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Working in a network attack team today is cumbersome . Penetration-testing tools 
such as Core Impact, Immunity Canvas, and Metasploit assume a single user . 
Team members have limited means to share access to compromised hosts, and 
good intentions are quickly mired in a disorganized free-for-all . 

To address this problem I developed Armitage, a technology that allows a network 
attack team to communicate in real time, share data, and seamlessly share access 
to hosts compromised by the Metasploit exploitation framework . This article 
discusses the needs for network attack collaboration, the inner workings of the 
solutions in Armitage, and the lessons learned using this technology with the 2011 
Northeast and Mid-Atlantic Collegiate Cyber Defense Competition red teams .

Metasploit

Metasploit [1] is a popular exploit development framework . H .D . Moore started 
the project in 2003 . Metasploit makes it easy for security researchers to develop 
exploits for software flaws and use them in the context of a very feature-rich tool .

Metasploit features include multiple user interfaces, support for multiple plat-
forms, and powerful post-exploitation tools . Metasploit users may choose which 
payload to execute when an exploit is successful . Metasploit payloads range from 
simple command shells to powerful post-exploitation tools like Meterpreter .

Through Meterpreter, users may transfer files, execute and interact with pro-
cesses, dump the Windows SAM database, navigate the file system, and manage 
processes on the compromised host . When delivered with an exploit, Meterpreter 
is capable of running completely from RAM without ever touching disk . Metasploit 
provides a command-line interface for interacting with Meterpreter . 

Meterpreter is not a Metasploit-only concept . Other exploitation tools, such as 
Immunity Canvas and Core Impact, have built-in post-exploitation agents too . The 
Shellcoder’s Handbook [2] explains this practice . Exploitation tools that simply pro-
vide a shell lose the ability to transfer files, give up access to the Win32 API, and 
in some cases lose access to any privileged tokens the current thread might hold . 
Post-exploitation agents, such as Meterpreter, implement a protocol that allows 
users to carry out these and other actions . The session sharing ideas presented in 
this article should apply to these other post-exploitation agents . 
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Armitage

Armitage [3] is the graphical user interface I wrote to support teams using 
Metasploit . Armitage organizes Metasploit’s features around the network attack 
process . There are features for host discovery, exploitation, post-exploitation, and 
maneuver . 

Armitage exposes Metasploit’s host management features . It’s possible to import 
hosts and launch scans to populate Metasploit’s database with target and service 
information . Armitage’s user interface also displays the target database in a table 
or graph format .

Armitage’s find attacks feature recommends remote exploits using known host and 
service information . Users may also launch browser exploits, generate malicious 
files, and create executable files to call back to Metasploit from Armitage .

Armitage provides several post-exploitation tools for Windows targets built on 
the capabilities of Metasploit’s Meterpreter agent . Menus are available to escalate 
privileges, dump password hashes to a local credentials database, browse the file 
system, and open command shells . For Linux and Mac OS X targets, Armitage lets 
users interact with a command shell . 

Finally, Armitage aids the process of setting up pivots, a Meterpreter capability 
that lets users exploit a compromised host to attack and scan other hosts . Armit-
age also exposes Metasploit’s SOCKS proxy module, which turns Metasploit into a 
proxy server that routes outgoing connections through existing pivots . With these 
tools, users may further explore and move through a target network .

Figure 1 shows the Armitage user interface . Armitage’s targets panel visualizes 
known hosts, active sessions, and existing pivots . A session is an active Meter-
preter agent or a shell on a compromised host . The module browser in the top left 
lets users search for and launch Metasploit modules . These GUI components are 
always visible . Armitage uses tabs to organize open consoles, command shells, and 
browsers .

Figure 1:  Armitage user interface
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Teaming Architecture

Through Armitage, it’s possible to manage and share a remote Metasploit instance 
via its RPC server . Metasploit’s RPC server allows clients to send commands to 
Metasploit using an XML-based protocol .

Armitage extends Metasploit’s RPC interface to provide real-time communication, 
data sharing, and session sharing through a deconfliction server . The deconflic-
tion server offers Armitage clients additional functionality, helps with scalability, 
and manages multiple clients accessing Meterpreter and shell sessions . 

The deconfliction server is part of Armitage . It’s started using the –server com-
mand line option . The deconfliction server connects to Metasploit like any other 
client . When it connects, it sets a global variable in Metasploit to instruct Armit-
age clients to connect to it . Adding features through a separate server protects the 
teaming features from internal changes to the Metasploit framework . 

Some Metasploit features require the client to modify or read a local file . 
Metasploit’s RPC server does not offer an API for reading and writing local files . 
For these cases, the deconfliction server offers the missing functionality . The 
extra functions in the deconfliction server allow Armitage to offer real-time com-
munication to team members, lock and unlock shell sessions, and transparently 
download screenshots taken through Meterpreter .

The deconfliction server also helps Armitage with team scalability . Armit-
age clients used to poll Metasploit to get the list of current hosts, sessions, and 
known services . Constant polling from multiple clients caused Metasploit to stop 
responding with more than five active clients . The deconfliction server temporar-
ily caches the output of some commands to reduce load on the Metasploit RPC 
server . Armitage is now able to support a team of ten or more clients .

The deconfliction server’s primary purpose is to act as a proxy between Armitage 
clients and Metasploit for session interaction . All session read and write com-
mands go through the deconfliction server . The deconfliction server manages 
these operations using Meterpreter multiplexing to provide transparent session 
sharing for the user . 

Figure 2 shows the relationship between the Armitage clients, the Metasploit RPC 
server, and the deconfliction server . The dashed lines show the communication 
path for Meterpreter commands . The solid lines show the path for most Metasploit 
commands .

Figure 2: Teaming architecture
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Real-Time Communication

In a collaboration situation, it helps to have real-time communication . Red teams 
often rely on Internet relay chat, instant messaging, a shared wiki, or even yelling 
across a room . Armitage’s deconfliction server offers Armitage clients read and 
write access to a shared event log .

Armitage presents this shared event log as a new tab . Users may search it and type 
messages into it as if they’re using a chat room . Armitage prefixes a user-provided 
nickname to each message . The Armitage client also reports events to this shared 
log . These events include scans, exploits, login attempts, changes to the pivot con-
figuration, and clearing the database .

In practice, I haven’t seen the Armitage event log overtake other real-time commu-
nication methods . However, the event log is useful for attributing damaging actions 
to team members . At one event, a team member launched a mass automated exploi-
tation attack from a shared server meant for post-exploitation only . Another team 
member accidentally cleared all of the hosts in the Metasploit database . The event 
log helped us identify which team members to counsel .

Data Sharing

Network attack teams generate and capture a lot of data during an engagement . 
This data includes port scans, vulnerability scans, encrypted passwords, working 
credentials, and other captured artifacts . Making this data available so that the 
whole team can locate it and work with it is difficult . Teams often rely on a ver-
sion control system, an ftp server, or a wiki to store this information . The Dradis 
Framework [4] is an example of a specialized project to help attack teams organize 
their data and make it available to the whole team .

Ryan Linn examined these sharing options and presented another alternative 
in his Multiplayer Metasploit [5] work . Mr . Linn observed that wikis and other 
non-attack-specific storage mediums suffer from arbitrary organization . Dradis is 
a good alternative but it’s hard to take action on the data from Dradis . His alterna-
tive idea is to use Metasploit as a data repository . Metasploit has several data-
base tables to store credentials, encrypted passwords, known services, and data 
taken from hosts by automated post-exploitation scripts . Mr . Linn modified the 
Metasploit Framework to expose this data through Metasploit’s RPC interface . 

Armitage builds on Ryan Linn’s work by using Metasploit for data sharing . Armit-
age’s targets view shows the current hosts and active sessions . Any team member 
may right-click a host and select Services to see the known services and any ban-
ner information associated with the service . 

In practice, Armitage’s data-sharing features provided shared situational aware-
ness and easy access to data automatically stored by Metasploit . Shared access to 
the Metasploit credentials table proved valuable in many situations . Each team 
member had access to all successful credentials when attempting to log in to a ser-
vice . This data sharing also allowed any team member to export stored password 
hashes and attempt to crack them .

The Access Sharing Problem

In a team situation, the person who gets access to a host is usually the one who 
handles post-exploitation . This happens because it is difficult to share access with 



 ;login: AUGUST 2011  Network Attack Collaboration   31

other team members . This limitation forces teams to organize themselves by target 
types . For example, team members who are Windows experts attack Windows sys-
tems . This is a limiting tactic, as it is still hard for task specialization to occur . The 
Windows expert can’t delegate post-exploitation tasks to one or more team members .

One possible solution to the access sharing problem is session passing . The multi_
meter_inject script in Metasploit generates a Meterpreter executable bound to a 
callback host and port, uploads it to a host, and executes it on the compromised host . 

Session passing is a threat to the network attack team’s stealth . The uploaded 
Meterpreter executable may trigger the local antivirus or other personal protection 
product . More connections may help the system administrator determine that the 
host is compromised . In some situations, session passing is not practical . Some-
times it is difficult to pass a session for an available host, because it would require 
pivoting connections through another compromised host .

Session Sharing

An ideal solution to the access sharing problem is session sharing . Network attack 
teams would benefit from putting all successful compromises into a shared pool 
for any other member to use . Session sharing has a stealth advantage . It does not 
require creating a new access by uploading and executing a new program . Ses-
sion sharing also allows all actions to occur through one communication channel . 
A system administrator cannot know if one person or five people are working on 
their host . Session sharing allows team members to benefit from each other’s work . 
Session sharing also allows specialization of tasks . Some team members may focus 
on getting access to hosts, others may focus on persistence, and the rest may focus 
on post-exploitation .

For Meterpreter sessions, Armitage implements session sharing using “meter-
preter multiplexing” described in the next section . With meterpreter multiplexing, 
multiple team members are able to simultaneously use a session . This solution 
creates an illusion that the access is not shared . 

For shell sessions, Armitage limits access to the session to one team member at a 
time . Opening the session sends a request to the deconfliction server to see who 
owns it . If the session is in use, Armitage notifies the team member that the ses-
sion is in use . If the session is not in use, Armitage locks it and lets the user interact 
with it . When the user closes the tab, Armitage notifies the deconfliction server 
that the session is available again .

Session sharing is the most useful teaming capability in Armitage . At all events I 
participated in, session sharing allowed team roles to emerge organically . Team 
members gravitated toward tasks they were most comfortable with . This is dif-
ferent from my previous exercise experiences, where team members who couldn’t 
compromise hosts had limited participation opportunities . 

Meterpreter Multiplexing

Meterpreter multiplexing is the Armitage feature that allows multiple clients to 
share one session . Armitage adds every meterpreter command to a queue specific 
to that session . A separate thread executes these commands in a first-in first-out 
way . When Armitage executes a Meterpreter command, it reads output until the 
command is complete . This output is then sent to the command requestor using 
the identifier stored with the command . 
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Armitage uses a heuristic to decide when a command is complete . The simplest 
heuristic is to read from a session until a read returns an empty string . Some 
commands return an empty string before they’re finished . For these commands, 
Armitage expects a set number of empty reads to consider the command com-
pleted . For all commands, Armitage has a 12-second timeout . This timeout pre-
vents a failed command from making the session non-responsive .

Some Meterpreter scripts execute in the background and report their output later . 
These scripts create a problem for the command-multiplexing scheme . It’s possible 
for the output of a script to mix in with the output of another command . Armitage 
mitigates this by reading from Meterpreter before executing a command . When 
used with a local Metasploit instance, Armitage displays stray output in any 
Meterpreter tab .

The deconfliction server drops stray output because it does not know which client 
to route the information to . This is a drawback, but in practice it’s limited to a few 
post-exploitation scripts . Metasploit is moving away from post-exploitation scripts 
in favor of post-exploitation modules . These modules are configured and executed 
just like exploits . Eventually, this problem with Meterpreter scripts will not exist .

Armitage queues commands in the Armitage client and deconfliction server . In the 
local client, the command queue delivers Meterpreter output to the GUI compo-
nent that requested it . A user may execute multiple actions and Armitage will not 
become confused . 

The deconfliction server uses the stored command identifier to identify the client 
that requested the command . When the deconfliction server finishes executing a 
command, it routes the output to the right client . 

This multiplexing scheme creates the illusion that a shared access is not shared . 
When a team member executes a command, the command is added to the local 
command queue . When the command is executed locally, it is added to the decon-
fliction server command queue . When the command completes, the deconfliction 
server sends the command to the right client . The local client receives this output 
and routes it to the local GUI component . Figure 3 illustrates this process .

Figure 3: Meterpreter multiplexing in action
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Windows command shells are a special case . Armitage interacts with the Win-
dows command shell using Meterpreter channels . When Meterpreter executes a 
process, it creates a channel . Meterpreter provides commands to read from and 
write to these channels . When a client wants a command shell, it creates a new 
process through Meterpreter and it notes the channel associated with this process . 
Clients interact only with their own channels . Armitage uses the command queue 
to execute read and write commands to these channels . With this mechanism, 
multiple clients may interact with multiple command shells through one Meter-
preter session .

Red Team Formations

This article has shown you how Armitage gives a network attack team real-time 
communication, data sharing, and session sharing built on the Metasploit frame-
work . These features make it possible to experiment with different team organiza-
tions . 

Excited about this shiny new technology, I used it to centralize the reconnais-
sance, exploitation, and post-exploitation activities in a collaborative capture-
the-flag experiment . Under this organization, each team member used the shared 
Metasploit server to scan, attack, and carry out post-exploitation activities . I reck-
oned that this scheme would allow the team to move deeper into a target network, 
like an army marching deep into enemy territory . But I do not recommend this 
approach for attacking all hosts . A detected attack risks all sessions associated 
with the attack host . Detection is more likely when uncoordinated team members 
launch scans or attacks against the same host .

The most successful teaming option I’ve seen is to allow everyone to attack locally 
and handle post-exploitation through a shared Metasploit instance . Here, team 
members use their own tools to get access to a host . Once they’re successful, they 
pass a session to the shared Metasploit server and kill their session . This decouples 
the attack host from the post-exploitation server . This worked well in practice, 
as everyone had access to existing sessions . This also reduced the normal red 
team chaos, as team members had no need to exploit already compromised hosts 
to get access . Team members with noisy attacks and scans risk detection of their 
local host only . Network defenders must find the attack source and the shared 
Metasploit server to keep the red team out .

Once a network foothold is available, it’s safe to use a pivot set up on the shared 
Metasploit server for attack and reconnaissance of internal hosts . System admin-
istrators often focus on traffic entering and leaving their network, with little 
regard for what happens inside it . The risk of detection is low . Using a shared post-
exploitation server also ensures that internal hosts get attention from the red team . 
Without session sharing, each team member needs a session on a host capable of 
reaching the desired internal targets . 

A shared Armitage server also gives red teams the option to use Armitage as a 
dashboard for displaying the tactical situation . At the Northeast Collegiate Cyber 
Defense Competition we displayed Armitage using a projector in the red team 
room . The target area gave us situational awareness of what sessions we had at the 
time . The shared event log on the projector provided a timeline of recent sessions 
opening and closing . 
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Final Thoughts

Armitage helps network attack teams break away from the single-user assumption 
of Metasploit . In this article I described the communication, data sharing, and ses-
sion sharing needs for network attack . I also described Armitage’s features to meet 
these needs . 

In practice, no feature completely replaced the old ways of collaboration . However, 
these features successfully augmented existing approaches . More importantly, 
session sharing allowed experimentation with different attack team organization 
and task delegation . In two cyber defense competitions, these features enabled col-
laboration on post-exploitation and shared situational awareness .

This article is the beginning of what’s possible . I look forward to seeing what a 
mature red team does with this technology . It’s now possible to experiment with 
and develop squad-level tactics for network attack .
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