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Abstract
Building distributed services and applications is challenging due
to the pitfalls of distribution such as process and communication
failures. A natural solution to these problems is to detect potential
failures, and retry the failed computation and/or resend messages.
Ensuring correctness in such an environment requires distributed
services and applications to be idempotent.

In this paper, we study the inter-related aspects of process fail-
ures, duplicate messages, and idempotence. We first introduce a
simple core language (based on λ-calculus) inspired by modern dis-
tributed computing platforms. This language formalizes the notions
of a service, duplicate requests, process failures, data partitioning,
and local atomic transactions that are restricted to a single store.

We then formalize a desired (generic) correctness criterion for
applications written in this language, consisting of idempotence
(which captures the desired safety properties) and failure-freedom
(which captures the desired progress properties).

We then propose language support in the form of a monad that
automatically ensures failfree idempotence. A key characteristic of
our implementation is that it is decentralized and does not require
distributed coordination. We show that the language support can
be enriched with other useful constructs, such as compensations,
while retaining the coordination-free decentralized nature of the
implementation.

We have implemented the idempotence monad (and its variants)
in F# and C# and used our implementation to build realistic appli-
cations on Windows Azure. We find that the monad has low runtime
overheads and leads to more declarative applications.

Categories and Subject Descriptions D.4.5 [Operating Systems]:
Reliability—Fault-tolerance; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Client/server, Distributed applica-
tions

General Terms Reliability, Languages, Design

Keywords fault tolerance, idempotence, workflow, transaction,
monad

1. Introduction
Distributed computing is becoming mainstream. Several modern
platforms offer virtualized distributed systems at low entry cost
with the promise of scaling out on demand. But distributed comput-
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ing comes with its own pitfalls, such as process failures, imperfect
messaging, asynchrony and concurrency.

Consider the prototypical bank account transfer service in
Fig. 1. The goal of the service is to transfer money between bank
accounts, potentially in different banks. If the accounts belong to
different banks, ensuring that the transfer executes as an atomic
(distributed) transaction is usually not feasible, and the natural way
of expressing this computation is as a workflow [10, 20] consisting
of two steps, a debit followed by a credit.

What if the process executing the workflow fails in between the
debit and credit steps? A natural solution is to detect this failure
and ensure that a different process completes the remaining steps
of the workflow. A challenging1 aspect of realizing this solution
is figuring out whether the original process failed before or after
completing a particular step (either debit or credit). If not done
carefully, the debit or credit step may be executed multiple times,
leading to further correctness concerns. Services often rely on a
central workflow manager to manage process failures during the
workflow (using distributed transactions).

Now consider a (seemingly) different problem. Messages sent
between the client initiating the transfer and the service may be lost.
The only option for a client, when it does not receive a response
within some reasonable time, is to resend its request. Yet the client
does not want the transfer to occur twice!

In this paper, we study process and communication failures in
the context of workflows. The seemingly different problems caused
by process and communication failures are, in fact, inter-related.
Idempotence, a correctness criterion that requires the system to tol-
erate duplicate requests, is the key to handling both communication
and process failures efficiently. Idempotence, when combined with
retry, gives us the essence of a workflow, a fault tolerant composi-
tion of atomic actions, for free without the need for distributed co-
ordination. In the transfer example, a fault tolerant account trans-
fer can be implemented without a central workflow manager if the
debit and credit steps can be designed to be idempotent,

Formalizing Failfree Idempotence. In this paper, we introduce a
simple core language λFAIL, inspired by contemporary cloud plat-
forms. This language formalizes process failure, duplicate requests,
partitioned data, and local transactions. A local transaction pro-
vides ACID guarantees but is restricted to access data within a sin-
gle partition (typically a single server). Computations in λFAIL are
like workflows, but without any fault-tolerance guarantees for the
composition (i.e., the computation may fail between transactions).

We then formalize a generic correctness criterion for applica-
tions written in λFAIL. A simple, powerful and tempting criterion is
that an application’s behavior in the presence of duplicate requests
and process failures should be indistinguishable from its behav-
ior in the absence of duplicate requests and failures. We formal-

1 In general, detecting failures perfectly in an asynchronous, message pass-
ing system is impossible [8]. Conservative failure detection can also lead to
the same problem of duplicated computation.



let process (request) =
match request with
| (“getBalance”, (branch, account))→

atomic branch {lookup account}
| (“transfer”, (fromBranch, fromAccount, toBranch, toAccount, amt)→

atomic fromBranch {
update fromAccount ((lookup fromAccount) − amt)

};
atomic toBranch {

update toAccount ((lookup toAccount) + amt)
};
“Transfer complete.”

Figure 1: A banking service example, in syntactically sugared
λFAIL, that is neither idempotent nor fault-tolerant.

ize a slightly weaker, but more appropriate, correctness criterion,
namely failure-freedom modulo message duplication. Informally,
this criterion permits the system to send duplicate responses. This
weakening is appropriate from the perspective of composition: if
the recipient of the responses can also tolerate duplicate messages,
then the sender is freed of the obligation to send the response ex-
actly once.

Automating Idempotence. Next, we address the problem of auto-
matically ensuring idempotence for a service. We present our solu-
tion as a monad, the idempotence monad. We then show that idem-
potence, when coupled with a simple retry mechanism, provides a
“free” solution to the problem of tolerating process failures, guaran-
teeing failure-freedom modulo message duplication. We then pro-
pose dedicated language support for idempotent computations.

Decentralized Idempotence and Workflow. The idea underlying
the idempotence monad is conceptually simple, but tedious to im-
plement manually (i.e., without the monad). Given a unique iden-
tifier associated with a computation, the monad essentially adds
logging and checking to each effectful step in the workflow to en-
sure idempotance. An important characteristic of our implementa-
tion (of the monad) is that it is designed to work with contemporary
distributed storage systems such as key-value tables. Specifically, it
does not assume the presence of dedicated storage for logs that can
be accessed atomically with each transaction. The monad reuses
the underlying store (in this case a key-value table) to simulate a
distinct address space for logging.

This leads to a decentralized implementation of idempotence
that does not require any centralized storage or any (distributed)
coordination between different stores. Thus, the implementation
of idempotance preserves the decentralized nature of the under-
lying computation. This, in turn, leads to a completely decentral-
ized implementation of a (fault-tolerant) workflow, unlike tradi-
tional workflow implementations, which use a centralized work-
flow coordinator and/or a centralized repository for runtime status
information.

Extensions. We then extend the idempotence monad with other
useful constructs, while preserving the decentralized nature of the
construct. One extension allows the application to associate each
transaction in a workflow with a compensating action. Another ex-
tension allows the application to generate intermediate responses
to client requests and then asynchronously retry the requests on
client’s behalf. This idiom, especially useful in long running com-
putations, frees the client from having to track status of requests,
and leads to more responsive clients.

Implementation. We have implemented the idempotence work-
flow monad in F# targeting the Windows Azure platform. We have
implemented several realistic applications using the idempotence

workflow monad [2, 4]. We find that the core business logic in these
applications can be declaratively expressed using the monad. Our
evaluation shows that performance overheads of using the monad
over hand-coded implementations are statistically insignificant.

The rest of the paper is organized as follows. In Section 2, we
introduce a language λFAIL and formalize duplicate requests and
process failures. We formalize what it means for a λFAIL application
to correctly tolerate duplicate requests and failures. In Section 3,
we present the idempotence monad and show how it can be used to
tolerate duplicate requests as well as process failures. In Section 4,
we describe extensions of the idempotence construct. In Section 5,
we evaluate the idempotence monad and our implementation from
the perspective of expressiveness, benefits and overheads. Section 6
discusses related work.

2. Failfree Idempotence
In this section we present a language λFAIL that distils essential el-
ements of distributed computing platforms such as Windows Azure
and formalize the concept of failfree idempotence.

2.1 The Language λFAIL

Informal Overview. A λFAIL program e represents a service that
receives input requests and produces output responses. An input
request v is processed by creating an agent to evaluate e v. When
the evaluation of e v terminates, producing a value v′, v′ is sent
back as the response. Multiple input requests can be processed con-
currently, and their evaluation can be interleaved. Shared, mutable,
persistent data is stored in tables.

Agents. An agent has its own internal state (captured by local
variables of the code). An agent may fail at any point in time. A
failure models problems such as hardware failure, software crashes
and reboots . Data stored in tables is persistent and is unaffected by
agent failures.

Tables. Tables are persistent maps. They provide primitives to
update the value bound to a key and lookup up the value asso-
ciated with a key. The language provides a limited form of an
atomic transaction, which enables a set of operations on the same
table to be performed transactionally. Specifically, the construct
“atomic t e” evaluates e in the context of table t (lookups and
updates are permitted only on table t within e), guaranteeing iso-
lation (no other agent can access t in the middle of e’s evaluation)
and the all-or-nothing property (no process failure can happen in
the middle of e’s evaluation).

Example. Fig. 1 presents a simple bank-account-transfer exam-
ple in syntactically sugared λFAIL. This example is neither idempo-
tent (e.g., executing the same transfer request twice is not equiva-
lent to executing it once) nor fault-tolerant (e.g., if the agent pro-
cessing a transfer request fails in between the debit and credit
steps).

Syntax. Fig. 2 presents the syntax of λFAIL, which extends λ-
calculus with the primitive operations on tables explained above.
In the rest of the paper, we will use extensions such as natural
numbers, arithmetic operators, and ordered pairs for brevity. These
can be encoded in the core language or added to it in the usual
fashion. We also use syntactic sugar, such as lookup e, where
e 6∈ 〈Val〉, as shorthand, e.g., for (λx.lookup x)e.

Semantic Domains Fig. 2 defines the semantic domains used in
the semantics of λFAIL. Let 〈Val〉 denote the set of all basic values:
these basically consist of function abstractions. (As usual, natural
numbers, string constants, ordered pairs of values, etc. can all be
encoded within 〈Val〉 or added to it.)

Let 〈Val〉opt represent the set of optional values (of the form
NONE or SOME v). An element of ΣST (a map from 〈Val〉 to



(a) Evaluation Contexts

E ::= [·] | E e | v E

(b) The Set of Evaluation Rules A used to define the standard semantics of λFAIL.

[INPUT]

v ∈ 〈Val〉

〈e, µ, α, I, O〉 in(v)⇒ 〈e, µ, α ] {v . (e v)}, I ∪ {v}, O〉

[OUTPUT]

vo ∈ 〈Val〉

〈e, µ, α ] {vi . vo}, I, O〉
out(vi,vo)⇒ 〈e, µ, α, I, O ∪ {(vi, vo)}〉

[NORMAL]

〈µ, e〉 ω 〈µ′, e′〉
〈p, µ, α ] {v . e}, I, O〉 ε⇒ 〈p, µ′, α ] {v . e′}, I, O〉

[FAIL]

〈p, µ, α ] {v . e}, I, O〉 ε⇒ 〈p, µ, α, I, O〉

[ATOMIC]

〈µ[tn], e()〉
ω
�
∗
〈t , v〉, v ∈ 〈Val〉

〈µ, atomic tn e〉 ω 〈µ[tn 7→ t ], v〉

[UPDATE]

〈t , update k v〉
(t,k,v)
� 〈t [k 7→ (SOME v)], 0〉

[LOOKUP]

〈t , lookup k〉
ε
� 〈t , t [k]〉

[CONTEXT]

〈t , e〉
u
� 〈t ′, e′〉

〈t , E[e]〉
u
� 〈t ′, E[e′]〉

[CONTEXT]

〈µ, e〉 ω 〈µ′, e′〉
〈µ,E[e]〉 ω 〈µ′, E[e′]〉

[LIFT]

e→ e′

〈t , e〉
ε
� 〈t , e′〉

[LIFT]

e→ e′

〈µ, e〉 ε
 〈µ, e′〉

[BETA]

(λx.e) v → e[v/x]

[RETRY]

v ∈ I
〈e, µ, α, I, O〉 ε⇒ 〈e, µ, α ] {v . (e v)}, I, O〉

(c) Additional Rules Used To Define the Ideal Semantics of λFAIL.

[UNIQUE-INPUT]

v ∈ 〈Val〉, v 6∈ I

〈e, µ, α, I, O〉 in(v)⇒ 〈e, µ, α ] {v . (e v)}, I ∪ {v}, O〉

[DUPLINPUT]

v ∈ 〈Val〉, v ∈ I

〈e, µ, α, I, O〉 in(v)⇒ 〈e, µ, α, I, O〉

[DUPLSEND]

v ∈ O

〈e, µ, α, I, O〉 out(v)⇒ 〈e, µ, α, I, O〉

Figure 3: Operational semantics of λFAIL.

x ∈ 〈Identifier〉
v ∈ 〈Val〉 ::= x | λx .e
e ∈ 〈Exp〉 ::= v | e e | atomic v1 v2 |

update v1 v2 | lookup v

tn ∈ 〈TableName〉 = 〈Val〉
t ∈ ΣST = 〈Val〉 7→ 〈Val〉opt
µ ∈ ΣT = 〈TableName〉 7→ ΣST
〈Req〉 = 〈Val〉
〈Resp〉 = 〈Req〉 × 〈Val〉

(v . e) ∈ ΣA = 〈Req〉 × 〈Exp〉
Σ = 〈Exp〉 × ΣT × Σ+

A × 2〈Req〉 × 2〈Resp〉

Figure 2: The Syntax of λFAIL and its Semantic Domains.

〈Val〉opt) represents the value of a single table. An element µ ∈ ΣT
represents the values of all tables.

As explained earlier, an agent represents a thread of computa-
tion spawned to process a given input request. The state of an agent
is represented by a pair of the form v . e, where v represents the
input request being processed and e represents a partially evaluated
expression (and represents the local state of the agent). Let ΣA rep-
resent the set of all agent-states.

The state of an executing program is represented by a system
configuration 〈e, µ, α, I, O〉 ∈ Σ, where e is the program itself,
µ represents the values of all tables, α is the multi-set of currently
executing agents, I represents the set of all input requests received
so far, and O represents the set of all responses produced so far. (A
response to a request vi is a pair of the form (vi, vo) where vo is
the result.) Let Σ represent the set of all configurations.

Let ] denote the union operator for multi-sets.

Semantics. Fig. 3 presents an operational semantics for λFAIL as
a labelled transition relation r⇒ on the set of configurations Σ. The
evaluation of a program p starts in the initial configuration 〈〈p〉〉 ,
〈p, µI , ∅, ∅, ∅〉, where µI = λt.λk.NONE. (Initially, all tables map
every key to a default value of NONE. We utilize a standard encoding
of optional values consisting of either NONE or SOME v.)

System Transitions. ( r⇒) As rule INPUT indicates, the arrival of
an input request v spawns a new agent to evaluate e v. As rule OUT-
PUT indicates, when an agent’s evaluation completes, the resulting
value is sent back as a response. The labels on system transitions
represent requests and responses. Rule NORMAL describes a nor-
mal system transition caused by a potentially effectful execution
step performed by a single agent, described below. As the rule in-
dicates, the execution steps of different agents can be interleaved in
a non-deterministic order. Rule FAIL indicates that an agent can fail
at any point in time.



Agent Transitions. ( ω ) Execution steps in the evaluation of a
single agent are described by the transition relation ω

 on ΣT ×
〈Exp〉. A transition 〈µ, e〉 ω 〈µ′, e′〉 indicates that an agent expres-
sion e is transformed to an agent expression e′, with the side-effect
of transforming the table-state from µ to µ′. The label ω represents
a sequence of updates to a single table performed atomically in this
step. (This label, however, identifies an internal transition not visi-
ble externally, which is why the label is omitted in the correspond-
ing system transition in rule NORMAL.) These transitions are of two
types: pure (standard λ-calculus evaluation, BETA), and effectful,
which take the form of atomic table operations.

Atomic Table Operations. The expression “atomic t e” iden-
tifies a set of operations to be performed on a single table t in
an atomic and failfree fashion. Its semantics is defined by rule
ATOMIC, which utilizes a transition relation

u
� on atomic evalua-

tion configurations of the form 〈t , e〉, which indicates the atomic
evaluation of an expression e at a table t . The labels on such tran-
sitions are either ε or represent a single update to a table. Rules UP-
DATE/LOOKUP define the semantics of an update/lookup operation
on a table. The rule ATOMIC indicates that no other execution step
interleaves with the evaluation of an atomic expression. Note that
the evaluation of an atomic expression cannot fail in the middle. In
other words, either all effects of the atomic expression evaluation
happen or none does.

Retry. The rule RETRY models one of the key ingredients used
to tolerate process failures, namely a retry mechanism. The rule
indicates that a request must be retried periodically. Typically,
retrying logic is built into clients. A client will resend a request if it
does not receive a response within a pre-defined amount of time.
This basic scheme can be optimized, as discussed in Section 4:
the system (application) can send an acknowledgement back to the
client, after which the client can stop resending a request and the
application takes on the responsibility of retrying the request (to
ensure progress in the presence of failures). The system can exploit
various optimizations in implementing the retry logic, but rule
RETRY suffices for our purpose here. As we will soon see, the key
reason for adding the RETRY rule to the semantics is to formalize
a weakened progress guarantee (“progress modulo retries”) that is
appropriate in the presence of failures.

2.2 Formalizing Failfree Idempotence
We now formalize a natural correctness goal of any λFAIL program:
namely, that it correctly handles process failures and duplicate
messages. We will later see how we can automatically ensure this
property for any program. We formalize this correctness criterion
as follows. We define an alternative semantics for λFAIL, which we
refer to as the ideal semantics, representing an idealized execution
platform. We then define a program to be “correct” iff its behavior
under the standard semantics is equivalent to its behavior under the
ideal semantics.

Ideal Semantics. Let A denote the set of all rules defined in
Fig. 3(b). We will define the ideal semantics as a different labelled
transition relation on program configurations, by adding and re-
moving some rules to set A. Let⇒S denote the labelled transition
relation on Σ induced by a given set of rules S. Thus, ⇒A is the
transition relation capturing the standard semantics of λFAIL.

We first omit rule FAIL eliminating process failures from the
ideal semantics. In the ideal semantics, we assume that all input
requests are distinct, by replacing the INPUT rule by the UNIQUE-
INPUT and DUPLINPUT rules. We also drop rule RETRY. Finally,
process failures make it hard to ensure that an application sends an
output message exactly once. A common approach to this problem
is to weaken the specification and permit the application to send the
same output message more than once. We do this by adding rule

DUPLSEND. We define IDEAL to be A \ { FAIL, RETRY, INPUT} ∪
{ UNIQUE-INPUT, DUPLINPUT, DUPLSEND}. We refer to⇒IDEAL as
the ideal semantics for λFAIL.

Observational Idempotence (Safety). We now consider two
(well-studied) notions of behavioral equivalence in formalizing
our correctness criterion. Recall that 〈〈p〉〉 denotes the initial con-
figuration in an execution of program p (which is the same under
both semantics). Given a labelled transition relation⇒ on config-
urations, an execution of a program p (with respect to ⇒) is an
alternating sequence of states and labels, denoted σ0

r1⇒ σ1 · · ·σn,
representing a sequence of transitions starting from the initial pro-
gram state σ0 = 〈〈p〉〉. We say that the observed behavior obs(ξ)
of an execution ξ is the sequence of non-ε labels in ξ. Note that
obs(ξ) is a sequence of (input) requests and (output) responses.
Specifically, it does not include updates to tables, which are inter-
nal transitions but not visible externally.

DEFINITION 2.1. We say that a λFAIL program p is observationally
idempotent if for every execution ξ1 of p under the standard seman-
tics there exists an execution ξ2 of p under the ideal semantics such
that obs(ξ1) = obs(ξ2).

We present a simpler, more abstract, formalization of idempo-
tence in the appendix. However, the preceding definition in terms
of the ideal semantics will be useful in formalizing progress prop-
erties, as below, and in proving correctness of our implementation.

Failfree Idempotence (Progress). An observationally idempotent
program, by definition, gives no progress guarantees. Consider a
modified version of the account-transfer example that checks the
input request to determine if it is a duplicate request and processes
it only if it is not a duplicate. This ensures that the program is
idempotent. However, if the agent fails in between the debit and
credit steps, we would still have a problem. This motivates the
following stronger correctness condition, based on the notion of
weak bisimulation. A labelled transition system (S,⇒) consists of
a relation `⇒ ⊆ S × S for every ` ∈ 〈Label〉.

DEFINITION 2.2. A weak bisimulation between two labelled tran-
sition systems (Σ1,⇒1) and (Σ2,⇒2) is a relation ∼ ⊆ Σ1 ×Σ2

such that for any σ1 ∼ σ2 we have:

1. σ1
`⇒1 σ

′
1 ∧ ` 6= ε ⇒ ∃σ′2, σ′′2 .σ2

ε⇒
∗
2 σ
′′
2

`⇒2 σ
′
2 ∧ σ′1 ∼ σ′2

2. σ2
`⇒2 σ

′
2 ∧ ` 6= ε ⇒ ∃σ′1, σ′′1 .σ1

ε⇒
∗
1 σ
′′
1

`⇒1 σ
′
1 ∧ σ′1 ∼ σ′2

3. σ1
ε⇒1 σ

′
1 ⇒ ∃σ′2.σ2

ε⇒
∗
2 σ
′
2 ∧ σ′1 ∼ σ′2

4. σ2
ε⇒2 σ

′
2 ⇒ ∃σ′1, σ′1.σ1

ε⇒
∗
1 σ
′
1 ∧ σ′1 ∼ σ′2

We will write (σ1,Σ1,⇒1) ' (σ2,Σ2,⇒2) to indicate that
there exists a weak bisimulation∼ between (Σr1,⇒1) and (Σr2,⇒2

) under which σ1 ∼ σ2, where Σri represents the set of states in Σi
that are reachable from σi via a sequence of ⇒i transitions. We
will omit Σ1 and Σ2 in this notation if no confusion is likely.

DEFINITION 2.3. A λFAIL program p is said to be failfree idempo-
tent iff (〈〈p〉〉,⇒A) ' (〈〈p〉〉,⇒IDEAL).

This definition requires a failfree idempotent program to pro-
vide progress guarantees: at any point in time, if the system can pro-
duce a response r under the ideal semantics, then the system should
be capable of producing the same response r under the standard
semantics also. However, the inclusion of rule RETRY in the stan-
dard semantics means that this progress guarantee holds provided
requests are retried. Absolute progress guarantees are not possible
since an agent may fail before it executes even its first step.

THEOREM 2.4. A failfree idempotent program is also observation-
ally idempotent.



let imreturn v = fun (guid, tc)→ (tc, v)

let imatomic T f =
fun (guid, tc)→

atomic T {
let key = (0, (guid, tc)) in
match lookup key with
| Some(v)→ (v,tc+1)
| None→

let v = f () in (update key v); (v,tc+1)
}

let imbind (idf, f) =
fun (guid, tc)→

let (ntc, v) = idf (guid, tc) in
f v (guid, ntc)

let imrun idf x =
let (j,v) = idf x (x, 0) in v

let imupdate key val = update (1,key) val
let imlookup key = lookup (1,key)

Figure 4: The Idempotence Monad.

Failfree Idempotent Realization. Failfree idempotence is a generic
correctness property we expect of a λFAIL program. More generally,
the following definition combines this property with a “specifica-
tion” (provided as another λFAIL program q).

DEFINITION 2.5. A λFAIL program p is said to be a failfree idem-
potent realization of q iff (〈〈p〉〉,⇒A) ' (〈〈q〉〉,⇒IDEAL).

3. Realizing Failfree Idempotence
We now present a generic, application-independent, strategy that
can be used to ensure failfree idempotence. Informally, a function
is idempotent if multiple evaluations of the function on the same
argument, potentially concurrently, behave the same as a single
evaluation of that function with the same argument. Consider the
example in Fig. 1. In this example, the parameter requestId serves
to distinguish between different transfer requests (and identify du-
plicate requests). This service can be made idempotent and failfree
by (a) using this identifier to log debit and credit operations, when-
ever the operations are performed, and (b) modifying the debit and
credit steps to check, using the log, if the steps have already been
performed. This strategy can ensure that multiple (potentially par-
tial and concurrent) invocations of transfer with the same identifier
have the same effect as a single invocation.

Manually ensuring idempotence is tedious and it introduces the
possibility of various subtle bugs and in general makes implementa-
tion less comprehensible. We now describe a monad-based library
that realizes idempotence and failure-freedom in a generic way.

3.1 The Idempotence Monad
The Intuition. A computation performed by a single agent con-
sists of a sequence of steps, “pure” as well as “effectful” ones
(namely, atomic local transactions which can read/update a single
table.) We use the following strategy to make a computation idem-
potent:

1. Associate every computation instance (that we wish to make
idempotent) with a unique identifier.

2. Associate every step in an idempotent computation with a
unique number.

3. Whenever an effectful step is executed, we simultaneously per-
sistently record the fact that this step has executed and save the
value produced by this step.

4. Every effectful step is modified to first check if this step has
already been executed. If it has, then the previously saved value
(for this step) is used instead of executing the step again.

Note that λFAIL does not have any non-deterministic construct
(in a single agent’s evaluation). Non-deterministic constructs can
be supported by treating them as an effectful step so that once a
non-deterministic choice is made, any re-execution of the same step
makes the same choice.

Details. We now describe in detail how individual computation
steps can be made idempotent and how these idempotent steps can
be composed together into idempotent computation. Our solution
is essentially a monad (Fig. 4).

We represent an idempotent computation as a function that takes
a tuple (guid , tc) as a parameter (where guid and tc represent an
identifier and a step number used to uniquely identify steps in a
computation) and returns a value along with a new step number.
We can “execute” an idempotent computation idf as shown by the
function imrun, using the function’s argument itself as the guid
value and an initial step number of 0.

The function imreturn (the monadic “return”) lifts primitive
values to idempotent computations. This transformation can be
used for any pure (side-effect-free) expressions.

Side-effects (table operations) are permitted only inside the
atomic construct. The function imatomic is used to make a local
transaction idempotent. Specifically, “imatomic T fm” is an idem-
potent representation for “atomic T f”, where fm is the monadic
form of f constructed as described later. As explained above, this
is represented as a function that takes a pair (guid , tc) as a param-
eter and realizes the memoization strategy described above. The
pair (guid , tc) is used as a unique identifier for this step. We check
whether this step has already executed. If so, we return the pre-
viously computed value. If not, we execute this computation step
and memoize the computed value. In either case, the step number
is incremented in this process and returned.

It is, however, critical to do all of the above steps atomically
to ensure that even if two agents concurrently attempt to execute
the same computation, only one of them will actually execute
it. However, note that an atomic expression is allowed to access
only a single table. Hence, the “memoized” information for this
computation step must be stored in the same table that is accessed
by the computation step. However, we must keep our memoization
and book-keeping information logically distinct from the program’s
own data stored in the same table. We achieve this by creating two
distinct “address spaces” (of key values) for the table. We convert
a key value k used by our idempotence implementation to (0, k)
and convert a key value k used by the program itself to (1, k).
The functions imupdate and imlookup do this wrapping for the
user’s code. Thus, the expression f to be evaluated in the atomic
transaction is transformed to its monadic representation fm by
replacing lookup and update in f by imlookup and imupdate
respectively.

We now consider how to compose individual computation steps
in an idempotent computation (the monadic “bind” function). Con-
sider a computation of the form “let x = step1 in step2”
which is equivalent to “(λx.step2)step1”. We transform step1 to
its monadic form, say idf. We transform step2 to its idempotent
form, say g. The function bind, applied to idf and λx.g, produces
the idempotent form of the whole computation. (A formal and more
complete description of the transformation is presented later.)

The result of “imbind idf f” is defined as follows: it is an
idempotent function that takes a parameter (guid , tc), and invokes



idf (the first step). It uses the value and the step number returned by
the idempotent function and invoke the second idempotent function
f . Thus the monad effectively threads the step number through the
computation, incrementing it in every atomic transaction.

Note that a key characteristic of this implementation is that it is
completely decentralized. When a transaction completes, the cur-
rent agent simply attempts to execute the next (idempotent) transac-
tion in the workflow; no coordination with a centralized transaction
manager is required. In general, distributed coordination requires
the use of expensive blocking protocols such as 2 phase commit. In
contrast, a workflow implementation based on this idea of idempo-
tence coupled with (client-side) retry logic are non-blocking. The
implementation does not have a single point-of-failure or single
performance bottleneck, which can lead to increased scalability.

Also note that this implementation creates one log entry per
transaction. Once logging for idempotence is separated from the
core business logic, it can be optimized in several ways. We can
avoid redundant logging if the underlying storage engine maintains
its own log. Logging can be avoided if the transaction is (declared
to be) semantically idempotent.

Example. The monadic library lets us construct the monadic ver-
sion em of any λFAIL expression e, by using the monadic version
of any primitive and the monadic bind in place of function appli-
cation. E.g., the monadic version of the following code fragment
(from the money transfer example)

atomic fb {update fa ((lookup fa) − amt)};
atomic tb {update ta ((lookup ta) + amt)};

is the following:

imbind
(imatomic fb {imupdate fa ((imlookup fa) − amt)})
{imatomic tb {imupdate ta ((imlookup ta) + amt)}}

where {e} is shorthand for λx.e, where x is not free in e.

3.2 Idempotence Monad Programs Are Failfree
In this section, we show that programs written using the idempo-
tence monad are failfree.

Idempotent Executions. Consider any execution of a λFAIL pro-
gram. We refer to any transition generated by rule NORMAL as an
execution-step and identify it by the triple (v . e)

ω
99K (v . e′).

Thus, an execution-step a
ω
99K b represents a transition caused by

an agent a that transforms to an agent b, with a side-effect ω on
the tables. An execution-step a

ω
99K b, after an execution ξ, is said

to be a repeated execution-step if the execution ξ contains some

execution-step of the form a
ω′
99K b′. (Note that this does not sig-

nify a cycle in the execution since the states of the tables could be
different in the two corresponding configurations.)

DEFINITION 3.1. An execution is said to be operationally idempo-

tent iff for any two execution-steps a
ω
99K b and a′

ω′
99K b′ in the

execution (in that order), a = a′ implies that b = b′ and ω′ is
empty.

Note that operational idempotence is a property that involves the
side-effects on the tables, unlike observational idempotence. As we
show below, it is a stronger property that can be used to establish
observational idempotence.

LEMMA 3.2. Any operationally idempotent execution ξ of a pro-
gram p (in the standard semantics) is observationally equivalent to
some ideal execution ξ′ of p (in the ideal semantics): i.e., obs(ξ) =
obs(ξ′).

PROOF SKETCH. Let ξ be an operationally idempotent execution
of a program p under the standard semantics ⇒A. We show how
to construct an execution ξ′ of p under the⇒IDEAL semantics such
that obs(ξ) = obs(ξ′).

We first omit any transitions in ξ due to the FAIL rule since their
labels are empty.

We next omit the transitions corresponding to repeated execution-
steps:

The key point to note here is that an execution-step a
ω
99K b

affects the (legality of) subsequent transitions in two ways: indi-
rectly through the side-effects ω on the tables and directly through
b (which may take part in subsequent transitions). A repeated
execution-step is redundant in any idempotent execution that has no
failures (transitions due to the FAIL rule): it has no side-effects on
the tables, and if the value b is subsequently used in a non-repeated
execution-step, then we can show that another agent identical to b
already exists in the configuration.

We then omit any transition due to the RETRY rule. We finally
replace INPUT transitions corresponding to a duplicate and replace
INPUT transitions corresponding to a non-duplicate input request by
a UNIQUE-INPUT transition.

This leaves us with duplicate responses that may be produced
by the OUTPUT rule for the same input (due to multiple agents
that process it). We replace these transitions by corresponding
DUPLSEND transition.

This transformation produces an execution ξ′ of p under the
⇒IDEAL semantics such that obs(ξ) = obs(ξ′). �

Our next goal is to show that all executions of programs written
using the idempotence monad are operationally idempotent. How-
ever, this claim requires the programs to be well-typed, as defined
below.

Well-Typed IM Programs. The idempotence monad can be used
to write monadic programs in the usual way. The monad may be
thought of as defining a new language λIM, obtained from λFAIL
by replacing the keywords atomic, lookup, and update by the
keywords imatomic, imlookup, imupdate, imbind, and imrun.
A λIM program can also be thought as a λFAIL program, using the
definition of the monad in Fig. 4.

We first mention a few type restrictions used to simplify presen-
tation. We refer to λ-calculus terms as pure and their types as pure
types. We assume that the types of keys and values of all tables are
pure types. We assume that the types of the input request and the
output response are also pure types.

We use 〈τk, τv〉 to denote the type of a table with keys of type
τk and values of type τv . We assume that table names come from
some fixed set of identifiers and that the typing environment maps
these table names to their types.

The non-pure terms can be classified into two kinds. The first
kind are expressions (such as imupdate k v), which are meant to
be evaluated in the context of a single table (as part of a local trans-
action). Fig. 5 presents typing rules for intra-transaction expres-
sions. The type τ !〈τk, τv〉 signifies a term that can be evaluated in
the context of a table of type 〈τk, τv〉, producing a value of type
τ . The second kind of expressions are the ones that use the idem-
potence monad, used to represent workflow computations which
execute one or more local transactions. Fig. 6 presents typing rules
for such expressions (which are the standard monad typing rules).

In the sequel, we will use the term well-typed IM program to
refer to any expression e such that Γtn |= e : τi →ID τo, where τi
and τo are, respectively, the types of input and output messages, and
Γtn provides the typings of tables. This is essentialy a program of
the form imrun e′, where e′ is constructed from the other monadic
constructs.



[IMLOOKUP]

Γ |= e : τk!〈τk, τv〉
Γ |= imlookup e : τv!〈τk, τv〉

[IMUPDATE]

Γ |= e1 : τk!〈τk, τv〉 Γ |= e2 : τv!〈τk, τv〉
Γ |= imupdate e1 e2 : unit!〈τk, τv〉

[AT-VAR]

x : τ |= x : τ !〈τk, τv〉

[AT-LAMBDA]

Γ, x : τ1 |= e : τ2!〈τk, τv〉

Γ |= λx.e : (τ1
〈τk,τv〉→ τ2!〈τk, τv〉)

[AT-APPLY]

Γ |= e1 : (τ1
〈τk,τv〉→ τ2)!〈τk, τv〉 Γ |= e2 : τ1!〈τk, τv〉

Γ |= e1e2 : τ2!〈τk, τv〉

Figure 5: A type system for intra-transaction expressions.

[IMRETURN]

Γ |= e : τ

Γ |= imreturn e : IM τ

[IMATOMIC]

Γ |= t : 〈τk, τv〉 Γ |= e : (unit
〈τk,τv〉→ τ)!〈τk, τv〉

Γ |= imatomic t e : IM τ

[IMBIND]

Γ |= e2 : τ1 → IM τ2 Γ |= e1 : IM τ1

Γ |= imbind e1 e2 : IM τ2

[IMRUN]

Γ |= e : τ1 → IM τ2

Γ |= imrun e : τ1 →ID τ2

[VAR]

x : τ |= x : τ

[LAMBDA]

Γ, x : τ1 |= e : τ2

Γ |= λx.e : τ1 → τ2

[APPLY]

Γ, x : τ1 |= e : τ2

Γ |= λx.e : τ1 → τ2

Figure 6: A type system for idempotence monad.

LEMMA 3.3. All executions of a well-typed IM program are oper-
ationally idempotent.

PROOF SKETCH. Let us refer to a value of the form (0, k) (used as
a key for a table lookup/update operation) as a system key. Consider
any execution of a well-typed IM program. It is easy to verify that
once the value associated with a system key (0, k) in any table is
set to be v, it is never subsequently modified.

Consider any two execution-steps a
ω
99K b and a′

ω′
99K b′ in the

execution (in that order) where a = a′. The idempotence property
follows trivially whenever these steps are effect-free steps. The
only effectful steps are produced by the evaluation of an imatomic
construct. Since a = a′, the key value used in the evaluation of
imatomic in both steps must be identical. The implementation
of imatomic guarantees that whatever value is produced by the
evaluation of imatomic in the first step will be memoized with the
given value. This guarantees that the second step will find this same
value in the table (thanks to the property described earlier). Hence,
it will evaluate to the same value and will have no side-effects on
the table. It follows that the execution is idempotent. �

THEOREM 3.4. Any well-typed IM program is observationally
idempotent.

PROOF SKETCH. Follows immediately from the previous two lem-
mas. �

As stated earlier, observational idempotence does not give us
any progress guarantees in the presence of failures. We now estab-
lish progress guarantees in the form of a weak bisimulation.

DEFINITION 3.5. Let p be any λFAIL program. Let ΣpA denote the
set of configurations { σ ∈ Σ | 〈〈p〉〉 ⇒∗A σ } that can be produced
by the execution of p under the standard semantics. Let ΣpI denote
the set of configurations { σ ∈ Σ | 〈〈p〉〉 ⇒∗IDEAL σ } that can
be produced by the execution of p under the ideal semantics. We

define the relation ' between ΣpA and ΣpI by 〈p, µ1, α1, I1, O1〉 '
〈p, µ2, α2, I2, O2〉 iff I1 = I2 and µ1 = µ2.

Note that in the above definition, the condition I1 = I2 im-
plies that both configurations have received the same set of input
requests. The condition µ1 = µ2 implies that the processing of
each input request v in both configurations have gone through iden-
tical sequences of effectful steps so far. (This follows since every
effectful step is memoized and is part of the table state µ1 and µ2.)

THEOREM 3.6. If p is a well-typed IM program, then ' is a weak
bisimulation between (ΣpA,⇒A) and (ΣpI ,⇒IDEAL).

PROOF SKETCH. Consider any σ1 ' σ2. The interesting transi-
tions are those that are effectful (involving an atomic operation) or
produce an output. If either σ1 or σ2 can perform an interesting
transition, we must show that the other can perform an equivalent
transition (possibly after a sequence of silent transitions).

Consider the case when an agent v . e in σ1 can perform an
effectful transition in the standard semantics. Let v . e0 be the state
of the same agent after its most recent imatomic evaluation. Then,
we must have some side-effect-free evaluation e0 → e1 · · · ek = e.
Consider configuration σ2. By definition, we restrict our attention
to reachable states. Hence, there exists some execution in the ideal
semantics that produces σ2. This execution must have received in-
put request v and produced an agent v . (p v). Consider the evalu-
ation of this agent. The effectful steps in this agent’s evaluation in
the ideal semantics must have produced the same sequence of val-
ues as in the evaluation in the standard semantics (since the mem-
oized values for these steps are the same in both σ1 and σ2). Thus,
σ2 must have some agent of the form v . ei for some 0 ≤ i ≤ k.
This will produce, after zero or more silent transitions, the agent
v . e that can then perform the same effectful transition in the ideal
semantics as in the standard semantics.

Consider the case when an agent v . e in σ2 can perform an ef-
fectful transition in the ideal semantics. We can create a new agent
v . (p v) using rule RETRY in the standard semantics. We can then



[x]V = x
[λx.e]V = λx.[e]I

[x]I = imreturn x
[λx.e]I = imreturn (λx.[e]I)

[n e]I = imbind [n]I (λx.[x e]I) ,n 6∈ 〈Val〉
[v n]I = imbind [n]I (λx.[v x]I) ,v ∈ 〈Val〉, n 6∈ 〈Val〉
[v v′]I = [v]V [v′]V ,v, v′ ∈ 〈Val〉

[atomic x e]I = 〈imatomic x [e]A, fv〉
where fv = {x} ∪ freevars(e)

[x]A = x
[λx.e]A = λx.[e]A

[e1e2]A = [e1]A[e2]A

[update e1 e2]A = imupdate [e1]A [e2]A

[lookup e]A = imlookup [e]A

〈e, {}〉 = e
〈e, {x} ] Y 〉 = 〈imbind x (λx.e), Y 〉

Figure 7: Transforming λFAIL expressions into idempotent expres-
sions.

duplicate the entire execution history of v . e (which is guaranteed
to be the same in both semantics by the definition of '). Thanks
to the idempotence property, this duplicate execution will have no
extra side-effects and will eventually produce the same effectful
transition as in the ideal semantics. �

THEOREM 3.7. A well-typed IM program is failfree.

3.3 Transforming λFAIL Programs To Idempotent Programs
We have seen that the idempotence monad lets us construct failfree
programs. Given any λFAIL-program e, we can construct its “equiv-
alent” monadic representation using standard techniques (which are
conceptually straightforward, though the details are intricate). The
transformation is presented in Fig. 7 (based on the transformation
in [17]).

We make a few simplifying assumptions (type restrictions)
about the source λFAIL program e in this transformation algorithm
(similar to those mentioned in Section 3.2). We assume that the
types of keys and values of all tables are pure types. We assume that
intra-transaction expressions do not manipulate values of workflow
type: e.g., atomic t {λx.(atomic s e)} is not allowed.

The translation is defined using multiple translation functions.
[v]V is a translation function that applies only to values (which
must be of the form x or λx.e). The translation function [e]I is the
heart of the monadic transformation and can be applied to multi-
transaction expressions. It uses the idempotence monad to sequence
local transactions. The translation function [e]A is applied to intra-
transaction expressions and it is used primarily to replace occur-
rences of update and lookup by imupdate and imlookup respec-
tively. Note that a single local transaction (i.e.intra-transaction ex-
pression) evaluation is done using standard evaluation (without us-
ing any monad). The auxiliary function 〈e,X〉 is used to transform
the monadic values used in the evaluation of multi-transactions to
standard values required in the evaluation of a single local transac-
tion.

Finally, given a top-level λFAIL program e (which is assumed to
be a functional value of the form λx.e′), it’s monadic form em is
defined to be imrun [e]V. As usual, it can be shown that the trans-

lation preserves types: translation of a well-typed λFAIL program
(satisfying the restrictions mentioned above) will produced a well-
typed monadic program.

3.4 Failfree Realization Via Idempotence
Given any λFAIL expression e, we can construct its monadic version
em as explained above. The preceding results imply that em must
be failfree. We now establish a stronger result, namely that em is
a failfree realization of e. (Failure-freedom is a weak correctness
criterion. It indicates that a program’s behavior under the standard
semantics is equivalent to it’s behavior under the ideal semantics.)
The notion of failure-freedom does let us simplify verifying cor-
rectness of a program by considering only its behavior under the
ideal semantics. In particular, we have:

THEOREM 3.8. If p and q are weakly bisimilar under the ideal se-
mantics (i.e., if (〈〈p〉〉,⇒IDEAL) ' (〈〈q〉〉,⇒IDEAL), and p is failfree,
then p is a failfree realization of q.

PROOF SKETCH. Follows as we can compose the two weak bisim-
ulations together. �

This theorem simplifies proving that a program is a failfree
realization of another. In particular, we have already seen that a
monadic program is failfree (Theorem 3.7). Hence, to prove that em
is a failfree realization of e, it suffices to show a weak bisimilarity
between the ideal executions of a λFAIL program e and the ideal
executions of its monadic representation em.

THEOREM 3.9. Let em be the monadic representation of e. Then,
em is a failfree realization of e.

PROOF SKETCH. As explained above, it is sufficient to relate eval-
uations of e and em under the ideal semantics. In this setting, it is
intuitively simple to see why the monadic program “em” simulates
the given program e. The key distinction is that the monadic imple-
mentation uses imatomic to perform any effectful step. This step
will first check the memoized data to see if this step has already
executed. In an ideal execution, this check will always fail, and the
monadic implementation then performs the same effectful step as
the original program (and memoizes it). The check is guaranteed
to always fail because the keys (g, i) used in distinct executions
of imatomic are distinct. The value of g will be different for exe-
cutions corresponding to different inputs x and y. The value i will
be different for different steps corresponding to the same input x.�

3.5 Idempotent Failfree Computations as a Language
Feature

We have now seen how idempotent failfree computations can be
automatically realized using the idempotence monad. We now pro-
pose a new language construct for idempotent failfree computa-
tions.

The construct “idff v e” indicates that the computation of
e should be failfree and should be idempotent with respect to v:
i.e., multiple (potentially concurrent) invocations of this construct
with the same value v behaves as though only one of the invoca-
tions executed. The above construct permits users to specify the
code fragment for which they desire automatic idempotence and
failure-freedom (provided by the compiler). This enables users to
rely on other methods, perhaps application-specific, to ensure these
properties elsewhere. (For instance, some computation may be se-
mantically idempotent already.) It also lets the users specify what
should be used as computation identifier to detect duplicates, as
illustrated below.

We refer to this enhanced language as λIDFF. A formal seman-
tics of λIDFF appears in the appendix. We illustrate the meaning of



the first parameter of idff using the incorrect λFAIL example of
Fig. 1. We can wrap the idff construct around this example in the
following two ways, with different semantics. Note that the input
in this example is a pair (reqId, req) consisting of a request-id as
well as the actual request. Consider:

f1 = λ(reqId , req). idff reqId (process (reqId , req))

f2 = λ(reqId , req). idff (reqId , req) (process (reqId , req))

The behavior of these two functions differ in the cases where
multiple inputs arrive with the same request-id but differing in the
second parameter req. f1 treats such requests as the same and will
process only one of them, while f2 will treat them as different
requests and process them all.

One of the subtle issues with the semantics and implementation
of the idff construct is the treatment of invocations that have the
same id (first parameter) but have different expressions as the sec-
ond parameter. We take a simple approach with our semantics (that
the effect is as if only the first invocation occurred). This has some
implications for the underlying implementation (in the presence of
failures). One solution is to use a continuation-passing style com-
putation, and memoize the entire continuation in the memoization
step (rather than just the value computed for the step).

4. Extensions
We have seen how idempotence can serve as the basis for fail-
free composition of computations: essentially, a simple form of
fault-tolerant workflow. In this section, we describe two extensions
that enrich this construct, namely compensating actions and asyn-
chronous evaluation, which simplify writing applications. These
concepts are not new, but what is interesting is that they can be
integrated without affecting the light-weight, decentralized, nature
of our idempotence implementation.

4.1 Compensating Actions
The idff construct allows us to compose several transactions into
an idempotent workflow that appears to execute exactly once with-
out process failures. However, the lack of isolation means that when
a transaction in the workflow is executed, its precondition may not
be satisfied and we may need to abort the workflow. For example,
in the transfer example (Fig. 1), the debit step may succeed, but
we may be unable to complete the subsequent credit step because
the account does not exist. One way of recovering from this failure
is to compensate for the debit by crediting the amount back to the
source account. If compensating actions are correct, the workflow
can guarantee all-or-nothing semantics i.e. either all or none of the
transactions in the workflow appear to execute.

We first formalize the desired semantics of workflows with com-
pensating actions. We present a language λIDWF which provides
language constructs to associate transactions with compensating
actions, and to declare logical failures. Finally, λIDWF supports
a construct idworkflow id e, which composes transactions with
compensating actions into a workflow. We present semantics of this
construct, and then show how this construct is realized using a com-
pensation monad.

Syntax. λIDWF modifies and extends λFAIL in the following ways
(see Fig. 8). atomic t ea ec extends the atomic construct of λFAIL
by specifying ec as the compensation for the atomic transaction ea.
abort indicates that a logical failure has occured and the work-
flow must be aborted. idworkflow id e represents an idempotent
workflow with identifier id, where e is the workflow consisting of
a composition of atomic transactions with compensations. Expres-
sion of the form e � ec arise only during evaluation and are not
source language constructs.

Semantic Domains. The semantic domains for λIDWF are the
same as for λFAIL with minor extensions. The runtime expression
e � ec is used to represent a workflow during its execution. Here,
e represents the partially evaluated form of a workflow and ec
represents the compensating action to be performed in case the
workflow needs to be aborted. Agents can also be of the form
id I ew � ec, indicating an agent evaluating a workflow.

Semantics. The semantics of λIDWF is defined using a set of rules
consisting of all the rules in A used to define the semantics of λFAIL
except for FAIL and ATOMIC, plus the new rules presented in Fig. 8.

The initiation of a workflow (rule IDWF-BEGIN) creates a new
agent of the form id I ew � ec, provided no agent has already
been created for id. This agent evaluates the workflow ew and
tracks the compensating action ec to be performed in case of an
abort. Rule IDWF-END indicates how the computation proceeds
once the workflow evaluation is complete (or if a previous work-
flow with the same id has already been initiated).

The rules ATOMIC and ATOMIC-ABORT define the semantics of
transactions in a workflow. Informally, the expression atomic t ea ec
is evaluated as follows. First, ea is evaluated atomically to produce
a value v. Then, as a side-effect, the compensating action is up-
dated to indicate that ec v should be evaluated as the first step
of the compensation before executing the original compensation.
Finally, the whole expression evaluates to v. Thus, note that the
value produced by the “atomic” action ea is available to the subse-
quent computation as well as the compensating action ec. When a
workflow is aborted (rules ATOMIC-ABORT and IDWF-ABORT), the
compensation expression is evaluated.

Rule ATOMIC of λFAIL is replaced by the pair of rules PURE-
ATOMIC and PURE-ATOMIC-ABORT, which describe the behavior of
a transaction that is not contained within a workflow. PURE-ATOMIC
describes the successful completion of a transaction, while PURE-
ATOMIC-ABORT describes the case where the transaction is aborted.
(The auxiliary relation � used here is defined by the rules for
λFAIL.)

Compensation monad We now describe the compensation monad
that can be used to realize workflows with compensating actions.
For simplicity, we describe an implementation of the compensat-
ing monad that focuses only on logical failures and compensations.
We assume there are no duplicate requests or process failures. We
can realize idempotent workflows with compensating actions by
composing this monad and the idempotence monad [13].

The compensation monad, shown in Fig. 9, is a combination
of the exception monad and the continuation passing style monad.
Transactions return a value of the form Value(v) (on successful
completion) or a special value Abort to indicate that the transaction
was aborted. Workflows are represented as a function in continua-
tion passing style. The helper function compensateWith associates
a transaction a with a compensating action to construct a primi-
tive workflow. compensateWith constructs a function in continua-
tion passing style. This function first evaluates a(). If a aborts, the
whole transaction aborts and returns Abort. Otherwise, the contin-
uation is evaluated using the value returned by the transaction. If
the continuation itself aborts (because one of the following trans-
actions aborts), we evaluate the compensating action and return the
value Abort. The monad’s return simply lifts a value (with no com-
pensation) into a workflow. The monadic bind is standard for con-
tinuation passing style computations. The function run shows how
to execute a workflow by passing it an empty continuation.

4.2 Asynchronous evaluation
Workflows are commonly used to perform computations involving
several transactions. Consequently, workflows are often long run-
ning with highly variable latencies. Large latencies accentuate the



(a) Syntax and Evaluation Context

x ∈ 〈Identifier〉; v ∈ 〈Val〉 ::= x | λx.e
e ∈ 〈Exp〉 ::= x | λx .e | e e | atomic vt va vc | idworkflow vi vw | abort | update v v | lookup v | e� ec

ΣA = 〈Exp〉 × 〈Exp〉+ 〈Exp〉 × 〈Exp〉
E ::= [·] | E e | v E | E � e

(b) Evaluation Rules (in addition to A \ { ATOMIC })

[IDWF-BEGIN]

v . E[idworkflow id w] ∈ α 6 ∃e′.id I e′ ∈ α
〈p, µ, α, I, O〉 ε⇒ 〈p, µ, α ] {id I (w()� 0)}, I, O〉

[IDWF-END]

id I u ∈ α u ∈ 〈Val〉
〈p, µ, α ] {v . E[idworkflow id w]}, I, O〉 ε⇒

〈p, µ, α ] {v . E[u]}, I, O〉

[NORMAL]

〈µ, e〉 ω 〈µ′, e′〉
〈p, µ, α ] {v I e}, I, O〉 ⇒
〈p, µ′, α ] {v I e′}, I, O〉

[ATOMIC]

〈µ[tn], ea()〉
ω
�
∗
〈t , v〉, v ∈ 〈Val〉

〈µ,E[atomic tn ea ec]� e〉
ω
 

〈µ[tn 7→ t ], E[v]� ((ec v); e)〉

[ATOMIC-ABORT]

〈µ[tn], ea()〉
ω
�
∗
〈t , E[abort]〉

〈µ,E[atomic tn ea ec]� e〉
ε
 

〈µ,E[abort]� e〉

[IDWF-ABORT]

〈µ, (E[abort])� ec〉 〈µ, ec〉

[CONTEXT]

e→ e′

〈µ,E[e]� ec〉 → 〈µ,E[e′]� ec〉

[PURE-ATOMIC]

〈µ[tn], ea()〉
ω
�
∗
〈t , v〉, v ∈ 〈Val〉

〈µ, atomic tn ea ec〉
ω
 〈µ[tn 7→ t ], v〉

[PURE-ATOMIC-ABORT]

〈µ[tn], ea()〉
ω
�
∗
〈t , E[abort]〉

〈µ, atomic tn ea ec〉
ε
 〈µ, 0〉

Figure 8: Syntax and Semantics of λIDWF.

let compensateWith a comp =
fun f→ match a() with
| Abort→ Abort
| Value(b)→ match (f b) with

| Abort→ let = comp b in Abort
| Value(c)→ Value(c)

let bind (v, f) = fun g→ v (fun a→ f a g)
let return a = compensateWith (fun ()→ a) (fun v→ ())
let run a = a (fun x→ Value(x))

Figure 9: The compensation monad

problem of duplicate requests because clients cannot easily distin-
guish between a long running workflow and one that has failed to
generate a response. While the idempotence monad guarantees cor-
rectness in such cases, idempotence does come at a performance
cost (due to log lookups). A design pattern commonly used to re-
duce the number of duplicate requests is for the system to take over
the task of retrying (a part of) the request on behalf of the client
asynchronously, and sending an intermediate response to the client,
typically with the transaction identifier. The client can use transac-
tion identifier to periodically poll for the status of the request.

The idempotence monad can be extended to support asyn-
chronous evaluation as follows. At a programmer defined point
in the evaluation of the workflow, we create a checkpoint. A check-
point is essentially a closure representing the rest of the work-
flow, along with relevant state variables. The checkpoint is then
persisted, typically in a distributed queue (essentially a worklist).
Once the checkpoint has been created, an intermediate response
is sent to the client. A set of special agents periodically query the

queue, retrieve checkpoints, and continue evaluation, deleting the
checkpoint only when the workflow has been fully evaluated.

Supporting asynchronous evaluation requires some additional
support from the platform and a minor change to the monad’s bind
function. We assume that the platform provides a channel that can
only be accessed by the idempotence monad (hence not exposed
in λFAIL). Messages can be sent to this channel using the function
send and received using the function recv. We assume the channel
supports the following handshake protocol for messages in order
to guarantee at-least-once processing of messages. In this protocol,
recv does not delete messages from the channel. Instead, an agent
that receives a message must acknowledge the message (using ack)
before the message is permanently deleted. If an agent crashes after
receiving a message and before acknowledging it, the message
reappears in the channel and may be processed by other agents.
(Windows Azure provides such a channel implementation, which
our implementation uses.)

The changes to the idempotence monad are illustrated in Fig-
ure 10. Instead of invoking the remainder of the workflow, the mod-
ified bind (Fig. 10) creates a closure for the rest of the workflow
and persists the closure in a special queue (“worklist”) (using the
function send). Special agent processes (agent) retrieve the check-
points (using recv) and continue evaluating the rest of workflow.
If an agent manages to evaluate the workflow without failing, it
deletes the workflow from the queue (using ack). In our implemen-
tation, the choice of using asynchronous evaluation (and the partic-
ular step at which to create a checkpoint) is left to the programmer.
We evaluate the benefits of these optimizations in Section 5.



let agent () =
while (true)

let (msgid, msg) = recv “worklist”in
let (f, params) = msg in
let result = f params in
let = ack “worklist” (msgid,msg) in result

let bind (idf, f) =
fun (guid, tc)→

let (ntc, v) = idf (guid, tc)
send “worklist” (f a (guid, ntc + 1))

Figure 10: The idempotence monad with asynchronous evaluation

let saveSurvey response = idworkflow {
do! addAtomic ”responses” response.Id response
return! atomic{

let! summary = readAtomic ”summaries” response.SurveyName
do summary.Merge(response)
return! writeAtomic ”summaries” response.SurveyName summary }}

Figure 11: The save survey operation expressed as in idempotent
workflow.

5. Evaluation
We have implemented the idempotence workflow monad and its
variants in C# and F#, targeting Windows Azure, a platform for
hosting distributed applications. Azure provides a key-value store
with explicit support for data partitioning, where partitions are units
of serializability. In this section, we focus on evaluating the expres-
siveness and performance overheads of the idempotence monad.

Sample applications We found several real world applications
whose core logic can be declaratively expressed as workflows.
We briefly describe an expense management application [4] and
a survey application [3]. Other applications we have implemented
include applications for online auctions [2], blogging and banking.

Survey application. The Surveys application enables users to de-
sign a survey, publish the survey, and collect the results of surveys.
The most performance critical scenario in this application is when a
user submits a survey. This operation involves two steps, recording
the response and updating the survey summary with the response.
For scalability, survey responses and summaries are stored in dif-
ferent data partitions. Figure 11 shows an implementation of this
operation using workflows. The syntax here is from the actual F#
implementation and differs from λFAIL in non-essential ways. The
workflow is composed of two transactions, a transaction that saves
the response and a transaction that updates the summary. In this
implementation, survey responses do not reflect in the summary
immediately. In general, deferred writes are often acceptable as
long as the writes will eventually appear to occur exactly once, a
guarantee workflows provide. The use of the idempotence monad
guarantees that even if multiple requests are received with the same
survey, the workflows appears to execute just once.

Auction application. The auction application allows users to bid
for items on auction and track the status of their bids. Sellers can
register items for auction with a time limit and a minimum bid
price. Auction sites are often high volume sites, and both latency
and scalability is important. The most critical operation in this ap-
plication is the operation that processes new bids. This operation
can be expressed as a workflow composed of several transaction.

Hand- Molecules
coded

Banking 94 7296
Blogging 243 6484
Auction 107 7256
Surveys 530 9004
Expense 378 6504

Figure 12: Average message size (in bytes) of the hand-coded and
workflow implementations.

The first transaction checks if the bid is valid and then checks if
the bid beats the current maximum bid, in which case the bid is
recorded in a bids table. The second transaction marks the current
winner and loosing bidders in a separate table. The web front-end is
programmed to poll this table periodically for the latest bid status.
Subsequent transactions update other tables such as an aggregate
table that maintains the most frequently bid items, more frequent
bidders etc. With the idempotent workflow monad, it is easy to
guarantee that each bid is processed exactly once even if clients
retry with little change in complexity.

Overheads. There are two sources of overheads associated with
idempotent workflows compared to hand-coded implementations.
First, asynchronous evaluation requires serialization and deserial-
ization closures, which can be expensive. Compiler generated clo-
sures tend to capture a lot more state than hand-coded implementa-
tions. Idempotent workflows also add unnecessary logging to trans-
actions that are already idempotent.

Fig. 12 shows the average size of messages sent in hand-coded
and workflow monad based implementations. As expected, the
workflow based implementation generates significantly larger mes-
sages. However, experiments on Windows Azure show that the size
of the message does not significantly influence the read/write la-
tency or throughput of channels [1], as confirmed by our experi-
ments below.

Next, we evaluate the overall performance overheads of using
the idempotence monad relative to hand-coded implementations.
For each benchmark application, we evaluate three versions - the
original hand-coded version, and two monad based versions. The
first version (synchronous) evaluates the workflow synchronously
in the context of the current agent and delegates the responsibility
of retrying operations to the client. The second version uses asyn-
chronous evaluation.

We hosted each of the applications on Windows Azure and
ensured that each variant was assigned the same hardware re-
sources i.e. 5 virtual machines, each with a 4-core processor and
7 GB RAM. We assigned two virtual machines each for the front
end agents that service browser requests and agents that interact
with the storage system and one virtual machine for a background
agent uses for asynchronous/check-pointed evaluation. In the syn-
chronous evaluation variant, we assigned an additional virtual ma-
chine to the storage interaction agent. For each benchmark, we cre-
ated a workload that simulates users exercising performance crit-
ical scenarios in the application. For example, in the surveys ap-
plication, the workload consists of a mix of surveys response re-
quests and survey analysis requests. In each case, the workload is
biased towards write requests (e.g. 75% responses and 25% anal-
ysis requests in the survey application) to ensure that molecular
transactions are on the critical path. We ran the workload for 3 min-
utes (with a 30 seconds warm-up period) and measured throughput
(number of requests serviced per second) and latency (average re-
sponse time) for varying number of simultaneous users.

Fig. 13 shows the measured throughput and latency for the
surveys application. In the baseline version, both throughput and
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Figure 13: Average throughput and latency for various versions of the survey application.

15

20

25

30

35

40

25 50 75 100

T
h

ro
u

g
h

p
u

t 
(R

e
q

u
e
st

/s
e
c
) 

Number of concurrent users 

Hand-coded Synchronous Asynchronous

0.00

0.30

0.60

0.90

1.20

1.50

25 50 75 100

L
a
te

n
c
y
 (

se
c
s)

 

Number of concurrent users 

Hand-coded Synchronous Asynchronous

Figure 14: Average throughput and latency for various versions of the auction application.

latency increase almost linearly with the number of users. All
monad based implementations closely follow this trend, suggesting
very little additional overhead due to our implementation. The
throughput (60 operations/second) and latencies are along expected
lines. The expected throughput of Azure tables is 500 reads/writes
per second, whereas our “operation” is a workflow consisting of
two transactions.

The auction application (Fig. 14) has slightly different perfor-
mance characteristics. The throughput of this application is lower
than the surveys application and it decreases with load. This is
expected since the workflow is significantly longer. Synchronous
evaluation achieves better throughput than the hand-coded imple-
mented (which is asynchronous) at almost the same latency. As
expected, asynchronous evaluation improves latency, especially at
low loads, but at the cost of reduced throughput (up to 25% lower).
At high loads, all monad based implementations perform better
than the hand-coded implementation. This is due to a few low level
optimizations (such as batching of requests) performed by our im-
plementation. We leave a more detailed performance analysis and
optimization of the idempotence monad for future work.

6. Related Work
Our work builds on previous literature in the topics of building
reliable distributed systems and transactional workflow. Idempo-
tence has been widely and informally recognized as an important
property of distributed systems. Our key contributions include: (a)
A formal specification of the desired correctness properties, both
safety (idempotence) as well as progress (failure freedom). (b) An
automatic technique for guaranteeing failfree idempotence, pre-

sented as a monad. This implementation technique is decentralized
and does not require distributed coordination. (c) Language con-
structs for idempotent workflow.

The need to move beyond atomic transactions to sequential
compositions of atomic transactions (i.e., workflows) motivated the
early work on Sagas and long running transactions [10, 20]. These
constructs are weaker than distributed transactions and are gener-
ally used to orchestrate processes that run for extended periods.
Kamath et al [12] discusses several issues relating to the implemen-
tation of transaction managers in Sagas and workflows. A distin-
guishing aspect of our work is that it exploits the fact that a service
is required to be observationally idempotent (from its clients’ per-
spective) to simplify the internal implementation of the workflow.
In particular, this lets us avoid the need for distributed coordination
with workflow managers.

Modern web applications often exploit horizontal partitioning
for scalability, which involves storing data in a number of differ-
ent databases or non-relational data-stores. This leads to a need for
workflow-style computations even within a single intra-enterprise
application. Since scalability is key (and the motivation for data
partitioning), conventional workflow engines are rarely considered
for use in this context. Instead, the programmer usually realizes
the workflow manually, exposing themselves to all the subtleties
of realizing such workflow correctly. Pritchett [16] describes pro-
gramming methodologies for use in these scenarios. Our goal is to
provide lightweight language mechanisms that can be used to real-
ize idempotent workflows correctly in such scenarios.

Helland [11] explains in detail why idempotence is an essential
property for reliable systems.



Frolund et al. [9] define a correctness criteria known as X-
Ability for replicated services. A history is said to be x-able if it is
equivalent to some history where every request is processed exactly
once. Much like failfree idempotence, X-Ability is both a safety
and liveness criteria. Our notion of failfree idempotence is general-
izes X-Ability beyond replication requests to workflows. There are
also significant differences in our implementation techniques.

Our work is also related to open nested multi-level transac-
tions [15, 19]. These two constructs share the use of compensat-
ing actions, but are semantically different. Open nested transactions
provide a way for dealing with conflicts at a higher level of abstrac-
tion, which often leads to increased concurrency.

Our basic setting is similar to Argus [14]. However, the con-
struct that Argus provides programmers to deal with process fail-
ures is a conventional transaction. As with sagas, we show that
many applications can be expressed using workflows (as we cover
in Section 2) with compensating actions to compensate for the lack
of isolation. The transactor programming model [7] also provide
primitives for dealing with process failures in a distributed system.
However, there is no shared state in the transactor model. The prim-
itives provided by the transactor model (stabilize, checkpoint, and
rollback) are different from the primitives we study.

Bruni et al [5] formalize compensating actions in an abstract
language. Their formalism, however, does not explicitly model
state. Their paper, in fact, suggests study of compensation in the
context of imperative features (state, variables, control-flow con-
structs) as future work. Our work provides a compensation-based
transactional construct as a library in a real language (F#) for a real
system (Azure), in addition to the theoretical treatment in the set-
ting of lambda-calculus with mutable shared state.

Luis et. al [6] propose an abstract model of compensating ac-
tions (based on process calculus) for reasoning about correctness
for workflows that use compensating actions.

Faulty lambda calculus [18] is a programming language and
a type system for fault tolerance. However, λFAIL is addresses
process failures, while faulty lambda calculus addresses transient
data corruption errors.
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A. An Abstract Definition of Idempotence
We now present a more abstract definition of idempotence in terms
of histories.

Basics. The users of the system issue requests to the system. Let
I denote a set of input messages (or requests). The system responds
to requests with a response. LetO denote a set of output values. An
output message or response is a pair (i, o) ∈ I ×O indicating that
the output value o is produced in response to input request i.

A history π is a sequence e1e2 · · · ek of requests and responses
(i.e., each ei can be either a request or a response). We will restrict
our attention to histories that satisfy the simple property that every
response corresponds to an earlier request in the history. We define
a specification Φ to be a set of histories. In the sequel, we use a set
of histories to specify desired safety properties of the system.

In the sequel, let q ∈ I range over requests and let r ∈ I × O
range over responses. Let α, β, and γ range over sequences of
requests and responses.

DEFINITION A.1. A specification Φ is said to be asynchronous if
it satisfies the following properties.

1. αβqγ ∈ Φ⇒ αqβγ ∈ Φ.
2. αrβγ ∈ Φ⇒ αβrγ ∈ Φ.

The above conditions are a natural restriction on specifications
because of messaging delays that cannot be controlled. The above
property is also related to the notion of linearizability. Given any
sequential specification Φs, “linearizable Φs” can be defined as the
smallest asynchronous specification that contains Φs. Every lin-
earizable specification satifies the asynchronous property defined
above, but not all asynchronous specifications are linearizable.



Idempotence. Two requests q1 and q2 (in the same history) are
said to be duplicates if q1 = q2. Two responses (q1, r1) and
(q2, r2) (in the same history) are said to be duplicates if q1 = q2.

DEFINITION A.2. A specification Φ is said to idempotent iff:

1. Duplicate requests have no effect: αqβqγ ∈ Φ iff αqβγ ∈ Φ.
2. Duplicates responses have the same value:

α(q, o1)β(q, o2)γ ∈ Φ⇒ o1 = o2.

3. Duplicate responses are allowed: αrβrγ ∈ Φ iff αrβγ ∈ Φ.

(The above definition is intended for asynchronous specifica-
tions. Hence, the asynchrony conditions have been used to simplify
the definition.)

Idempotence Closure. We define a history to be repetitionless
if it contains no duplicate requests or duplicate responses. We
define a specification Φ to be repetitionless if all histories in Φ are
repetitionless.

Given a repetitionless specification Φ, we define its idempo-
tence closure idem(Φ) to be the smallest specification that contains
Φ and is idempotent.

We now summarize our goal: given a program p that satisfies a
repetitionless specification Φ in the absence of process failures and
duplicate requests, construct a program p′ that satisfies idem(Φ)
even in the presence of process failures and duplicate requests.

Extension The above definitions can be generalized to permit
requests to be of the form (k, v), where k is a unique-identifier
(key) for an input request, and allowing responses to be of the
form (k, o), where k is the unique-identifier of the input request
for which the response is produced. Note that the above definition
does not capture the progress conditions of failure-freedom.

B. The Semantics of λIDFF
We adapt the earlier operational semantics of λFAIL as shown in
Fig. 15 to define the semantics of λIDFF. We extend the definition
ΣA, the set of agents: previously, an agent was of the form v . e.
Now, an agent may now also be of the form v I e, indicating a
idff evaluation of expression e with identifier v.

Syntax Extension: e ∈ 〈Exp〉 ::= · · · | idff v1 v2

Semantic Domain Changes: ΣA = 〈Exp〉×〈Exp〉+〈Exp〉×〈Exp〉

Additional Evaluation Rules:

[IDFF-NEW]

v . E[idff id e] ∈ α 6 ∃e′.id I e′ ∈ α
〈p, µ, α, I, O〉 ε⇒ 〈p, µ, α ] {id I e()}, I, O〉

[IDFF-USE]

id I w ∈ α w ∈ 〈Val〉
〈p, µ, α ] {v . E[idff id e]}, I, O〉 ε⇒ 〈p, µ, α ] {v . E[w]}, I, O〉

[NORMAL]

〈µ, e〉 `
 〈µ′, e′〉

〈p, µ, α ] {v I e}, I, O〉 ⇒ 〈p, µ′, α ] {v I e′}, I, O〉

Figure 15: The language λIDFF, defined via extensions to language
λFAIL. Rules IDFF-NEW and IDFF-USE must be duplicated for v I
E[idff id e] as well.

Rule IDFF-NEW handles the evaluation of the construct idff v e,
when no preceding idff computation with the same identifier v

has been initiated. This has the effect of creating a new agent
v I e. Rule IDFF-USE allows the computation idff v e to proceed
once the created agent completes evaluation (as indicated by the
presence of an agent of the form v I w, where w is a value). The
same rule also applies to “duplicate” evaluations with the same id.


