure 6
(a) illustrates two types of the cell division for the unit of
the signal, and Figure 6 (b) illustrates the two types of the
cell combination for different units of the signal. Let C =
{C0, C1, . . . , Ci, . . . , Cm−1} be the cell counters recorded in
the circuit queue at the entry onion router and Ci(i ∈ [0, m−
1]) is the number of the cells, which is a positive integer.
According to the notation, the original signal is denoted as

S = {S0, S1, . . . , Sj , . . . , Sn−1}. Let Sj be the j-th signal, S
′
j

as the part of the j-th signal, and let Sx be the remaining
signal in the packet or a null signal. Type I of the signals
indicates that the original signal Sj is divided into k + 1
separate cells. Figure 7 illustrates an example for Type I
with k = 1. Suppose signal Sj is “1” bit, the number of the
cells should be 3. As a matter of fact, the attacker at the
entry onion router records that Ci is 1 and Ci+1 is 2, i.e.,
three cells for signal Sj are divided into one cell and two
cells. Moreover, signal Sj may also be divided into three
separate cells, i.e., k = 2. Type II of the signals indicates
that the last part of the Sj is merged with the following
signal(s) Sx. Figure 7 illustrates an example for Type II
with k = 1. Suppose signal Sj is “1” bit and Sx is a whole
signal Sj+1 for “0” bit. However, the attacker records that
Ci is 1 and Ci+1 is 3, i.e., the part of Sj is merged with the
followed signal Sj+1. Type III of the signals indicates that
k original signal are merged into a signal packet. Figure 7
illustrates an example for Type III with k = 2. If signal Sj ,
Sj+1 and Sj+2 are “010” bits, the attacker records that Ci

is 5. In this case, the cells belonging to three signal units
are merged all together. Type IV of the signals indicates
that the part of the Sj+k is divided into the following cells.
Figure 7 illustrates an example for Type III with k = 2. If
signal Sj , Sj+1 and Sj+2 are “010” bits, Ci and Ci+1 will
be recorded as 2 and 3, respectively. In the above, we only
give simple examples of four types. Due to diverse network
condition, the division or combination of the cells in these
types may be even more complicated.

Signal detection schemes. To deal with those types
of combination and separation, we propose our detection
scheme. Algorithm 1 in Appendix A shows the recovery
mechanism. If the number of the cells recorded in the circuit
queue is smaller than the number of the cells of the original

Figure 7: Examples of Signal Division and Combi-
nation

signal, the signals are recovered as either Type I or Type
II. Suppose the counter of the cells recorded in the circuit
queue is larger than the counter of the cells for carrying
the signal, these recovered signals will be either Type III
or Type IV depending on the condition whether there is
Sx in Ci+1. When the signals are recovered in these Types
with k ≤ 2, we consider that these signals are successfully
identified. Otherwise, the signals cannot be identified.

3.3 Discussion
In this subsection, we discuss how an adversary uses only

Tor exit routers for the attack, attack detectability and im-
pact.

3.3.1 Controlling Exit Onion Routers Only
If the attacker does not control the entry onion routers,

the cell counter based attack can still be successful with
some alternatives, e.g., sniffing the packets transmitted be-
tween an entry onion router and a client. According to the
length of packets sniffed, the attacker can detect the embed-
ded signal based on the size of the packet. Without loss of
generality, we assume that the MTU (Maximum Transmis-
sion Unit) is 1500 bytes.

We now introduce the structure of the IP packet that en-
velops the cell(s) and passes along the network. Figure 8
(a) illustrates the structure of IP packet that envelops one
cell, including an IP header, a TCP header, an empty TLS
application record and a TLS application record of envelop-
ing one cell. The TLS record packet incorporates a TLS
header (5 bytes), a TLS message (not to exceed 214 bytes), a
MAC (Message Authentication Code, 20 bytes) and a TLS
padding (12 bytes). Figure 9 illustrates the header of the
TLS packet, with the length of five bytes. The field of con-
tent type identifies the record layer protocol type contained
in this record, with the length of one byte. In our case, we
concern the TLS application record, with content type of
23. The field of version identifies the major or minor ver-
sion of TLS for the contained message, with the length of
two bytes. The field of length identifies the length of proto-
col message(s), not to exceed 214 bytes.

Figure 8 (b) illustrates the structure of IP packet that en-
velops two cells which has a length of 1150 bytes. Because an
IP packet that envelops three cells exceeds the MTU (1500
bytes), this IP packet will be segmented; one segment has
the packet with 1500 bytes and the other segment has the
packet with 214 bytes. Figure 8 (c) illustrates the struc-
ture of IP packet that envelops three cells and is segmented.
Therefore, the attacker can map “0” bit of the signal to one
IP packet, with the length of 638 bytes. By appropriately
choosing a delay interval at the exit onion router, the “1”bit
of the signal will have two cases: two IP packets with one
cell (shown in Figure 8 (a)) and two cells (shown in Figure
8 (b)), i.e., the signal is divided as Type I with k = 1, as
well as two IP packets with three cells (shown in Figure 8
(c)) which is neither divided nor combined. As such, the
attacker is still able to recognize the signal based on the size

583

130 20 12

512

5 20 512 20 125123220
IP

Header

TCP

header

(a) Packet Format of 1 Cell

Cell
TLS Application

Record Header
MAC

TLS

Padding
MAC

TLS

Padding

TLS Application

Record Header

5 20 512 20 125123220
IP

Header

TCP

header

(b) Packet Format of 2 Cell

Cell
TLS Application

Record Header
MAC

TLS

Padding
MAC

TLS

Padding

TLS Application

Record Header
Cell

5 20 512 512 3825123220
IP

Header

TCP

header

(c) Packet Format of 3 Cell

Cell
TLS Application

Record Header
CellMAC

TLS

Padding

TLS Application

Record Header
Cell

3220
IP

Header

TCP

header
MAC

TLS

Padding
Cell

Figure 8: Packet Format

2 21

Content

Types
Versions Length

Figure 9: TLS header

of sniffed IP packets using the signal detection mechanism
discussed above.

The fact that multiple cells can be packed into a packet
guarantees the correct signal encoding via the cell counter.
When such a packet arrives at the TLS buffer, those cells
form a group, which is read into the circuit queue. This is
our mechanism that generates a signal unit “1” or “0”.

3.3.2 Attack Detectability
The proposed cell counter-based attack is difficult to de-

tect for the following reasons. First, the attack transmits a
short and secret random signal known only to the attackers.
It is difficult to detect within the target traffic. According
to Figure 12, the success of this attack requires only a short
secret signal-such as 5 bits-while achieving a detection rate
of almost 100% and a false positive rate of 1/105. It would
be hard to classify such a short sequence of random signals
as the attack sequence in bursty network traffic.

Second, we adopt time hopping-based signal embedding
techniques to further improve the attack detectability. The
interval between two bits is controlled by a secret pseudonoise
code and known only to attackers. Intuitively, if the interval
between bits is large enough, the inserted signal bits appear
sparse within the target traffic and it is difficult to determine
if groups of cells are caused by network dynamics or by inten-
tion. Therefore, the secret signal embedded into the target
traffic is no different than noise. Moreover, when a malicious
entry node has confirmed the communication relationship,
it can separate the group of cells by adding delay between
cells so that not even the client can observe the embedded
signal. In Section 5, we demonstrate the effectiveness of this
time hopping-based technique and the detailed approach is
presented as Algorithm 2 in Appendix A.

In our proposed attack, a secret signal is embedded into
the target traffic, which implies a secret sequence of groups
of one and three cells. One may be concerned that if the
sequence of groups of one and three cells is unnatural and
the entry node is honest and aware of the attack, it will
detect the sequence and thus distinguish the traffic flow with
an embedded signal from a flow without a signal. However,
with the hopping technique, groups of one and three cells are
separated by random intervals and it is hard to differentiate
them from those caused by network dynamics. As a side
note, the false positives in detecting signal bits in Section 5’s
figures imply that normal network traffic does have groups of

one and three cells caused by network dynamics. Moreover,
since the embedded signal is very short and only known to
attackers, we conjecture that it is very difficult to distinguish
traffic with embedded signals from normal traffic based on
this very short secret sequence of cell groups.

3.3.3 Attack Impacts
The proposed cell counter-based attack may dramatically

degrade the anonymity that the Tor network maintains. Un-
like other existing attacks, the attack is accurate, efficient
and difficult to detect. This attack requires much fewer
packets and incurs little overhead while achieving a higher
detection rate than most traffic analysis attacks, includ-
ing traffic confirmation attacks [37, 39, 23, 13, 22]. Since
this attack utilizes the atomic unit of a traffic flow, i.e.
cells/packets (and their size), this attack is highly efficient
and can confirm very short communication sessions with
only tens of cells. Although the tagging-based attack [26,
14] may require few packets, it tears down the Tor circuits
and is relatively easy to detect. A simple passive cell count-
ing attack may count the cells at points of exit and entry
and correlate the counting. However, there is no guarantee
of detection rate and false positive rate because of the huge
number of connections running through Tor. In addition,
our attack achieves a low false positive rate with a very
small amount of target traffic as demonstrated in Section
5. Therefore, as a powerful traffic confirmation attack, the
proposed attack poses a great challenge against Tor. In our
recent study [14], we showed that by compromising around
10% of onion routers, the attack can confirm over half of the
communication sessions over Tor. The attacker can donate
malicious onion routers with long uptime and high band-
width into the Tor network in order to increase the proba-
bility that malicious onion routers are selected for either an
entry or exit router [10]. Our results were consistent with
the observations from Bauer et al. [5], which indicate that
the attacker can compromise approximately 46.46% circuits
with 9% malicious routers within Tor2.

It is also difficult for Tor to defeat the proposed attack.
One possible way is to let Tor ORs add delays between cells
to disrupt malicious cell groups. However, choosing this
delay will be very challenging. Too short a delay cannot
separate cells at lower layers, whereas a relatively large de-
lay may dramatically degrade Tor’s performance, which is
already the biggest bottleneck of using Tor [27, 29, 21]. A
second way to reduce the impact of the proposed attack is to
use purely random routing algorithms and reduce the chance
of traffic flows hitting malicious Tor ORs. However, a ran-
dom routing algorithm will also degrade Tor performance.

This paper provides guidance to anonymous protocol de-
sign and implementation. To design an anonymous commu-
nication system, we have to consider the impact of the design
on all protocol layers. For example, Tor implements an over-
lay protocol and preserves equal-sized cells on the applica-
tion layer. However, the equal-sized cells on the application
layer cannot guarantee that packets on the network layer are
also equal-sized. Indeed, our attack exploits the Tor proto-
col’s impact on the network layer. Note that we have also
taken a preliminary look at the design and implementation
of Anonymizer [2] (another popular anonymous communica-
tion system) and observed a similar problem. We were able
to control the size of packets passing through Anonymizer.
This type of attack may actually be applied against any sys-
tem that relies on packet size to preserve privacy.

2Note: The fact is true for any powerful traffic confirmation
attack as well as the proposed attack.

584

4. ANALYSIS
In this section, we show the analytical results for the ac-

curacy and efficiency of the cell counter based attack. For
the attack accuracy, we derive the closed formula to show
the detection rate and false positive rate.

4.1 Detection Rate
The round-trip delay between two onion routers can be

modeled by a lognormal distribution [17]. Notice that our
analysis is based on the network shown in Figure 3. A log-
normal random variable has the property - its logarithm has
a Gaussian distribution. Let Xi be a Gaussian random vari-
able with the probability density function (PDF),

fxi(x) =
1

σxi

√
2π

e
− (x−µxi

)2

2σ2
xi , (6)

where µxi and σxi are mean and standard derivation, re-
spectively. Let Xi = ln Li, where Li is a random variable
with lognormal distribution and the PDF of Li is given by

fLi(l) =
1

lσxi

√
2π

e
− (ln(l)−µxi

)2

2σ2
xi . (7)

Let L1 be the lognormal random variable between OR3
and OR2 and L2 be the lognormal random variable between
OR2 and OR1. Following the widely used assumption that a
sum of independent lognormal random variables is well ap-
proximated by another lognormal random variable, we have

L = L1 + L2 = eX1 + eX2 ≈ eH , (8)

where the random variable H possesses a Gaussian distri-
bution. Therefore, the round-trip delay between OR3 and
OR1 is also a lognormal distribution L. Since L follows a
lognormal distribution, the arrival time of the signal at the
entry onion router is approximately L/2, which is a lognor-
mal distribution as well.

Now we derive the detection error rate. Let n be the
length of the original signal, the arrival time of the signals
at the entry onion router be T = {Ts0 , Ts1 , . . . , Tsn−1}. Let
the delay interval between the two bits of the signal that the
attacker transmits cells be ∆t. Because cells associated with
the neighboring signal bits can be combined (when Tsi >
Tsi+1 + ∆t), the probability of error becomes

Pe = Pr(Tsi > Tsi+1 + ∆t),

= Pr(Tsi − Tsi+1 > ∆t). (9)

Let Z = Tsi − Tsi+1 , we have

Pe = Pr(Z > ∆t),

= 1− Pr(Z ≤ ∆t). (10)

The detection rate PD is defined as the probability that a
1-bit original signal is correctly recognized. We have

PD = 1− Pe,

= Pr(Z ≤ ∆t). (11)

Let Tsi

.
= X and Tsi+1

.
= Y . We have Z = X−Y . Because

Tsi and Tsi+1 are independent and identically distributed
(i.i.d.), X and Y are i.i.d as well. Let µ and σ be mean and
standard deviation of the variable’s (ln X or ln Y). Since

FZ(z) = Pr(Z ≤ z) = Pr(X − Y ≤ z),

=

∫ +∞

0

(

∫ z+y

0

f(x, y)dx)dy, (12)

then

Pr(Z ≤ ∆t) = FZ(∆t),

=

∫ +∞

0

(

∫ ∆t+y

0

f(x, y)dx)dy,

=

∫ +∞

0

f(y)(

∫ ∆t+y

0

f(x)dx)dy,

=

∫ +∞

0

f(y)(
1

2
+

1

2
erf(

ln(∆t + y)− µ

σ
√

2
))dy, (13)

where erf(x) = 2√
π

∫ x

0
e−t2dt.

In addition, the first derivative of function FZ(∆t) is given
by

F
′
Z(∆t) =

1

2

∫ +∞

0

f(y)
1

(∆t + y)σ
√

2

2√
π

e
−(

ln(∆t+y)−µ

σ
√

2
)2

dy,

=
1

σ
√

2π

∫ +∞

0

1

∆t + y
e
−(

ln(∆t+y)−µ

σ
√

2
)2

f(y)dy. (14)

Since ∆t > 0 and y > 0, we have F
′
Z(∆t) > 0. Hence,

PD > 0 and PD is a monotone increasing function in terms
of ∆t. Therefore, the larger the delay interval we choose,
the higher the detection rate that will be achieved. This
result is also validated by our real-world experimental data
in Section 5.

The detection rate PD,n is defined as the detection rate
for an n-bit original signal. Given PD for detection rate for
1-bit original signal, we have

PD,n = (PD)n, (15)

which is a monotone increasing function with the delay in-
terval as well.

4.2 False Positive Rate
When there is no signal embedded into the target traffic,

there is the possibility that the detection could reach an in-
correct decision. Packets in the normal traffic would have
different sizes. Let the probability of one cell packed in the
packet be p0 (which will be recognized as “0” bit of origi-
nal signal). Let the probability of three cells packed in the
packet be p1 (which will be recognized as “1” bit of original
signal). Let p2 be the probability that packets have other
sizes. We have p2 = 1− p0 − p1.

The false positive rate PF,n for recognizing an n-bit signal
can be calculated by

PF,n = (
p0 + p1

2
)n = (

1− p2

2
)n. (16)

Figure 10 shows the cumulative probability function for
the packet size in normal traffic. It shows that the sum of
p0 and p1 is around 0.5. Then we have

PF,n ≈ (
0.5

2
)n = (

1

4
)n. (17)

As we can see, we will have lower false positive rates,
as the original signal length n gets longer. Given the false
positive rate PF,n in (17), we can determine the original
signal length n. For example, given the false positive rate of
1.5% (or 0.4%), we can use an original signal of length 3 (or
4). In our extensive experiments in Section 5, we observed
even much lower false positive rate.

585

5. EVALUATION
We have implemented the cell counter based attack pre-

sented in Section 3 against Tor [33]. In this section, we use
real-world experiments to demonstrate the feasibility and
effectiveness of this attack. All the experiments were con-
ducted in a controlled manner and we experimented on TCP
flows generated by ourselves in order to avoid legal issues.

5.1 Experiment Setup
In our experiment setting, we deployed two malicious onion

routers as the Tor entry onion router and exit onion router.
The entry onion router and client (Alice) located in Asia
are deployed on PlanetLab [34]. The server (Bob) is located
at one University campus in North American and the exit
onion router is at an off-campus location in North America
as well. All computers are on different IP address segments
and connected to different Internet service providers (ISPs).
Figure 11 shows the experiment setup.

We modified the Tor client code for attack verification pur-
pose. The Tor client will intend to setup circuits through
the designated malicious exit onion router and entry onion
router shown in Figure 11. The middle onion router is se-
lected using the default routing selection algorithm released
by Tor. As we stated earlier, the cell counter based attack
intends to confirm whether the client (Alice) communicates
with the server (Bob). For verification purposes, we setup
a server (Bob) and download a file from the client (Alice).
The downloading software at the client is the command line
utility wget. By configuring wget’s parameters of http proxy
and ftp proxy, we let wget download files through Privoxy,
the proxy server used by Tor. By using the Tor configuration
file and manipulatable parameters, such as EntryNodes, Ex-
itNodes, StrictEntryNodes, and StrictExitNodes [9], we let
the client choose both the malicious entry and exit onion
routers along the circuit.

5.2 Experimental Results
To validate the accuracy of the cell counter based attack,

we let the client download 30 files in our experiments. At
the exit onion router, we generate a random signal with
100-bits. When the target traffic from server Bob arrives
at the exit onion router, we vary the number of cells in
the circuit and embed the signal into the variation of cell
counter in the target traffic. At the entry onion router,
the cells in the circuit queue are recorded in the log and
the recovery mechanisms will use the data to recognize the
embedded signal. In addition, we chose different thresholds
and types in our recovery mechanism. In particular, we
chose to recover Type I and III with k = 1 as detection
scheme 1. Moreover, we chose to recover all types with k = 2
as detection scheme 2.

When we evaluate the false positive rate, the client down-
loads 30 files via Tor again. However, no signal is embedded
into the traffic at the exit onion router. Denote the traffic
with no signal as clean traffic. We generate a 100-bit random
signal and apply detection scheme 1 and detection scheme 2
to the clean traffic collected at the entry onion router. By
checking how many bits of this signal show up in the clean
traffic, we can calculate the false positive rate.

Figure 12 illustrates the correlation between detection rate
(true positive) and delay interval for transmitting cells asso-
ciated to different units of the signal. As we can see from this
figure, the detection rate will increase dramatically when the
delay interval is slightly increased in two detection schemes.
As expected, the detection rate of scheme 2 is higher than
scheme 1 with a slightly increasing false positive rate (the

overall false positive rate is a fixed value). When the delay
interval approaches 100ms, the detection rate of two schemes
approaches 100%. All these findings validate that our in-
vestigated attack can significantly degrade the anonymity
service provided by Tor.

Figure 13 illustrates the detection rate in terms of signal
length and the delay interval for scheme 1. As we can see
from this figure, when we increase the signal length from
20 to 100, the detection rate will be slightly decreased and
the false positive rate is constantly very low (less than 5%).
When the signal length is 20, and the delay interval be-
tween signals is 100 ms, the 100% detection rate can be
achieved. This validates that the investigated attack only
requires tens of cells and is highly efficient to confirm very
short communication sessions on Tor. Figure 14 illustrates
the detection rate in terms of signal length and the delay
interval for scheme 2. The false positive decreases quickly
with the increasing signal length. Additionally, the detec-
tion rate can approach 100% with the delay interval 100 ms
and signal length 100 with a low false positive.

To further improve the detectability of cell counter based
attack, we also investigated an improved encoding mech-
anism, called the hopping-based encoding, that randomly
embeds units of a signal into the target traffic. This im-
proved encoding mechanism can resist the multi-flow attack
[18]. In this new encoding scheme, we generate an array
Q[1 × n] by using a poisson distribution with a mean λ.
We first send the number of cells Q[i] without embedding
signals and then embed a signal bit. In this set of experi-
ments, we also chose a signal length of 100. Since the units
of the signal are embedded randomly in a hopping fashion in
the time domain, the multi-flow attack is hard to detect the
embedded signal in the traffic. Figure 15 illustrates relation-
ship between detection rate (true positive) and the mean λ
of non-watermarked cells length (which is the random time
interval that no signal is embedded). From this figure, we
can see that this improved encoding scheme can still achieve
very high detection rates along with a very low false positive
rate. Since this new encoding scheme does not embed the
signal into all CELL RELAY DATA cells, the attack will
require more cells in order to be successful. Additionally,
based on Algorithm 1 in Appendix A, we use Algorithm 2
in Appendix A to remove the cells without carrying any unit
of the signal and to detect the remaining signal.

6. RELATED WORK
A good review of mix systems can be found in [12, 8].

There has been much research on degrading anonymous com-
munication through mix networks. Existing traffic analysis
attacks against anonymous communication can largely be
categorized into two groups: passive traffic analysis and ac-
tive watermarking techniques. The passive traffic analysis
attacks record the traffic passively and identify the similarity
between Alice’s outbound traffic and Bob’s inbound traffic.
For example, Zhu et al. [40] proposed the scheme of using
mutual information for the similarity measurement. Levine
et al. [19] investigated a cross correlation technique for the
similarity measurement.

The active watermarking techniques intend to embed spe-
cial signal (or marks) into the target traffic, including traffic
rate and delay interval between packets [37, 39]. For exam-
ple, Yu et al. [39] proposed a flow marking scheme based
on the direct sequence spread spectrum (DSSS) technique.
This approach could be used by attackers to secretly con-
firm the communication relationship via mix networks. Mur-
doch et al. [23] also investigated the timing-based attacks

586

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cell Counter Variation

F(
x)

Figure 10: Cumulative Probabil-
ity Function for Packet Size in
Normal Traffic

 PlanetLab

Client Server Malicious
Entry Router

Malicious
Exit Router

Tor Network

Off-Campus

Campus

Figure 11: Experiment Setup

0 25 50 75 100 125 150 175 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay Interval (ms)

R
at

e

Scheme 2 True Positive
Scheme 2 False Positive
Scheme 1 True Positive
Scheme 1 False Positive

Figure 12: Detection Rate vs. De-
lay Interval (Note: the rate is for
detecting one bit)

20
40

60
80

100

0
25

50
75

100
125

150
175

200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Signal Length

Delay Interval (ms)

R
at

e

True Positive
False Positive

Figure 13: Detection Rate vs.
Delay Interval and Signal Length
with Detection Scheme 1 (Note:
the rate is for detecting one bit)

20
40

60
80

100

0
25

50
75

100
125

150
175

200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Signal Length

Delay Interval (ms)

R
at

e

True Positive
False Positive

Figure 14: Detection Rate vs.
Delay Interval and Signal Length
with Detection Scheme 2 (Note:
the rate is for detecting one bit)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean λ of the Poisson Distribution

R
at

e

Scheme 2 True Positive
Scheme 2 False Positive
Scheme 1 True Positive
Scheme 1 False Positive

Figure 15: Correlation Between
Detection Rate and Mean λ of the
Poisson Distribution (Note: the
rate is for detecting one bit)

on Tor by using some compromised Tor routers. Overlier et
al. [24] studied a scheme using one compromised mix router
to identify the “hidden server” anonymized by Tor. Wang
et al. [38] proposed an active watermarking scheme that
was robust to random timing perturbation. They analyzed
the tradeoffs between the true positive rate, the maximum
timing perturbation added by attackers, and the number of
packets needed to successfully decode the watermark. Wang
et al. [37] also investigated the feasibility of a timing-based
watermarking scheme in identifying the encrypted peer-to-
peer VoIP calls. By slightly changing the timing of packets,
their approach can correlate encrypted network connections.
Nevertheless, these timing-based schemes are not effective at
tracing communication through a mix network with batch-
ing strategies that manipulate inter-packet delivery timing.
Peng et al. [25] analyzed the secrecy of timing-based water-
marking traceback proposed in [38], based on the distribu-
tion of traffic timing. Kiyavash et al. [18] proposed a multi-
flow approach detecting the interval-based watermarks [28,
36] and DSSS-based watermarks [39]. This multi-flow based
approach intends to average the rate of multiple synchro-
nized watermarked flows and expects to observe a unusual
long silence period without packets or a unusual long period
of low-rate traffic.

Randomization has been the approach proposed to pre-
serve privacy in various scenarios including data privacy [20]
and watermarking [36]. Our study is also related to the

covert channel. Various covert channels have been studied
for different applications [6, 31, 3]. For example, JitterBugs
is a class of inline interception mechanisms that covertly
transmit data by perturbing the timing of input events in or-
der to affect externally observable network traffic. Takahshi
et al. in [35] assessed VoIP covert channel threats that uti-
lize an IP phone conversation to illicitly transfer information
across the network.

7. CONCLUSION
In this paper, we introduced a novel cell counter based at-

tack against Tor. This attack is difficult to detect and is able
to quickly and accurately confirm the anonymous communi-
cation relationship among users on Tor. An attacker at the
malicious exit onion router slightly manipulates transmis-
sion of cells from a target TCP stream and embeds a secret
signal (a series of binary bits) into the cell counter variation
of the TCP stream. An accomplice of the attacker at the
entry onion router recognizes the embedded signal using our
developed recovery algorithms, and link the communication
relationship among users. Via extensive theoretical analysis
and real-world experiments on Tor, the effectiveness and fea-
sibility of the attack is validated. Our data showed that this
attack could drastically and quickly degrade the anonymity
service that Tor provides. Due to Tor’s fundamental design,
defending against this attack remains a very challenging task
that we will investigate in our future research.

587

Acknowledgment
This work was supported in part by the National Science
Foundation under grants 0721766, 0907964 and 0546668, by
the Army Research Office (ARO) under grant No. AMSRD-
ACC-R50521-CI, by CityU Applied R & D Centre (ARD(Ctr))
No. 9681001, RGC General Research Fund (GRF), SAR
Hong Kong, No. 9041350 (CityU 114908), and Jiangsu
Provincial Natural Science Foundation of China under Grant
No. BK2007708 and BK2008030, China Specialized Re-
search Fund for the Doctoral Program of Higher Education
under Grant No. 200802860031, and by Jiangsu Provincial
Key Laboratory of Network and Information Security under
Grant No. BM2003201. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the sponsor agencies.

8. REFERENCES
[1] N. B. Amir Houmansadr, Negar Kiyavash. Rainbow:

A robust and invisible non-blind watermark for
network flows. In Proceedings of the 16th Network and
Distributed System Security Symposium (NDSS),
February 2009.

[2] Anonymizer, Inc. http://www.anonymizer.com/, 2009.
[3] D. Bailey, D. Boneh, E.-J. Goh, and A. Juels. Covert

channels in privacy-preserving identification systems.
In Proceedings of the 2007 ACM Conference on
Computer and Communications Security (CCS),
November 2007.

[4] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-resource routing attacks against
anonymous systems. In Proceedings of ACM Workshop
on Privacy in the Electronic Society (WPES), October
2007.

[5] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-resource routing attacks against
anonymous systems. Technical report, University of
Colorado at Boulder, August 2007.

[6] S. Cabuk, C. Brodley, and C. Shields. Ip covert timing
channels: design and detection. In Proceedings of the
2004 ACM Conference on Computer and
Communications Security (CCS), October 2004.

[7] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[8] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: design of a type iii anonymous remailer
protocol. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy (S&P), May 2003.

[9] R. Dingledine and N. Mathewson. Tor path
specification. http:
//tor.eff.org/svn/trunk/doc/spec/path-spec.txt,
2008.

[10] R. Dingledine and N. Mathewson. Tor protocol
specification. http:
//tor.eff.org/svn/trunk/doc/spec/tor-spec.txt,
2008.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
anonymity online.
http://tor.eff.org/index.html.en, 2008.

[12] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, August 2004.

[13] N. S. Evans, R. Dingledine, and C. Grothoff. A
practical congestion attack on tor using long paths. In

Proceedings of the 18th USENIX Security Symposium,
August 10-14 2009.

[14] X. Fu, Z. Ling, J. Luo, W. Yu, W. Jia, and W. Zhao.
One cell is enough to break tor’s anonymity. In
Proceedings of Black Hat DC, February 2009.

[15] X. Fu, Y. Zhu, B. Graham, R. Bettati, and W. Zhao.
On flow marking attacks in wireless anonymous
communication networks. In Proceedings of the IEEE
International Conference on Distributed Computing
Systems (ICDCS), April 2005.

[16] C. Gülcü and G. Tsudik. Mixing email with babel. In
Proceedings of the Network and Distributed Security
Symposium (NDSS), February 1996.

[17] S. U. Khaunte and J. O. Limb. Packet-level traffic
measurements from a tier-1 ip backbone. Technical
report, Georgia Institute of Technology, 1997.

[18] N. Kiyavash, A. Houmansadr, and N. Borisov.
Multi-flow attacks against network flow watermarking
schemes. In Proceedings of USENIX Security
Symposium, 2008.

[19] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright.
Timing attacks in low-latency mix-based systems. In
Proceedings of Financial Cryptography (FC), February
2004.

[20] Y. J. Li, V. Swarup, and S. Jajodia. Fingerprinting
relational databases: schemes and specialties. IEEE
Transactions on Dependable and Secure Computing,
2(1), January 2005.

[21] D. McCoy, K. Bauer, D. Grunwald, P. Tabriz, and
D. Sicker. Shining light in dark places: A study of
anonymous network usage. Technical report,
University of Colorado at Boulder, August 2007.

[22] S. J. Murdoch. Hot or not: Revealing hidden services
by their clock skew. In Proceedings of the 13th ACM
Conference on Computer and Communications
Security (CCS), November 2006.

[23] S. J. Murdoch and G. Danezis. Low-cost traffic
analysis of tor. In Proceedings of the IEEE Security
and Privacy Symposium (S&P), May 2006.

[24] L. Overlier and P. Syverson. Locating hidden servers.
In Proceedings of the IEEE Security and Privacy
Symposium (S&P), May 2006.

[25] P. Peng, P. Ning, and D. S. Reeves. On the secrecy of
timing-based active watermarking trace-back
techniques. In Proceedings of the IEEE Security and
Privacy Symposium (S&P), May 2006.

[26] R. Pries, W. Yu, X. Fu, and W. Zhao. A new replay
attack against anonymous communication networks.
In Proceedings of the IEEE International Conference
on Communications (ICC), May 19-23 2008.

[27] R. Pries, W. Yu, S. Graham, and X. Fu. On
performance bottleneck of anonymous communication
networks. In Proceedings of the 22nd IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), April 14-28 2008.

[28] Y. J. Pyun, Y. H. Park, X. Wang, D. S. Reeves, and
P. Ning. Tracing traffic through intermediate hosts
that repacketize flows. In Proceedings of IEEE
INFOCOM, May 2007.

[29] J. Reardon. Improving tor using a tcp-over-dtls
tunnel. Master’s thesis, University of Waterloo,
Waterloo, Ontario, Canada, September 2008.

[30] M. Reiter and A. Rubin. Crowds: Anonymity for web
transactions. ACM Transactions on Information and
System Security, 1(1), 1998.

588

[31] G. Shah, A. Molina, and M. Blaze. Keyboards and
covert channels. In Proceedings of the 15th USENIX
Security Symposium, July-August 2006.

[32] Q. X. Sun, D. R. Simon, Y. Wang, W. Russell, V. N.
Padmanabhan, and L. L. Qiu. Statistical identification
of encrypted web browsing traffic. In Proceedings of
IEEE Symposium on Security and Privacy (S&P),
May 2002.

[33] The Tor Project, Inc. . Tor: anonymity online.
http://tor.eff.org/, 2008.

[34] The Trustees of Princeton University. Planetlab | an
open platform for developing, deploying, and accessing
planetary-scale services.
http://www.planet-lab.org/, 2008.

[35] T.Takahashi and W. Lee. An assessment of voip covert
channel threats. In Proceedings of the IEEE
International Conference on Security and Privacy in
Communication Networks (SecureComm), September
2007.

[36] X. Wang, S. Chen, and S. Jajodia. Network flow
watermarking attack on low-latency anonymous
communication systems. In Proceedings of the IEEE
Symposium on Security & Privacy (S&P), May 2007.

[37] X. Wang, S. Chen, and S. Jajodia. Tracking
anonymous peer-to-peer voip calls on the internet. In
Proceedings of the 12th ACM Conference on Computer
Communications Security (CCS), November 2005.

[38] X. Wang and D. S. Reeves. Robust correlation of
encrypted attack traffic through stepping stones by
manipulation of inter-packet delays. In Proceedings of
the 2003 ACM Conference on Computer and
Communications Security (CCS), November 2003.

[39] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao.
Dsss-based flow marking technique for invisible
traceback. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy (S&P), 2007 May.

[40] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao.
On flow correlation attacks and countermeasures in
mix networks. In Proceedings of Workshop on Privacy
Enhancing Technologies (PET), May 2004.

Appendix A
Algorithm 1 shows the signal recovery mechanism with con-
tinuously embedded bits at a malicious Tor entry node and
Algorithm 2 gives the signal recovery mechanism at a mali-
cious Tor entry node when the time hopping based approach
is used for embedding a signal into the target traffic.

Algorithm 1 Recovery Mechanism for Continuously Em-
bedded Bits

Require:
(a) C[1∗m], an array storing the number of cell counter
variation in the circuit queue at the entry router;
(b) S[1 ∗ n], an array storing the original signal bit;

1: i = 0; j = 0
2: while i ≤ m do
3: if C[i] == S[j] then
4: Signal S[j] is matched.
5: else if C[i] < S[j] then
6: Signal S[j] is splitted.
7: if C[i] + C[i + 1] == S[j] then
8: Signal S[j] is processed as Type I with k = 1.
9: else if C[i] + C[i + 1] > S[j] then

10: Signal S[j] and S[j + 1] are processed as Type II
with k = 1.

11: else if C[i] + C[i + 1] < S[j] then
12: Find the value of k
13: if C[i] + . . . + C[i + k] == S[j] then
14: Signal S[j] is processed as Type I with k ≥ 2.
15: else
16: Signal S[j] and S[j + 1] is processed as Type

II with k ≥ 2.
17: end if
18: i = i + k;
19: end if
20: else if C[i] > S[j] then
21: Two or more signals are combined together.
22: if C[i] == S[j] + S[j + 1] then
23: Signal S[j] and S[j +1] are processed as Type III

with k = 1.
24: else if C[i] < S[j] + S[j + 1] then
25: Signal S[j] and S[j +1] are processed as Type IV

with k = 1.
26: else if C[i] > S[j] + S[j + 1] then
27: Find the value of k
28: if C[i] == S[j] + . . . + S[j + k] then
29: These combined signals are processed as Type

III with k ≥ 2.
30: else
31: These combined signals are processed as Type

IV with k ≥ 2.
32: end if
33: j = j + k
34: end if
35: end if
36: i = i + 1; j = j + 1
37: end while

Algorithm 2 Recovery Mechanism for Hopping-Based En-
coding

Require:
(a) C[1∗m], an array storing the number of cell counter
variation in the circuit queue at the entry router;
(b) S[1 ∗ n], an array storing the original signal bit;
(c) Q[1∗n], an array storing the number of non-watermark
cells.

1: i = 0; j = 0
2: while i ≤ m do
3: Remove the non-watermark packets Q[j] from C[i].
4: while Q[j] > C[i] do
5: C[i + 1] = C[i + 1] + C[i]
6: end while
7: if Q[j] == C[i] then
8: i = i + 1; Q[j] is removed.
9: Detect S[j] with C[i] by using Algorithm 1

10: else if Q[j] < C[i] then
11: The signal S[j] is combined with Q[j].
12: C[i] = C[i]−Q[j]
13: Detect S[j] with C[i] by using Algorithm 1
14: end if
15: i = i + 1; j = j + 1
16: end while

589

