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Tomas Mikolov t.mikolov@gmail.com

Speech@FIT, Brno University of Technology, Brno, Czech Republic

Yoshua Bengio yoshua.bengio@umontreal.ca
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Abstract

There are two widely known issues with prop-
erly training recurrent neural networks, the
vanishing and the exploding gradient prob-
lems detailed in Bengio et al. (1994). In
this paper we attempt to improve the under-
standing of the underlying issues by explor-
ing these problems from an analytical, a geo-
metric and a dynamical systems perspective.
Our analysis is used to justify a simple yet ef-
fective solution. We propose a gradient norm
clipping strategy to deal with exploding gra-
dients and a soft constraint for the vanishing
gradients problem. We validate empirically
our hypothesis and proposed solutions in the
experimental section.

1. Introduction

A recurrent neural network (RNN), e.g. Fig. 1, is a
neural network model proposed in the 80’s (Rumelhart
et al., 1986; Elman, 1990; Werbos, 1988) for modeling
time series. The structure of the network is similar to
that of a standard multilayer perceptron, with the dis-
tinction that we allow connections among hidden units
associated with a time delay. Through these connec-
tions the model can retain information about the past,
enabling it to discover temporal correlations between
events that are far away from each other in the data.

While in principle the recurrent network is a simple
and powerful model, in practice, it is hard to train
properly. Among the main reasons why this model is
so unwieldy are the vanishing gradient and exploding
gradient problems described in Bengio et al. (1994).
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Figure 1. Schematic of a recurrent neural network. The
recurrent connections in the hidden layer allow information
to persist from one input to another.

1.1. Training recurrent networks

A generic recurrent neural network, with input ut and
state xt for time step t, is given by:

xt = F (xt−1,ut, θ) (1)

In the theoretical section of this paper we will some-
times make use of the specific parametrization: 1

xt = Wrecσ(xt−1) + Winut + b (2)

In this case, the parameters of the model are given
by the recurrent weight matrix Wrec, the bias b and
input weight matrix Win, collected in θ for the gen-
eral case. x0 is provided by the user, set to zero or
learned, and σ is an element-wise function. A cost
E =

∑
1≤t≤T Et measures the performance of the net-

work on some given task, where Et = L(xt).

One approach for computing the necessary gradients is
backpropagation through time (BPTT), where the re-
current model is represented as a multi-layer one (with
an unbounded number of layers) and backpropagation
is applied on the unrolled model (see Fig. 2).

We will diverge from the classical BPTT equations at
this point and re-write the gradients in order to better

1For any model respecting eq. (2) we can construct
another model following the more widely known equation
xt = σ(Wrecxt−1 + Winut + b) that behaves the same
(for e.g. by redefining Et := Et(σ(xt))) and vice versa.
Therefore the two formulations are equivalent. We chose
eq. (2) for convenience.
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Figure 2. Unrolling recurrent neural networks in time by
creating a copy of the model for each time step. We denote
by xt the hidden state of the network at time t, by ut the
input of the network at time t and by Et the error obtained
from the output at time t.

highlight the exploding gradients problem:

∂E
∂θ

=
∑

1≤t≤T

∂Et
∂θ

(3)

∂Et
∂θ

=
∑

1≤k≤t

(
∂Et
∂xt

∂xt
∂xk

∂+xk
∂θ

)
(4)

∂xt
∂xk

=
∏
t≥i>k

∂xi
∂xi−1

=
∏
t≥i>k

WT
recdiag(σ′(xi−1)) (5)

These equations were obtained by writing the gradi-

ents in a sum-of-products form. ∂+xk
∂θ refers to the

“immediate” partial derivative 2 of the state xk with
respect to θ, where xk−1 is taken as a constant with
respect to θ. Specifically, considering eq. 2, the value

of any row i of the matrix ( ∂+xk
∂Wrec

) is just σ(xk−1).
Eq. (5) also provides the form of Jacobian matrix
∂xi
∂xi−1

for the specific parametrization given in eq. (2),

where diag converts a vector into a diagonal matrix,
and σ′ computes element-wise the derivative of σ.

Any gradient component ∂Et
∂θ is also a sum (see eq.

(4)), whose terms we refer to as temporal contribu-
tions or temporal components. One can see that each

such temporal contribution ∂Et
∂xt

∂xt
∂xk

∂+xk
∂θ measures how

θ at step k affects the cost at step t > k. The fac-
tors ∂xt

∂xk
(eq. (5)) transport the error “in time“ from

step t back to step k. We would further loosely distin-
guish between long term and short term contributions,
where long term refers to components for which k � t
and short term to everything else.

2. Exploding and vanishing gradients

Introduced in Bengio et al. (1994), the exploding gra-
dients problem refers to the large increase in the norm
of the gradient during training. Such events are due to
the explosion of the long term components, which can

2We use “immediate” partial derivatives in order to
avoid confusion, though one can use the concept of total
derivative and the proper meaning of partial derivative to
express the same property

grow exponentially more than short term ones. The
vanishing gradients problem refers to the opposite be-
haviour, when long term components go exponentially
fast to norm 0, making it impossible for the model to
learn correlation between temporally distant events.

2.1. The mechanics

To understand this phenomenon we need to look at the
form of each temporal component, and in particular at
the matrix factors ∂xt

∂xk
(see eq. (5)) that take the form

of a product of t − k Jacobian matrices. In the same
way a product of t− k real numbers can shrink to zero
or explode to infinity, so does this product of matrices
(along some direction v).

In what follows we will try to formalize these intuitions
(extending similar derivations done in Bengio et al.
(1994) where a single hidden unit case was considered).

If we consider a linear version of the model (i.e. set σ to
the identity function in eq. (2)) we can use the power
iteration method to formally analyze this product of
Jacobian matrices and obtain tight conditions for when
the gradients explode or vanish (see the supplementary
materials). It is sufficient for ρ < 1, where ρ is the
spectral radius of the recurrent weight matrix Wrec,
for long term components to vanish (as t → ∞) and
necessary for ρ > 1 for them to explode.

We generalize this result for nonlinear functions σ
where |σ′(x)| is bounded, ‖diag(σ′(xk))‖ ≤ γ ∈ R,
by relying on singular values.

We first prove that it is sufficient for λ1 <
1
γ , where

λ1 is the largest singular value of Wrec, for the vanish-
ing gradient problem to occur. Note that we assume
the parametrization given by eq. (2). The Jacobian

matrix ∂xk+1

∂xk
is given by WT

recdiag(σ′(xk)). The 2-
norm of this Jacobian is bounded by the product of
the norms of the two matrices (see eq. (6)). Due to
our assumption, this implies that it is smaller than 1.

∀k,
∥∥∥∥∂xk+1

∂xk

∥∥∥∥ ≤ ∥∥WT
rec

∥∥ ‖diag(σ′(xk))‖ < 1

γ
γ < 1

(6)

Let η ∈ R be such that ∀k,
∥∥∥∂xk+1

∂xk

∥∥∥ ≤ η < 1. The

existence of η is given by eq. (6). By induction over i,
we can show that∥∥∥∥∥ ∂Et∂xt

(
t−1∏
i=k

∂xi+1

∂xi

)∥∥∥∥∥ ≤ ηt−k
∥∥∥∥ ∂Et∂xt

∥∥∥∥ (7)

As η < 1, it follows that, according to eq. (7), long
term contributions (for which t − k is large) go to 0
exponentially fast with t− k. �

By inverting this proof we get the necessary condition
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for exploding gradients, namely that the largest singu-
lar value λ1 is larger than 1

γ (otherwise the long term

components would vanish instead of exploding). For
tanh we have γ = 1 while for sigmoid we have γ = 1/4.

2.2. Drawing similarities with dynamical
systems

We can improve our understanding of the exploding
gradients and vanishing gradients problems by employ-
ing a dynamical systems perspective, as it was done
before in Doya (1993); Bengio et al. (1993).

We recommend reading Strogatz (1994) for a formal
and detailed treatment of dynamical systems theory.
For any parameter assignment θ, depending on the ini-
tial state x0, the state xt of an autonomous dynamical
system converges, under the repeated application of
the map F , to one of several possible different attrac-
tor states. The model could also find itself in a chaotic
regime, a case in which some of the following observa-
tions may not hold, but that is not treated in depth
here. Attractors describe the asymptotic behaviour of
the model. The state space is divided into basins of at-
traction, one for each attractor. If the model is started
in one basin of attraction, the model will converge to
the corresponding attractor as t grows.

Dynamical systems theory says that as θ changes, the
asymptotic behaviour changes smoothly almost every-
where except for certain crucial points where drastic
changes occur (the new asymptotic behaviour ceases
to be topologically equivalent to the old one). These
points form bifurcation boundaries and are caused by
attractors that appear, disappear or change shape.

Doya (1993) hypothesizes that such bifurcation cross-
ings could cause the gradients to explode. We would
like to extend this observation into a sufficient condi-
tion for gradients to explode, by addressing the issue
of crossing boundaries between basins of attraction.

We argue that bifurcations are global events that can
have locally no effect and therefore crossing them is
neither sufficient nor necessary for the gradients to ex-
plode. For example due to a bifurcation one attractor
can disappear, but if the model’s state is not found in
the basin of attraction of said attractor, learning will
not be affected by it. However when either a change in
the state or in the position of the boundary between
basins of attraction (which can be caused by a change
in θ) is such that the model falls in a different basin
than before, the state will be attracted in a different
direction resulting in the explosion of the gradients.
This crossing of boundaries between basins of attrac-
tion is a local event and it is sufficient for the gradients
to explode. By assuming that crossing into an emerg-

ing attractor or from a disappearing one qualifies as
crossing a boundary between attractors, this term en-
capsulates also the observations from Doya (1993).

We will re-use the one-hidden unit model (and plot)
from Doya (1993) (see Fig. 3) to depict our exten-
sion, though , as the original hypothesis, our extension
does not depend on the dimensionality of the model.
The x-axis covers the parameter b and the y-axis the
asymptotic state x∞. The bold line follows the move-
ment of the final point attractor, x∞, as b changes.
At b1 we have a bifurcation boundary where a new at-
tractor emerges (when b decreases from ∞), while at
b2 we have another that results in the disappearance
of one of the two attractors. In the interval (b1, b2)
we are in a rich regime, where there are two attractors
and the change in position of boundary between them,
as we change b, is traced out by a dashed line. The
gray dashed arrows describe the evolution of the state
x if the network is initialized in that region. Cross-
ing the boundary between basins of attractions is de-
picted with unfilled circles, where a small change in
the state at time 0 results in a sudden large change in
xt. Crossing a bifurcation ((Doya, 1993) original hy-
pothesis) is shown with filled circles. Note how in the
figure, there are only two values of b with a bifurca-
tion, but a whole range of values for which there can
be a boundary crossing.

Figure 3. Bifurcation diagram of a single hidden unit RNN
(with fixed recurrent weight of 5.0 and adjustable bias b;
example introduced in Doya (1993)). See text.

Another limitation of previous analysis is that it con-
siders autonomous systems and assumes the observa-
tions hold for input-driven models as well. In (Ben-
gio et al., 1994) input is dealt with by assuming it
is bounded noise. The downside of this approach is
that it limits how one can reason about the input. In
practice, the input is supposed to drive the dynamical
system, being able to leave the model in some attrac-
tor state, or kick it out of the basin of attraction when
certain triggering patterns present themselves.

We propose to extend our analysis to input driven
models by folding the input into the map. We con-
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sider the family of maps F , where we apply a different
Ft at each step. Intuitively, for the gradients to ex-
plode we require the same behaviour as before, where
(at least in some direction) the maps F1, .., Ft agree
and change direction. Fig. 4 describes this behaviour.

F1

F2

F3
F1

F2

F3

∆x0
∆xt

xt
xt

Figure 4. This diagram illustrates how the change in xt,
∆xt, can be large for a small ∆x0. The blue vs red
(left vs right) trajectories are generated by the same maps
F1, F2, . . . for two different initial states.

For the specific parametrization in eq. (2) we can take
the analogy one step further by decomposing the maps
Ft into a fixed map F̃ and a time-varying one Ut.
F (x) = Wrecσ(x) + b corresponds to an input-less
recurrent network, while Ut(x) = x+Winut describes
the effect of the input. This is depicted in in Fig. 5.
Since Ut changes with time, it can not be analyzed us-
ing standard dynamical systems tools, but F̃ can. This
means that when a boundary between basins of attrac-
tions is crossed for F̃ , the state will move towards a
different attractor, which for large t could lead (un-
less the input maps Ut are opposing this) to a large
discrepancy in xt. Therefore studying the asymptotic
behaviour of F̃ can provide useful information about
where such events are likely to happen.

F1

F2

F̃

F̃

U1

U2

F̃

F̃F1

F2

U1

U2

∆x0

∆xt
xt xt

Figure 5. Illustrates how one can break apart the maps
F1, ..Ft into a constant map F̃ and the maps U1, .., Ut. The
dotted vertical line represents the boundary between basins
of attraction, and the straight dashed arrow the direction
of the map F̃ on each side of the boundary. This diagram
is an extension of Fig. 4.

One interesting observation from the dynamical sys-
tems perspective with respect to vanishing gradients
is the following. If the factors ∂xt

∂xk
go to zero (for t−k

large), it means that xt does not depend on xk (if
we change xk by some ∆, xt stays the same). This
translates into the model at xt being close to conver-
gence towards some attractor (which it would reach
from anywhere in the neighbourhood of xk). Therefore

avoiding the vanishing gradient means staying close to
the boundaries between basins of attractions.

2.3. The geometrical interpretation

Let us consider a simple one hidden unit model (eq.
(8)) where we provide an initial state x0 and train the
model to have a specific target value after 50 steps.
Note that for simplicity we assume no input.

xt = wσ(xt−1) + b (8)

Fig. 6 shows the error surface E50 = (σ(x50) − 0.7)2,
where x0 = .5 and σ to be the sigmoid function.

Figure 6. We plot the error surface of a single hidden unit
recurrent network, highlighting the existence of high cur-
vature walls. The solid lines depicts standard trajectories
that gradient descent might follow. Using dashed arrow
the diagram shows what would happen if the gradients is
rescaled to a fixed size when its norm is above a threshold.

We can easily analyze the behavior of the model in the
linear case, with b = 0, i.e. xt = x0w

t. We have that
∂xt
∂w = tx0w

t−1 and ∂2xt
∂w2 = t(t − 1)x0w

t−2, implying
that when the first derivative explodes, so does the
second derivative.

In the general case, when the gradients explode they
do so along some directions v. There exists, in such
situations, a v such that ∂Et

∂θ v ≥ Cαt, where C,α ∈
R and α > 1 (for e.g., in the linear case, v is the
eigenvector corresponding to the largest eigenvalue of
Wrec). If this bound is tight, we hypothesize that
when gradients explode so does the curvature along v,
leading to a wall in the error surface, like the one seen
in Fig. 6. Based on this hypothesis we devise a simple
solution to the exploding gradient problem (see Fig 6).

If both the gradient and the leading eigenvector of the
curvature are aligned with the exploding direction v, it
follows that the error surface has a steep wall perpen-
dicular to v (and consequently to the gradient). This
means that when stochastic gradient descent (SGD)
reaches the wall and does a gradient descent step, it
will be forced to jump across the valley moving perpen-
dicular to the steep walls, possibly leaving the valley
and disrupting the learning process.
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The dashed arrows in Fig. 6 correspond to ignoring
the norm of this large step, ensuring that the model
stays close to the wall. One key insight is that all
the steps taken when the gradient explodes are aligned
with v and ignore other descent direction. At the wall,
a bounded norm step in the direction of the gradient
therefore merely pushes us back inside the smoother
low-curvature region besides the wall, whereas a regu-
lar gradient step would bring us very far, thus slowing
or preventing further training.

The important assumption in this scenario, compared
to the classical high curvature valley, is that we assume
that the valley is wide, as we have a large region around
the wall where if we land we can rely on first order
methods to move towards a local minima. The effec-
tiveness of clipping provides indirect evidence, as oth-
erwise, even with clipping, SGD would not be able to
explore descent directions of low curvature and there-
fore further minimize the error.

Our hypothesis, when it holds, could also provide an-
other argument in favor of the Hessian-Free approach
compared to other second order methods (among other
existing arguments). Hessian-Free, and truncated
Newton methods in general, compute a new estimate
of the Hessian matrix before each update step and can
take into account abrupt changes in curvature (such as
the ones suggested by our hypothesis) while other ap-
proaches use a smoothness assumption, averaging 2nd
order signals over many steps.

3. Dealing with the exploding and
vanishing gradient

3.1. Previous solutions

Using an L1 or L2 penalty on the recurrent weights can
help with exploding gradients. Assuming weights are
initialized to small values, the largest singular value λ1

of Wrec is probably smaller than 1. The L1/L2 term
can ensure that during training λ1 stays smaller than
1, and in this regime gradients can not explode (see
sec. 2.1). This approach limits the model to single
point attractor at the origin, where any information
inserted in the model dies out exponentially fast. This
prevents the model to learn generator networks, nor
can it exhibit long term memory traces.

Doya (1993) proposes to pre-program the model (to
initialize the model in the right regime) or to use
teacher forcing. The first proposal assumes that if the
model exhibits from the beginning the same kind of
asymptotic behaviour as the one required by the tar-
get, then there is no need to cross a bifurcation bound-
ary. The downside is that one can not always know
the required asymptotic behaviour, and, even if it is

known, it might not be trivial to initialize the model
accordingly. Also, such initialization does not prevent
crossing the boundary between basins of attraction.

Teacher forcing refers to using targets for some or all
hidden units. When computing the state at time t,
we use the targets at t− 1 as the value of all the hid-
den units in xt−1 which have a target defined. It has
been shown that in practice it can reduce the chance
that gradients explode, and even allow training gen-
erator models or models that work with unbounded
amounts of memory(Pascanu and Jaeger, 2011; Doya
and Yoshizawa, 1991). One important downside is that
it requires a target to be defined at every time step.

Hochreiter and Schmidhuber (1997); Graves et al.
(2009) propose the LSTM model to deal with the van-
ishing gradients problem. It relies on special type of
linear unit with a self connection of value 1. The flow
of information into and out of the unit is guarded by
learned input and output gates. There are several vari-
ations of this basic structure. This solution does not
address explicitly the exploding gradients problem.

Sutskever et al. (2011) use the Hessian-Free optimizer
in conjunction with structural damping. This approach
seems able to address the vanishing gradient problem,
though more detailed analysis is missing. Presumably
this method works because in high dimensional spaces
there is a high probability for long term components to
be orthogonal to short term ones. This would allow the
Hessian to rescale these components independently.
In practice, one can not guarantee that this property
holds. The method addresses the exploding gradient
as well, as it takes curvature into account. Structural
damping is an enhancement that forces the Jacobian
matrices ∂xt

∂θ to have small norm, hence further helping
with the exploding gradients problem. The need for
this extra term when solving the pathological prob-
lems might suggest that second order derivatives do
not always grow at same rate as first order ones.

Echo State Networks (Jaeger and Haas, 2004) avoid
the exploding and vanishing gradients problem by not
learning Wrec and Win. They are sampled from hand
crafted distributions. Because the spectral radius of
Wrec is, by construction, smaller than 1, information
fed in to the model dies out exponentially fast. An
extension to the model is given by leaky integration
units (Jaeger et al., 2007), where

xk = αxk−1 + (1− α)σ(Wrecxk−1 + Winuk + b).

These units can be used to solve the standard bench-
mark proposed by Hochreiter and Schmidhuber (1997)
for learning long term dependencies (Jaeger, 2012).
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We would make a final note about the approach pro-
posed by Tomas Mikolov in his PhD thesis (Mikolov,
2012)(and implicitly used in the state of the art re-
sults on language modelling (Mikolov et al., 2011)). It
involves clipping the gradient’s temporal components
element-wise (clipping an entry when it exceeds in ab-
solute value a fixed threshold).

3.2. Scaling down the gradients

As suggested in section 2.3, one mechanism to deal
with the exploding gradient problem is to rescale their
norm whenever it goes over a threshold:

Algorithm 1 Pseudo-code for norm clipping

ĝ← ∂E
∂θ

if ‖ĝ‖ ≥ threshold then
ĝ← threshold

‖ĝ‖ ĝ

end if

This algorithm is similar to the one proposed by Tomas
Mikolov and we only diverged from the original pro-
posal in an attempt to provide a better theoretical jus-
tification (see section 2.3; we also move in a descent
direction for the current mini-batch). We regard this
work as an investigation of why clipping works. In
practice both variants behave similarly.

The proposed clipping is simple and computationally
efficient, but it does however introduce an additional
hyper-parameter, namely the threshold. One good
heuristic for setting this threshold is to look at statis-
tics on the average norm over a sufficiently large num-
ber of updates. In our experience values from half
to ten times this average can still yield convergence,
though convergence speed can be affected.

3.3. Vanishing gradient regularization

We opt to address the vanishing gradients problem us-
ing a regularization term that represents a preference
for parameter values such that back-propagated gra-
dients neither increase or decrease in magnitude. Our
intuition is that increasing the norm of ∂xt

∂xk
means the

error at time t is more sensitive to all inputs ut, ..,uk
( ∂xt∂xk

is a factor in ∂Et
∂uk

). In practice some of these in-
puts will be irrelevant for the prediction at time t and
will behave like noise that the network needs to learn
to ignore. The network can not learn to ignore these
irrelevant inputs unless there is an error signal. These
two issues can not be solved in parallel, and it seems
natural to expect that we might need to force the net-
work to increase ‖ ∂xt∂xk

‖ at the expense of larger errors

(caused by the irrelevant input entries) and then wait
for it to learn to ignore these input entries. This sug-
gests that moving towards increasing the norm of ∂xt

∂xk
can not be always done while following a descent di-
rection of the error E (which is, for e.g., what a second

order method would do), and a more natural choice
might be a regularization term.

The regularizer we propose prefers solutions for which
the error preserves norm as it travels back in time:

Ω =
∑
k

Ωk =
∑
k


∥∥∥ ∂E
∂xk+1

∂xk+1

∂xk

∥∥∥∥∥∥ ∂E
∂xk+1

∥∥∥ − 1

2

(9)

In order to be computationally efficient, we only use
the “immediate” partial derivative of Ω with respect to
Wrec (we consider that xk and ∂E

∂xk+1
as being constant

with respect to Wrec when computing the derivative
of Ωk), as depicted in eq. (10). This can be done effi-
ciently because we get the values of ∂E

∂xk
from BPTT.

We use Theano to compute these gradients (Bergstra
et al., 2010; Bastien et al., 2012).

∂+Ω
∂Wrec

=
∑
k
∂+Ωk
∂Wrec

=
∑
k

∂+


∥∥∥∥ ∂E
∂xk+1

WT
recdiag(σ

′(xk))

∥∥∥∥2∥∥∥∥ ∂E
∂xk+1

∥∥∥∥2 −1

2

∂Wrec

(10)
Note that our regularization term only forces the Ja-
cobian matrices ∂xk+1

∂xk
to preserve norm in the relevant

direction of the error ∂E
∂xk+1

, not for any direction (we

do not enforce that all eigenvalues are close to 1). The
second observation is that we are using a soft con-
straint, therefore we are not ensured the norm of the
error signal is preserved. This means that we still need
to deal with the exploding gradient problem, as a sin-
gle step induced by it can disrupt learning. From the
dynamical systems perspective we can see that pre-
venting the vanishing gradient problem implies that
we are pushing the model towards the boundary of
the current basin of attraction (such that during the
N steps it does not have time to converge), making it
more probable for the gradients to explode.

4. Experiments and results

4.1. Pathological synthetic problems

As done in Martens and Sutskever (2011), we address
some of the pathological problems from Hochreiter and
Schmidhuber (1997) that require learning long term
correlations. We refer the reader to this original pa-
per for a detailed description of the tasks and to the
supplementary materials for the complete description
of setup for any of the following experiments. 3

4.1.1. The temporal order problem

We consider the temporal order problem as the pro-
totypical pathological problem, extending our results
to the other proposed tasks afterwards. The input is

3Code: https://github.com/pascanur/trainingRNNs
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Figure 7. Rate of success for solving the temporal order problem versus sequence length for different initializations (from
left to right: sigmoid, basic tanh and smart tanh). See text.

a long stream of discrete symbols. At the beginning
and middle of the sequence a symbol within {A,B}
is emitted. The task consists in classifying the order
(either AA,AB,BA,BB) at the end of the sequence.

Fig. 7 shows the success rate of standard mini-
batch stochastic gradient descent MSGD, MSGD-C
(MSGD enhanced with out clipping strategy) and
MSGD-CR (MSGD with the clipping strategy and
the regularization term) 4. It was previously shown
(Sutskever, 2012) that initialization plays an impor-
tant role for training RNNs. We consider three differ-
ent initializations. “sigmoid” is the most adversarial
initialization, where we use a sigmoid unit network
where Wrec,Win,Wout ∼ N (0, 0.01). “basic tanh”
uses a tanh unit network where Wrec,Win,Wout ∼
N (0, 0.1). “smart tanh” also uses tanh units and
Win,Wout ∼ N (0, 0.01). Wrec is sparse (each unit
has only 15 non-zero incoming connections) with the
spectral radius fixed to 0.95. In all cases b = bout = 0.
The graph shows the success rate out of 5 runs (with
different random seeds) for a 50 hidden unit model,
where the x-axis contains the length of the sequence.
We use a constant learning rate of 0.01 with no mo-
mentum. When clipping the gradients, we used a
threshold of 1.,and the regularization weight was fixed
to 4. A run is successful if the number of misclassified
sequences was under 1% out of 10000 freshly random
generated sequences. We allowed a maximum number
of 5M updates, and use minibatches of 20 examples.

This task provides empirical evidence that exploding
gradients are linked with tasks that require long mem-
ory traces. As the length of the sequence increases,
using clipping becomes more important to achieve a
better success rate. More memory implies larger spec-
tral radius, which leads to rich regimes where gradients
are likely to explode.

Furthermore, we can train a single model to deal with

4When using just the regularization term, without clip-
ping, learning usually fails due to exploding gradients

any sequence of length 50 up to 200 (by providing
sequences of different random lengths in this interval
for different MSGD steps). We achieve a success rate
of 100% over 5 seeds in this regime as well (all runs
had 0 misclassified sequences in a set of 10000 ran-
domly generated sequences of different lengths). We
used a RNN of 50 tanh units initialized in the “ba-
sic tanh” regime. The same trained model can
address sequences of length up to 5000 steps,
lengths never seen during training. Specifically
the same model produced 0 mis-classified sequences
(out of 10000 sequences of same length) for lengths
of either 50, 100, 150, 200, 250, 500, 1000, 2000, 3000
and 5000. This provides some evidence that the model
might use attractors to form some kind of long term
memory, rather then relying on transient dynamics
(as for example ESN networks probably do in Jaeger
(2012)).

4.1.2. Other pathological tasks

SGD-CR is able to solve (100% success on the lengths
listed below, for all but one task) other pathological
problems from Hochreiter and Schmidhuber (1997),
namely the addition problem, the multiplication prob-
lem, the 3-bit temporal order problem, the random
permutation problem and the noiseless memorization
problem in two variants (when the pattern needed to
be memorized is 5 bits in length and when it contains
over 20 bits of information; see Martens and Sutskever
(2011)). For every task we used 5 different runs (with
different random seeds). For the first 4 problems we
used a single model for lengths up to 200, while for
the noiseless memorization we used a different model
for each sequence length (50, 100, 150 and 200). The
hardest problems for which only two runs out of 5 suc-
ceeded was the random permutation problem. For the
addition and multiplication task we observe successful
generalization to sequences up to 500 steps (we notice
an increase in error with sequence length, though it
stays below 1%). Note that for the addition and mul-
tiplication problem a sequence is misclassified with the
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Table 1. Results on polyphonic music prediction in negative log likelihood per time step and natural language task in bits
per character. Lower is better. Bold face shows state of the art for RNN models.

Data set
Data
fold

MSGD MSGD+C MSGD+CR
State of the
art for RNN

State of the
art

Piano-midi.de train 6.87 6.81 7.01 7.04 6.32
(nll) test 7.56 7.53 7.46 7.57 7.05
Nottingham train 3.67 3.21 2.95 3.20 1.81
(nll) test 3.80 3.48 3.36 3.43 2.31
MuseData train 8.25 6.54 6.43 6.47 5.20
(nll) test 7.11 7.00 6.97 6.99 5.60

Penn Treebank train 1.46 1.34 1.36 N/A N/A
1 step (bits/char) test 1.50 1.42 1.41 1.41 1.37
Penn Treebank train N/A 3.76 3.70 N/A N/A
5 steps (bits/char) test N/A 3.89 3.74 N/A N/A

square error is larger than .04. In most cases, these
results outperforms Martens and Sutskever (2011) in
terms of success rate, they deal with longer sequences
than in Hochreiter and Schmidhuber (1997) and com-
pared to (Jaeger, 2012) they generalize to longer se-
quences. For details see supplementary materials.

4.2. Natural problems

We address the task of polyphonic music prediction,
using the datasets Piano-midi.de, Nottingham and
MuseData described in Boulanger-Lewandowski et al.
(2012) and language modelling at the character level
on the Penn Treebank dataset (Mikolov et al., 2012).
We also explore a modified version of the task, where
we require to predict the 5th character in the future
(instead of the next). We assume that for solving this
modified task long term correlations are more impor-
tant than short term ones, and hence our regulariza-
tion term should be more helpful.

The training and test scores for all natural problems
are reported in Table 1 as well as state of the art
for these tasks. See additional material for hyper-
parameters and experimental setup. We note that
keeping the regularization weight fixed (as for the pre-
vious tasks) seems to harm learning. One needs to use
a 1/t decreasing schedule for this term. We hypothe-
sis that minimizing the regularization term affects the
ability of the model to learn short term correlations
which are important for these tasks, though a more
careful investigation is lacking.

These results suggest that clipping solves an optimiza-
tion issue and does not act as a regularizer, as both
the training and test error improve in general. Results
on Penn Treebank reach the state of the art for RNN
achieved by Mikolov et al. (2012), who used a differ-
ent clipping algorithm similar to ours, thus providing
evidence that both behave similarly. A maximum en-

tropy model with up to 15-gram features has state of
the art on Penn Treebank(character-level). However,
RNN models with some clipping strategy have state of
the art for word modeling and character modeling on
larger datasets (Mikolov et al., 2011; 2012)

For the polyphonic music prediction we have state of
the art for RNN models, though RNN-NADE, a prob-
abilistic recurrent model, trained with Hessian Free
(Bengio et al., 2012) does better.

5. Summary and conclusions

We provided different perspectives through which one
can gain more insight into the exploding and vanishing
gradients issue. We put forward a hypothesis stat-
ing that when gradients explode we have a cliff-like
structure in the error surface and devise a simple so-
lution based on this hypothesis, clipping the norm of
the exploded gradients. The effectiveness of our pro-
posed solutions provides some indirect empirical evi-
dence towards the validity of our hypothesis, though
further investigations are required. In order to deal
with the vanishing gradient problem we use a regular-
ization term that forces the error signal not to vanish
as it travels back in time. This regularization term
forces the Jacobian matrices ∂xi

∂xi−1
to preserve norm

only in relevant directions. In practice we show that
these solutions improve performance of RNNs on the
pathological synthetic datasets considered, polyphonic
music prediction and language modelling.
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