
The First Level of Super Mario Bros. is Easy with Lexicographic

Orderings and Time Travel . . . after that it gets a little tricky.

Dr. Tom Murphy VII Ph.D.∗

1 April 2013

Abstract

This paper presents a simple, generic method for au-
tomating the play of Nintendo Entertainment System
games.

Keywords: computational super mario brothers, mem-
ory inspection, lexicographic induction, networked enter-
tainment systems, pit-jumping, ...

1 Introduction

The Nintendo Entertainment System is probably the
best video game console, citation not needed. Like
many, I have spent thousands of hours of my life playing
NES games, including several complete playthroughs
of classics like Super Mario Bros., Bionic Commando,
Bubble Bobble, and other favorites. By the year 2013,
home computers have become many orders of magni-
tude faster and more capacious than the NES hardware.
This suggested to me that it may be time to automate
the playing of NES games, in order to save time.1 In
this paper I present a generic technique for automating
the playing of NES games. The approach is practical
on a single computer, and succeeds on several games,
such as Super Mario Bros.. The approach is amusingly
elegant and surprisingly effective, requires no detailed
knowledge of the game being played, and is capable of
novel and impressive gameplay (for example, bug ex-
ploitation). Disclaimer for SIGBOVIK audience:
This work is 100% real.

On a scale from “the title starts with Toward” to
“Donald Knuth has finally finished the 8th volume on
the subject,” this work is a 3. The purpose of this

∗Copyright © 2013 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2013 with the reluctant sigh of the Associ-
ation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. CHF 0.00

1Rather, to replace it with time spent programming.

paper is mainly as a careful record of the current sta-
tus for repeatability and further development on this
important research subject. A short video version of
this paper is available for those that hate reading, at
http://tom7.org/mario, and is the more fun way to
consume the results. This page also contains audiovi-
sual material that makes this work more entertaining
(for example, its output) and source code.

The basic idea is to deduce an objective function from
a short recording of a player’s inputs to the game. The
objective function is then used to guide search over pos-
sible inputs, using an emulator. This allows the player’s
notion of progress to be generalized in order to pro-
duce novel gameplay. A design goal is that the objective
function be amusingly elegant (not at all smart, fancy,
or customized to the game) in order to demonstrate
that the game is reducible to such a simple objective.
The search needs to be game-agnostic and practical, but
since the space is exponential (256n)[7], we need to be
smart here.

The objective function, the algorithm to deduce it,
the search strategy, and its implementation are all in-
teresting and will be discussed in that order. I then
discuss the results of using the approach to automate
several NES games. To set the stage, I begin with a
description of the NES hardware and emulation of it.

1.1 The NES hardware and emulation

The NES is based around an 8-bit processor running
at 1.79 MHz, the Ricoh 2A03. 8 bits is really small.
You can see them all right here: 00001111. It’s no co-
incidence that each controller also has 8 buttons: Up,
Down, Left, Right, Select, Start, B and A. It has only
2048 bytes of general purpose RAM. (There is also some
special purpose RAM for graphics, which we ignore in
this work.) 2048 bytes is really small. You can see them
all in Figure 1. As a result, NES programs are written
to use memory efficiently and straightforwardly; usu-
ally there are fixed memory locations used for all the

1



critical game facts like the player’s health, number of
lives, coordinates on the screen, and so on. For exam-
ple, in Super Mario Bros., the single byte at location
0x757 contains the number of lives the player has. The
location 0x75F contains the current world, and 0x760

the current level. The NES outputs 60.0988 frames per
second, which we will just call 60 in this paper.

There are a number of emulators for NES. These work
by simulating the NES hardware, for example with a
2048-byte array for its memory, and simulating the steps
of its 2A03 processor on some ROM, and hooking a key-
board or joystick into the 8 bits of input. (There are of
course many details to work out! But in essence emula-
tion is just that.) This process is completely determinis-
tic, so it is possible to record the sequence of inputs (the
inputs can only be read once per video frame, so this
sequence is 60 bytes per second) and play them back
and get the same result. This also means that an input
sequence can be computed in non-real time, either much
slower or much faster than a NES would normally run.
In this work we use the FCEUX[1] emulator, which is
popular for its accuracy and advanced tools.

Figure 1: 2048 bytes, a 64x32 image.

2 Objective function

Bytes in memory (and sometimes 16- and 32-bit words)
can contain interesting game facts like the player’s posi-
tion in the level or score. The central idea of this paper
is to use (only) the value of memory locations to deduce
when the player is “winning”. The things that a human
player perceives, like the video screen and sound effects,
are completely ignored. As an additional simplification,
we assume that winning always consists of a value going
up—either the position in the level getting larger, the
score getting larger, the number of lives, the world or
level number getting bigger, and so on.

This is actually a little bit too naive; for example,
Mario’s overall progress through the game is represented
by a pair. You start in World 1-1 and the underground

level that comes next is World 1-2 (we’ll call this w = 1
and ` = 2). But after you discover the princess is in an-
other castle in World 1-4, the next level is 2-1.2 This
can’t be represented as a single byte going up (some-
times the second part ` goes down when we get to a new
first part w), but it can be represented as a lexicographic
order on the pair 〈w, `〉; that is, 〈w1, `1〉 < 〈w2, `2〉 if
w1 = w2 and `1 < `2, or if w1 < w2 no matter the val-
ues of `1 and `2. This matches our intuitive idea and is
also mathematically nice. It also generalizes multi-byte
encodings of things like your score (which can be larger
than 8 bits and so is often stored in 16 or 32), including
both big-endian and little-endian representations.3

More importantly, it allows the combination of se-
mantically unrelated bytes, like: 〈world, level, screen
inside the world, x position on the screen〉 or 〈world,
lives, low byte of score〉. Many orderings may describe
gameplay. These orderings may be temporarily vio-
lated in normal play: Although the score always goes
up, Mario’s x position may temporarily decrease if he
needs to navigate around some obstacle.4 So, to “faith-
fully” represent gameplay, we will generate a set of lexi-
cographic orderings on memory locations, with the idea
that they “generally go up” but not necessarily at ev-
ery step. These orderings will also have weights. The
next section describes how we take a sequence of player
inputs and deduce the orderings.

2.1 Deriving the objective function

In order to derive an objective function, we’ll start with
an abstract subroutine that finds a single lexicographic
ordering nondeterministically. This function takes in
an ordered list of n memories M1 . . .Mn which all have
size m bytes. For example, m = 2048 and n = 100, for
the memories at each of the first 100 frames of someone
playing Super Mario Bros.. It produces an ordered list
of unique memory locations L1 . . . Lk (where 0 ≤ Li <

2In case you never realized this, it is time to learn that the
legendary “Minus World” of -1 is not actually a negative world,
but World 36-1 being incorrectly rendered because there is no
glyph for the 36th digit. The trick used to get to the Minus
World just happens to leave the value 36 in that memory location
rather than initializing it to a useful value. The ROM does not
contain data for world 36 so it just interprets garbage data as a
description of the world.

3A possible additional simplification would be to just take lex-
icographic orderings over bits, which then generalizes to 8-bit
bytes. This is probably too crazy, but just right now I am sort of
feeling like maybe I should try it, though it may be the beer.

4Note to self: Maybe we should give a much higher score
to globally preserved objectives than to locally preserved ones.
But that may presuppose that the input represents a whole
playthrough?



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100

Figure 2: A single maximal tight valid lexicographic or-
dering for my 4,000-frame input training data to Super
Mario Bros.. This function is globally nondecreasing,
and is the decimal memory locations 〈 232, 57, 73, 74,
75, 115, 130, 155, 32, 184, 280, 491, 506, 1280, 1281,
1282, 1283, 1288, 1290, 1337, 1338, 1339, 1384, 1488,
1490, 1496, 1497, 1498, 1499, 1514, 1873, 1882, 1888,
1904, 1872, 1906, 112, 113, 114, 2009, 2010, 2011, 1539〉.
This is not a great objective function; there are long
spans where all the memories are equal according to
it, and the nice smooth slopes are happening during
level transitions where the game is ignoring inputs (they
are probably timers counting up each frame, which is
why they are so smooth). Other slicing produces better
objectives.
For reasons unknown—I just discovered this while gen-
erating the figure—all of the objective functions learned
with this method, regardless of the nondeterministic
choices, appear to have this same curve, despite using
different memory locations. It may be that they are
different permutations of bytes that all change simulta-
neously, only on the frames where there are jumps in
this picture, and there are no other orderings that are
tight, valid, and maximal. This is still surprising and
warrants investigation.

m, that is, each is some spot in the 2048 bytes of RAM)
that is a maximal tight valid lexicographic ordering of
M . Let’s start by defining those terms just to be careful.

Given some list of memory locations L1 . . . Lk and a
pair of memories Ma and Mb, we say that Ma =L Mb iff
Ma[L1] = Mb[L1] and Ma[L2] = Mb[L2] and so on for
every Li; that is, the bytes must be equal at each of the
locations. Easy. We say that Ma <L Mb iff there exists
some p ≤ k where Ma[L1] = Mb[L1] . . .Ma[Lp−1] =
Mb[Lp−1] and Ma[Lp] < Mb[Lp]. Put simply, if the
two memories are not equal according to L (have the
same byte at every memory location) then there is a

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100

Figure 3: Ten objective functions trained on different
tenths of the 4,000 inputs for Super Mario Bros.. These
functions are normalized against the range of all values
they take on during the movie; you can see that most are
increasing locally most of the time, but many drop back
to zero around the 3100th frame, when Mario reaches
world 1-2. Within its 400-frame window, each objective
is guaranteed to be nondecreasing.

unique first location (Lp) where they have a different
byte, and that byte determines the order. Ma >L Mb

is just defined as Mb <L Ma; Ma ≤L Mb is just Ma <L

Mb or Ma =L Mb, and similarly for ≥L, and they mean
what you think so don’t worry.

Every L defines a lexicographic ordering (< and =
operators). L is a valid lexicographic ordering of M if
Mi ≤L Mi+1 for 1 ≤ i ≤ n; each memory is less than
or equal to the next memory in the sequence. It follows
that Mi ≤L Mj whenever i < j.

Every prefix of a valid L (including the empty pre-
fix) is a valid lexicographic ordering as well. On a scale
from useless to useful, the empty prefix is a 1 (it equates
all memories), which suggests that some orderings are
better than other. To give a primitive notion of “good”
lexicographic orderings, we define a maximal valid lex-
icographic ordering to be L such that there are no ex-
tensions of L that are valid. An extension of L1 . . . Lk

is just L1 . . . Lk, Lk+1 (where Lk+1 6= Li for 1 ≤ i ≤ k):
Some new memory location that we put at the end of
the order (in the least important position). We do not
consider extending in the middle of the order or begin-
ning, although that would make sense.

Maximal valid orderings are good and it is straight-
forward to produce them (a less constrained version of
the algorithm below), but they have the bummer down-
side that memory locations that never change value for
any M can be included at any position of the ordering,
and all such choices are equivalent. And in fact all loca-



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100

Figure 4: Ten objective functions trained on every 100th

memory, starting at frame 0, frame 1, and so on up
to frame 10. Normalized as usual. These objectives
exhibit excellent global progress, but are locally very
noisy. Among the methods I used to generate objec-
tives, this one produces the best results (based on my
intuition about what a good objective function looks
like).

tions must be included to make the ordering maximal.
This is bad because when M contains many locations
with fixed values, we have boatloads of equivalent order-
ings, and they’re also longer than necessary. An tight
valid ordering is one where for each Li there exists at
least one Ma and Ma+1 where Ma[Li] < Ma+1[Li] and
Ma[Lj ] = Ma+1[Lj ] for all i < j; that is, every location
has to participate in the ordering at least once. The
notion of maximal has to be relative to this property as
well—a tight extension is one that produces a tight valid
ordering, and a maximal tight valid ordering permits no
tight extensions.

On a scale from simple to fancy, the algorithm to
generate L from M is a 3. Given those definitions, the
idea is to start with the empty prefix, which is always a
tight valid lexicographic ordering but usually not maxi-
mal. We then pick a tight extension that is valid; if none
exists then we are done and have a maximal tight valid
ordering. Otherwise we have a new tight valid ordering,
and we repeat.

The pseudocode gives a pseudoimplementation of the
algorithm that is more pseudodetailed. The C++ im-
plementation is in objective.*. C++ is not a good
language for this kind of program but we use it because
the NES emulator is written in C++.

2.2 The objective function, in practice

We can’t just use a single objective function. Choosing
objective functions nondeterministically, we may get a
crap one like “High byte of the score” which only goes
up once during all of our memory observations. We also
can’t just use all of the memory observations, because
there may be brief moments that violate strict order-
ings, like Mario’s x coordinate temporarily decreasing
to navigate around an obstacle. More starkly, the first
few hundred frames of the game are almost always ini-
tialization where the memory temporarily takes on val-
ues that are not representative of later gameplay at all.
In practice, we use the nondeterministic function from
Section 2.1 on multiple different slices of the memory
observations. We also call it many times to nondeter-
ministically generate many different objectives. Finally,
we weight the objectives by how representative we think
they are.

Parameter Alert! This one of the first places
where we have some arbitrary constants, which
are the enemy of elegance. On a scale of ball-
park to obsessively overfit, these constants are
a 2; I basically looked at some graphs while
developing the objective function learning part
of the code to decide whether they were “good
enough” and didn’t tune them after starting
to observe actual performance. Some of those
graphs appear in figures here. For all I know,
these are really bad choices, but it was im-
portant for aesthetic reasons for the objective
function to be brutish. The only reason to
permit these parameters at all is that it sim-
ply does not work to have a single ordering or
to use only orderings that apply to the whole
memory.

Skipping. To avoid being confused by RAM initial-
ization and menu, I ignore all memories up until the
first input by the player. Including these would be es-
pecially suspicious because the RAM’s contents are not
even well-defined until the program writes something to
them.5

Slicing. I generate 50 orderings for M1 . . .Mn; the
whole recording starting immediately after the first

5Emulators tend to fix them to a specific pattern so that em-
ulation is completely deterministic, but in real hardware they are
truly uninitialized, or retain the values from the last reset or game
inserted. Some semi-famous tricks involve removing and insert-
ing game cartridges while the system is running in order to take
advantage of this.



(* Prefix is the prefix so far (int list) and remain is the list of memory

locations that we can still consider. Invariant is that prefix is a

tight valid ordering on M. Returns the memory locations from remain

that are a tight extension of the prefix. *)

fun candidates (prefix, remain) =

let lequal = (* list of indices i where

Mi = prefix Mi+1 *)

let notgreater = (* members x of remain where

Mi[x] > Mi+1[x] is

not true for any i in

lequal *)

let tight = (* members y of notgreater where

Mi[x] < Mi+1[x] is true

for some i in lequal *)

in tight

(* Returns a maximal tight valid ordering, given a tight valid prefix and

list of memory locations we are permitted to consider. *)

fun ordering (prefix, remain) =

case candidates (prefix, remain) of

(* No extensions means it’s maximal. *)

nil => prefix

| cand =>

let c = nondeterministically-choose-one cand

let remain’ = remove-element (remain, c)

let prefix’ = prefix @ [c]

in ordering (prefix’, remain’)

Figure 5: Pseudocodes for nondeterministically generating a maximal tight valid lexicographic ordering on some
memories M . The recursive function ordering just orchestrates the selection of an extension until there are no
possibilities remaining, and returns it. The function candidates finds all the possible extensions for a prefix.
First we compute lequal, all of the adjacent memory pairs (represented by the index of the first in the pair) where
the memories are equal on the prefix. Only pairs that are equal on the prefix are interesting because these are
the only ones that will even depend on the extension to the prefix when comparing the memories. We only need
to consider adjacent pairs because on an a scale of exercise for the reader to proof is contained in the extended
technical report, this statement is a you can figure that one out yourself. Valid extension locations are ones where
the memory pairs are never increasing at that location (note that in places where pairs are not equal but strictly
less on the prefix, it’s perfectly fine for the extension to be greater; this is the “point” of lexicographic orderings).
Finally, tight extensions are those valid ones that have at least one pair of memories where the location has a
value that is strictly less.



keypress. During gameplay some values really are
completely nondecreasing, like the player’s score and
world/level pair. Figure 2 shows what a global or-
dering looks like. I also generate 3 orderings for each
tenth of the memory sequence, e.g. M1 . . .Mn/10 and
Mn/10+1 . . .M2n/10, etc. The intention is to capture
orderings that are rarely violated, or sections of the
game with unusual objectives (e.g. a minigame or
swimming level). Orderings generated this way look
pretty random, and on a scale from solid to suspicious,
I can’t vouch for them. Then I generate objectives from
non-consecutive memories that are evenly spread out
through the observations: Ten objectives chosen from
every 100th memory, starting from the 0th frame, 1st

frame, 2nd frame, and so on up to the 9th. Similarly
for every 250th frame, and a single objective for mem-
ory sliced to every 1000th frame, with start positions of
0–9. The intention is to capture objectives that grow
slowly over the course of a playthrough, without getting
distracted by local noise.

Weighting. To reduce the importance of randomness
in the learning process, and the arbitrariness of the slic-
ing, each objective function is also assigned a weight.
An ideal objective function takes on its minimal value
on the first frame and maximal on the last (accord-
ing to the ordering), and increases steadily throughout
the observed memories. This is ideal because it allows
us to just follow the gradient to reach good states. A
bad objective function freqently regresses (recall that
although we produce valid orderings, an ordering that
is valid on some slice may not be valid for the whole
sequence of memories). To weight an objective L, we
first collect all of the values (the vector of values of the
memory locations L1 . . . Lk) it takes on throughout the
observations. These may not obey the ordering. We
then sort the values lexicographically and remove du-
plicates.6 Call this V . Now we can compute the value
fraction for L on some M : Extract the vector of loca-
tions M [L1],M [L2], . . . ,M [Lk] and find the lowest in-
dex i in V where the vector is less than or equal to Vi.
The value fraction VF is i/|V |, which is the normalized
value of “how big” M is, according to L, compared to
all the values we ever saw for it. The value fraction is
defined and in [0, 1) for all memories in the observed
set.7 This gives us the ability to compare objectives

6Note to self: I’m not sure how to justify removing duplicates
here. It makes [0, 1, 1, 1, 1, 1, 10, 11] look the same as [0, 1, 10,
11], which is probably not desirable?

7It is not defined when the memory is greater than all ob-
served memories, which we will encounter later. The code returns
|V |/|V | = 1 in that case, which is as good as anything.

on an absolute scale.8 Weighting an objective is now
simple:

Σn−1
i=1 VF(Mi+1)− VF(Mi)

We sum the differences in value functions for each con-
secutive pair of memories. In the case of the ideal func-
tion this is Σn−1

i=1 1/n, which approaches 1. Of course,
when you think about it, this is actually the same as

(VF(M1)− VF(M0)) + (VF(M2)− VF(M1)) +
...

(VF(Mm−1)− VF(Mm−2)) + (VF(Mm)− VF(Mm))

and all but −VF(M0) and VF(Mm) cancel out. This
means that the weight we use is just the final value
minus the initial value, regardless of what happens in-
between.9 The mean value theorem or something is
probably relevant here. Lesson about being careful:
I only realized that this code was kind of fishy when
I started writing it up for SIGBOVIK. Not only did it
loop over all the deltas as in the Σ expression above, but
it also summed from i = 0 and kept track of the last
value fraction at each step, thus treating the value frac-
tion of the nonexistent memory M0 as 0. This is wrong,
because the first value fraction may be very high, which
credits the objective with a positive value (e.g. 1) for
that first part of the sum. Objectives that start high on
the first frame are not ideal; in fact, the worst objec-
tives start high on the first frame and steadily decrease.
After writing this up I corrected it to the simple ex-
pression VF(Mm) − VF(M0) and the result was a huge
breakthrough in the quality of the output! I had spent
much time tuning the playfun search procedure (Sec-
tion 3) and not investigated whether the objectives were
being weighted properly. More on this later, but the les-
son is: Bugs matter, and thinking about your code and
explaining it is a good way to find bugs.

Objectives are constrained to have non-negative
weights (I set the value to 0 if negative, which effectively
disables it). We save the objectives and their weights
to a file and then we are done with the easy part.

2.3 Motifs

The very first thing I tried with the objective function is
to just do some greedy search for input sequences that
increased the objective. This works terribly, because the
search space for inputs is large (28 possibilities at each

8This is certainly not the only way to do it, and it has some
questionable properties like ignoring the magnitude of change.
But it is very simple.

9I think this can be improved, for example by taking the de-
viation from the ideal linear objective.



frame). Most are useless (it’s almost impossible to press
the left and right directions at the same time, and real
players almost never do it); real input sequences usually
do not change values 60 times per second (rather, the
player holds the jump button for 10–20 frames); some
button-presses and combinations are much more com-
mon than others (e.g. right+B is common for running
right, but start pauses the game). Search quickly ne-
cessitates a model for inputs. Rather than do anything
custom, I just use a really dumb approach: Take the
observed inputs (the same ones that we learned the ob-
jective functions from) and split them into chunks of
10 inputs. Motifs are weighted by the number of times
they occur in the input. There may be a single motif at
the end that’s fewer than 10 inputs.

Parameter Alert! Here I choose the magic
number 10 for the size of input motifs. On
a scale from gravitational constant to pulled
it out of my ass, this is an 8. We could per-
haps justify 10 as being close to the speed of
input change actually possible for a human (6
button presses per second; 166ms). I believe
it is possible to do much better here and the
code contains a few such false starts, but us-
ing motifs was one of the biggest immediate
improvements in the history of this code, so
I went with it. A natural thing to try is a
Markov model, although this has a free pa-
rameter too (the number of states of history).
It is likely possible to do some kind of ab-
stract interpretation where multiple different
input sequences with equivalent outcomes are
explored simultaneously, which might obviate
the need for computing an input model from
the observed play. The playfun algorithm be-
low takes motifs as primitive because of the
way it was developed; I’ll use footnotes to de-
scribe my thinking about how to remove this.

Motifs are written to a file too and then we’re done
with that. This concludes the learning we do from the
example input; everything else is a matter of using the
objective functions and motifs to play the game.

3 Now you’re playing with power

In this section I’ll describe how the objective functions
are used to play the game. On a scale from canonical
to Star Wars Christmas Special, this algorithm is an 7.
So, rather than focus on the particulars of some of the

heuristics, I’ll try to give a story of the different things
I tried, what motivated the ideas in the current version,
and my intuitions about what is working well (or not)
and why. This algorithm is called playfun and it can
be found implemented in C++ in playfun.cc; some
historic versions are in playfun-*.cc.

3.1 Basic software architecture

In order to use the emulator to search for good sequences
of inputs, I needed deeper integration than just observ-
ing memory. The FCEUX emulator is about a jillion
lines of C++-ish code, was intended as an interactive
GUI application, contains support for multiple different
platforms, and the code is, on a scale from a pile of
horse shit to not horse shit, approximately a 2.10 With
a medium amount of suffering I got the emulator com-
piling under mingw in 64-bit mode, and working behind
a streamlined interface (emulator.h). Once a game is
initialized, it is always at an input frame—you can give
it an 8-bit input (for the 1st player) to step a single
frame, or read the 2048 bytes of memory. You can also
save the complete state of the emulator into a vector
of bytes, which allows you to restore the state to ex-
actly that same point.11 These save-states are portable
across sessions as long as the code was compiled and
the game initialized the right way.12 FCEUX must be
single-threaded because it uses global variables galore.
I made several enhancements to the emulator interface,
which are discussed later.

It’s important to know that almost all the CPU time
in all the algorithms discussed in this paper is spent em-
ulating NES frames; it takes about 500µs to process a
single step. Lots of engineering effort goes into reduc-
ing the number of frames the algorithms emulate. The
playfun program takes a ROM file, the learned objec-
tives and motifs, and runs on the console for arbitrarily
long, outputting a movie file consisting of the input se-
quence it think is best. The current playfun algorithm
is much too slow to run real-time, but it would be pos-
sible to have video output as it played. I disabled most
of the video code, however, in an effort to make the
emulation loop run as fast as possible.

10It is, however, an excellent emulator to use, has fancy tools
for recording and editing movies, and is popular in the speedrun
community. I highly recommend it; just don’t read the code.

11This contains the RAM, but also stuff we didn’t consider,
like registers, the Picture Processing Unit’s state, and internal
emulator stuff.

12The original FCEUX supports portable save-states, but I re-
moved that guarantee in order to get the smallest possible byte
vectors. More on that below.



3.2 Naive attempts

The very first thing I tried, as mentioned in Section 2.3,
was to just look at all 28 different possible inputs at
each step, and pick the best one. The inner loop looks
pseudolike this:

for (;;) {
vector<uint8> before = GetMemory();

vector<uint8> state = GetState();

// Try every bitmask of the 8 inputs.

for (int i = 0; i < 256; i++) {
RestoreState(state);

Step((uint8)i);

vector<uint8> after = GetMemory();

double score = Score(before, after);

// Save the best-scoring i...

}
RestoreState(state);

Step(bestinput);

}

Score computes a score of two memories using the ob-
jective functions, which was the point of all that. There
are a few canonical-seeming ways to implement this; the
simplest is to count the (weighted) number of objective
functions o where before <o after. We’ll get to more
later.

I wish this worked, because that would be truly laugh-
able (and is fast enough to run real-time), but on a scale
from doesn’t to does it’s a 1. At best, Mario twitches
in place. The inputs that it plays are insane. There
are lots of reasons, but a clear one is that a single input
rarely affects your progress in the game on the very next
frame. I didn’t really expect this approach to work and
I already knew that the state space is too big to search
exhaustively, which is why I implemented motifs. This
drastically reduces the search space and makes each step
more significant; the inner loop can now be:

for (const Motif &m : motifs) {
RestoreState(state);

for (uint8 i : m.inputs()) Step(i);

vector<uint8> after = GetMemory();

double score = Score(before, after);

// Save the best-scoring motif...

}

This works much better (anything would), though
not much better than you’d expect from just weighted
random playback of the motifs themselves (they mostly
contain motifs like “hold right” and “hold right and A”).
Mario is bad at avoiding danger except by luck, and bad

at jumping hard enough to get over pipes (the button
needs to be held consecutively for maybe 40–50 frames
to jump that high).

These two things—danger avoidance and microplan-
ning to string together multiple motifs in a useful way—
are two sides of the same coin. At least, on a scale from
one side of the coin to the other, it is a two. My at-
tempts to address these two problems converged on a
single idea that is the crux of the good part of playfun.
First let’s start with avoiding bad futures, since that is
somewhat simpler.

3.3 Avoiding bad futures

Scoring a move based on how much better it is than
the previous state causes Mario to make sensible greedy
moves to increase the objective function—until he is
then faced with no good options. This happens very fre-
quently in Super Mario Bros. (and many other games)
because death is not usually a single-frame affair. For
example, once he’s near a Goomba with some velocity,
it’s too late to slow down or jump out of the way; he’ll
die in a few frames. Similarly, he can be in the midst
of a too-short jump over a pit, where he’s destined to
die no matter how he squirms. Moreover, in Mario and
many other games, even death as recognizable to the
player isn’t an obvious loss to these objective functions;
the game’s memory doesn’t change much until the inter-
stitial screen and Mario being reset back to the nearest
checkpoint. So in order to avoid danger, Mario needs
to avoid states that make death a foregone conclusion,
not just avoid death.

This is nothing special; move search in Chess and
pretty much any game involves evaluating an ending
game state and not just the quality of the move itself
(“I captured a piece! Must be a great move!”). Evalu-
ating a Chess state is a delicate matter, but Goombas
and gravity are very stupid opponents. For avoiding
danger, the following works well: Take the state and
run a few seconds (300–500 frames) worth of weighted
random motifs, several times. This gives us a set of
states that could follow our candidate state were we to
keep playing. We judge the candidate state not on its
immediate value compared to our start state, but based
on the random futures that may ensue. In my first
version I used the minimum value of all these random
futures, so that if Mario was getting into a state where
he could die, those states would have low scores. Later
we’ll find that this isn’t the right way to think about
it, but it gives us a big improvement in the quality of
play—Mario cleanly jumps over Goombas. He also gets
very nervous and all like analysis-paralysis when faced



with pits of medium size13, which is related to the next
section.

3.4 Seeking good futures

The flipside of avoiding danger is seeking adventure.
Mario can avoid danger for quite a long time by just
waiting at the beginning of the game, until time runs
out. He can dilly dally before a pit, contemplating the
void. But princesses need rescuin’. The same approach
as before works for evaluating a state in terms of its
potential: Try some random futures and look at where
we end up. We could take the max over those scores
if we’re being optimistic, or the average or sum if we’re
trying to judge the general value of the state. In my first
version, which did work pretty well, I took the max; so
basically I had the min of some random states plus the
max of some other states. But why generate a bunch of
futures and take the min of some and the max of some
others? On a scale of Thank You Mario Your Quest
Is Over We Present You A New Quest Push Button B
to I’m Sorry, but Our Princess is in Another Similarly-
Shaped but Not Exactly that Samesuch Castle, this is
an 8.

3.5 Stable futures

Taking the minimum of random futures is always silly
(at least if we believe our objective function), because
nothing other than our own bad memory can force us
to take a series of steps if we know a different better
series of steps. Taking the max is possibly foolish if we
don’t know how to reconstruct a rare good state that
caused the maximum score to be high. Both lead us
to the idea: Keep around a set of candidate futures
that we use for evaluation and search, rather than just
randomly generating futures when we want to evaluate
a state and then discarding them. This turns out to
work really well and be more efficient.

The basic version of the playfun algorithm looks like
this. Maintain NFUTURES futures (this is 40 for the re-
sults presented in Section 5), originally just seeded with
weighted random motifs. We aren’t likely to execute
any of these futures verbatim, but they are intended to
give us high watermarks of what we’re capable of, plus
allow us to judge future danger. As we execute search,
futures will be partly consumed and extended, and some
discarded and replaced.

13The companion website contains videos of this, which are
funny. http://tom7.org/mario/

Each future stores a desired length from 50–800
frames, and whenever it is shorter than that, we ex-
tend it (at its end) with random weighted motifs. The
inner pseudoloop then looks like this:

for (;;) {
vector<uint8> before = GetMemory();

vector<uint8> state = GetState();

set<vector<uint8>> nexts;

for (Future f : futures) {
nexts.insert(f.First10Frames());

f.ChopOffFirst10Frames();

}

while (nexts.size() < NFUTURES)

nexts.push back(/* random motif */);

for (vector<uint8> &next : nexts) {
RestoreState(state);

for (uint8 i : next) Step(i);

double score =

ScoreByFutures(before, futures);

// Save the best-scoring next...

}

ReweightMotifs(best next, motifs);

ReplaceBadFutures(futures);

ExtendFuturesToDesiredLengths(futures);

}

At each iteration of the loop we will find the best next
10-frame sequence to commit to. Rather than search
over all motifs, we search over the first 10 frames of
each future. This has several important consequences.
First, since futures are generated by weighted motifs, it
makes it more likely that we spend CPU time evaluat-
ing motifs that are common; the code from Section 3.2
always explores every motif, even rare ones. Second, it
guarantees that if we pick some 10 frames on the basis
of a single good future, we don’t have to worry about
recreating that future; it will still be among our futures
for the next round. This is key: It allows us to use the
determinism of the game to replay a really good future
if we find one, not just use average random futures to
assess how good a state will be.

The function ScoreByFutures saves the state, then
runs each of the NFUTURES futures to get a final state
and memory. We score each final memory relative to
the start memory. The particulars of scoring are not as
interesting as the general idea, which is:

� The potential 10-frame next sequence that we’re



evaluating gets an optimistic score. This is based
on the futures for which the objectives go up. This
is always non-negative.

� Each future is also given a score, which is the sum
of scores from all the different next sequences, re-
gardless of their sign.

The purpose of the first is to identify a good next

sequence. We take the sequence with the highest opti-
mistic score. The idea is that this is the sequence that
gives us the best outcome if we continue to control what
we do in the future.

The purpose of the second is to identify which futures
are good. A good future tends to bring good outcomes
regardless of the immediate next step. Random futures
that make is walk left when the good stuff is to the
right, or jump when there are spikes nearby above our
head, will receive negative scores for many or all of the
next sequences.
ReweightMotifs changes the weight of motifs that

match the best next sequence that we just committed
to, if we think that we made progress on this step. The
idea is to learn which sequences tend to work well for
us; this might be different from what the human player
did. For example, in run-to-the-right-and-jump kinds
of games, human players tend to hesitate more before
obstacles and enemies than a computer does.14 Know-
ing whether we made progress is kind of difficult, since
we can almost always find some move that increases the
objectives locally. For this I use the same approach of
value fraction from Section 2.2 based on a sample of
memories that we’ve seen so far. If we appear to be
progressing then the motif is weighted up; if we’re re-
gressing then it is weighted down.
ReplaceBadFutures kicks out the the futures with

the worst total scores, so that over time the random fu-
tures become good futures. Of course, we always have
to keep randomly adding to the end of each future, and
who knows what crap we’ll find? A late addition to the
algorithm replaces some proportion of these with mu-
tated versions of the best scoring future. This helps us
from messing up a good future by appending crap to it,
since we have multiple copies of it. It also makes search
more efficient, since futures that share common prefixes

14That said, this part was an early idea and is probably not
necessary. It’s suspicious because these 10-frame sequences are
not necessarily motifs (10 is the same as the normal motif length,
and futures are generated by motifs, but they can become desyn-
chronized because of the final incomplete motif, future mutation,
and other things). So sometimes the chosen sequence doesn’t af-
fect weights. I think this would be better if we kept a Markov
model and updated it no matter what sequences we generated.

can often benefit from caching (Section 4.1). Currently
mutating a future involves chopping off its second half
(it will get extended to the desired length in the next
step), and a 1/7 chance of dualizing the entire sequence.
Dualization swaps the left and right buttons, the up and
down buttons, B and A, and select and start. The idea
of this is to occasionally introduce very different futures
to help us get out of stuck situations where we should
really be turning around or something like that.

During the development and tuning of the algo-
rithm, I sometimes observed ReweightMotifs and
ReplaceBadFutures conspiring to create a total mono-
culture of futures, where the weight of a single mo-
tif (specifically “press no buttons”) went out of con-
trol and all futures just consisted of waiting. Waiting
is usually a local improvement to some objectives be-
cause of internal frame counters and the cursor used
to control music playback. To guard against this, mo-
tifs have a maximum (and minimum) possible weight in
ReweightMotifs, and ReplaceBadFutures always en-
sure that some fraction of the futures are completely
random (ignoring motif weights).

Parameter Alert! This is really the
worst part in terms of parameters. They are:
NFUTURES, the number of futures to maintain
(40); NWEIGHTEDFUTURES, the number of fu-
tures that are weighted, as opposed to totally
random (35); DROPFUTURES, the number of
the worst-scoring futures we completely drop
(5); MUTATEFUTURES, the number of worst-
scoring futures that we replace with mutants
of the best future (7); MINFUTURELENGTH and
MAXFUTURELENGTH, which put bounds on the
sizes of futures (50 and 800); OBSERVE EVERY,
the frequency with which we sample mem-
ory for computing the value fraction for mo-
tif weighting (10); ALPHA, the multiplica-
tive factor for up- or down-weighting motifs
(0.8); MOTIF MIN FRAC and MOTIF MAX FRAC,
the bounds on motif weights (0.1 and 0.00001).

Each is a scarlet letter of personal shame
and future work is to eliminate them. In my
opinion the least excusable are the bounds
on future length, since these are related to
what portion of time is “interesting” from a
game perspective—for example, the max fu-
ture length must exceed the number of frames
that transpire after Mario dies but before he
respawns, or the algorithm cannot properly
avoid death. In my opinion this requires too
much knowledge of the game. I don’t have a



good idea about how to compute this, at least
without a human providing an input movie
of dying (which would help for lots of other
reasons)—but that would complicate the out-
put of the learning process, which violates a
primary design goal.

NFUTURES is another bothersome one, but
there is more hope here. Basically it trades
off computation time for quality of play, and
more seems to always be better. We do have
runtime metrics that could be used to dynam-
ically change NFUTURES. For example, we
could use the notion of improvability from Sec-
tion 3.6, or the value fraction, the gauge the
marginal value of searching an additional fu-
ture. Or something like that. This might actu-
ally help performance because we do the same
amount of work (modulo caching) even during
periods that the inputs are being ignored, like
between worlds in Super Mario Bros., as we
do when the going gets rough, and searching
for the exact right delicate sequence of inputs
would benefit from more options. The appear-
ance of pausing in the output for Bubble Bob-
ble (Section 5.5) suggests that it knows all the
futures are bad and needs to search different
ones, and corroborates this idea.

3.6 Backtracking

The algorithm above always makes progress at the same
rate of 10 frames per iteration. Sometimes it can get
stuck in local maxima. Super Mario Bros., my tuning
game for this work, seems almost to have been designed
to thwart playfun. The first level is pretty easy once
you have a decent algorithm, and early versions beat it
without any trouble. It’s mainly about avoiding Goom-
bas and planning far enough ahead to make high jumps
over pipes and pits (see the accompanying videos for
amusing struggles with these). World 1-2 provides a
challenge you may recognize from your youth, immedi-
ately followed by something that computers find much
harder (Figure 6).

I literally spent about six weekends and thousands of
hours of CPU on this problem. First, the overhang is
set up so that enemies emerge from it just as you arrive.
This means that loose play (imperfect enemy avoidance)
tends to get you killed right here. Mario has found
a number of different solutions to this problem, from
waiting, to kicking turtles from the left to clear out the
enemies, to timing his jump perfectly (it is possible!) to
stomp the turtle after bouncing his head off the ceiling.

Figure 6: This is where it starts to get hard, even with
lexicographic ordering and time travel. This overhang
is very tight in terms of the inputs that can get you
through it; random play tends to kill you because of
the advancing enemies that can’t easily be jumped over.
Greedy algorithms can’t resist the ledge with the coins,
but then would need to turn around.

It’s fun to see the different approaches and is a good
benchmark for whether the search algorithm is actually
doing a good job at tactics.

Immediately after this is an important test of longer-
term planning. Most of my early solutions would jump
up on this ledge with 4 coins, since the score is a com-
ponent of many lexicographic orderings15 and coins give
you points. Down below is undesirable in the short
term because of the enemies. Then Mario would feel
stuck and just hump up against the wall jumping in
this tiny dead end until time ran out. The game con-
tains some bugs (you have probably seen them) that
allow the screen to be scrolled without Mario actually
progressing; these little mini scrolls, plus the givens like
the frame counter and music cursor, prevent Mario from
getting out of the local maximum. This is extremely
frustrating. I decided to add some longer-term plan-
ning into the search procedure in order to try to help
in these kinds of situations, as well as the occasional

15Maybe even all of them, since it should be globally obeyed; it’s
therefore a valid extension to any ordering that doesn’t already
include it. It’s not necessarily a tight extension, however, so it
may be excluded for that reason, or because during initialization
it is not actually zero and so not globally obeyed. I never checked
this stuff because I wanted to avoid any temptation to overfit the
learning algorithm to the particulars of any game.



deaths I would see.
Every CHECKPOINT EVERY frames we save the state,

and then every TRY BACKTRACK EVERY rounds, we do a
backtracking phase if we can. We just need to find a
checkpoint at least MIN BACKTRACK DISTANCE frames in
the past. Call that point start and the current point
now. The backtracking routine looks like this:

� Let improveme be the inputs between start and
now.

� Get replacements, a set of input sequences we
might use instead. These are usually based on
improveme.

� Add improveme to the set of replacements.

� Truncate the movie to start.

� Now, do the normal playfun loop as though the
(truncated) futures are whatever our current fu-
tures are, and the set of next sequences are the
replacements array.

� Whatever the best one among those is, keep it.
Don’t update motifs or futures, however.

The idea is that we take a large sequence from our
recent past, and the same futures we’re already using,
and see if that sequence can be improved, according
to our objective functions, and using our same futures.
Since the existing sequence is always one of those, if it
is the best one, then the backtracking phase is a no-op.
If we find something better, we slot it in and continue.
So the only risk here is if our objective functions aren’t
good (we take as given that they are) and the only cost
is time.

Generating the candidate set of replacements uses a
bunch of different techniques. They are:

Random. We generate a random sequence of the
same length as the improveme sequence.

Opposites. We dualize (swap left with right, up with
down, start with select, and B with A) and/or reverse
random spans of the improveme sequence. The idea is
to try to introduce some variety in cases where we’re
really getting stuck. This was specifically in hopes that
Mario would walk off the coin ledge in 1-2 and then find
that the course was clear below. I felt okay about this
since this seems to be a generic notion (the buttons do
have semantics that are common to most NES games
where left and right are opposites), but that may just
have been rationalization since I was getting desperate.
It didn’t work; see below.

Ablation. Randomly blanks out buttons from the in-
put. For example, if we don’t need to jump and jumping
is slowing us down or something, this can remove that
and make a small improvement to the sequence.

Chop. Removes random spans from the input. This
iteratively removes spans as long as the previous span
was an improvement (see below). This can cause the
movie to get shorter by removing parts that weren’t
contributing anything.16

We use the following formula to score a potential im-
provement:

The start state is as discussed, old end is the state
at now, and new end is the state after the potential im-
provement sequence.

∫ o

s
is the integral of score changes

along the improveme path and
∫ n

s
along the candidate

improvement. The integral is the weighted sum of the
objectives increased minus the weighted sum of the ob-
jectives that decreased, at each step, all summed up.
This works better than just computing the weighted
score from e.g. start to old end when they are sepa-
rated by many frames (typical backtrack distances are
several hundred frames). The expression n− o17 is just
the weighted sum of objectives that increased minus the
weighted sum of objectives that decreased between the
old end state and new end state; we have no option of
computing the integral here because we don’t have an
input sequence that goes from the old end to the new
end (and there almost certainly isn’t one). We require
that three conditions hold:

1.
∫ n

s
≥

∫ o

s
,

2.
∫ n

s
> 0

16However, in games where an objective function includes some-
thing like a frame counter or the music cursor, shorter sequences
always score lower than otherwise equivalent longer sequences.

17This is not numerical minus but minus according to the set
of objective functions. Just roll with it.



3. n− o > 0

The integral has to be at least as good as before, the
new integral has to be positive, and the new end state
needs to look better than the old end state (the triangle
inequality does not necessarily hold here). If they all do,
then the score for the improvement is

∫ n

s
−
∫ o

s
+(n−o),

which is guaranteed to be positive.
Even if we have many possible replacements, we try

only the ones with the best scores; due to the particulars
of the implementation there is not a simple constant
describing this maximum, but it’s around 220 with the
parameter settings used in this paper.

Parameter Alert! Again! The humiliat-
ing appearance of constants! There are many
here, having to do with the number of po-
tential replacements we use of each type, the
maximum number we keep, how often we bac-
track, and how far. I am not totally satisfied
with how backtracking works (see below), so I
don’t want to spend too much energy speculat-
ing about how to reduce the parameter space
here; I’d rather replace the method wholesale.

The improvability of a state is the fraction of these
potential improvements that are legal improvements, as
above. Based on my analysis, states that are highly im-
provable (> 30%) tend to be “worse” (more stuck, closer
to death, or whatever) than those that are not very im-
provable (< 5%). This isn’t being used for anything
currently, but getting an absolute picture of how good
a state is (as opposed to simply comparing it to an adja-
cent state) is one of the difficulties with this approach,
so this may be a useful notion for future directions.

Takes of woe, tales of joy. Backtracking was ini-
tially added in order to fix the mario coin ledge problem
in 1-2. It did not help with this. Older versions of the
code would have Mario get past this spot, probably by
luck, but in these he would get stuck in an embarrassing
way on a small pit later, or jump straight into an enemy.
Most of the approaches that actually looked solidly good
elsewhere were failing badly here. As I started writing
up this paper, on an airplane, I discovered the bug in the
weighting of objective functions described in Section 2.2.
On my trip I had let playfun run with particularly high
constants (NFUTURES = 50, lots of backtracking candi-
dates, etc.) and it had spent about a thousand CPU
hours playing to this point, grabbing the coins, and then
dying of timeout, then losing all its lives, starting over,
and getting to this point again! After fixing the bug,

Figure 7: After making me feel so successful by finally
cleanly finishing world 1-2, Mario immediately jumps
into the first trivial pit in 1-3. I believe what’s going on
here is that this is actually the best future, because re-
setting back a single screen isn’t a large loss, lives aren’t
included in the objective function, and probably the rest
of the futures were struggling to make progress. This
level is very jumpy and probably needs more futures to
navigate its obstacles. In any case, Mario, Touché.

I tried again, and it was a huge breakthrough: Mario
jumped up to get all the coins, and then almost imme-
diately jumped back down to continue the level! On his
first try he beat 1-2 and then immediately jumped in
the pit at the beginning of 1-3 just as I was starting to
feel suuuuuper smart (Figure 7). On a scale of OMFG
to WTFLOL I was like whaaaaaaat?

Seeing this huge improvement changed my idea about
what part of the code needed work (I now believe that
simpler search strategies might work and better lexico-
graphic order generation and weighting is called for).
But, this was already in the midst of writing up the
paper, so instead I spent the CPU time running the
current version on a bunch of games. Those results
are described in Section 5 and videos are available at
http://tom7.org/mario/. In the next section I de-
scribe some of the performance improvements I made,
and other modifications to the emulator interface.



4 Performance

Performance is really important, both because the qual-
ity of the output is CPU-bound and because I am im-
patient. In its current state, running playfun is an
overnight affair; it takes about an hour of real time to
produce 1000 output frames (16 seconds of gameplay)
on a high-end desktop machine. Other than a trick that
I didn’t end up using, these performance ideas are not
at all new, but they are documented here for complete-
ness. I certainly spent lots of time on ’em!

4.1 Caching of emulation

The most expensive part, by far, is running a step of em-
ulation. It takes about 500µs to emulate a single frame,
though this can vary depending on what instructions are
actually executed (recall that each frame corresponds to
many many 2A03 instructions; there are approximately
16,000 clock cycles per frame!). Hardware like the Pic-
ture Processing Unit and sound chip are emulated as
well, which may actually be less efficient than the ac-
tual hardware (for example, the sound hardware can
implement filtering with passive physical components
like capacitors, but FCEUX contains a finite impulse re-
sponse filter running on IEEE floating point numbers).
We want to avoid executing a step more than once, if
at all possible.

Caching is so canonical that some have called it (pe-
joratively) the only idea in Systems research. And it is
what we do here. The emulator adds a call

void CachingStep(uint8 input);

with exactly the same semantics as Step. However, it
first checks to see if this exact input has been executed
on this exact start state before. If so, it just restores
the cached result state instead of executing the step.

I use the excellent CityHash function[4] as the hash
code, and use a least-recently-used approach to clean
out the hash table when it has more than a fixed slop
amount more than the target size. States are large be-
cause they contain both the savestate of the before and
after state. I have plenty of RAM, so I allow each pro-
cess to store up to 100,000 states with 10,000 states of
slop, which takes about 3 gigabytes per process.

Caching adds a little bit of overhead (a single step
is about 13% slower, amortized), from saving the state,
computing the hash code, copying the state into the ta-
ble, and cleaning the hash table periodically. A cache
hit is a zillion times faster than actually executing the
step, however, so as long as the hit rate is more than
13%, it’s worth doing. I use caching step in most places

inside playfun, except when I know that the state can’t
have been computed yet. The playfun algorithm is
particularly suitable to caching: The set of potential
next input sequences nexts usually share several input
prefixes, and we keep around futures for some time, so
we can often end up evaluating the same one under the
same conditions many times. Moreover, mutant futures
usually share their first half, making them half price. A
really important property of caching is that it’s based on
the state of memory but doesn’t care about the actual
sequence used to get there. This means that in cases
where the input is ignored (Mario ignores the jump but-
ton most of the time while in the air, for example, and
ignores all inputs between levels) we reach equivalent
states and can use the cache if the next input is exactly
the same. The ideal approach here would be to follow
how the bits of the input are actually read by the code,
and insert a more generic key into the hash table. For
example, if we see that the code never even read the
bit of the input corresponding to the up direction, then
we can reuse the step for an input that matches all bits
but the up bit! This of course requires a lot of mucking
around in the internals, which on a scale of within the
scope to beyond the scope of this article is a 9.9.

Software engineering lesson: Initial results from
caching were disappointing and I thought the overhead
was to blame. I made several low-level tweaks to avoid
copying, etc., to reduce the overhead from 36% to 13%.
Then I discovered that there were 0 cache hits ever, be-
cause of a bug (I was inadvertantly using pointer equal-
ity on keys instead of value equality, so keys were never
found). Check basic things about your code’s correct-
ness before going on an optimization sortie!

4.2 Space optimizations

Before I had the idea that is the actual subject of this
paper, I was playing around with other emulator search
ideas that involved storing very very large numbers of
states. This necessitated minimal representations of
savestates. FCEUX uses zlib internally to compress
states, which works well; they shrink from something
like 13,776 bytes18 to an average of 2266. I made some
modifications to the save/load routines to make this as
small as I could manage. I removed the backing buffer,

18I don’t completely understand the NES architecture and em-
ulation strategy, but I believe some games include expansion chips
that require more space for save states. All this work is based on
the 2048 bytes of main NES RAM, as you already know. Perhaps
clever video game authors from the past can protect against this
paper’s approach by storing important game facts inside expan-
sion chips in the cartridge.



which is only used for drawing graphics, movie info,
header bytes that are constant or already known (saves-
tate size), which shrunk the compressed size to an av-
erage of 2047.42 bytes. That meant I could fit about
32 million savestates in RAM at once, which would be
kind of amazing if I could tell my 8 year-old self that.

Compression algoritms work well when there is lots
of redundancy in their input. Comparing memories be-
tween two frames in some game, you’ll often see only
a few differences. Some of the memory contains stuff
that’s essentially read-only, even. To improve the com-
pressibility of savestates, I introduce the idea of a ba-
sis state. This is any non-empty sequence of bytes
which is an additional argument to the LoadState and
SaveState functions. It’s subtracted from the savestate
prior to compression (it doesn’t have to be the same size;
it’s treated as an infinite repetition of those bytes). If
the basis is the same as the savestate, then the result is
all zeroes, which compresses nicely (of course, now you
need to have the basis in order to load the state, which
is the same as the savestate, so that didn’t save you
much!). But memories during gameplay often don’t dif-
fer much, so I save a state from any arbitrary frame in
the game and then use that as the basis for everything
else. This factors out any common parts and makes the
states much more compressible: The average size drops
to 1870.41 bytes.

Using a better compression algorithm like the
Burrows–Wheeler transform[3]19 would probably help
too; zlib implements LZW which is only mediocre. How-
ever, on a scale of throwing my computer out the win-
dow to wanting to reimplement all software in my own
private SML library, I just can’t stand getting 3rd-party
libraries to compile and link into my applications, so I
didn’t even try. In any case, I abandoned this direction,
which was not working well even with lean savestates.

For playfun, RAM is not a bottleneck at all. I dis-
able compression completely on savestates, including
the builtin zlib stuff (which is actually rather slow) and
just use raw savestates. The removal of unnecessary
headers and stuff is still there, and saves a few bytes
and CPU cycles, but there was no reason to actually do
it for this particular work. But sometimes I do unnec-
essary things.

4.3 MARIONET

The playfun algorithm involves running 40 or so dif-
ferent 10-sequence next steps and then scoring them

19This is really one of the all-time great algorithms. If you don’t
know it and you like this kind of thing, you should check it out.
It’s so surprising and elegant.

against NFUTURES different futures. Each next and each
future is completely independent and dominated by the
cost of evaluating emulator steps. The ideal thing would
be to use threads and shared memory to run these steps
in parallel. As I mentioned earlier, FCEUX is hopelessly
single-threaded.

Eventually I realized I needed to search more states
than I could in a single thread, and so I created MAR-
IONET. It’s a play on words, a double entendre of
“Mario network” and “Marionette”, which is obvious.
This is a mode whereby playfun can be started in
“helper” mode (listens on a port for work to do) or
“master” mode (connects to a list of ports to run work
on), in order to run many emulators in different pro-
cesses.

The processes communicate over TCP/IP. I only run
it on my local computer, but it would be reasonable
to run it on a cluster or possibly even the Internet. I
used SDL’s SDL Net[6] as a portable network interface
in the hopes of keeping it platform-agnostic (FCEUX is
basically portable so it would be a shame to make this
Windows-specific, though I am not eager to try to get
this thing to compile on other platforms, I gotta be hon-
est). SDL is a nightmare to get working with mingw in
a 64-bit compile, as usual, and SDL Net contained some
bugs20 that I had to spend some time working around.
Anyway, I’m just complaining. For serializing requests
and responses to bytes, I used Google’s Protocol Buffer
library[5], which is designed for this kind of thing.

Helpers all start up with the same ROM and motif
and objectives loaded, so that they can simulate what-
ever the master would compute.21 They just wait on
a port for the master to send a request, which can be
either “try this set of nexts with these futures and send
me the results” or “try to find n improvements of these
inputs improveme using so-and-so approach.” In either
case we send the base state as a serialized savestate.

The master does the outer loop of the algorithm and
all the writing to disk and so on. When it needs to
do an expensive step like the inner loop, it prepares
a set of jobs and sends them to workers using a little
fork-join library (netutil.*). The library keeps track
of the outstanding jobs and which helpers are working,

20In particular, the SDLNet TCP Recv call is supposed to block
until it has received the entire requested length, but it occasionally
returns early.

21Only the master reweights motifs, since it needs a single sam-
ple of memories that we’ve observed. That means that in cases
where a helper generates random motifs, it does so with respect to
the original human weighting. There are some other small things
I simply avoided doing because they would require too much co-
ordination between processes or make the RPCs too large; MAR-
IONET was part of the system for much of its development.



and feeds them work when they are idle, until all the
jobs are complete. It’s even got a color ANSI progress
bar and stuff like that.

Utilization is very good (Figure 8), and we get al-
most a linear speedup with the number of processes, up
to the number of hardware threads the system supports
(twelve). Actually, in addition to the computer remain-
ing usable for other stuff, n− 1 helpers may work a bit
better than n, because each of the helpers is then able to
avoid preemption. Since the driver loop is synchronous,
having one laggard process slows the whole darn thing
down while everything waits for it to finish.

Figure 8: Utilization with 12 helpers and one master
on a 6-core (12 hyperthreads) processor. Looks good.
Keeps the bedroom warm.

MARIONET is a huge improvement and was what
enabled using 40+ futures in a reasonable amount of
time, which is key to high-quality output. It’s obviously
the way you want to run the software, if you can get it
to compile. There is one downside, though, which is
that it reduces our ability to get lucky cache hits across
nexts that are similar (or have the same effect), and
when replaying the winner as we commit to it. It’s
worth it, but smartly deciding which helper gets which
tasks (because they share prefixes, for example) would
save time. Running it all in one process with a shared
memory cache would be the best, as long as the lock
contention could be kept under control.

Figure 9: Mario bounces off one Goomba up into the
feet of another. Not only doesn’t he have enough ve-
locity to reach the platform, but he’s about to hit
that Goomba from below. Believe it or not, this ends
well: playfun is happy to exploit bugs in the game;
in this case, that whenever Mario is moving downward
(his jump crests just before the Goomba hits him) this
counts as “stomping” on an enemy, even if that enemy
is above him. The additional bounce from this Goomba
also allows him to make it up to the platform, which he
wouldn’t have otherwise!

5 Results

In this section I describe the results of running learnfun
and playfun on several NES games. These games were
all played with the same settings developed and tuned
for Super Mario Bros.; that is, this was the result of
just running the program the first time on a recording
of me playing the game briefly. Every game I tried is
documented here; lack of CPU time before conference is
the main reason your favorite is not included. The web-



site http://tom7.org/mario/ contains video versions
of some of these, which may be more fun. Let’s begin
with the ur game, Super Mario Bros..

5.1 Super Mario Bros.

This game is an obvious benchmark and the one I
used during the development of learnfun and playfun.
Some parts of the algorithm (see e.g. Section 3.6) were
developed specifically to get around problems in the
ability to play this game, though I believe simpler meth-
ods would also work on this game, now that some im-
portant bugs are fixed.

Automated Mario is fun to watch, and definitely my
favorite. The familiarity of the game, the combination
of human-like maneuvers and completely bizarre stuff,
daredevil play, and bug exploitation (Figure 9) are all
a delight. It’s even funny when it fails, watching Mario
struggling with obstacles like tiny pits, or making a
heroic move followed by a trivial mistake. I recommend
watching the videos.

This algorithm works well on Super Mario Bros., and
I think that with some improvements it could play quite
far into the game. It probably can’t beat the game;
Worlds 7-4 and 8-4 require some weird puzzling that
we all needed Nintendo Power Magazine’s help to solve
as kids, and are not just a matter of running to the
right and avoiding obstacles. In the current incarna-
tion, Mario breezes through World 1-1 every time, con-
sistently beats 1-2 (I’ve only tried about three times
with the newest version of the code, but each time he’s
succeeded) and has limited success on 1-3 but eventu-
ally suicides too many times. I’ll keep trying.

The Mortal Kombat-style Finish Him! to any ma-
chine learning algorithm is overfitting, however. Does
the technique work on other games, without endless
tweaking as I did with Super Mario Bros.? On a scale
of no to yes, this is both a 1 and a 10; some games work
even better than Mario and some are a disaster.

5.2 Hudson’s Adventure Island

This is a bad, difficult, but likable game featuring a
skateboarding cherubic island guy called Master Hig-
gins, whose girlfriend has been kidnapped by King
Quiller. He basically runs to the right and can throw
or ride stuff that he finds in eggs. The controls are
pretty soft and danger is everywhere. The objective
functions that work are probably pretty similar to Super
Mario Bros., but there are fewer obstacles to navigate—
the difficulty for humans mostly comes from the speed
and reaction time. Master Higgins doesn’t care about

bumping into rocks and dropping his health almost to
nothing (but then is careful about health), and once
he gets a weapon his aim anticipates off-screen enemies
and he looks pretty savvy (Figure 10). His weakness
regards holes in the ground, which he sometimes jumps
into, probably for the same reason that Mario some-
times does. His “pot bonus” was 16720. Master Higgins
beats several levels and makes it into the cave before
losing his last life by jumping straight into a vibrating
skull with swirling fireballs around it, which on a scale
of Darwin Award to dignified demise is approximately
a 6, in my opinion.

Figure 10: Master Higgins putting safety first.

5.3 Pac-Man

One of the smallest NES games at a mere 24kb, Pac-
Man is a classic that I won’t belabor. It has a fairly
straightforward objective—your score—and there is no
timer or anything to worry about but the ghosts. A
good planner could probably solve Pac-Man with just
score as an objective (keep in mind that with RAM in-
spection and because of ghost movement, this is not
just a simple matter of using A∗ or something to plan a
path through the Euclidean grid—states aren’t repeated
hardly ever). Automating this game works pretty well;
Pac-Man doesn’t have much trouble avoiding ghosts ex-
cept when they trap him. Play is pretty strange: He
doesn’t necessarily grab nearby dots (hard to explain)
and often switches direction in the middle of a corridor,
unlike human play which is usually efficient sweeps of
the dots when ghosts aren’t near. However, automating



has a huge advantage over human players with respect
to ghosts, and Pac-Man is alarmingly fearless. He chases
ghosts down corridors, turns straight into them, know-
ing that they will change direction in time to not run
into him (this makes the time travel advantage quite
stark). Figure 11 shows gratuitous daredeviling as he
ducks in and out of a tiny sliver of space between two
ghosts, then does it again, and survives.

Eventually, Pac-Man gets far enough away from the
remaining dots that none of his futures bring him near,
and without any other objective to seek out, runs into
ghosts. He dies on the first level with 13 dots left.

5.4 Karate Kid, The

Karate Kid, The, is the typical trainwreck that follows
when a beloved movie is turned into a video game. The
game has awful controls and integer-only physics with
massive throw-back upon collision, strange mini-games
with no explanation, annoying debris flying through
the sky, and luck-based fighting. It was probably only
ever finished by kids with extreme discipline and self-
loathing, or kids with only one video game available to
them. It begins with a karate tournament which is even
less fun than the main game, which is sort of a plat-
former with very few platforms.

In this game I played 1,644 frames, just the first two of
four opponents in the karate tournament. Automated
by playfun Daniel-San is able to punch and kick the
low-level karate noobs, preferring to spend all his super-
strong Crane Kick power moves right away. His style
doesn’t make much sense, sometimes facing away from
the opponent, or throwing punches and kicks when the
opponent isn’t near. He doesn’t worry much about tak-
ing damage. He gets to the final round and makes a
valiant effort, at one point taking himself and the karate
boss to 0 health simultaneously. But in this game, tie
goes to the computer-controlled player without feelings,
so it’s back to the title screen for Daniel-San. The result
is not impressive at all; the main goal here is to reduce
the opponent’s health, but our objective function can
only track bytes that go up. Still, the automated ver-
sion gets farther than my input did.

5.5 Bubble Bobble

Let’s take a journey to the cave of monsters! This lovely
game features two stout dinosaurs called Bub and Bob,
who jump around in a series of single-screen caves. You
can shoot bubbles to encase monsters and then pop the
bubble to turn them into fruit or other treasure; clearing
all the monsters takes you to the next stage. Bubbles

Figure 11: Pac-Man showing utter disregard for the
ghosts’s personal space. This occurs around frame 6700
of the output movie. Pac-Man slips into the space be-
tween Blinky and Inky to touch the wall, comes out un-
harmed, then momentarily teases Clyde before escaping
to vibrate some more in empty corridors.

are also necessary for navigating around, since you can
bounce on your own bubbles when holding the jump
button.

I was surprised that automating this game works at
all, since there is no obvious spatial gradient like in
Super Mario Bros., and few local greedy rewards like



Figure 12: Daniel-San blowing his last Crane Kick on a
karate noob like there’s no tomorrow, which there won’t
be if he uses up all his power moves like that. Note
that the Chop approach to backtracking was used to
generate this movie frame, appropriately.

in Pac-Man. Bub initially wastes his lives (a common
theme in games where the respawn interval is low—
it just looks like a fast way of warping to the cor-
ner). When he’s near monsters he shows good tactics in
shooting and popping them simultaneously, even doing
so while facing away from them, which I didn’t know
was possible. At the beginning of the movie he prefers
to hide in the bottom-left corner, but soon starts jump-
ing all around the level, bouncing on his own bubbles
and so on, almost like a real player would. He beats
more levels than my input movie did! Since it takes
two start button presses to enter the game, the second
START is part of the input motifs. Amusingly, Bub
uses this to his advantage to change the synchroniza-
tion of his futures, and when the situation gets really
tight, he’ll pause the game until a good future comes
around (Figure 13). Paused states probably look like
modest progress since memory locations like the music
cursor are still advancing.

After a harrowing escape from the ghost thing on
level 4, Bub makes it to level 5 (my input movie quits
at the beginning of level 4!), at which point I stopped
the search because it was getting pretty pausey and I
wanted to see some other games before the SIGBOVIK
deadline.

Figure 13: Bub navigates this game surprisingly well.
Once he’s on his last life, he becomes careful and pauses
the game when things are looking grim—here pausing
for about a thousand frames, burning through the fu-
tures until one randomly comes along that looks good.
He then unpauses and executes that good future, killing
three of these monsters in short order.

5.6 Color a Dinosaur

This is a strange NES “game” where you do the epony-
mous action, probably intended for kids. It’s not very
fun to watch the weird slow floodfill algorithm color in
parts of a dinosaur, and there’s no objective to be found.
Predictably, the approach of this paper doesn’t simu-
late human play very well. There doesn’t even seem
to be an objective for humans to suss out, except for
the open-world sandbox of two-color dinosaur coloring.
The automated pencil manages to “color” two differ-
ent dinosaurs (Figure 14), though the play looks pretty
spastic and random.

5.7 Tetris

Tetris is a block dropping game, also known to the an-
cients. The Nintendo implementation is infamous for
being inferior to the unlicensed Tengen version, which
Nintendo tried to sue out of existence. Here I try to au-
tomate the Nintendo version as a tribute to litigation.
Unsurprisingly, playfun is awful at this game. Tetris
has several screens of menus, where the player can select
between different modes and theme musics and stuff like
that. As an amusing prelude to this disaster in tetro-
mino stacking, playfun keeps entering the menu and



Figure 14: The second dinosaur colored by the playfun

algorithm. There’s no way to go wrong in this game;
any possible coloring is oh so right.

exiting back to the title screen rapidly, taking several
seconds to even start the game. (Like in Bubble Bobble,
this means that the start button is among the motifs.)
Although the piece dropping looks more or less natural
(but it’s hard to not be, as the game drops the pieces
for you), the placement is idiotic—worse than random.
This may be because placing a piece gives you a small
amount of points, which probably looks like progress
(Figure 15), so there is incentive to stack the pieces as
soon as possible rather than pack them in. As the screen
fills, there’s a tiny amount of tetris-like gameplay, prob-
ably as the end of the game becomes visible in some
of the futures. The end result is awful and playfun

makes zero lines and certainly no Tetrises (Figure 16).
The only cleverness is pausing the game right before
the next piece causes the game to be over, and leaving
it paused. Truly, the only winning move is not to play.

6 Future Work

It is famous last words, but I actually intend to keep
working on this project. Because of SIGBOVIK crunch
pressure (and discovering some bugs as I was writing
the paper) the approach got much better very recently
and I’m mostly limited by CPU hours until conference.
It’s today in a state where whenever I run it on a new
game I see something delightful. Even just running it on
more of the NES classics is worthwhile. However, I have

Figure 15: The joyful noise of objective functions
learned for Tetris. The first fifth of the movie is navi-
gating menus and looks very different from the remain-
der. There appear to be some frame counters identified,
which make perfect smooth progress throughout the en-
tire movie. I believe discontinuities correspond to plac-
ing of pieces; some objectives monotonically increase at
these points (and are noisy in-between), suggesting that
they incorporate the score.

lots of ideas about how to extend the technique, either
to make it more beautiful or to make it work better:

Parameter reduction. I’ve already pointed out the
places where there are mysterious constants in the code.
Although the fact that the same constants work on
many different games without tuning is some solace, it
would really be nicer to remove these. One of the hard-
est to remove is the length of the futures explored. And
I like a challenge!

Unsupervised learning. Speaking of challenge, it
might be possible for playfun to teach itself, by start-
ing with no objective functions and playing randomly
to see what bytes it can make go up, then fitting lexico-
graphic orderings to the memories and repeating. The
beginnings of games (which include RAM intialization,
title screens, and menus) continue to vex this kind of
work, unfortunately.

Generalized orderings. Right now, lexicographic
orderings are limited to vectors of unsigned bytes that
get larger. Many games treat bytes as signed (I believe
this is true of Mario’s velocity, for example). For other
bytes, like one representing your enemy’s health (c.f.
Karate Kid), winning means making the byte go down,
not up. It is possible to generalize the lexicographic or-
derings we generate to a vector of (Li, <i) pairs, where



Figure 16: Would you hire this construction company?
Death is imminent, so playfun pauses the game shortly
after this and then doesn’t unpause it.

<i tells us how to compare the bytes at that location.
Things to try would be two’s-complement signed com-
parison, or unsigned greater-than. I think this is a great
avenue; the dangers are overfitting (now most short se-
quences can be explained in one way or another) and
being too fancy.

Input models. I’m unsatisfied with the motif ap-
proach. As mentioned earlier, the obvious thing to try
instead is a Markov model, which would probably be
simpler and would allow re-weighting from inputs re-
gardless of what we concocted while playing (the current
version can only reweight the human motifs, not learn
new sequences discovered while running). I would also
like some solution to the start button problem—if it is
among the motifs, it often shows up in gameplay in an-
noying ways. I don’t feel good about simply blacklisting
it, however. In Bubble Bobble, start appears to be used
to burn away futures when all of them are bad. Maybe
a simple improvement would be to allow the inner loop
of playfun to skip the turn (empty next sequence) in
order to simulate this.

Better backtracking. Backtracking is a powerful
idea, and there’s lots more to do here. The fixed-size
backtracking window is disappointing since it’s a pa-
rameter, and doesn’t even seem right for most games. It
would make sense to do something like lengthen the win-
dow until the improvability starts dropping; basically,

find the amount of recent past that’s comparable to ran-
dom play, and try improving that. Moreover, it should
be possible to re-backtrack, since some parts of the game
are harder than others. Ideally, when Mario has so few
options that he contemplates suicide, he should be back-
tracking over and over and farther and farther until he
finds a future that’s good. This is the power of time
travel. Use it, man.

Efficiency in search Quality is directly related to
the number of states searched. Some sequences are eas-
ier to search than others, because they share a prefix
with something we’ve already done and can be cached.
It would be worth looking into algorithms that explic-
itly take into account the cost of branching, so that we
explore some tree (of futures, for example) rather than
disjoint linear futures. The effective number of futures
explored could be much higher for the same CPU.

Multiple players, multiple games. Other than the
particulars of the way it’s built (vector<uint8> every-
where), there’s no reason why the technique is limited
to a single player’s input. In a game like Bubble Bobble
or Contra the two players can collaborate in interesting
ways, and planning both simultaneously would proba-
bly lead to occasional awesome results. For example, in
Contra, it might be that one player is shooting enemies
for the other player, the bullets arriving from across the
screen just in time to save him as he blithely jumps
into danger. Another clever feat from the Tool Assisted
Speedrun community is a sequence of inputs that beats
multiple different games simultaneously. For example,
human geniuses used tools to beat Mega Man (Mega
Men?) 3, 4, 5, and 6 all at the same time using the
exact same input sequence sent to all four games.[2] I
think the algorithms in this paper apply directly—it’s
just a matter of multiplexing the inputs to each of the
games, and then taking the appropriate operation (min,
max, sum) of their objective functions to produce a final
objective function. The main obstacle is the architec-
ture of the underlying emulator, which can only load
one game into its global variables at once.

7 Conclusion

In this paper I showed how lexicographic orderings and
time travel can be used to automate classic video games.
The approach uses an amusingly simple and mathemati-
cally elegant model to learn what constitutes “winning”
according to a human player’s inputs. It then uses hun-
dreds of CPU hours to search different input sequences



that seem to “win”, inspecting only the RAM of the
simulated game, ignoring any of the human outputs like
video and sound. The technique works great on some
games, getting farther into the game than the human’s
inputs did, and produces novel gameplay (for example,
bug exploitation and super-human daredevil timing).
On other games, it is garbage, but on a scale of re-
cycling symbol 1 to recycling symbol 7, it is at least
hilarious garbage.

References

[1] adelikat et al. FCEUX, the all in one NES/Famicom
emulator. http://fceux.com/.

[2] Baxter and AngerFist. NES Mega Man 3, 4, 5 & 6.
http://tasvideos.org/871M.html.

[3] Michael Burrows and David Wheeler. A block sort-
ing lossless data compression algorithm. Technical
Report Technical Report 124, Digital Equipment
Corporation, 1994.

[4] gpike and jyrki. The CityHash family of hash
functions, 2011. https://code.google.com/p/

cityhash/.

[5] kenton, jasonh, temporal, liujisi, wenboz, and xi-
aofeng. Protocol buffers, 2013. https://code.

google.com/p/protobuf/.

[6] Sam Latinga, Roy Wood, and Masahiro Minami.
SDL net 1.2, 2012. http://www.libsdl.org/

projects/SDL_net/.

[7] Vargomax V. Vargomax. Generalized Super Mario
Bros. is NP-complete. SIGBOVIK, pages 87–88,
April 2007.


