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Abstract. We discuss several applications of information theory in cryp-
tography, both for unconditional and for computational security. Un-
conditionally-secure secrecy, authentication, and key agreement are re-
viewed. It is argued that unconditional security can practi-
cally be achieved by exploiting the fact that cryptography takes place
in a physical world in which, for instance due to noise, nobody can have
complete information about the state of a system.
The general concept of an information-theoretic cryptographic primi-
tive is proposed which covers many previously considered primitives like
oblivious transfer, noisy channels, and multi-party computation. Many
results in information-theoretic cryptography can be phrased as reduc-
tions among such primitives We also propose the concept of a generalized
random oracle which answers more general queries than the evaluation
of a random function. They have applications in proofs of the computa-
tional security of certain cryptographic schemes.
This extended abstract summarizes in an informal and non-technical
way some of the material presented in the author’s lecture to be given
at Crypto ’99.

Key words: Information theory, unconditional security, conditional in-
dependence, information-theoretic primitive, generalized random oracle.

1 Introduction

Historically, information theory and cryptography are closely intertwined, al-
though the latter is a much older discipline. Shannon’s foundation of information
theory [40] was motivated in part by his work on secrecy coding during the sec-
ond world war, and it may be for this reason that his work was not de-classified
until 1948 when his seminal paper was published. His 1949 companion paper on
the communication theory of secrecy systems [39] was, like Diffie and Hellman’s
later discovery of public-key cryptography [19], a key paper in the transition of
cryptography from an art to a science.

There are two types of cryptographic security. The security of a crypto-
graphic system can rely either on the computational infeasibility of breaking it
(computational security), or on the theoretical impossibility of breaking it, even
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using infinite computing power (information-theoretic or unconditional security).
Because no computational problem has been proved to be computationally diffi-
cult for a reasonable model of computation, the computational security of every
practical cryptographic system relies on an unproven intractability assumption.
In contrast, information-theoretically secure systems rely on no such assump-
tions, but they rely on an assumption about the probabilistic behavior of the
universe, for instance of a noisy channel or a quantum measurement. However,
even computationally-secure systems rely on such assumptions, at least the tac-
itly made assumption that random keys can be generated and that they are
independent of an adversary’s entire a priori knowledge.

While information-theoretic security is stronger than computational security,
it is usually less practical. In fact, Shannon’s proof that perfect secrecy requires
a secret key of the same length as the plaintext is often taken as evidence that
unconditional security can never be practical. However, this precipitate jump to
conclusions should be reconsidered: in contrast to Shannon’s model, in which his
result holds, cryptography takes place in a physical world (every communication
channel is based on a physical process) in which nobody can have complete
information about the state of a system, for instance due to noise or theoretical
limitations of quantum physics.

Information theory has several applications in cryptography. First, it allows
to prove the unconditional security of cryptographic systems. Second, it allows to
prove impossibility and lower bound results on the achievability of unconditional
security. Third, it is a key tool in reduction proofs showing that breaking a cryp-
tographic system is as hard as breaking an underlying cryptographic primitive
(e.g. a one-way function or a pseudo-random function).

In this extended abstract we give an overview of known applications and
results of information theory in cryptography. Due to space limitationswe cannot
give a complete overview of the extensive literature on the subject. The treatment
is informal and non-technical, emphasizing concepts and general viewpoints. In
Section 2, we review some basic concepts of information theory and state two
basic facts on conditional independence. In Section 3, we summarize known
results on unconditional secrecy, authentication, and key agreement. In Section 4
we take a general approach to cryptographic primitives and reductions among
them. The concept of generalized random oracles is sketched briefly in Section 5,
followed by some conclusions.

2 Random Variables, Entropy, and Conditional
Independence

Information theory, like statistics, is a mathematical theory based on probability
theory.1 In almost all applications of probability theory in cryptography one
considers a discrete random experiment which is conceptually very simple: it is
defined by a finite or countably infinite set called the sample space, consisting
1 We refer to [7] and [13] for a more detailed introduction to information theory, and

to [21] for an introduction to probability theory.



Information-Theoretic Cryptography 49

of all elementary events, and a probability measure assigning a non-negative real
number to every elementary event, such that the sum of all these probabilities is
equal to 1. An event of a discrete random experiment is a subset of the sample
space, and the probability assigned to it is the sum of the probabilities of its
elementary events.

A discrete random variable X is a mapping from the sample space to a certain
range X and is characterized by its probability distribution PX that assigns to
every x ∈ X the probability PX(x) of the event that X takes on the value x.

The entropy of a random variable X is a real number that measures the
uncertainty about the value of X when the underlying random experiment is
carried out. It is defined as

H(X) = −
∑

x

PX(x) log2 PX(x),

assuming here and in the sequel that terms of the form 0 log 0 are excluded from
the summation. The particular formula will be irrelevant below, but we need
certain important properties of entropy. It is easy to verify that

0 ≤ H(X) ≤ log2 |X |

with equality on the left if and only if PX(x) = 1 for some x ∈ X and with
equality on the right (for finite X ) if and only if PX(x) = 1/|X | for all x ∈ X .

The deviation of the entropy H(X) from its maximal value can be used as
a measure of non-uniformity of the distribution PX . While there are other such
non-uniformity measures (e.g., based on Rényi entropy and min-entropy, which
have some interesting applications not discussed in this paper), the significance
of Shannon entropy is that it satisfies some intuitive rules (e.g., the chain rule)
and that it gives the right answer to fundamental questions in communication
engineering: how much can (reversible) data compression reduce the size of a
message, and how many information bits per channel use can be transmitted
reliably over a given noisy communication channel?

When several random variables (e.g. X, Y, Z with joint distribution PXY Z)
are considered, they are always defined on the same random experiment. The
definition of H(X) can be generalized to the definition of the joint entropy of two
or more random variables. For instance, we have H(XY Z) = −∑

(x,y,z) PXY Z

(x, y, z) logPXY Z(x, y, z).
The conditional probability distribution PX|Y (·, y) of the random variable

X, given the event Y = y, is defined by PX|Y (x, y) = PXY (x, y)/PY (y) when
PY (y) 6= 0. For every such y ∈ Y, PX|Y (·, y) is a probability distribution satis-
fying

∑
x∈X PX|Y (x, y) = 1. The entropy of this distribution is the conditional

entropy of X, given the event Y = y:

H(X|Y = y) = −
∑

x

PX|Y (x, y) log2 PX|Y (x|y).
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The conditional uncertainty of X, given the random variable Y , is defined as the
average over all y of H(X|Y = y), and is not the entropy of a distribution:

H(X|Y ) =
∑

y∈Y:PY (y) 6=0

H(X|Y = y)PY (y).

One can show that additional knowledge can never increase entropy:

0 ≤ H(X|Y ) ≤ H(X),

with equality on the left if and only if Y determines X (except when PY (y) 6= 0)
and with equality on the right if and only if X and Y are statistically independent
(see below).

An important rule for transforming entropies is

H(XY ) = H(X) + H(Y |X),

i.e., the joint entropy about X and Y is the entropy about X plus the additional
entropy about Y , given that X is known. This so-called chain rule can be used
repeatedly to expand H(X1X2 · · ·XN ) as

H(X1X2 · · ·XN ) =
N∑

n=1

H(Xn|X1 · · ·Xn−1).

Note that the order in which variables are extracted is arbitrary. For example,

H(XY Z) = H(X) + H(Y |X) + H(Z|XY )
= H(Y ) + H(Z|Y ) + H(X|Y Z).

The mutual information I(X; Y ) between two random variables X and Y is
defined as the amount by which the uncertainty (entropy) about X is reduced
by learning Y :

I(X; Y ) = H(X) − H(X|Y ).

The term mutual stems from the fact that, as can easily be verified, I(X; Y ) =
I(Y ; X) = H(Y ) − H(X|Y ). The conditional mutual information between X
and Y , given the random variable Z, is defined as

I(X; Y |Z) = H(X|Z) − H(X|Y Z).

We have I(X; Y |Z) = 0 if and only if X and Y are statistically independent
when given Z.

Conditional independence is a fundamental concept in information-theoretic
cryptography. Two events A and B are statistically independent, here denoted
[A; B], if P (A ∩ B) = P (A) · P (B). In the following we will drop the symbol ∩
and use the shorter notation P (A, B) or simply P (AB) for P (A∩B). Two events
A and B are conditionally independent, given the event C, denoted [A; B|C], if
P (A∩ B ∩ C) · P (C) = P (A ∩ C) · P (B ∩ C) or, in our short notation,

P (ABC) · P (C) = P (AC) · P (BC).



Information-Theoretic Cryptography 51

If P (C) > 0, this is equivalent to P (AB|C) = P (A|C) · P (B|C). Note that
independence is symmetric, i.e. [A; B] ⇐⇒ [B; A] and [A; B|C] ⇐⇒ [B; A|C].
Let A denote the complement of the event A. One can also show that [A; B] ⇐⇒
[A; B] and [A; B] ⇐⇒ [A; B] while [A; BC] =⇒ [A; BC] is false in general.

The concept of statistical independence and this notation can be extended to
a situation where any of A, B and C can be either an event or a random variable.
Independence when random variables are involved means that the independence
relation holds when any random variable is replaced by the event that it takes
on a particular value. For instance, if A is an event and X and Y are random
variables, then [X; A|Y ] is equivalent to [X = x; A|Y = y] for all x and y.

The following theorem stated without proof implies the rules for a calculus
of conditional independence and is useful for simplifying certain security proofs.
It states under which condition an event or random variable can be added to an
independence set. Moreover, any random variables in an independence set can
be dropped, and, if accompanied in the set only by other random variables, then
it can also be moved to the conditioning set.

Theorem 1. Let S, T, U and V each be an event or a random variable (defined
for the same random experiment). Then

[S; T |V ] and [S; U |TV ] =⇒ [S; TU |V ].

If U is a random variable, then [S; TU |V ] =⇒ [S; T |V ], and if also T is a random
variable, then [S; TU |V ] =⇒ [S; U |TV ]

Note that if S, T , and U are events, then [S; TU ] =⇒ [S; T |U ] and [S; TU ] =⇒
[S; T ] are false in general. For instance, let P (S) = P (T ) = P (U) = 0.5,
P (ST ) = P (SU) = P (TU) = 0.2, and P (STU) = 0.1. Then P (STU) =
P (S)P (TU) = 0.1 but P (STU)P (U) = 0.05 6= P (SU)P (TU) = 0.04.

3 Unconditional Secrecy, Authenticity, and Key
Agreement

One of the fundamental problems in cryptography is the transmission of a mes-
sage M from a sender Alice to a receiver Bob such that an adversary Eve with
access to the communication channel is unable to obtain information about M
(secrecy). Moreover, if Eve has write-access to the channel, then Bob must not
accept a fraudulent message modified or inserted by Eve (authenticity). This
is achieved by Alice and Bob sharing a secret key K used together with the
message to compute a ciphertext C to be transmitted over the channel.2 The
security can be either computational or information-theoretic, and we are here
only interested in the latter.

2 For instance, C is an encryption of M , or M together with an appended message
authentication code.
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3.1 Unconditional Authentication

Unconditionally secure message authentication based on a shared secret key was
first considered in [24] and later in a large number of papers (e.g., see [44], [41],
[42]). Another line of research is devoted to proving lower bounds on the cheating
probability as a function of the entropy of the key, H(K); see [33] for a discussion
and generalization of these bounds. Assume that the secret key K is used to
authenticate a message M , resulting in ciphertext C, and let pI and pS denote
Eve’s probability of successfully creating a fraudulent message (impersonation
attack) and of successfully replacing a valid message by a fraudulent message
(substitution attack), respectively, then the following lower bounds hold for any
authentication system, for an optimal cheating strategy:

pI ≥ 2−I(C;K), pS ≥ 2−H(K|C), and max(pI , pS) ≥ 2−H(K)/2.

In other words, half of the key must be used for protecting against an imperson-
ation attack, and the other half to prevent a substitution attack. These bounds
can be generalized in various directions, for instance to a setting where n consec-
utive messages are authenticated using the same key. Then the cheating proba-
bility is lower bounded by 2−H(K)/(n+1).

This bound can easily be achieved, when the message space is a subset of
the k-bit strings, by a scheme based on polynomial evaluation (where the secret
key consists of the n + 1 coefficients of a polynomial over GF (2k) of degree n),
achieving cheating probability 2−k. One can show that equality in the bounds
cannot be achieved for larger message spaces. However, Gemmell and Naor [23]
proved that interactive protocols for authenticating a k-bit message can make
more efficient use of the secret key than non-interactive protocols.

3.2 Unconditional Secrecy

It is well-known that the one-time pad [43] provides perfect secrecy (though
no authenticity unless the message is redundant), where perfect secrecy is the
strongest possible type of security of an encryption system and is defined as the
message M and the ciphertext C being statistically independent: I(M ; C) = 0,
or [M ; C]. Shannon [39] proved that for every perfect system, H(K) ≥ H(M), i.e.
perfect secrecy requires an impractically large amount of secret key. A system
that is perfect for every distribution PM of the message M is called robustly
perfect. The (binary) key of such a system must be at least as long as the
message; hence the one-time pad is optimal. Rather than proving Shannon’s
bound, we look at a more general setting below from which Shannon’s result
follows as a special case.

In the following we assume that an insecure communication channel between
Alice and Bob is available. Since we are interested in results on security and
not primarily on communication efficiency, this assumption is made without loss
of generality. It implies that a secure key agreement protocol implies a secure
encryption scheme (e.g. using the one-time pad), and the reverse implication is
trivial. Thus we can restrict our attention to key agreement.
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3.3 Unconditional Key Agreement: Impossibility Results and
Bounds

Definition 1. A key-agreement protocol consists of a communication phase in
which Alice and Bob alternate sending each other messages C1, C2, C3, . . ., where
we assume that Alice sends messages C1, C3, C5, . . . and Bob sends messages
C2, C4, C6, . . .. Each message can depend on the sender’s entire view of the pro-
tocol and possibly on privately generated random bits.

After the communication phase, Alice and Bob each either accepts or rejects
the protocol execution, depending on whether he or she believes to be able to
generate a shared secret key. If Alice accepts, she generates a key S depending
on her view of the protocol.

Similarly, if Bob accepts, he generates a key S′ depending on his view of the
protocol. Even if a party does not accept, he or she may generate a key. �

In the sequel we assume without loss of generality that S and S′ are binary
strings of length |S| = |S′| = k, where the goal is of course to make k as large as
possible. Let t be the total number of messages and let Ct = [C1, . . . , Ct] denote
the set of exchanged messages.

Informally, a key agreement protocol is secure if the following conditions are
satisfied [34,45]:

– whenever Eve is only passive, then Alice and Bob both accept, and
– whenever one of the parties accepts, then

- the other party has also generated a key (with or without accepting),
and the two keys agree with very high probability (i.e. P [S 6= S′] ≈ 0),

- the key S is very close to uniformly distributed, i.e. H(S) (and hence
also H(S′)) is very close to k, and

- Eve’s information about S, I(S; CtZ), given her entire knowledge, is very
small (see the definition of Z below).

It appears obvious that if Alice and Bob do not share at least some partially
secret information initially, they cannot generate an information-theoretically
secure secret key S (i.e. H(S) = 0) if they can only communicate over a public
channel accessible to Eve, even if this channel is authenticated.3 This follows
from inequality (1) below and implies Shannon’s bound H(K) ≥ H(M).

In order for the key agreement problem to be interesting and relevant, we
therefore need to consider a setting that takes into account the possibility that
Alice and Bob each have some correlated side information about which Eve does
not have complete information. Several such scenarios, practical and theoretical,
have been considered. For instance, Fischer and Wright analyzed a setting in
which Alice and Bob are assumed to have been dealt disjoint random deals of
cards. More natural and realistic scenarios may arise from exploiting an adver-
sary’s partial uncertainty due to unavoidable noise in the communication channel
or intrinsic limitations of quantum physics. We refer to [4] for a discussion of
3 This fact can be rephrased as follows: There exists no unconditionally-secure public-

key cryptosystem or public-key distribution protocol.
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quantum key agreement. The problem of designing information-theoretically se-
cure key agreement protocols is hence to identify practical scenarios in which
the adversary’s total information can be bounded, and then to design a protocol
that exploits this scenario.

Such a scenario can generally be modeled by assuming that Alice, Bob, and
Eve initially know random variables X, Y , and Z, respectively, which are jointly
distributed according to some probability distribution PXY Z .4 These random
variables could be the individual received noise signals of a deep-space radio
source, or the individual received noisy versions of a random bit string broadcast
by a satellite at a very low signal power.

For this setting it was shown in [35] that5

H(S) ≤ I(X; Y ↓Z),

where I(X; Y ↓Z) denotes the intrinsic conditional mutual information between
X and Y , given Z, which is defined as follows [35]:

I(X; Y ↓Z) := inf
P

Z|Z

{
I(X; Y |Z) : PXY Z =

∑
z∈Z

PXY Z · PZ|Z

}
.

The above inequality is a generalization of the following bound [32]:

H(S) ≤ min[I(X; Y ), I(X; Y |Z)]. (1)

Note that I(X; Y ) and I(X; Y |Z) are obtained when Z is a constant or Z = Z,
respectively, and that I(X; Y |Z) ≥ I(X; Y ) is possible.

3.4 Unconditional Key Agreement by Public Discussion

The previous bound is an impossibility result. In order to prove constructive
results about key agreement by public discussion, we need to make an explicit
assumption about the distribution PXY Z. A very natural assumption, which is
often made in an information-theoretic context, is that the same random ex-
periment generating X, Y , and Z is repeated independently many times. One
can then define the secret key rate S(X; Y ||Z) [32] as the maximum rate (per
executed random experiment) at which Alice and Bob can generate secret key, as-
suming (for now) an authenticated but otherwise insecure communication chan-
nel.

This rate turns out to be positive even in cases where intuition might sug-
gest that key agreement is impossible. For instance, when a satellite broadcasts
random bits and X, Y , and Z are the bits (or more generally signals) received
4 More generally, the distribution PXY Z could be under Eve’s partial control and

may only partly be known to Alice and Bob, for instance in the case of a quantum
transmission disturbed by Eve.

5 neglecting here the fact that the bound can be slightly greater if imperfect secrecy
or a non-zero failure probability is tolerated.
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by Alice, Bob, and Eve, respectively, then key agreement is possible under the
sole condition that Eve’s channel is not completely perfect, even if Alice’s and
Bob’s channels are by orders of magnitude more noisy than Eve’s channel, for
instance when Alice’s and Bob’s bit error rates are very close to 50% (e.g. 0.499)
and Eve’s bit error rate is very small (e.g. 0.001).

We conjecture that the secret key rate S(X; Y ||Z) is positive if and only if
I(X; Y ↓Z) is positive, and the two quantities may even be equal. Even if the
public discussion channel is not authenticated, key agreement is still possible.
The secret key rate is even equal to S(X; Y ||Z) (where an authenticated channel
is assumed) [34,45], except if Eve can either generate from Z a random variable
Ỹ such that PXỸ = PXY or, symmetrically, a random variable X̃ such that
PX̃Y = PXY . In both these cases, key agreement is impossible.

Many results on unconditionally secure key agreement were recently refined
in various ways. We refer to [46] for a very good overview and to [9,47] for
detailed accounts of recent results in unconditionally-secure key agreement.

3.5 Public Randomness and Memory-Bounded Adversaries

In this section we briefly discuss two other scenarios in which Eve cannot obtain
complete information, and where this can be exploited by Alice and Bob to agree
on a very long unconditionally-secure secret key S (e.g. 1 Gigabyte), assuming
that they share only a short secret key K (e.g. 5000 bits) initially.

Suppose that all parties, including Eve, have access to a public source of
randomness (similar to a random oracle) which is too large to be read entirely
by Eve in feasible time. Then Alice and Bob can access only a moderate number
of random bits, selected and combined using the secret key, such that unless
Eve examines a substantial fraction (e.g. one half) of the random bits (which is
infeasible), she ends up having no information about the generated key [30]. More
precisely, there exists an event E such that [S; KW |E ], where W summarizes
Eve’s entire observation resulting from an adaptive access strategy. This is true
even if Eve is given access to the secret key K after finishing her access phase.
Moreover, for any adaptive strategy (without knowledge of K), the event E has
probability exponentially close to 1. In other words, conditioned on this high-
probability event, the scheme achieves perfect secrecy.

While the original proof assumed that Eve accesses individual bits of the
source, Aumann and Rabin [37] showed that the scheme is secure even if she ac-
cesses arbitrary bits of information about the random bits, e.g. Boolean functions
evaluated on all the randomizer bits.

This also motivates the following model [11]: Alice and Bob publicly exchange
a random string too long to fit into Eve’s memory, and use a scheme similar to
that described above, based on a short initially shared secret key. It’s security
holds based on the sole assumption that Eve’s memory capacity is bounded,
without assumption about her computing power.
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4 Information-Theoretic Primitives: A General
Perspective

In both complexity-theoretic and information-theoretic cryptography, an impor-
tant body of research is devoted to the reduction of one primitive to another
primitive, e.g. of a pseudo-random number generator to a one-way function [27]
or of oblivious transfer to the existence of a noisy channel [16]. In this section
we informally define a general notion of an information-theoretic cryptographic
primitive, discuss the general reduction problem among such primitives and pos-
sible goals of such a reduction, and show that many results in the literature fit
into this general framework.

4.1 Definition of IT-Primitives

Definition 2. A (stateless) information-theoretic cryptographic primitive (IT-
primitive or simply primitive, for short) is an abstractly defined mechanism
(which can be viewed as a service offered by a trusted party) to which n ≥ 2
players P1, . . . , Pn have access. For every invocation of the primitive, each player
Pi can provide a (secret) input Xi from a certain domain and receives a (secret)
output Yi from a certain range according to a certain (usually publicly known)
conditional probability distribution PY1,...,Yn|X1,...,Xn

of the outputs, given the
inputs.

As described, different invocations of the primitive are independent, but more
generally an IT-primitive can have an internal state: the players can provide
inputs and receive outputs in consecutive rounds, where in each round the de-
pendence of the outputs on the inputs and the current state is specified by a
conditional probability distribution.

This concept encompasses as special cases a very large class of previously con-
sidered cryptographic primitives, including secure message transmission, noisy
channels, all types of oblivious transfer, broadcast channels, and secure multi-
party computation, as will be explained below. The concept of a secure reduction
of one primitive to another primitive will be discussed later.

There are at least two different ways of defining what it means for the players
to have incomplete knowledge of the distribution PY1,...,Yn|X1,...,Xn

.

– The distribution can be any one in a class of distributions, possibly chosen
by an adversary. If such a primitive is used in a protocol, security must be
guaranteed for all distributions in the class.

– The distribution is fixed, but some or all players’ knowledge about the dis-
tribution may be incomplete. This can be modeled by letting each player
receive an additional output summarizing his information about the distri-
bution. This extra output can be viewed as part of the regular output and
hence this case is covered by the above definition.
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4.2 Examples

Let us first consider some IT-primitives for n = 2 players, called Alice and Bob.

– A noisy channel from Alice to Bob: Alice can provide an input X from a cer-
tain domain (e.g. a bit) and Bob receives the output Y generated according
to the conditional distribution PY |X . For instance, in a binary symmetric
channel with error rate ε, PY |X(y, x) = ε if x 6= y and PY |X(y, x) = 1 − ε if
x = y. The (γ, δ)-unfair noisy channel of [18] is a binary symmetric channel
with error probability chosen by the adversary in the interval [γ, δ].

– Oblivious transfer (OT) of any type is a classical example of an IT-primitive.
In standard 1-out-of-2 OT, Alice chooses as input two bits (or bit strings),
Bob chooses as input a selection bit, and Bob learns as output the corre-
sponding bit (or string), while Alice learns nothing. In the generalized OT
of Brassard and Crépeau [8], Bob can choose to receive any binary function
of the two input bits, and this can be generalized further [8,10] to allow Bob
to specify any channel over which he receives the two input bits, with the
only constraint that his uncertainty (entropy) about the two input bits be
at least γ, for some 0 < γ < 2.

– Damg̊ard, Kilian, and Salvail [18] introduced a more general two-party primi-
tive which they called weak oblivious transfer (WOT). In this model, also Al-
ice receives an output that gives her partial information about Bob’s choice.

– A commitment scheme is a primitive with state: Alice inputs a value (which
is kept as the state). Later, upon initiation of an opening phase, Alice chooses
(with a binary input) whether or not she agrees to open the commitment,
and Bob’s output is the committed value or a dummy value, respectively.
This primitive can also be defined with respect to several players (see below).

Damg̊ard et al. [18] also introduced a two-player primitive called weak generic
transfer (WGT) that is similar to the two-player case of our general IT-primitive.
However, the models differ in the following way: In WGT, cheating by one of the
players is modeled by an additional output which the player receives only when
cheating, but not otherwise. Passive cheating means that the player collects this
information, without deviating from the protocol, and active cheating means that
the player can take this extra information into account during the execution of
the protocol. In contrast, cheating is in our definition not considered as part of
the primitive, but as misbehavior to be protected against in a protocol in which
the primitive is used. The possible assumption that a player receives additional
information when cheating can be phrased as a security condition of a protocol
in which the primitive is used.

Next we consider primitives for n = 3 players which we call Alice, Bob, and
Eve, and where it is known in advance that Alice and Bob are honest while Eve
is a cheating adversary.

– Key agreement between Alice and Bob: The players have no input6 and re-
ceive outputs YA, YB , and YE , respectively. The specification of the primitive

6 Invocation of the primitive could actually be considered as a special type of input.
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is that YA is chosen uniformly at random from the key space, that YB = YA,
and that YE is some dummy output that is independent of YA.

– A noisy random source: there are again no inputs, but the outputs YA, YB,
and YE are selected according to a general distribution. This corresponds
to the key agreement scenario discussed in the previous section, where the
random variables YA, YB, and YE were called X, Y , and Z and generated
according to some distribution PXY Z . The distribution of a random deal of
cards [22] is also a special case.

– Wyner’s wire-tap channel [48] and the generalization due to Csiszár and
Körner [17]: A symbol sent by Alice is received by Bob and Eve over two
dependent noisy channels.

– Secure message transmission also fits into this framework: Alice’s input is
received by Bob, Eve receives no output. If the channel is authenticated but
not confidential, then Eve also receives the output.

– A quantum channel from Alice to Bob can also be modeled as an IT-primitive
if the eavesdropper is forced to measure each quantum state independently.
For modeling the possibility that Eve could perform general quantum com-
putations on the quantum states, our IT-primitive can be generalized to the
quantum world.

We now describe some IT-primitives for general n:

– A broadcast channel: A designated sender provides an input which is received
(consistently) by all other n − 1 players.

– Secure function evaluation for an agreed function: each player provides a
secret input and receives the output of a function evaluated on all inputs.
The players’ output functions can be different.

– Secure multi-party computation [26,3,12] among a set of n ≥ 2 players:
here the primitive keeps state. This corresponds to the general paradigm of
simulating a trusted party.

– A random oracle can also be interpreted in this framework.

4.3 Reductions among IT-Primitives

The general reduction problem can be phrased as follows: assuming the avail-
ability of one primitive G (more generally, several primitives G1, . . . , Gs), can
one construct primitive H , even if some of the players cheat, where the type of
tolerable cheating must be specified. One can distinguish many types of cheat-
ing. Three well-defined cases are active cheater(s) who deviate from the protocol
in an arbitrary manner, passive cheaters who follow the protocol but record all
information in order to violate other players’ privacy, and fail-corrupted cheaters
who may stop executing the protocol at any time. Cheating players are usually
modeled by assuming a central adversary who may corrupt some of the players.

One generally assumes without essential loss of generality or applicability
that insecure communication channels between any pair of entities are available.

Such information-theoretic reductions among primitives are interesting for
at least two reasons. First, if a certain primitive exists or can be assumed to
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exist in nature (e.g. a noisy channel), then it can be used to build practical
unconditionally-secure protocols. Second, if a primitive can be realized or ap-
proximated cryptographically (e.g. oblivious transfer), then one can construct
computationally-secure cryptographic protocols with a well-defined isolated com-
plexity assumption. The relevance of a reduction result depends on at least the
following criteria:

– whether the resulting primitive is useful in applications,
– whether the assumed primitive has a natural realization in the physical

world, or can efficiently be realized by cryptographic means,
– the efficiency of the reduction, for instance the number of invocations of

primitive G needed to realize one occurrence of H?
– the assumption about cheating (e.g. less than n/3 cheaters), and
– which additional assumptions are made (e.g., availability of an authenticated

channel between certain or all pairs of players).

Informally, a reduction of one primitive to another is secure against an ad-
versary with some specified corruption power if the adversary can do nothing
more in the protocol than what he could do in an idealized implementation of
the primitive, except possibly with exponentially small probability.

Many results in cryptography can be phrased as a reduction among primi-
tives. Some of them were mentioned above, and a few are listed below:

– Many reduction results for oblivious transfer (e.g. [8,10,14,15,16,18,20]).
– Secret-key agreement by public discussion from noisy channels as discussed

in the previous section can be interpreted as the reduction of key agreement
to a certain type of noisy source.

– Privacy amplification [6,5], an important sub-protocol in unconditional key
agreement, can be interpreted as the reduction of key agreement to a setting
in which Alice and Bob share the same string, but where Eve has some ar-
bitrary unknown type information about the string with the only constraint
being an upper bound on the total amount of information.

– Byzantine agreement protocols (e.g., see [28]) can be interpreted as the re-
duction of the broadcast primitive to the primitive of bilateral authenticated
channels, assuming active cheating by less than n/3 of the players.

– The commitment primitive can be defined for an arbitrary number n of
players, one of which commits to an input. Secret sharing can be interpreted
as a reduction of such a commitment primitive to the primitive of bilateral
secure communication channels, assuming only passive cheating by a non-
qualified set of players. Verifiable secret sharing is like secret sharing, but
security is guaranteed with respect to active cheaters (e.g. less than n/3).

– The results of Ben-Or, Goldwasser and Wigderson [3] and Chaum, Crépeau,
and Damg̊ard [12] can be interpreted as the reduction of the primitive se-
cure multi-party computation to the primitive bilateral secure communica-
tion channels, assuming active cheating by less than n/3 of the players. If
also the broadcast primitive is assumed, then less than n/2 cheaters can be
tolerated [38].
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4.4 General Transfer Primitives

A two-player primitive covering various types of oblivious transfer as special
cases can be defined as follows: Alice inputs a random variable X, and Bob can
select (by the random variable C ∈ {1, . . . , n}) to receive any one of n random
variables Y1, . . . , Yn defined by a conditional distribution PY1,...,Yn|X , such that
for all (or for certain) distributions PX Alice learns nothing about C and Bob
learns nothing about X beyond what he learns from YC .

We refer to an (α, β)-transfer as any transfer of the described type for which
for at least one distribution PX (e.g., the uniform distribution) we have H(X) =
α and H(Yi) ≤ β for 1 ≤ i ≤ n, and assuming the natural condition that X is
determined from Y1, . . . , Yn, i.e. that X contains no information that is irrelevant
in the transfer. A transfer is said to hide at most γ bits if for all distributions
PX and for 1 ≤ i ≤ n we have H(X|Yi) ≤ γ.

For example, in 1-out-of-n OT of l-bit strings, X is the concatenation of
the n input strings, which are Y1, . . . , Yn. Such an OT is an (ln, l)-transfer and
can easily be shown to hide at most (n − 1)l bits. Motivated by Dodis’ and
Micali’s [20] lower bound on reducing weak 1-out-of-N OT of L-bit strings to
1-out-of-n OT of l-bit strings we prove the following more general theorem.

Theorem 2. The reduction of any (α, β)-transfer to any transfer that hides at
most γ bits requires at least (α − β)/γ invocations of the latter.

Proof. Let X be the input and Y be the output of the (α, β)-transfer to be real-
ized, and let T be the entire communication taking place during the reduction
protocol over the standard communication channel. Let k be the number of invo-
cations of the second transfer, let U1, . . . , Uk and V1, . . . , Vk be the corresponding
k inputs and outputs, and let Uk = [U1, . . . , Uk] and V k = [V1, . . . , Vk]. Then
we have H(X|V kT ) ≥ α − β (for at least one distribution PX) because Bob
must not learn more than β bits about X, and H(X|UkT ) = 0 because unless
Alice enters all information about X into the protocol, she will learn something
about C. We expand H(XUk|V kT ) in two different ways:

H(XUk|V kT ) = H(Uk|V kT ) + H(X|UkV kT ) = H(X|V kT ) + H(Uk|XV kT ),

and observe that H(X|UkV kT ) ≤ H(X|UkT ) = 0 and H(Uk|XV kT ) ≥ 0.
Applying repeatedly the chain rule and the fact the further conditioning cannot
increase entropy, we obtain α − β ≤ H(X|V kT ) ≤ H(Uk|V kT ) ≤ H(Uk|V k) =∑k

j=1 H(Uj |V k, U1 · · ·Uj−1) ≤
∑k

j=1 H(Uj |Vj) ≤ kγ, and the theorem follows.

5 Generalized Random Oracles

In this section we briefly sketch the definition of a new general concept, which we
call generalized random oracles for lack of a perhaps better name, and describe
some applications and constructions.

One motivation for introducing this concept is the fact that many proofs of
the computational security of a cryptographic system (e.g. a MAC scheme or
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a pseudo-random permutation) based on a pseudo-random function (PRF) [25]
rely on information-theoretic arguments, although this is not always made ex-
plicit in the proofs.

An adversary’s attack is modeled as a usually adaptive algorithm for per-
forming certain query operations to the system.7 The proof of the computational
security of such a system consists of two steps: 1) a purely information-theoretic
proof that the attack cannot succeed in an idealized setting where the PRF is
replaced by a random function, and 2) the simple observation that if the ran-
dom function is replaced by a PRF, then any efficient successful attack algorithm
could be converted into an efficient distinguisher for the PRF, thus contradicting
the underlying intractability assumption.

For instance, the Luby-Rackoff construction of a 2n-bit to 2n-bit pseudo-
random permutation generator [29] (involving three pseudo-random functions
from n bits to n bits, combined in a three-round Feistel construction) can be
proved secure by showing that no adaptive algorithm querying the permutation
for less than a certain (super-polynomial) number of arguments (actually 2n/2)
can distinguish it from a truly random permutation with non-negligible advan-
tage. If the three random functions are replaced by PRFs, the construction is
computationally indistinguishable from a random permutation.

We sketch a general approach that allows to simplify and generalize many of
the security proofs given in the literature by interpreting them as the proof of
indistinguishability of two particular types of generalized random oracles. Some
of the proofs can be obtained from a set of simpler information-theoretic argu-
ments which can be formulated as results of independent interest and can serve
as a toolkit for new constructions. Some of the proofs that can be revisited are
those for the Luby-Rackoff construction [29] and generalizations thereof [31,36],
and the analysis of the CBC MAC [1] and the XOR MAC [2].

Definition 3. A generalized random oracle (GRO) is characterized by 1) a set
of query operations, each of which takes as input an argument from a certain
domain and outputs a corresponding value in a certain range, and 2) a random
experiment for which each elementary event in the sample space is a complete
set of answers to all possible queries, with some probability distribution over the
sample space.

A more operational interpretation of a GRO may help: In many cases a GRO
is constructed using an array of k (usually k is exponential in a security param-
eter) independent random bits. The sample space hence consists of 2k equally
probable elementary events, and each access operation consists of (efficiently)
evaluating a certain function involving the k bits.

The simplest form of a GRO is a random function from n bits to 1 bit (hence
k = 2n). The (single) query operation evaluates the random function for a given
argument. A generalization is obtained by allowing other types of queries, e.g.
7 For example, for the case of a MAC, two query operations are allowed: evaluation

of the MAC for a chosen message, and verification of a message-MAC pair (yielding
a binary output) [2].
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arbitrary linear combinations of the bits. Allowing outputs of general size (e.g.
also n bits as in [29]) entails no essential generalization, except that a new type
of binary query exists: for a given input/output pair, do they match?

The concept of locally random functions proposed in [31] also fits into this
framework: these are efficient constructions of GROs with k � 2n and a single
query operation {0, 1}n → {0, 1}, and which are indistinguishable from a random
function for any algorithm accessing them less than, but close to k times.

Definition 4. Two GRO’s A and B have compatible access operations if each
operation for A is compatible with an operation for B in the sense of having
the same input domain and output range. Informally, two GRO’s A and B with
compatible access operations are perfectly (statistically) indistinguishable for a
given number of access operations of each type if no adaptive algorithm that can
access the GROs in the specified manner has different (non-negligibly different)
probability of outputting 1 when the queries are answered using A or B.

Note that there is no restriction on the computing power of the distinguishing
algorithm; hence a GRO is an information-theoretic rather than a complexity-
theoretic concept.

6 Conclusions

The three main points addressed in this paper are:

– In cryptography and more generally in computer science one generally con-
siders only digital operations. However, all processes in the real world, in-
cluding computation and communication, are physical processes involving
noise and other uncertainty factors. We propose to further investigate and
exploit this fact to achieve unconditional security in cryptography.

– A general definition of an information-theoretic cryptographic primitive was
proposed which encompasses many primitives previously proposed in the
literature and leads to new research problems on the reduction between such
primitives.

– A generalized definition of a random oracle has been proposed which has
applications for security proofs in complexity-theoretic cryptography.
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16. C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security
assumptions, 29th Symposium on Foundations of Computer Science, pp. 42–52,
IEEE, 1988.

17. I. Csiszár and J. Körner, Broadcast channels with confidential messages, IEEE
Transactions on Information Theory, vol. IT-24, pp. 339–348, 1978.

18. I. Damg̊ard, J. Kilian, and L. Salvail, On the (im)possibility of basing oblivi-
ous transfer and bit commitment on weakened security assumptions, Advances in
Cryptology - EUROCRYPT ’99, Lecture Notes in Computer Science, vol. 1592,
pp. 56–73, Springer-Verlag, 1999.



64 Ueli Maurer

19. W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

20. Y. Dodis and S. Micali, Lower bounds for oblivious transfer reductions, Advances
in Cryptology - EUROCRYPT ’99, Lecture Notes in Computer Science, vol. 1592,
pp. 42–55, Springer-Verlag, 1999.

21. W. Feller, An introduction to probability theory and its applications, 3rd edition,
vol. 1, Wiley International, 1968.

22. M. J. Fischer and R. N. Wright, Bounds on secret key exchange using a random
deal of cards, Journal of Cryptology , vol. 9, no. 2, pp. 71–99, Springer-Verlag, 1996.

23. P. Gemmell and M. Naor, Codes for interactive authentication, Advances in Cryp-
tology - CRYPTO ’93, Lecture Notes in Computer Science, vol. 773, pp. 355–367,
Springer-Verlag, 1993.

24. E. N. Gilbert, F. J. MacWilliams, and N. J.A. Sloane, Codes which detect decep-
tion, Bell Syst. Tech. J., vol. 53, No. 3, 1974, pp. 405–424.

25. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,
Journal of the ACM, vol. 33, no. 4, pp. 210–217, 1986.

26. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game —
a completeness theorem for protocols with honest majority. In Proc. 19th ACM
Symposium on the Theory of Computing (STOC), pp. 218–229, 1987.

27. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby, Construction of a pseudo-
random generator from any one-way function, Technical Report no. 91-068, ICSI,
Berkeley, CA, 1991.

28. L. Lamport, R. Shostak, and M. Pease, The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382–401, 1982.

29. M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseu-
dorandom functions, SIAM Journal on Computing, vol. 17, no. 2, pp. 373–386,
1988.

30. U.M. Maurer, Conditionally-perfect secrecy and a provably-secure randomized ci-
pher, Journal of Cryptology, vol. 5, pp. 53–66, Springer-Verlag, 1992.

31. ——, A simplified and generalized treatment of Luby-Rackoff pseudo-random per-
mutation generators, Advances in Cryptology - EUROCRYPT ’92, Lecture Notes
in Computer Science, vol. 658, pp. 239–255, Springer-Verlag, 1992.

32. ——, Secret key agreement by public discussion from common information, IEEE
Transactions on Information Theory, vol. 39, no. 3, pp. 733–742, 1993.

33. ——, A unified and generalized treatment of authentication theory, Proceedings
13th Symp. on Theoretical Aspects of Computer Science - STACS ’96, Lecture
Notes in Computer Science, vol. 1046, pp. 387–398, Springer-Verlag, 1996.

34. ——, Information-theoretically secure secret-key agreement by NOT authenticated
public discussion, Advances in Cryptology - EUROCRYPT ’97, Lecture Notes in
Computer Science, vol. 1233, pp. 209–225, Springer-Verlag, 1997.

35. U.M. Maurer and S. Wolf, Unconditionally secure key agreement and the intrinsic
conditional information, IEEE Transactions on Information Theory, vol. 45, no. 2,
pp. 499–514, 1999.

36. M. Naor and O. Reingold, On the construction of pseudorandom permutations:
Luby-Rackoff revisited, Journal of Cryptology, vol. 12, no. 1, pp. 29–66, 1999.

37. M. O. Rabin, personal communication, 1998.
38. T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with

honest majority, Proc. 21st ACM Symposium on the Theory of Computing (STOC),
pp. 73–85, 1989.

39. C. E. Shannon, Communication theory of secrecy systems, Bell System Technical
Journal, vol. 28, pp. 656–715, 1949.

40. ——, A mathematical theory of communication, Bell System Technical Journal,
vol. 27, pp. 379–423 and 623–656, 1948.



Information-Theoretic Cryptography 65

41. G. J. Simmons, A survey of information authentication, Proceedings of the IEEE,
vol. 76, pp. 603–620, 1988.

42. D. R. Stinson, Universal hashing and authentication codes, Advances in Cryptology
- CRYPTO ’91, Lecture Notes in Computer Science, vol. 576, pp. 74–85, Springer-
Verlag, 1992.

43. G. S. Vernam, Cipher printing telegraph systems for secret wire and radio tele-
graphic communications, Journal of the American Institute for Electrical Engi-
neers, vol. 55, pp. 109–115, 1926.

44. M. N. Wegman and J. L. Carter, New hash functions and their use in authentication
and set equality, Journal of Computer and System Sciences, vol. 22, pp. 265-279,
1981.

45. S. Wolf, Strong security against active attacks in information-theoretic secret-key
agreement, Advances in Cryptology - ASIACRYPT ’98, Lecture Notes in Computer
Science, vol. 1514, pp. 405–419, Springer-Verlag, 1998.

46. ——, Unconditional security in cryptography, Proceedings of Summer School in
Cryptology and Data Security, July 1998, Aarhus, Denmark, Lecture Notes in Com-
puter Science, vol. 1561, pp. 217–250, Springer-Verlag, 1999.

47. ——, Information-theoretically and unconditionally secure key agreement in cryp-
tography, Ph.D. Thesis no. 13138, ETH Zurich, 1999.

48. A. D. Wyner, The wire-tap channel, Bell System Technical Journal, vol. 54, no. 8,
pp. 1355–1387, 1975.


	Introduction
	Random Variables, Entropy, and Conditional Independence
	Unconditional Secrecy, Authenticity, and Key Agreement
	Unconditional Authentication
	Unconditional Secrecy
	Unconditional Key Agreement: Impossibility Results and Bounds
	Unconditional Key agreement by Public Discussion
	Public Randomness and Memory-Bounded Adversaries

	Information-Theoretic Primitives: A General Perspective
	Definition of IT-primitives
	Examples
	Reductions among IT-primitives
	General Transfer Primitives

	Generalized Random Oracles
	Conclusions

