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Abstract

Fundamental properties of conditional value-at-risk (CVaR), as a measure of risk with sig-

nificant advantages over value-at-risk (VaR), are derived for loss distributions in finance that

can involve discreetness. Such distributions are of particular importance in applications be-

cause of the prevalence of models based on scenarios and finite sampling. CVaR is able to

quantify dangers beyond VaR and moreover it is coherent. It provides optimization short-cuts

which, through linear programming techniques, make practical many large-scale calculations

that could otherwise be out of reach. The numerical efficiency and stability of such calcula-

tions, shown in several case studies, are illustrated further with an example of index tracking.
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1. Introduction

Measures of risk have a crucial role in optimization under uncertainty, especially
in coping with the losses that might be incurred in finance or the insurance industry.
Loss can be envisioned as a function z ¼ f ðx; yÞ of a decision vector x 2 X � Rn rep-
resenting what we may generally call a portfolio, with X expressing decision con-
straints, and a vector y 2 Y � Rm representing the future values of a number of
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variables like interest rates or weather data. When y is taken to be random with
known probability distribution, z comes out as a random variable having its distri-
bution dependent on the choice of x. Any optimization problem involving z in terms
of the choice of x should then take into account not just expectations, but also the
‘‘riskiness’’ of x.
Value-at-risk, or VaR for short, is a popular measure of risk which has achieved

the high status of being written into industry regulations (see, for instance, Jorion,
1996; Pritsker, 1997). It suffers, however, from being unstable and difficult to work
with numerically when losses are not ‘‘normally’’ distributed – which in fact is often
the case, because loss distributions tend to exhibit ‘‘fat tails’’ or empirical discrete-
ness. Moreover, VaR fails to be coherent in the sense of Artzner et al. (1999).
A very serious shortcoming of VaR, in addition, is that it provides no handle on

the extent of the losses that might be suffered beyond the threshold amount indicated
by this measure. It is incapable of distinguishing between situations where losses that
are worse may be deemed only a little bit worse, and those where they could well be
overwhelming. Indeed, it merely provides a lowest bound for losses in the tail of the
loss distribution and has a bias toward optimism instead of the conservatism that
ought to prevail in risk management.
An alternative measure that does quantify the losses that might be encountered in

the tail is conditional value-at-risk, or CVaR. As a tool in optimization modeling,
CVaR has superior properties in many respects. It maintains consistency with
VaR by yielding the same results in the limited settings where VaR computations
are tractable, i.e., for normal distributions (or perhaps ‘‘elliptical’’ distributions as
in Embrechts et al. (2001)); for portfolios blessed with such simple distributions,
working with CVaR, VaR, or minimum variance (Markowitz, 1952) are equivalent
(cf. Rockafellar and Uryasev, 2000). Most importantly for applications, however,
CVaR can be expressed by a remarkable minimization formula. This formula can
readily be incorporated into problems of optimization with respect to x 2 X that
are designed to minimize risk or shape it within bounds. Significant shortcuts are
thereby achieved while preserving crucial problem features like convexity.
Such computational advantages of CVaR over VaR are turning into a major stim-

ulus for the development of CVaR methodology, in view of the fact that efficient al-
gorithms for optimization of VaR in high-dimensional settings are still not available,
despite the substantial efforts that have gone into research in that direction (Ander-
sen and Sornette, 1999; Basak and Shapiro, 1998; Gaivoronski and Pflug, 2000;
Gourieroux et al., 2000; Grootweld and Hallerbach, 2000; Kast et al., 1998; Puelz,
1999; Tasche, 1999).
CVaR and its minimization formula were first developed in our paper (Rockafellar

and Uryasev, 2000). There, we demonstrated numerical effectiveness through sev-
eral case studies, including portfolio optimization and options hedging. In follow-
up work in Krokhmal et al. (in press), investigations were carried out with the
minimization of CVaR subject to a constraint on expected return, the maximization
of return subject to a constraint on the CVaR, and the maximization of a utility func-
tion that balances CVaR against return. Strategies for investigating the efficient fron-
tier between CVaR and return were considered as well. In Andersson et al. (2000), the
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approach was applied to credit risk management of a portfolio of bonds. Extensions
in Checklov et al. (in press) have centered on a closely related notion of conditional
drawdown-at-risk (CDaR), in the optimization of portfolios with draw-down con-
straints.
In these works, with their focus on demonstrating the potential of the new ap-

proach, discussion of CVaR in its full generality was postponed. Only continuous
loss distributions were treated, and in fact, for the sake of an elementary initial jus-
tification of the minimization formula so as to get started with using it, distributions
were assumed to have smooth density. In the present paper we drop those limitations
and complete the foundations for our methodology. This step is needed of course not
just for theory, but because many problems of optimization under uncertainty in-
volve discontinuous loss distributions in which the discrete probabilities come out
of scenario models or the finite sampling of random variables. While some conse-
quences of our minimization formula itself have since been explored by Pflug
(2000) in territory outside of the assumptions we made in Rockafellar and Uryasev
(2000), an understanding of what the quantity given by the formula then represents
in the usual framework of risk measures in finance has been missing.
For continuous loss distributions, the CVaR at a given confidence level is the ex-

pected loss given that the loss is greater than the VaR at that level, or for that matter,
the expected loss given that the loss is greater than or equal to the VaR. For distri-
butions with possible discontinuities, however, it has a more subtle definition and can
differ from either of those quantities, which for convenience in comparison can be
designated by CVaRþ and CVaR�, respectively. CVaRþ has sometimes been called
‘‘mean shortfall’’ (cf. Mausser and Rosen (1999), although the seemingly identical
term ‘‘expected shortfall’’ has been interpreted in other ways in Acerbi and Nordio
(2001); Acerbi and Tasche (2001), with the latter paper taking it as a synonym for
CVaR itself), while ‘‘tail VaR’’ is a term that has been suggested for CVaR� (cf. Artz-
ner et al., 1999). Here, in order to consolidate ideas and reduce the potential for con-
fusion, we speak of CVaRþ and CVaR� simply as ‘‘upper’’ and ‘‘lower’’ CVaR.
Generally CVaR�

6CVaR6CVaRþ, with equality holding when the loss distribu-
tion function does not have a jump at the VaR threshold; but when a jump does occur,
which for scenario models is always the situation, both inequalities can be strict.
On the basis of the general definition of CVaR elucidated below, and with the help

of arguments in Pflug (2000), CVaR is seen to be a coherent measure of risk in the
sense of Artzner et al. (1999), whereas CVaRþ and CVaR� are not. (A direct alter-
native proof of this fact has very recently been furnished by Acerbi and Nordio
(2001).) The lack of coherence of CVaRþ and CVaR� in the presence of discreteness
does not seem to be widely appreciated, although this shortcoming was already
noted for CVaR� by the authors Artzner et al. (1999). They suggested, as a remedy,
still another measure of risk which they called ‘‘worst conditional expectation’’ and
proved to be coherent. That measure is impractical for applications, however, be-
cause it can only be calculated in very narrow circumstances. In contrast, CVaR is
not only coherent but eminently practical by virtue of our minimization formula
for it. That formula opens the door to computational techniques for dealing with
risk far more effectively than before.
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Interestingly, CVaR can be viewed as a weighted average of VaR and CVaRþ

(with the weights depending, like these values themselves, on the decision x). This
seems surprising, in the face of neither VaR nor CVaRþ being coherent. The weights
arise from the particular way that CVaR ‘‘splits the atom’’ of probability at the VaR
value, when one exists.
Besides laying out such implications of the general definition of CVaR and its as-

sociated minimization formula, we put effort here into bringing out properties of
CVaR that enhance the usefulness of this approach when dealing with fully discrete
distributions. For such distributions, we furnish an elementary way of calculating
CVaR directly. We show how a suitable specification of the confidence level, depend-
ing on the finite, discrete distribution of y, can ensure that CVaR ¼ CVaRþ regard-
less of the choice of x. For confidence levels close enough to 1, we prove that CVaR,
CVaR� and VaR coincide with maximum loss, and again this can be ensured inde-
pendently of x.
We go over the optimization shortcuts offered by CVaR and extend them to mod-

els where risk is shaped at several confidence levels. As part of this, CVaR is proved
to be stable with respect to the choice of the confidence level, although other pro-
posed measures of risk are not.
Finally, we illustrate the main facts and ideas with a numerical example of port-

folio replication with CVaR constraints. This example demonstrates how the in-
corporation of such constraints in a financial model may improve both the
in-sample and the out-of-sample risk characteristics. The calculations confirm that
CVaR methodology offers a management tool for efficiently controlling risks in
practice.
Broadly speaking, problems of risk management with VaR and CVaR can be clas-

sified as falling under the heading of stochastic optimization. Various other concepts
of risk in optimization have earlier been studied in the stochastic programming lit-
erature, but not in a context of finance (see Birge and Louveaux, 1997; Ermoliev
and Wets, 1988; Kall and Wallace, 1994; Kan and Kibzun, 1996; Pflug, 1996; Prek-
opa, 1995; Rubinstein and Shapiro, 1993). The reader interested in applications of
stochastic optimization techniques in the finance area can find relevant papers in
Zenios, 1993; Ziemba and Mulvey, 1998.
For elucidation of the many statements in this paper that rely on background in

convex optimization, we refer the reader to the book Rockafellar (1970) (or Rocka-
fellar and Wets, 1997).
Additional properties of CVaR, including a powerful result on estimation, are

available in the new paper of Acerbi and Tasche (2001).

2. General concept of conditional value-at-risk

In everything that follows, we suppose the random vector y is governed by a prob-
ability measure P on Y (a Borel measure) that is independent of x. (The indepen-
dence could be relaxed for some purposes, but it is essential for key results about
convexity that underlie the use of linear programming reductions in computation.)
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For each x, we denote by Wðx; �Þ on R the resulting distribution function for the loss
z ¼ f ðx; yÞ, i.e.,

Wðx; fÞ ¼ P y jf ðx; yÞf 6 fg; ð1Þ
making the technical assumptions that f ðx; yÞ is continuous in x and measurable in y,
and that Efjf ðx; yÞjg < 1 for each x 2 X . We denote by Wðx; f�Þ the left limit of
Wðx; �Þ at f; thus

Wðx; f�Þ ¼ Pfy jf ðx; yÞ < fg: ð2Þ
When the difference

Wðx; fÞ � Wðx; f�Þ ¼ Pfy jf ðx; yÞ ¼ fg ð3Þ
is positive, so that Wðx; �Þ has a jump at f, a probability ‘‘atom’’ is said to be present
at f.
We consider a confidence level a 2 ð0; 1Þ, which in applications would be some-

thing like a ¼ 0:95 or 0.99. At this confidence level, there is a corresponding VAR,
defined in the following way.

Definition 1 (VaR). The a-VaR of the loss associated with a decision x is the value

faðxÞ ¼ minff jWðx; fÞP ag: ð4Þ
The minimum in (4) is attained because Wðx; fÞ is nondecreasing and right-contin-

uous in f. When Wðx; �Þ is continuous and strictly increasing, faðxÞ is simply the un-
ique f satisfying Wðx; fÞ ¼ a. Otherwise, this equation can have no solution or a
whole range of solutions.
The case of no solution corresponds to a vertical gap in the graph of Wðx; �Þ as in

Fig. 1, with a lying in an interval of confidence levels that all yield the same VaR. The
lower and upper endpoints of that interval are

a�ðxÞ ¼ Wðx; faðxÞ�Þ; aþðxÞ ¼ Wðx; faðxÞÞ: ð5Þ

Fig. 1. Equation Wðx; fÞ ¼ a has no solution in f.
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The case of a whole range of solutions corresponds instead to a constant segment
of the graph, as shown in Fig. 2. The solutions form an interval having faðxÞ as its
lower endpoint. The upper endpoint of the interval is the value fþa ðxÞ introduced
next.

Definition 2 (VaRþ). The a-VaRþ (‘‘upper’’ a-VaR) of the loss associated with a
decision x is the value

fþa ðxÞ ¼ infff jWðx; fÞ > ag: ð6Þ
Obviously faðxÞ6 fþa ðxÞ always, and these values are the same except when Wðx; fÞ

is constant at level a over a certain f-interval. That interval is either ½faðxÞ; fþa ðxÞÞ or
½faðxÞ; fþa ðxÞ�, depending on whether or not Wðx; �Þ has a jump at fþa ðxÞ.
Both Figs. 1 and 2 illustrate phenomena that raise challenges in the treatment of

general loss distributions. This is especially true for discrete distributions associated
with finite sampling or scenario modeling, since then Wðx; �Þ is a step function (con-
stant between jumps), and there is no getting around these circumstances.
Observe, for instance, that the situation in Fig. 2 entails a discontinuity in the be-

havior of VaR: A jump is sure to occur if a slightly higher confidence level is de-
manded. This degree of instability is distressing for a measure of risk on which
enormous sums of money might be riding. Furthermore, although x is fixed in this
picture, examples easily show that the misbehavior in the dependence of VaR on a
can effect its dependence on x as well. That makes it hard to cope successfully with
VaR-centered problems of optimization in x.
These troubles, and many others, motivate the search for a better measure of risk

than VaR for practical applications. Such a measure is CVaR.

Definition 3 (CVaR). The a-CVaR of the loss associated with a decision x is the value

/aðxÞ ¼ mean of the a-tail distribution of z ¼ f ðx; yÞ; ð7Þ

Fig. 2. Equation Wðx; fÞ ¼ a has many solutions in f.
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where the distribution in question is the one with distribution function Waðx; �Þ de-
fined by

Waðx; fÞ ¼
0 for f < faðxÞ;
½Wðx; fÞ � a�=½1� a� for fP faðxÞ:

�
ð8Þ

Note that Waðx; �Þ truly is another distribution function, like Wðx; �Þ: it is nonde-
creasing and right-continuous, with Waðx; fÞ ! 1 1 as f ! 1. The a-tail distribution
referred to in (7) is thus well defined through (8).
The subtlety of Definition 3 resides in the case where the loss with distribution

function Wðx; �Þ has a probability atom at faðxÞ, as illustrated in Fig. 1. In that case
the interval ½faðxÞ;1Þ has probability greater than 1� a, inasmuch as

Wðx; faðxÞ�Þ < a6Wðx; faðxÞÞ when Wðx; faðxÞ�Þ < Wðx; faðxÞÞ; ð9Þ
and the issue comes up of what really should be meant by the a-tail distribution, since
that term presumably ought to refer to the ‘‘upper 1� a part’’ of the full distribution.
This is resolved by specifying the a-tail distribution through the distribution function
in (8), which is obtained by rescaling the portion of the graph of the original dis-
tribution between the horizontal lines at levels 1� a and 1 so that it spans instead
between 0 and 1. For the case shown in Fig. 1, the result is depicted in Fig. 3.
The consequences of this maneuver will be examined in relation to the following

variants in which the whole interval ½faðxÞ;1Þ or its interior ðfaðxÞ;1Þ are the focus.

Definition 4 (CVaRþ and CVaR�). The a-CVaRþ (‘‘upper’’ a-CVaR) of the loss
associated with a decision x is the value

/þ
a ðxÞ ¼ E f ðx; yÞ jf ðx; yÞf > faðxÞg; ð10Þ

whereas the a-CVaR� (‘‘lower’’ a-CVaR) of the loss is the value

/�
a ðxÞ ¼ E f ðx; yÞ jf ðx; yÞf P faðxÞg: ð11Þ

Fig. 3. Distribution function Waðx; fÞ is obtained by rescaling the function Wðx; fÞ in the interval ½a; 1�.
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The conditional expectation in (11) is well defined because Pff ðx; yÞ jf ðx; yÞP
faðxÞgP 1� a > 0, but the one in (10) only makes sense as long as Pff ðx; yÞ j
f ðx; yÞ > faðxÞg > 0, i.e., Wðx; faðxÞÞ < 1, which is not assured merely through our
assumption that a 2 ð0; 1Þ, since there might be a probability atom at faðxÞ large
enough to cover the interval 1� a�ðxÞ.
As indicated in the introduction, (10) is sometimes called ‘‘mean shortfall’’. The

closely related expression

Eff ðx; yÞ � faðxÞ jf ðx; yÞ > faðxÞg ¼ /þ
a ðxÞ � faðxÞ ð12Þ

goes however by the name of ‘‘mean excess loss’’; cf. Bassi et al. (1998); Embrechts
et al. (1997). In ordinary language, a shortfall might be thought the same as an excess
loss, so ‘‘mean shortfall’’ for (10) potentially poses a conflict. The conditional ex-
pectation in (11) has been dubbed in (Artzner et al., 1999) the ‘‘tail VaR’’ at level a,
but as revealed in the proof of the next proposition, it is really the mean of the tail
distribution for the confidence level a�ðxÞ in (5) rather than the one appropriate to a
itself. The ‘‘upper’’ and ‘‘lower’’ terminology in Definition 4 avoids such difficulties
while emphasizing the basic relationships among these values that are described next.

Proposition 5 (Basic CVaR relations). If there is no probability atom at faðxÞ, one
simply has

/�
a ðxÞ ¼ /aðxÞ ¼ /þ

a ðxÞ: ð13Þ
If a probability atom does exist at faðxÞ, one has

/�
a ðxÞ < /aðxÞ ¼ /þ

a ðxÞ when a ¼ Wðx; faðxÞÞ; ð14Þ
or on the other hand,

/�
a ðxÞ ¼ /aðxÞ when Wðx; faðxÞÞ ¼ 1 ð15Þ

(with /þ
a ðxÞ then being ill defined). But in all the remaining cases, characterized by

Wðx; faðxÞ�Þ < a < Wðx; faðxÞÞ < 1; ð16Þ
one has the strict inequality

/�
a ðxÞ < /aðxÞ < /þ

a ðxÞ: ð17Þ

Proof. In comparison with the definition of /aðxÞ in (7), the /þ
a ðxÞ value in (10) is the

mean of the loss distribution associated with

Wþ
a ðx; fÞ ¼

0 for f < faðxÞ;
½Wðx; fÞ � aþðxÞ�=½1� aþðxÞ� for f P faðxÞ;

�
ð18Þ

whereas the /�
a ðxÞ value in (11) is the mean of the loss distribution associated with

W�
a ðx; fÞ ¼

0 for f < faðxÞ;
½Wðx; fÞ � a�ðxÞ�=½1� a�ðxÞ� for f P faðxÞ:

�
ð19Þ

Recall that aþðxÞ and a�ðxÞ, defined in (5), mark the top and bottom of the vertical
gap at faðxÞ for the original distribution function Wðx; �Þ (if a jump occurs there).

1450 R.T. Rockafellar, S. Uryasev / Journal of Banking & Finance 26 (2002) 1443–1471



The case of there being no probability atom at faðxÞ corresponds to having
a�ðxÞ ¼ aþðxÞ ¼ a 2 ð0; 1Þ. Then (13) obviously holds, because the distribution func-
tions in (8), (18) and (19) are identical. When a probability atom exists, but a ¼
aþðxÞ, we get a�ðxÞ < aþðxÞ < 1 and thus the relations in (14), while if aþðxÞ ¼ 1
we nevertheless get (15) through (9). Under the alternative of (16), however, it is clear
from the definitions of the distribution functions in (8), (18) and (19) that the strict
inequalities in (17) prevail. �

For the situation in Fig. 1, the distribution functions in (18) and (19) that have
/þ

a ðxÞ and /�
a ðxÞ as their means are illustrated in Figs. 4 and 5. They are the tail dis-

tributions for the confidence levels aþðxÞ and a�ðxÞ.
Proposition 5 confirms, in the case in (13), that a-CVaR thoroughly reduces

for continuous loss distributions (i.e., ones without any probability atoms induced

Fig. 4. Distribution functionWþ
a ðx; fÞ is obtained by rescaling the functionWðx; fÞ in the interval ½aþðxÞ; 1�.

Fig. 5. Distribution functionW�
a ðx; fÞ is obtained by rescaling the functionWðx; fÞ in the interval ½a�ðxÞ; 1�.
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by discreteness) to the more elementary expressions for CVaR that we worked with
in Rockafellar and Uryasev (2000). An important task ahead will be to demonstrate
that the minimization formula we developed in Rockafellar and Uryasev (2000),
which is vital to the feasibility of practical applications of CVaR in risk management,
carries over from that special context to the present one.
The a-CVaR and the a-CVaRþ of the loss coincide often, but not always, accord-

ing to Proposition 5. Another perspective on the connection between these two val-
ues is developed next.

Proposition 6 (CVaR as a weighted average). Let kaðxÞ be the probability assigned to
the loss amount z ¼ faðxÞ by the a-tail distribution in Definition 3, namely

kaðxÞ ¼ ½Wðx; faðxÞÞ � a�=½1� a� 2 ½0; 1�: ð20Þ

If Wðx; faðxÞÞ < 1, so there is a chance of a loss greater than faðxÞ, then

/aðxÞ ¼ kaðxÞfaðxÞ þ ½1� kaðxÞ�/þ
a ðxÞ ð21Þ

with kaðxÞ < 1, whereas if Wðx; faðxÞÞ ¼ 1, so faðxÞ is the highest loss that can occur
(and thus kaðxÞ ¼ 1 but /þ

a ðxÞ is ill defined), then

/aðxÞ ¼ faðxÞ: ð22Þ

Proof. These relations are evident from formulas (7) and (8), together with the ob-
servation that a6Wðx; faðxÞÞ always by Definition 1. �

Corollary 7 (CVaR over VaR). From its definition, a-CVaR dominates a-VaR:
/aðxÞP faðxÞ. Indeed, /aðxÞ > faðxÞ unless there is no chance of a loss greater than
faðxÞ.

Proof. This was more or less clear from the beginning, but now it emerges explicitly
from Proposition 6 and the fact, seen through (12), that /þ

a ðxÞ > faðxÞ. �

In representing CVaR as a certain weighted average of VaR and CVaRþ, formula
(21) seems surprising. Neither VaR nor CVaRþ behaves well as a measure of risk for
general loss distributions, and yet CVaR has many advantageous properties, to be
seen in what follows.
The unusual feature in the definition of CVaR that leads to its power is the way

that probability atoms, if present, can be ‘‘split’’. Such splitting is highlighted in
formulas (20) and (21) of Proposition 6. In the notation of aþðxÞ and a�ðxÞ in (5)
and the circumstances in (16), where a�ðxÞ < a < aþðxÞ, an atom at faðxÞ having
total probability aþðxÞ � a�ðxÞ is effectively split into two pieces with probabilities
aþðxÞ � a and a � a�ðxÞ, respectively. In concept, only the first of these pieces is
adjoined to the interval ðfaðxÞ;1Þ, which itself has probability 1� aþðxÞ, so as to
achieve a probability of ½1� aþðxÞ� þ ½aþðxÞ � a� ¼ 1� a, whereas, if the atom could
not be split, we would have to choose between the intervals ½faðxÞ;1Þ and ðfaðxÞ;1Þ,
neither of which actually has probability 1� a.
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The splitting of probability atoms in this manner also stabilizes the response of a-
CVaR to shifts in a. This will be shown later in Proposition 13.
Our next result addresses the extreme case where discreteness of the loss distribu-

tion rules entirely, as in scenario-based optimization under uncertainty. In scenario
models, finitely many elements y 2 Y are singled out in some way as representative
‘‘scenarios,’’ and all the probability is concentrated in them.

Proposition 8 (CVaR for scenario models). Suppose the probability measure P is
concentrated in finitely many points yk of Y, so that for each x 2 X the distribution of
the loss z ¼ f ðx; yÞ is likewise concentrated in finitely many points, and Wðx; �Þ is a step
function with jumps at those points. Fixing x, let those corresponding loss points be
ordered as z1 < z2 < � � � < zN , with the probability of zk being pk > 0. Let ka be the
unique index such that

Xka

k¼1
pk P a >

Xka�1

k¼1
pk: ð23Þ

The a-VaR of the loss is given then by

faðxÞ ¼ zka ; ð24Þ

whereas the a-CVaR is given by

/aðxÞ ¼
1

1� a

Xka

k¼1
pk

 "
� a

!
zka þ

XN

k¼kaþ1
pkzk

#
: ð25Þ

Furthermore, in this situation

kaðxÞ ¼
1

1� a

Xka

k¼1
pk

 
� a

!
6

pka

pka þ � � � þ pN
: ð26Þ

Proof. According to (23), we have

Wðx; faðxÞÞ ¼
Xka

k¼1
pk; Wðx; faðxÞ�Þ ¼

Xka�1

k¼1
pk; Wðx; faðxÞÞ � Wðx; faðxÞ�Þ ¼ pka :

The assertions then follow from (8) and Proposition 6, except for the upper bound
claimed for kaðxÞ. To understand that, observe that the expression for kaðxÞ in (26)
decreases with respect to a, which belongs to the interval in (23). The upper bound
is obtained by substituting the lower endpoint of that interval for a in this expres-
sion. �

Corollary 9 (Highest losses). In the notation of Proposition 8, if the highest point zN

probability pN > 1� a, then actually /aðxÞ ¼ faðxÞ ¼ zN .

Proof. This amounts to having ka ¼ N , and the result then comes from (24) and
(25). �
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Of course, it must be remembered in Proposition 8 and Corollary 9 that not only
the loss values zk and their probabilities pk, but also their ordering can depend on the
choice of x, and so too then the index ka, even though our notation omits that de-
pendence for the sake of simplicity.
The case in Corollary 9 can very well come up in multistage stochastic program-

ming models over scenario trees, for instance. In such optimization problems, the
first stage may have only a few scenarios (see e.g. Ermoliev and Wets, 1988), and
CVaR will coincide then with maximum loss at that stage. Subsequent stages usually
are represented with more scenarios and thus need the full force of the expressions in
Proposition 8.

3. Minimization rule and coherence

We work now towards the goal of showing that the a-VaR and a-CVaR of the
loss z associated with a choice x can be calculated simultaneously by solving an el-
ementary optimization problem of convex type in one dimension. For this purpose
we utilize, as we did in our original paper Rockafellar and Uryasev, 2000 in this sub-
ject, the special function

Faðx; fÞ ¼ f þ 1

1� a
E ½f ðx; yÞ
�

� f�þ
�
; where ½t�þ ¼ maxf0; tg: ð27Þ

The following theorem confirms that the minimization formula we originally de-
veloped in Rockafellar and Uryasev (2000) under special assumptions on the loss dis-
tribution, such as the exclusion of discreteness, persists when the CVaR concept is
articulated for general distributions in the manner of Definition 2. In contrast, no
such formula holds for CVaRþ or CVaR�.

Theorem 10 (Fundamental minimization formula). As a function of f 2 R, Faðx; fÞ is
finite and convex (hence continuous), with

/aðxÞ ¼ min
f

Faðx; fÞ ð28Þ

and moreover

faðxÞ ¼ lower endpoint of argminfFaðx; fÞ;
fþa ðxÞ ¼ upper endpoint of argminfFaðx; fÞ;

ð29Þ

where the argmin refers to the set of f for which the minimum is attained and in this
case has to be a nonempty, closed, bounded interval (perhaps reducing to a single point).
In particular, one always has

faðxÞ 2 argminfFaðx; fÞ; /aðxÞ ¼ Faðx; faðxÞÞ: ð30Þ

Proof. The finiteness of Faðx; �Þ is a consequence of our assumption that the
Efjf ðx; yÞjg < 1 for each x 2 X . Its convexity follows at once from the convexity of
½f ðx; yÞ � f�þ with respect to f. As a finite convex function, Faðx; �Þ has finite right and
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left derivatives at any f (see Rockafellar, 1970, Theorems 23.1 and 24.1). Our ap-
proach of proving the rest of the assertions in the theorem will rely on first estab-
lishing for these one-sided derivatives, the formulas

oþFa

of
ðx; fÞ ¼ Wðx; faðxÞÞ � a

1� a
;

o�Fa

of
ðx; fÞ ¼ Wðx; faðxÞ�Þ � a

1� a
: ð31Þ

We start by observing that

Faðx; f0Þ � Faðx; fÞ
f0 � f

¼ 1þ 1

1� a
E

½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

( )
: ð32Þ

When f0 > f we have

½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

¼ �1 if f ðx; yÞP f0;
¼ 0 if f ðx; yÞ6 f;
2 ð�1; 0Þ if f < f ðx; yÞ < f0:

8<
:

Since Pfy jf ðx; yÞ > f0g ¼ 1� Wðx; f0Þ and Pfy jf < f ðx; yÞ6 f0g ¼ Wðx; f0Þ � Wðx; fÞ,
this yields the existence of a value qðf; f0Þ 2 ½0; 1� for which

E
½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

( )

¼ �½1� Wðx; f0Þ� � qðf; f0Þ½Wðx; f0Þ � Wðx; fÞ�:

Since furthermore Wðx; f0Þ & Wðx; fÞ as f0 & f (i.e., as f0 ! f with f0 > f), it follows
that

lim
f0&f

E
½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

( )
¼ �½1� Wðx; fÞ�:

Applying this in (32), we obtain

lim
f0&f

Faðx; f0Þ � Faðx; fÞ
f0 � f

¼ 1þ 1

1� a
½Wðx; fÞ � 1� ¼ Wðx; fÞ � a

1� a
;

thereby verifying the first formula in (31). For the second formula in (31), we argue
similarly that when f0 < f we have

½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

¼ �1 if f ðx; yÞP f;
¼ 0 if f ðx; yÞ6 f0;
2 ð�1; 0Þ if f0 < f ðx; yÞ < f;

8<
:

where Pfy jf ðx; yÞP fg ¼ 1� Wðx; f�Þ and Pfy jf0 < f ðx; yÞ < fg ¼ Wðx; f�Þ�
Wðx; f0Þ. Since Wðx; f0Þ % Wðx; f�Þ as f0 % f (i.e., as f0 ! f with f0 < f), we obtain

lim
f0%f

E
½f ðx; yÞ � f0�þ � ½f ðx; yÞ � f�þ

f0 � f

( )
¼ �½1� Wðx; f�Þ�;
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and then in (32)

lim
f0%f

Faðx; f0Þ � Faðx; fÞ
f0 � f

¼ 1þ 1

1� a
½Wðx; f�Þ � 1� ¼ Wðx; f�Þ � a

1� a
:

That gives the second formula in (31).
Because of convexity, the one-sided derivatives in (31) are nondecreasing with re-

spect to f, with the formulas assuring that

lim
f!1

oþFa

of
ðx; fÞ ¼ lim

f!1

o�Fa

of
ðx; fÞ ¼ 1

and on the other hand,

lim
f!�1

oþFa

of
ðx; fÞ ¼ lim

f!�1

o�Fa

of
ðx; fÞ ¼ � a

1� a
:

On the basis of these limits, we know that the level sets ff jFaðx; fÞ6 cg are
bounded (for any choice of c 2 R) and therefore that the minimum in (28) is at-
tained, with the argmin set being a closed, bounded interval. The values of f in that
set are characterized as the ones such that

o�Fa

of
ðx; fÞ6 06 oþFa

of
ðx; fÞ:

According to the formulas in (31), they are the values of f satisfying Wðx; f�Þ6
a6Wðx; fÞ. The lowest such f is faðxÞ by Definition 1, while the highest is fþa ðxÞ by
Definition 2.
Thus, (29) and the first claim in (30) are correct. The truth of the second claim in

Eq. (30) is immediate then from (28). �

Note: Very recently, and independently of our work, in Acerbi and Tasche (2001)
have likewise confirmed that our formula in Rockafellar and Uryasev (2000) per-
sists for CVaR in general. Their argument omits the details above, relying instead
on observations about functions similar to our Fa that can be gleaned from exer-
cises in classical probability texts.
Theorem 10 turns a powerful spotlight on the difference between CVaR and VaR,

revealing the fundamental reason why CVaR is much better behaved than VaR
when dependence on a choice of x 2 X must be handled. The reason is the fact, well
known in optimization theory, that the optimal value in a problem of minimiza-
tion, in this case /aðxÞ, is much more agreeable as a function of parameters than
is the optimal solution set, which is here the argmin interval having faðxÞ as its lower
endpoint.
The special circumstances in Proposition 8 can be appreciated from the perspec-

tive of the minimization formula in Theorem 10 as well. The function Faðx; fÞ is in
this case piecewise linear with derivative breakpoints at the loss values zk. The arg-
min has to consist either of a single derivative breakpoint zka or an interval
½zka ; zkaþ1 � between successive derivative breakpoints.
For the next result, we recall that a function hðxÞ is sublinear if hðx þ x0Þ6 hðxÞþ

hðx0Þ and hðkxÞ ¼ khðxÞ for k > 0. The second of these two properties, called positive
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homogeneity, implies in particular that hð0Þ ¼ 0. Sublinearity is equivalent to the
combination of convexity with positive homogeneity; see Rockafellar (1970). Linear-
ity is a special case of sublinearity.

Corollary 11 (Convexity of CVaR). If f ðx; yÞ is convex with respect to x, then /aðxÞ
is convex with respect to x as well. Indeed, in this case Faðx; fÞ is jointly convex in ðx; fÞ.
Likewise, if f ðx; yÞ is sublinear with respect to x, then /aðxÞ is sublinear with respect

to x. Then too, Faðx; fÞ is jointly sublinear in ðx; fÞ.

Proof. The joint convexity of Faðx; fÞ in ðx; fÞ. is an elementary consequence of the
definition of this function in (27) and the convexity of the function ðx; fÞ7!
½f ðx; yÞ � f�þ when f ðx; yÞ is convex in x. The convexity of /aðxÞ in x follows im-
mediately then from the minimization formula (28). (In convex analysis, when a
convex function of two vector variables is minimized with respect to one of them, the
residual is a convex function of the other; see Rockafellar (1970).)
The argument for sublinearity is entirely parallel to the argument just given. Only

the additional feature of positive homogeneity needs attention, according to the re-
mark about sublinearity above. �

A case especially worth noting where the sublinearity in Corollary 11 is present is
the one where f ðx; yÞ is actually linear with respect to x, i.e., of the form

f ðx; yÞ ¼ x1f1ðyÞ þ . . .þ xnfnðyÞ: ð33Þ

This case is common to numerous applications.
The observation that the minimization formula in Theorem 10 yields the convex-

ity in Corollary 11 was made in our original paper Rockafellar and Uryasev (2000).
We did not mention sublinearity there, but Pflug, in his follow-up article Pflug
(2000), noted that it too was a consequence of our formula.
Very close to Corollary 11 is an important fact about the coherence of CVaR as a

risk measure, in the sense introduced by Artzner et al. (1999). In the framework of
those authors, a risk measure is a functional on a linear space of random variables. If
we denote such random variables generically by z, thinking of them as losses, the ax-
ioms in Artzner et al. (1999) for coherence of a risk measure q amount to the require-
ment that q be sublinear,

qðz þ z0Þ6 qðzÞ þ qðz0Þ; qðkzÞ ¼ kqðzÞ for kP 0; ð34Þ

and in addition satisfy

pðzÞ ¼ c when z � c ðconstantÞ; ð35Þ

along with

qðzÞ6 qðz0Þ when z6 z0; ð36Þ

where the inequality z6 z0 refers to first-order stochastic dominance. (In Artzner
et al. (1999), a stronger-seeming property than (35) is required, that qðz þ z0Þ ¼ c þ
qðz0Þ when z � c, but that follows from (35) and the subadditivity rule in (34).) Here
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our framework is different, due to the way we are modeling a loss as the joint out-
come of a decision x and an underlying random vector y, but coherence can none-
theless be captured by viewing it (equivalently) as an assertion about the special case
in (33).

Corollary 12 (Coherence of CVaR). On the basis of Definition 3, a-CVaR is a co-
herent risk measure: when f ðx; yÞ is linear with respect to x, not only is /aðxÞ sublinear
with respect to x, but furthermore it satisfies

/aðxÞ ¼ c when f ðx; yÞ � c ð37Þ
(thus accurately reflecting a lack of risk), and it obeys the monotonicity rule that

/aðxÞ6/aðx0Þ when f ðx; yÞ6 f ðx0; yÞ: ð38Þ

Proof. In terms of z ¼ f ðx; yÞ and z0 ¼ f ðx0; yÞ in the context of the linearity in (33),
these properties come out as the ones in (34)–(36). The sublinearity of /a in the case
of (33) has already been noted as ensured by Corollary 11. Like that, the additional
properties (37) and (38) too can be seen as simple consequences of the fundamental
minimization formula for /a in Theorem 10. �

Of course, the relations on the right sides of (37) and (38) should technically be
interpreted as ones between random variables (with respect to y), rather than point-
wise relations between functions of y. According to (38), for instance, a decision x
that leads to an outcome at least as good as another decision x0, no matter what hap-
pens, is deemed no riskier than x0.
Pflug, in Pflug (2000), demonstrated that if a measure of risk were introduced in

the framework of Artzner et al. (1999) by the general expression derivable from the
right side of our minimization formula, namely,

qðzÞ ¼ min
f2R

f

�
þ 1

1� a
E ½z
�

� f�þ
��

; ð39Þ

it would be a coherent measure of risk. This conclusion tightly parallels Corollary 12,
but here we are asserting that coherence holds for a-CVaR as the quantity intro-
duced in Definition 3, not just for the functional defined by (39). For that assertion,
the arguments behind Theorem 10, and with them the subtleties of a-CVaR as an
‘‘adjusted’’ conditional expectation that splits probability atoms, have a major role.
The coherence of a-CVaR is a formidable advantage not shared by any other widely
applicable measure of risk yet proposed.
Besides the properties already mentioned, Pflug uncovered others for the func-

tional q in (39) that would likewise transfer to /aðxÞ. For this, we refer to his paper
Pflug (2000).
We close this section by pointing out still another feature of CVaR that distin-

guishes it from other common measures of risk for general loss distributions.

Proposition 13 (Stability of CVaR). The value /aðxÞ behaves continuously with re-
spect to the choice of a 2 ð0; 1Þ and even has left and right derivatives, given by
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o�

oa
/aðxÞ ¼

1

ð1� aÞ2
E ½f ðx; yÞ
�

� faðxÞ�þ
�
;

oþ

oa
/aðxÞ ¼

1

ð1� aÞ2
E ½f ðx; yÞ
�

� fþa ðxÞ�
þ�:

Proof. Fixing x, consider for each f 2 R the function of c 2 R defined by

hfðcÞ ¼ f þ cE ½f ðx; yÞ
�

� f�þ
�
; ð40Þ

and let

hðcÞ ¼ min
f2R

hfðcÞ: ð41Þ

In this way, we have through Theorem 10 that

/aðxÞ ¼ hðcÞ for c ¼ 1=ð1� aÞ; ð42Þ
with the minimum in (41) being attained when f belongs to the interval ½faðxÞ; fþa ðxÞ�.
According to (41), h is the pointwise minimum of the collection of functions hf.

Those functions are affine, hence h is concave. A finite, concave function on R is nec-
essarily continuous and has left and right derivatives at every point. Under the point-
wise minimization, the right derivative is the lowest of the slopes of the affine
functions hf for which the minimum is attained, whereas the left derivative is the
highest of such slopes. The slope of hf is given by the expectation in (40), which de-
creases as f increases. At c ¼ 1=ð1� aÞ, we therefore get the highest slope by taking
f ¼ faðxÞ and the lowest by taking f ¼ fþa ðxÞ. Hence, at c ¼ 1=ð1� aÞ, the left and
right derivatives of h are Ef½f ðx; yÞ � fþa ðxÞ�

þg and Ef½f ðx; yÞ � fþa ðxÞ�
þg, respec-

tively.
The result now follows through (42) by considering the function a 7!/aðxÞ as the

composition of h with a 7!1=ð1� aÞ and invoking the chain rule. �

4. Conditional value-at-risk in optimization

In problems of optimization under uncertainty, CVaR can enter into the objective
or the constraints, or both. A big advantage of CVaR over VaR in that context is the
preservation of convexity, seen in Corollary 11. In numerical applications, the joint
convexity of Faðx; fÞ with respect to both x and f, in Theorem 10 is even more valu-
able than the convexity of /aðxÞ in x. That is because the minimization of /aðxÞ over
x 2 X , which can be adopted as a basic prototype in the management of risk when
measured by a-CVaR, can be transformed into a much more tractable problem of
minimizing Faðx; fÞ in both x and f.

Theorem 14 (optimization shortcut). Minimizing /aðxÞ with respect to x 2 X is
equivalent to minimizing Faðx; fÞ over all ðx; fÞ 2 X � R, in the sense that

min
x2X

/aðxÞ ¼ min
ðx;fÞ2X�R

Faðx; fÞ; ð43Þ
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where moreover

ðx�; f�Þ 2 argmin
ðx;fÞ2X�R

Faðx; fÞ () x� 2 argmin
x2X

/aðxÞ; f� 2 argmin
f2R

Faðx�; fÞ: ð44Þ

Proof. This rests on the principle in optimization that minimization with respect to
ðx; fÞ can be carried out by minimizing with respect to f for each x and then mini-
mizing the residual with respect to x. In the situation at hand, we invoke Theorem 10
and in particular, in order to get the equivalence in (44), the fact there that the
minimum of Faðx; fÞ in f (for fixed x) is always attained. �

Corollary 15 (VaR and CVaR calculation as a by-product). If (x�,f�) minimizes Fa

over X � R, then not only does x� minimize /a over X, but also

/aðx�Þ ¼ Faðx�; f�Þ; faðx�Þ6 f� 6 fþa ðx�Þ; ð45Þ
where actually faðx�Þ ¼ f� if argminf Faðx�; fÞ reduces to a single point.

The fact that the minimization of CVaR does not have to proceed numerically
through repeated calculations of /aðxÞ for various decisions x, may at first seem
really surprising. It is a powerful attraction to working with CVaR, all the more
so when compared with attempts to minimize VaR, which can be quite ill behaved
and offers no such shortcut.
In the circumstance mentioned at the end of Corollary 15 where argminf Faðx�; fÞ

does not consist of just a single point, is possible to have faðx�Þ < f� in (45). Then
the joint minimization in Theorem 14, in producing ðx�; f�Þ, although it yields the
a-CVaR associated with x�, does not immediately yield the a-VaR associated with
x�. That could well happen, for instance, in the scenario model of Proposition 8.
But then, as noted earlier, argminf Faðx�; fÞ is the interval between two consecutive
points zk in the discrete distribution of losses. In that case, therefore, faðx�Þ can none-
theless easily be obtained from the joint minimization: It is simply the highest zk 6 f�.
Linear programming techniques can readily be utilized for the double minimiza-

tion in Theorem 14 in the linear case in (33), as we have already illustrated in
the more restricted setting adopted in Rockafellar and Uryasev (2000). This can be
done similar to other linear programming approaches used in portfolio optimization
with mean absolute deviation Konno and Yamazaki (1991), maximum deviation
Young, 1998, and mean regret Dembo and King (1992). Here, the significance of
Theorem 14 and Corollary 15 lies in underscoring that the previous restrictions
can be dropped.
The minimization of /aðxÞwith respect to x 2 X is not the only way that CVaR can

be utilized in risk management. It can also be brought in to ‘‘shape’’ the risk in an
optimization model. For that purpose, several probability thresholds can be handled.

Theorem 16 (risk-shaping with CVaR). For any selection of probability thresholds ai

and loss tolerances xi, i ¼ 1; . . . ; l; the problem

minimize gðxÞ over x 2 X satisfying /ai
ðxÞ6xi for i ¼ 1; . . . ; l; ð46Þ

1460 R.T. Rockafellar, S. Uryasev / Journal of Banking & Finance 26 (2002) 1443–1471



where g is any objective function chosen on X, is equivalent to the problem

minimize gðxÞ over ðx; f1; . . . ; flÞ 2 X � R� . . .� R

satisfying Faiðx; fiÞ6xi for i ¼ 1; . . . ; l: ð47Þ

Indeed, (x�, f�1,� � �,f
�
l ) solves the second problem if and only if x

� solves the first problem
and the inequality Faiðx�; f�i Þ6xi, holds for i ¼ 1; . . . ; l.
Moreover one then has /ai

ðx�Þ6xi for every i, and actually /ai
ðx�Þ ¼ xi, for each i

such that Faiðx�; f�i Þ ¼ xi (i.e., such that the corresponding CVaR constraint is active).

Proof. Again, this relies on the minimization formula (28) in Theorem 10 and the
assured attainment of the minimum there. The argument is very much like that for
Theorem 14. Because

/ai
ðxÞ ¼ min

fi2R
Faiðx; fiÞ; ð48Þ

we have /ai
ðxÞ6xi if and only if there exists fi such that Faiðx; fiÞ6xi. �

When X and g are convex and f ðx; yÞ is convex in x, we know from Corollary 11
that the optimization problems in Theorems 14 and 16 are ones of convex program-
ming and thus especially favorable for computation. In comparison, analogous prob-
lems in terms of VaR instead of CVaR could be highly unfavorable. Of course, a
combination of the models in Theorems 14 and 16 could likewise be handled in such
a manner, by taking gðxÞ ¼ /a0ðxÞ for some ao.
Linear programming techniques can be used to compute answers in this setting as

well. That is most evident when Y is a discrete probability space with elements yk,
k ¼ 1; . . . ;N , having probabilities pk, k ¼ 1; . . . ;N . Then from (27) we have

Faiðx; fiÞ ¼ fi þ
1

ð1� aiÞ
XN

k¼1
pk½f ðx; ykÞ � fi�þ: ð49Þ

The constraint Faiðx; fiÞ6xi in Theorem 16 can be handled by introducing additional
variables gik subject to the conditions

gik P 0; f ðx; ykÞ � fi � gik 6 0; ð50Þ

and requiring that

fi þ
1

ð1� aiÞ
XN

k¼1
pkgk 6xi: ð51Þ

The minimization in the expanded problem (47) is converted then into the minimi-
zation of gðxÞ over x 2 X , the fi’s and all the new gik’s, with the constraints
Faiðx; fiÞ6xi being replaced by (50) and (51). When f is linear in x as in (33), these
reconstituted constraints are linear.
This conversion is entirely parallel to the one we introduced in Rockafellar and

Uryasev (2000) for the expanded optimization problem with respect to x and f that
appears in Theorem 14.
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5. An example of portfolio replication with CVaR constraints

Putting together a portfolio in order to track a given financial index is a common
and important undertaking. It fits in the framework of ‘‘portfolio replication’’ as a
form of approximation, but of course the approximation criterion that is adopted
must be one that focuses on risks associated with inaccuracies in the tracking. We
present an example that demonstrates how CVaR constraints can be used efficiently
to control such risks. For other works on portfolio replication, see for instance An-
drews et al. (1986), Beasley and Meade (1999), Buckley and Korn (1998), Connor
and Leland (1995), Dalh et al. (1993), Dembo and Rosen (1999), Konno and Wija-
yanayake (2000), Rudd (1980), and Toy and Zurack (1989).
Suppose we want to replicate an instrument I (e.g. the S&P100 index) using cer-

tain other instruments Sj, j ¼ 1; . . . ; n. Denote by It the price of instrument I at time
t, for t ¼ 1; . . . ; T , and denote by ptj the price of instrument Sj at time t. Let m be
amount of money to be on hand at the final time T. We denote by h ¼ m=IT the num-
ber of units of the instrument I at time T. Let xj, for j ¼ 1; . . . ; n, be the number of
units of instrument Sj in the proposed replicating portfolio. The value of that port-
folio at time t is then Rn

j¼1ptjxj. The absolute value of the relative deviation of the
portfolio value from the target value hIt is jðhIt � Rn

j¼1ptjxjÞ=hItj.
To put this into our earlier framework, we think of the price vectors pt ¼

ðpt1; . . . ; ptnÞ for t ¼ 1; . . . ; T as observations of a random element y 2 Rn, but now
write p instead of y (and have indexing t ¼ 1; . . . ; T instead of k ¼ 1; . . . ;N ). These
observed vectors pt give a finite distribution of p in which p ¼ pt has probability
1=T . We take the loss associated with a decision x to be the relative shortfall

f ðx; pÞ ¼ hIt

 
�
Xn

j¼1
ptjxj

!,
hIt; ð52Þ

and introduce, as the expression to be minimized, the expectation of jf ðx; pÞj, i.e., the
average of the absolute values of the relative deviations jf ðx; ptÞj for t ¼ 1; . . . ; T . In
addition, we impose a constraint on the CVaR amount /aðxÞ associated with the loss
f ðx; pÞ in order to control large deviations of the portfolio value below the target
value.
In the pattern of the expanded problem (47) in Theorem 16, but with only one

CVaR constraint, our portfolio replication problem comes out then as follows:

min gðxÞ ¼ 1

T

XT

t¼1
hIt

 ����� �
Xn

j¼1
ptjxi

!,
hIt

����� ð53Þ

subject to the constraints

Xn

j¼1
pjT xj ¼ m; ð54Þ

06 xj 6 cj; j ¼ 1; . . . ; n ð55Þ
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(which realize in this setting the constraint x 2 X in the general discussion earlier)
and

f þ 1

ð1� aÞT
XT

t¼1
hIt

 ""
�
Xn

j¼1
ptjxj

!,
hIt

#
� f

#þ
6x: ð56Þ

The minimization takes place with respect to both x ¼ ðx1; . . . ; xnÞ and the variable f.
The expression on the left side of (56) is Faðx; fÞ; thus, (56) corresponds to requiring
/aðxÞ6x.
For any choice of a and x, this problem can be solved by conversion to linear pro-

gramming, more or less in the manner already explained above. The performance
function g is handled by introducing still more variables gt0 P 0 constrained by

hIt

 
�
Xn

j¼1
ptjxj

!,
hIt � gt06 0;

� hIt

 
�
Xn

j¼1
ptjxj

!,
hIt þ gt06 0;

and minimizing the expression ð1=T Þ
PT

t¼1 gt0.
Several important issues in the modeling, such as transaction costs and how to se-

lect the stocks to be included in the replicating portfolio, are beyond the scope of this
paper. However, that does not undermine the basic idea of the CVaR approach,
which we proceed to lay out.
Calculations for this example were conducted using LP solver of CPLEX pack-

age.
In our numerical experiments, we aimed at replicating the S&P100 index using 30

of the stocks that belong to that index (namely, the ones with ticker symbols: GD,
UIS, NSM, ORCL, CSCO, HET, BS, TXN, HM, INTC, RAL, NT, MER, KM,
BHI, GEN, HAL, BDK, HWP, LTD, BAC, AVP, AXP, AA, BA, AGC, BAX,
AIG, AN, AEP). These stocks were the instruments Sj. The experiments were con-
ducted in two stages:
Stage 1 (in-sample calculations): The problem (53)–(56) was solved using in-sam-

ple historical data on stock prices.
Stage 2 (out-of-sample calculations): Replicating properties of the portfolio were

verified by using the out-of-sample historical data just after the in-sample replicating
period.
For the in-sample calculations, we used the closing prices for 600 days (from

10.21.1996 to 03.08.1999). For the out-of-sample calculations we considered 100
days (from 03.09.1999 to 07.28.1999). The confidence level in CVaR constraint
(56) was taken to be a ¼ 0:9, so that the CVaR constraint would control the largest
10% of relative deviations (underperformance of the portfolio compared to the
index).
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We solved the replication problem (53)–(56) for several values of the risk-tolerance
level x in the CVaR constraint (x was varied from 0.02 to 0.001). To verify out-of-
sample goodness of fit we calculated the values of performance function (53) and the
CVaR in (56) for the out-of-sample dataset. The results of the calculations are pre-
sented in Table 1 and Figs. 6–12. The analysis of these results follows:
In-sample calculations: Imposing the CVaR constraint ought to lead to a deterio-

ration in the value of the in-sample objective function (the average absolute value
of the relative deviation). Indeed, decreasing the value of x causes an increase in
the value of objective function in in-sample region (column 2 of Table 1). This is seen
in Fig. 6 (continuous thick line) and is an evident consequence of the fact that decreas-
ing the value of x diminishes the feasible set. At the risk-tolerance level x ¼ 0:02, the
constraint on CVaR in (56) is inactive; at x6 0:01 that constraint is active. The dy-
namics of absolute values of relative deviations (in-sample) for an instance when the
CVaR constraint is active (at x ¼ 0:005) and an instance when it is inactive (at
x ¼ 0:02) are shown in Fig. 7. This figure reveals that the CVaR constraint has re-
duced underperformance of the portfolio versus the index in the in-sample region:
the dotted curve corresponding to the active CVaR constraint is lower than solid

Table 1

Calculated results for various risk levels x in the CVaR constraint

Confidence level x In-sample (600 days)

objective function (%)

Out-of-sample (100 days)

objective function (%)

Out-of-sample CVaR

(%)

0.02 0.71778 2.73131 4.88654

0.01 0.82502 1.64654 3.88691

0.005 1.11391 0.85858 2.62559

0.003 1.28004 0.78896 2.16996

0.001 1.48124 0.80078 1.88564

Fig. 6. In-sample objective function, out-of-sample objective function, out-of-sample CVaR for various

risk levels x in CVaR constraint.
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curve corresponding to the inactive CVaR constraint. The dynamics of portfo-
lio and index values for cases when the CVaR constraint is active (at x ¼ 0:005)
and inactive (at x ¼ 0:02) are shown in Figs. 8 and 9, respectively. These figures

Fig. 7. Relative discrepancy in in-sample region, CVaR constraint is active (x ¼ 0:005) and inactive (x ¼
0:02).

Fig. 8. Index and optimal portfolio values in in-sample region, CVaR constraint is active (x ¼ 0:005).
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demonstrate that the portfolio fits the index quite well for both active and inactive
CVaR constraints.
At x ¼ 0:005 and the optimal portfolio point x�, we got f� ¼ 0:001538627671 and

the CVaR value of the left side in (56) equal to 0.005. In this case the probability of
the VaR point itself is 14/600, which means that 14 time points have the same devi-

Fig. 9. Index and optimal portfolio values in in-sample region, CVaR constraint is inactive (x ¼ 0:02).

Fig. 10. Index and optimal portfolio values in out-of-sample region, CVaR constraint is active (x ¼
0:005).
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ation 0.001538627671. To verify our optimization result at the optimal portfolio x�,
we manually calculated:

VaR ¼ 0:001538627671; CVaR ¼ 0:005;
CVaR� ¼ 0:004592779726; CVaRþ ¼ 0:005384596925:

We found that f� ¼ VaR and the left side of the inequality (56) is CVaR¼x ¼
0:005. In the case under consideration, the losses of 54 scenarios exceed VaR.
The probability of exceeding the VaR, i.e., the probability of the interval ðfaðx�Þ;1Þ,
was

1� W x�; faðx�Þð Þ ¼ ð54=600Þ < 1� a;

whereas

kaðx�Þ ¼ Wðx�; faðx�ÞÞ½ � a�=½1� a� ¼ ½ð546=600Þ � 0:9�=½1� 0:9� ¼ 0:1:

In accordance with formula (20), we got

CVaR ¼ kaðx�ÞVaR þ 1ð � kaðxÞÞCVaRþ;

ðCVaR ¼ 0:1� 0:001538627671þ 0:9� 0:005384596925 ¼ 0:005Þ:

Also, because Wðx; faðx�ÞÞ > a,

CVaR� < CVaR < CVaRþ:

In several runs we observed that the optimal f� may overestimate the VaR because
of the nonuniqueness of the optimal solution, i.e., instances of a nontrivial argmin
interval in (29). (In our case of a discrete distribution, f� can equal the value of
the first loss possibility beyond the VaR.) Also, when the CVaR constraint (56) is
not active, the optimal f� may be quite far from the VaR and the value on the left
of (56) may likewise be quite far from the CVaR.
Out-of-sample calculations: Table 1 shows that CVaR calculated in the out-of-

sample region decreases when value of x decreases (column 4). This means that im-
posing in-sample constraint (56) translates into the lower out-of-sample ‘‘downside
large deviations.’’ The index and optimal portfolio values in the out-of-sample re-
gion when the CVaR constraint is active (at x ¼ 0:005) are shown in Fig. 10, and
when it is not active (at x ¼ 0:02), are shown in Fig. 11. The absolute values of rel-
ative deviations in the out-of-sample region for the active (at x ¼ 0:005) and the in-
active (at x ¼ 0:02) cases are displayed in Fig. 12.
An improvement of CVaR in out-of-sample regions with imposing in-sample

CVaR constraint (56) was also observed for other data intervals, for instance, for
600 in-sample days from 11.28.1997 to 04.13.2000 and 100 out-of-sample days from
04.14.2000 to 09.06.2000.
Column 3 of Table 1 demonstrates that imposing the in-sample CVaR constraint

brings an improvement of the objective function in the out-of-sample data region (in
contrast to the in-sample increase of the objective function); see Fig. 1. However, a
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decrease in the objective function in the out-of-sample region was not observed for
several other datasets. On these datasets, the portfolio had a tendency to slightly out-
perform the index in the out-of-sample region. Actually, this feature is desirable in
practical applications. We may prefer a replicating portfolio which slightly outper-
forms (rather than underperforms) the index. Such performance is achieved by com-

Fig. 11. Index and optimal portfolio values in out-of-sample region, CVaR constraint is inactive (x ¼
0:02).

Fig. 12. Relative discrepancy in out-of-sample region, CVaR constraint is active (x ¼ 0:005) and inactive

(x ¼ 0:02).
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bining the symmetric risk measure (objective function) and downside risk measure
(CVaR constraint (56)). A proper balance between these risk measures was estab-
lished by adjusting the right-hand side in CVaR constraint (56).
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