
 ;login: AUGUST 2011 27

Working in a network attack team today is cumbersome . Penetration-testing tools
such as Core Impact, Immunity Canvas, and Metasploit assume a single user .
Team members have limited means to share access to compromised hosts, and
good intentions are quickly mired in a disorganized free-for-all .

To address this problem I developed Armitage, a technology that allows a network
attack team to communicate in real time, share data, and seamlessly share access
to hosts compromised by the Metasploit exploitation framework . This article
discusses the needs for network attack collaboration, the inner workings of the
solutions in Armitage, and the lessons learned using this technology with the 2011
Northeast and Mid-Atlantic Collegiate Cyber Defense Competition red teams .

Metasploit

Metasploit [1] is a popular exploit development framework . H .D . Moore started
the project in 2003 . Metasploit makes it easy for security researchers to develop
exploits for software flaws and use them in the context of a very feature-rich tool .

Metasploit features include multiple user interfaces, support for multiple plat-
forms, and powerful post-exploitation tools . Metasploit users may choose which
payload to execute when an exploit is successful . Metasploit payloads range from
simple command shells to powerful post-exploitation tools like Meterpreter .

Through Meterpreter, users may transfer files, execute and interact with pro-
cesses, dump the Windows SAM database, navigate the file system, and manage
processes on the compromised host . When delivered with an exploit, Meterpreter
is capable of running completely from RAM without ever touching disk . Metasploit
provides a command-line interface for interacting with Meterpreter .

Meterpreter is not a Metasploit-only concept . Other exploitation tools, such as
Immunity Canvas and Core Impact, have built-in post-exploitation agents too . The
Shellcoder’s Handbook [2] explains this practice . Exploitation tools that simply pro-
vide a shell lose the ability to transfer files, give up access to the Win32 API, and
in some cases lose access to any privileged tokens the current thread might hold .
Post-exploitation agents, such as Meterpreter, implement a protocol that allows
users to carry out these and other actions . The session sharing ideas presented in
this article should apply to these other post-exploitation agents .

Network Attack Collaboration
Sharing the Shell

R A P H A E L M U D G E

Raphael Mudge is a

Washington, DC, based

code hacker. His current

work is the Armitage GUI for

Metasploit. His past projects include the After

the Deadline proofreading software service

and the Sleep scripting language. Raphael

has worked as a security researcher, software

engineer, penetration tester, and system

administrator. Raphael holds a commission in

the Air National Guard.

rsmudge@gmail.com

 28 ;login: VOL. 36, NO. 4

Armitage

Armitage [3] is the graphical user interface I wrote to support teams using
Metasploit . Armitage organizes Metasploit’s features around the network attack
process . There are features for host discovery, exploitation, post-exploitation, and
maneuver .

Armitage exposes Metasploit’s host management features . It’s possible to import
hosts and launch scans to populate Metasploit’s database with target and service
information . Armitage’s user interface also displays the target database in a table
or graph format .

Armitage’s find attacks feature recommends remote exploits using known host and
service information . Users may also launch browser exploits, generate malicious
files, and create executable files to call back to Metasploit from Armitage .

Armitage provides several post-exploitation tools for Windows targets built on
the capabilities of Metasploit’s Meterpreter agent . Menus are available to escalate
privileges, dump password hashes to a local credentials database, browse the file
system, and open command shells . For Linux and Mac OS X targets, Armitage lets
users interact with a command shell .

Finally, Armitage aids the process of setting up pivots, a Meterpreter capability
that lets users exploit a compromised host to attack and scan other hosts . Armit-
age also exposes Metasploit’s SOCKS proxy module, which turns Metasploit into a
proxy server that routes outgoing connections through existing pivots . With these
tools, users may further explore and move through a target network .

Figure 1 shows the Armitage user interface . Armitage’s targets panel visualizes
known hosts, active sessions, and existing pivots . A session is an active Meter-
preter agent or a shell on a compromised host . The module browser in the top left
lets users search for and launch Metasploit modules . These GUI components are
always visible . Armitage uses tabs to organize open consoles, command shells, and
browsers .

Figure 1: Armitage user interface

 ;login: AUGUST 2011 Network Attack Collaboration 29

Teaming Architecture

Through Armitage, it’s possible to manage and share a remote Metasploit instance
via its RPC server . Metasploit’s RPC server allows clients to send commands to
Metasploit using an XML-based protocol .

Armitage extends Metasploit’s RPC interface to provide real-time communication,
data sharing, and session sharing through a deconfliction server . The deconflic-
tion server offers Armitage clients additional functionality, helps with scalability,
and manages multiple clients accessing Meterpreter and shell sessions .

The deconfliction server is part of Armitage . It’s started using the –server com-
mand line option . The deconfliction server connects to Metasploit like any other
client . When it connects, it sets a global variable in Metasploit to instruct Armit-
age clients to connect to it . Adding features through a separate server protects the
teaming features from internal changes to the Metasploit framework .

Some Metasploit features require the client to modify or read a local file .
Metasploit’s RPC server does not offer an API for reading and writing local files .
For these cases, the deconfliction server offers the missing functionality . The
extra functions in the deconfliction server allow Armitage to offer real-time com-
munication to team members, lock and unlock shell sessions, and transparently
download screenshots taken through Meterpreter .

The deconfliction server also helps Armitage with team scalability . Armit-
age clients used to poll Metasploit to get the list of current hosts, sessions, and
known services . Constant polling from multiple clients caused Metasploit to stop
responding with more than five active clients . The deconfliction server temporar-
ily caches the output of some commands to reduce load on the Metasploit RPC
server . Armitage is now able to support a team of ten or more clients .

The deconfliction server’s primary purpose is to act as a proxy between Armitage
clients and Metasploit for session interaction . All session read and write com-
mands go through the deconfliction server . The deconfliction server manages
these operations using Meterpreter multiplexing to provide transparent session
sharing for the user .

Figure 2 shows the relationship between the Armitage clients, the Metasploit RPC
server, and the deconfliction server . The dashed lines show the communication
path for Meterpreter commands . The solid lines show the path for most Metasploit
commands .

Figure 2: Teaming architecture

 30 ;login: VOL. 36, NO. 4

Real-Time Communication

In a collaboration situation, it helps to have real-time communication . Red teams
often rely on Internet relay chat, instant messaging, a shared wiki, or even yelling
across a room . Armitage’s deconfliction server offers Armitage clients read and
write access to a shared event log .

Armitage presents this shared event log as a new tab . Users may search it and type
messages into it as if they’re using a chat room . Armitage prefixes a user-provided
nickname to each message . The Armitage client also reports events to this shared
log . These events include scans, exploits, login attempts, changes to the pivot con-
figuration, and clearing the database .

In practice, I haven’t seen the Armitage event log overtake other real-time commu-
nication methods . However, the event log is useful for attributing damaging actions
to team members . At one event, a team member launched a mass automated exploi-
tation attack from a shared server meant for post-exploitation only . Another team
member accidentally cleared all of the hosts in the Metasploit database . The event
log helped us identify which team members to counsel .

Data Sharing

Network attack teams generate and capture a lot of data during an engagement .
This data includes port scans, vulnerability scans, encrypted passwords, working
credentials, and other captured artifacts . Making this data available so that the
whole team can locate it and work with it is difficult . Teams often rely on a ver-
sion control system, an ftp server, or a wiki to store this information . The Dradis
Framework [4] is an example of a specialized project to help attack teams organize
their data and make it available to the whole team .

Ryan Linn examined these sharing options and presented another alternative
in his Multiplayer Metasploit [5] work . Mr . Linn observed that wikis and other
non-attack-specific storage mediums suffer from arbitrary organization . Dradis is
a good alternative but it’s hard to take action on the data from Dradis . His alterna-
tive idea is to use Metasploit as a data repository . Metasploit has several data-
base tables to store credentials, encrypted passwords, known services, and data
taken from hosts by automated post-exploitation scripts . Mr . Linn modified the
Metasploit Framework to expose this data through Metasploit’s RPC interface .

Armitage builds on Ryan Linn’s work by using Metasploit for data sharing . Armit-
age’s targets view shows the current hosts and active sessions . Any team member
may right-click a host and select Services to see the known services and any ban-
ner information associated with the service .

In practice, Armitage’s data-sharing features provided shared situational aware-
ness and easy access to data automatically stored by Metasploit . Shared access to
the Metasploit credentials table proved valuable in many situations . Each team
member had access to all successful credentials when attempting to log in to a ser-
vice . This data sharing also allowed any team member to export stored password
hashes and attempt to crack them .

The Access Sharing Problem

In a team situation, the person who gets access to a host is usually the one who
handles post-exploitation . This happens because it is difficult to share access with

 ;login: AUGUST 2011 Network Attack Collaboration 31

other team members . This limitation forces teams to organize themselves by target
types . For example, team members who are Windows experts attack Windows sys-
tems . This is a limiting tactic, as it is still hard for task specialization to occur . The
Windows expert can’t delegate post-exploitation tasks to one or more team members .

One possible solution to the access sharing problem is session passing . The multi_
meter_inject script in Metasploit generates a Meterpreter executable bound to a
callback host and port, uploads it to a host, and executes it on the compromised host .

Session passing is a threat to the network attack team’s stealth . The uploaded
Meterpreter executable may trigger the local antivirus or other personal protection
product . More connections may help the system administrator determine that the
host is compromised . In some situations, session passing is not practical . Some-
times it is difficult to pass a session for an available host, because it would require
pivoting connections through another compromised host .

Session Sharing

An ideal solution to the access sharing problem is session sharing . Network attack
teams would benefit from putting all successful compromises into a shared pool
for any other member to use . Session sharing has a stealth advantage . It does not
require creating a new access by uploading and executing a new program . Ses-
sion sharing also allows all actions to occur through one communication channel .
A system administrator cannot know if one person or five people are working on
their host . Session sharing allows team members to benefit from each other’s work .
Session sharing also allows specialization of tasks . Some team members may focus
on getting access to hosts, others may focus on persistence, and the rest may focus
on post-exploitation .

For Meterpreter sessions, Armitage implements session sharing using “meter-
preter multiplexing” described in the next section . With meterpreter multiplexing,
multiple team members are able to simultaneously use a session . This solution
creates an illusion that the access is not shared .

For shell sessions, Armitage limits access to the session to one team member at a
time . Opening the session sends a request to the deconfliction server to see who
owns it . If the session is in use, Armitage notifies the team member that the ses-
sion is in use . If the session is not in use, Armitage locks it and lets the user interact
with it . When the user closes the tab, Armitage notifies the deconfliction server
that the session is available again .

Session sharing is the most useful teaming capability in Armitage . At all events I
participated in, session sharing allowed team roles to emerge organically . Team
members gravitated toward tasks they were most comfortable with . This is dif-
ferent from my previous exercise experiences, where team members who couldn’t
compromise hosts had limited participation opportunities .

Meterpreter Multiplexing

Meterpreter multiplexing is the Armitage feature that allows multiple clients to
share one session . Armitage adds every meterpreter command to a queue specific
to that session . A separate thread executes these commands in a first-in first-out
way . When Armitage executes a Meterpreter command, it reads output until the
command is complete . This output is then sent to the command requestor using
the identifier stored with the command .

 32 ;login: VOL. 36, NO. 4

Armitage uses a heuristic to decide when a command is complete . The simplest
heuristic is to read from a session until a read returns an empty string . Some
commands return an empty string before they’re finished . For these commands,
Armitage expects a set number of empty reads to consider the command com-
pleted . For all commands, Armitage has a 12-second timeout . This timeout pre-
vents a failed command from making the session non-responsive .

Some Meterpreter scripts execute in the background and report their output later .
These scripts create a problem for the command-multiplexing scheme . It’s possible
for the output of a script to mix in with the output of another command . Armitage
mitigates this by reading from Meterpreter before executing a command . When
used with a local Metasploit instance, Armitage displays stray output in any
Meterpreter tab .

The deconfliction server drops stray output because it does not know which client
to route the information to . This is a drawback, but in practice it’s limited to a few
post-exploitation scripts . Metasploit is moving away from post-exploitation scripts
in favor of post-exploitation modules . These modules are configured and executed
just like exploits . Eventually, this problem with Meterpreter scripts will not exist .

Armitage queues commands in the Armitage client and deconfliction server . In the
local client, the command queue delivers Meterpreter output to the GUI compo-
nent that requested it . A user may execute multiple actions and Armitage will not
become confused .

The deconfliction server uses the stored command identifier to identify the client
that requested the command . When the deconfliction server finishes executing a
command, it routes the output to the right client .

This multiplexing scheme creates the illusion that a shared access is not shared .
When a team member executes a command, the command is added to the local
command queue . When the command is executed locally, it is added to the decon-
fliction server command queue . When the command completes, the deconfliction
server sends the command to the right client . The local client receives this output
and routes it to the local GUI component . Figure 3 illustrates this process .

Figure 3: Meterpreter multiplexing in action

 ;login: AUGUST 2011 Network Attack Collaboration 33

Windows command shells are a special case . Armitage interacts with the Win-
dows command shell using Meterpreter channels . When Meterpreter executes a
process, it creates a channel . Meterpreter provides commands to read from and
write to these channels . When a client wants a command shell, it creates a new
process through Meterpreter and it notes the channel associated with this process .
Clients interact only with their own channels . Armitage uses the command queue
to execute read and write commands to these channels . With this mechanism,
multiple clients may interact with multiple command shells through one Meter-
preter session .

Red Team Formations

This article has shown you how Armitage gives a network attack team real-time
communication, data sharing, and session sharing built on the Metasploit frame-
work . These features make it possible to experiment with different team organiza-
tions .

Excited about this shiny new technology, I used it to centralize the reconnais-
sance, exploitation, and post-exploitation activities in a collaborative capture-
the-flag experiment . Under this organization, each team member used the shared
Metasploit server to scan, attack, and carry out post-exploitation activities . I reck-
oned that this scheme would allow the team to move deeper into a target network,
like an army marching deep into enemy territory . But I do not recommend this
approach for attacking all hosts . A detected attack risks all sessions associated
with the attack host . Detection is more likely when uncoordinated team members
launch scans or attacks against the same host .

The most successful teaming option I’ve seen is to allow everyone to attack locally
and handle post-exploitation through a shared Metasploit instance . Here, team
members use their own tools to get access to a host . Once they’re successful, they
pass a session to the shared Metasploit server and kill their session . This decouples
the attack host from the post-exploitation server . This worked well in practice,
as everyone had access to existing sessions . This also reduced the normal red
team chaos, as team members had no need to exploit already compromised hosts
to get access . Team members with noisy attacks and scans risk detection of their
local host only . Network defenders must find the attack source and the shared
Metasploit server to keep the red team out .

Once a network foothold is available, it’s safe to use a pivot set up on the shared
Metasploit server for attack and reconnaissance of internal hosts . System admin-
istrators often focus on traffic entering and leaving their network, with little
regard for what happens inside it . The risk of detection is low . Using a shared post-
exploitation server also ensures that internal hosts get attention from the red team .
Without session sharing, each team member needs a session on a host capable of
reaching the desired internal targets .

A shared Armitage server also gives red teams the option to use Armitage as a
dashboard for displaying the tactical situation . At the Northeast Collegiate Cyber
Defense Competition we displayed Armitage using a projector in the red team
room . The target area gave us situational awareness of what sessions we had at the
time . The shared event log on the projector provided a timeline of recent sessions
opening and closing .

 34 ;login: VOL. 36, NO. 4

Final Thoughts

Armitage helps network attack teams break away from the single-user assumption
of Metasploit . In this article I described the communication, data sharing, and ses-
sion sharing needs for network attack . I also described Armitage’s features to meet
these needs .

In practice, no feature completely replaced the old ways of collaboration . However,
these features successfully augmented existing approaches . More importantly,
session sharing allowed experimentation with different attack team organization
and task delegation . In two cyber defense competitions, these features enabled col-
laboration on post-exploitation and shared situational awareness .

This article is the beginning of what’s possible . I look forward to seeing what a
mature red team does with this technology . It’s now possible to experiment with
and develop squad-level tactics for network attack .

References

[1] The Metasploit Project: http://www .metasploit .com .

[2] J . Koziol, D . Litchfield, D . Aitel, C . Anley, S . Eren, N . Mehta, and R . Hassell,
The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (Wiley,
2004), pp . 147-148 .

[3] Armitage homepage: http://www .fastandeasyhacking .com .

[4] Dradis Framework: http://dradisframework .org/ .

[5] R . Linn, “Multiplayer Metasploit,” DefCon 18 (2010): https://www .defcon .org/
images/defcon-18/dc-18-presentations/Linn/DEFCON-18-Linn-Multiplayer
-Metasploit .pdf .

