
Loop-Extended Symbolic Execution on Binary Programs

Prateek Saxena Pongsin Poosankam† Stephen McCamant Dawn Song
University of California, Berkeley and †Carnegie Mellon University

Berkeley, California, USA
{prateeks,ppoosank,smcc,dawnsong}@cs.berkeley.edu

ABSTRACT
Mixed concrete and symbolic execution is an important technique
for finding and understanding software bugs, including security-
relevant ones. However, existing symbolic execution techniques
are limited to examining one execution path at a time, in which
symbolic variables reflect only direct data dependencies. We in-
troduce loop-extended symbolic execution, a generalization that
broadens the coverage of symbolic results in programs with loops.
It introduces symbolic variables for the number of times each loop
executes, and links these with features of a known input gram-
mar such as variable-length or repeating fields. This allows the
symbolic constraints to cover a class of paths that includes differ-
ent numbers of loop iterations, expressing loop-dependent program
values in terms of properties of the input. By performing more rea-
soning symbolically, instead of by undirected exploration, applica-
tions of loop-extended symbolic execution can achieve better re-
sults and/or require fewer program executions. To demonstrate our
technique, we apply it to the problem of discovering and diagnos-
ing buffer-overflow vulnerabilities in software given only in binary
form. Our tool finds vulnerabilities in both a standard benchmark
suite and 3 real-world applications, after generating only a handful
of candidate inputs, and also diagnoses general vulnerability con-
ditions.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.4 [Soft-
ware Engineering]: Software/Program Verification

General Terms
Security, Reliability, Verification

1. INTRODUCTION
Mixed concrete and symbolic execution generalizes a single con-

crete execution by representing inputs as variables and perform-
ing operations on values dependent on them symbolically (such
as [13,25]). This approach enables automated tools to reason about

This is the authors’ version of the work. It is made available by permission
of ACM for your personal use to ensure timely dissemination of scholarly
and technical work, rather than for redistribution.
ISSTA’09,July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$10.00.

properties of all the program executions that follow the same con-
trol flow path, and has been successfully applied to a wide range
of different applications in software engineering and security [7,
10,14,26,41,46]. However, this approach generalizes an execution
only to a set of executions that follow exactly the same control-flow
path. We therefore call this approachsingle-path symbolic execu-
tion (SPSE for short).

A key limitation of single-path symbolic execution is that it inter-
acts poorly with loops, a common programming construct. Specifi-
cally, the generalized program executions all follow the same num-
ber of loop iterations for each loop as in the original concrete ex-
ecution. For instance when used for bug-finding, in one iteration
starting from a benign execution, single-path symbolic execution
will be unable to expose the bug if it is only triggered with a dif-
ferent number of loop iterations as in the original execution. Sim-
ilarly, when single-path symbolic execution is applied to test case
generation to increase coverage, it will be unable (in one iteration)
to generate an input that forces execution down a different branch
than in the original execution, if taking that branch is only feasi-
ble with a different number of loop iterations. In other words, in
single-path symbolic execution, the values of a symbolic variable
reflect only the data dependencies on the symbolic inputs—control
dependencies, including loop dependencies, are ignored.

In this paper we propose a new symbolic execution technique,
loop-extended symbolic execution(or LESE for short), which gen-
eralizes from a concrete execution to a set of program executions
which may contain a different number of iterations for each loop as
in the original execution. In loop-extended symbolic execution, in
addition to the data dependencies on inputs, the value of a symbolic
variable also captures certain loop dependent effects.

At a high level, our approach works by introducing new symbolic
variables to represent the number of times each loop in the program
has executed. In addition to maintaining the data dependencies of
program state variables on inputs as in SPSE, LESE performs a
more detailed analysis to identify loop-dependent variables, for in-
stance finding variables whose value is a linear function of one or
more loop execution counts. It also relates loop execution counts
to features of the program input, introducing auxiliary variables to
capture the lengths and repetition counts of fields in a known in-
put grammar. Together, these constraints allow LESE to addition-
ally express how loop-dependent variables relate to the lengths and
counts of elements in the program input.

Loop-extended symbolic execution can be used to get better re-
sults from symbolic execution whenever it is used with programs in
which loops are important. It can make bug finding tools more ef-
fective and allow test-case generation to reach high coverage more
quickly. Capturing more program logic in symbolic constraints al-
lows LESE to reason about loop-related constraints with a decision

procedure, rather than requiring iterative undirected search as with
SPSE.

The power of LESE is crucial for several important applications.
As sample applications, this paper uses loop-extended symbolic
execution to discover and diagnose buffer-overflow vulnerabilities,
one of the most important classes of software errors that allow at-
tackers to subvert programs and systems. Intuitively, LESE is pow-
erful enough to express the effect of varying features of the input,
such as number of fields or their lengths (which, in turn, affect the
loop iteration counts), on program variables in a single step. This
allows new vulnerabilities to be discovered using many fewer itera-
tions than single-path symbolic execution. In addition, for a known
vulnerability, our techniques are useful to diagnose a set of general
conditions under which it may be exploited. These conditions are
useful for understanding the vulnerability, testing for it, fixing it,
and blocking attacks targeting it [7,14,15,18,20,26,45–47].

Because symbolic execution is often used in security-related ap-
plications such as this one, it is important that it works well for
binary programs for which source code is not available. Our al-
gorithms are designed with this constraint in mind, and overcome
some of the challenges inherent in targeting binaries—such as re-
covering program structure like the boundaries of loops, which ap-
pear trivially in the original source.

We have built a full implementation of this technique, using a
dynamic tool to collect program traces and an off-the-shelf deci-
sion procedure to simplify and solve constraints. Our tool discovers
and diagnoses vulnerabilities in both a standard benchmark suite
and three real-world programs on Windows and Linux. Our results
show that LESE is practically effective, and confirms that the be-
havior of loops in real programs is often very regular.

In summary, this paper makes the following contributions:

• We introduce loop-extended symbolic execution, a new, more
powerful approach to symbolic execution that incorporates
the semantics of loops.

• We give algorithms and heuristics to implement LESE that
are simple enough to implement at scale, but effective in
practice.

• We show an application of LESE to the important security
challenge of buffer overflow vulnerabilities, including a real-
istic implementation that does not require source code.

• We evaluate the implementation, showing that it is effec-
tive at finding and diagnosing vulnerabilities in both standard
benchmarks and vulnerable real-world programs.

The rest of the paper is organized as follows: Section2 motivates
loop-extended symbolic execution with an example and provides a
detailed overview. Section3 describes the two key algorithms used
in LESE. Section4 introduces a primitive for condition analysis
and how to apply it to security vulnerabilities. Section5 provides
an experimental evaluation of our technique on public benchmarks
and real-world vulnerabilities. Finally, Section6 surveys related
work, and Section7 concludes.

2. OVERVIEW
In this section, we first motivate our approach with an example

showing the limitation of single-path symbolic execution, then give
an overview of our technique of loop-extended symbolic execution.

2.1 Motivation and Challenges
Using symbolic execution to generalize over observed program

behavior is a powerful technique because it combines the strengths

1 #define URI_DELIMITER ’ ’
2 #define VERSION_DELIMITER ’\n’
3

4 void process_request(char * input)
5 {
6 char URI[80], version[80], msgbuf[100];
7 int ptr=0, uri_len=0, ver_len=0, i, j;
8

9 if (strncmp input, "GET ", 4) != 0)
10 fatal("Unsupported request");
11 ptr = 4;
12 while (input[ptr] != URI_DELIMITER) {
13 if (uri_len < 80)
14 URI[uri_len] = input[ptr];
15 uri_len++; ptr++;
16 }
17 ptr ++;
18 while (input[ptr] != VERSION_DELIMITER) {
19 if (ver_len < 80)
20 version[ver_len] = input[ptr];
21 ver_len++; ptr++;
22 }
23 if (ver_len < 8 || version[5] != ’1’)
24 fatal("Unsupported protocol version");
25

26 for (i=0,ptr=0; i < uri_len; i++, ptr++)
27 msgbuf[ptr] = URI[i];
28 msgbuf[ptr++] = ’,’;
29 for (j = 0; j < ver_len; j++, ptr++)
30 msgbuf[ptr] = version[j];
31 msgbuf[ptr++] = ’\0’;
32 LogRequest(msgbuf);
33 }

Figure 1: A simplified example from an HTTP server that han-
dles requests of the form:"GET " URI " " Version "\n"

of dynamic and static analysis. It starts with a fully correct and
detailed concrete program trace, and then generalizes that trace to
predict the behavior of software on other inputs. For instance, this
approach can be used to find bugs [13,25,41] or vulnerabilities [26]
in software, to understand the conditions under which a program
path can occur [7], and even to automatically exploit a security
vulnerability [8]. However, the core single-path symbolic execu-
tion technique corresponds to an analysis of just one control-flow
path in a program, which is a significant limitation in programs that
contain loops. Next, we show this limitation with a specific exam-
ple.

Consider a simplified example of a function in an HTTP server,
shown in Figure1, that processes HTTP GET requests. The pro-
gram first checks that the request’s method field has the valueGET
on line 9, and then proceeds to parse the URI and version fields
into separate buffers on lines 12–16 and 18–22 respectively. It re-
jects this request if the version number is unsupported. Finally, it
records the URI requested by the client and the version number in a
comma separated string denoted bymsgbuf on lines 26-30, which
it subsequently logs by invokingLogRequest on line 32.

Readers may have already noticed that this code is vulnerable to
a buffer overflow, but suppose we were attempting to check for such
vulnerabilities using a single-path symbolic execution technique.
For instance, in the course of its exploration, such an iterative test
generation tool might consider the program inputGET x y. It will
trace the execution of the program with this input, which causes
the program to reach the error condition on line 24. In order to
explore the rest of the function, the exploration tool needs to find
a program input that passes the checks on line 23. However, a
single path does not contain enough information to reason about
the length check, because thever_len variable is not directly
dependent on any byte of the input: single-path symbolic execution
would not mark it as symbolic. At this point, testing tools based on

Figure 2: Overview of our loop-extended symbolic execution tool and accessory components. LESE, our main contribution, enhances
symbolic execution for directly input-dependent data values, as in single-path symbolic execution, with symbolic analysis of the affects
of loops (Section3.1) and an analysis that links loops to the input fields they process (Section 3.2). Additional components, described
in Sections4 and 5.1, support LESE and particular applications such as detecting and diagnosing security bugs.

symbolic execution will usually attempt to explore other program
paths, but without information from the first path to guide them,
they can only choose further paths in an undirected fashion, such
as by trying to take a different direction at one of the branches that
occurred on the observed path. (Such tools treat the execution of
a loop simply as a sequence of branches, one for each time the
loop end test is executed.) For instance, a tool might determine that
changing the last character of the input from a newline toz would
cause the loop at line 18 to run for one additional iteration. A series
of many such changes would be required before the version field
was long enough to pass the check.

Similarly, consider the execution of the program on the normal
program inputGET /index.html HTTP/1.1. For this simple
function, a single input already exercises a large proportion of the
code (for instance, it executes all of the lines of non-error code in
the figure). However, examining this single path is not enough to
elucidate the relationship between the variableptr and the input,
because that relationship involves control dependencies.

2.2 Technique Overview
We propose a new type of symbolic execution,loop-extended

symbolic executionor LESE, which captures the effects of more
related program executions than just a single path (as in single-path
symbolic execution), by modeling the effects of loops.

Broadly, the goal of loop-extended symbolic execution is to ex-
tend the symbolic expressions computed from a single execution by
incorporating additional information reflecting the effects of loops
that were executed. In single-path symbolic execution, the values
of variables are either concrete (i.e., constant, representing a value
that does not directly depend on the symbolic input) or are repre-
sented by a symbolic expression (for instance, the sum of an input
byte and a concrete value). But some of the values considered con-
crete by single-path symbolic execution are in fact indirectly de-
pendent on the input because of loops. In loop-extended symbolic
execution these values can also be represented symbolically, and
variables whose values were already symbolic because of a direct
input dependency can have a more general abstract value.

To make loop-extended symbolic execution more tractable, we
split the task into two parts by introducing a new class of symbolic
variables, which we calltrip counts. Each loop in the program has a
trip count variable that represents the number of times the loop has
executed at any moment. Then to obtain the relationship between
a symbolic values and the program input, we separately obtain first
the relationships between the symbolic values and one or more trip
counts (in addition to their direct relationships with the input, as
in single-path symbolic execution), and then the relationships be-
tween the program’s trip counts and the program input:

• Step 1: Symbolic analysis of loop dependencies.To de-
termine dependencies on loop trip counts, we use a program
analysis that maintains the trip counts as symbolic variables
that are implicitly incremented for each new loop iteration,
and then looks for relationships between those variables and
others in the program. (This is done at the same time as the
analysis tracking direct dependencies as in SPSE, and the re-
sults combined in single symbolic expressions.) Specifically,
we have found that looking for linear functions of the trip
counts covers the most important loop dependent variables
without excessive analysis cost.

• Step 2: Constraints linking the input grammar to loops.
Loops are often used when fields of the input are of variable
length, such as character strings and sequences of data of the
same type. Our approach takes advantage of this connection
by using a grammar that specifies the inputs to the program,
and matching loops with the parts of the input over which
they operate. In particular, the approach introducesauxiliary
input variables to capture features of the grammar such as
lengths and repetition counts.

A summary of the components of our system is shown in Fig-
ure2; the center box, LESE, represents the primary contribution of
this research.

To summarize our approach, we now return to the example of
Figure 1 and explain how loop-enhanced symbolic execution is
more helpful to our vulnerability testing application.

1. In the first step, the symbolic loop dependence analysis ex-
presses various program values in terms of four trip count
symbolic variablesTCi, one for each loopi in the program.
For instance, the value of the variableptr at the end of exe-
cution is abstracted by the expressionTC3 + TC4 + 2, and
similarly uri_len = TC1, ver_len = TC2, i = TC3,
andj = TC4. The path predicate is also maintained (as
in single-path symbolic execution). In this example, for in-
stance,i < uri_len inside the third loop, while the nega-
tion holds after the loop has completed, and similarly forj
andver_len.

2. In the second step, we link the trip counts to auxiliary vari-
ables representing features of the input. In the running ex-
ample, the execution counts of the first two loops are equal
to the lengths of input fields:TC1 = Length(URI) and
TC2 = Length(Version).

In the case of vulnerability checking, we would combine these
symbolic constraints describing a class of program executions with

the condition for a violation of the security policy. In this case, for
instance, the array access on line 30 will fail ifptr ≥ 100. Then
in the same way as in a single-path symbolic execution approach,
we can pass these conditions to a decision procedure to determine
whether an exploit is possible, and if so, determine specific values
for input variables that will trigger it. In this case, the decision
procedure will report that an overflow is possible, specifically on
an input for which Length(URI) + Length(Version) ≥ 99.
Applying the approach to binaries. Because we wish to use
these analysis techniques for security applications, it is an impor-
tant practical consideration that they work on binary programs for
which source code is not available. This adds further challenges for
our approach: for instance, purely static analysis is more difficult
on binaries because much of the structure that existed in the source
code has been lost. (And of course, the real constraints we generate
do not contain variable names, which we added in the example for
readability.) It is in part for this reason that the symbolic execution
approach is valuable in the first place, so we choose algorithms to
retain these benefits in our extension. For instance, even though the
technique we use to infer linear relationships between variables is
closely related to a sound static analysis approach, we do not limit
it to finding relationships that could hold on all possible inputs. In-
stead, our goal is to combine static and dynamic analysis to produce
results that cover as large as possible a range of inputs for which
we can still produce useful results.
Use of an input grammar. Information that constrains the space
of valid inputs to a program, in the form of a grammar or otherwise,
is key to scaling input space exploration beyond the limits of brute-
force exhaustive search. Previous research using symbolic execu-
tion [10, 24, 33] demonstrates the benefit of using an input gram-
mar for this purpose. In the application domains we target, suitable
grammars are easily available, so we simply use them. However,
for domains in which grammars are not already available, previous
research shows how a grammar can be inferred [11,31,44]; sucha
system could easily be combined with ours.

3. ALGORITHMS
In this section, we discuss the algorithmic details of the key steps

in loop-extended symbolic execution introduced in Section2. Sec-
tion 3.1describes the analysis that identifies relationships between
values of variables and numbers of loop iterations (step 1). Sec-
tion 3.2 outlines techniques to capture the relationships between
loops and the input, using auxiliary variables in the external speci-
fication of the input grammar (step 2).

The steps described below require accessory components to ex-
tract control flow graphs from binaries, make irreducible CFGs re-
ducible, extract sizes of allocated objects, and parse input gram-
mars. The details of these components, which form the preparation
phase for steps outlined here, are given later in Section5.1.

3.1 Symbolic Analysis of Loop Dependencies
In order to generalize its description of computations that in-

volve loops, our tool must determine the relationship between loop-
dependent variables and the loops in which they are modified. Po-
tentially, this could be done by enhancing the basic single-path
symbolic execution approach with any data-flow-style value anal-
ysis. Since linear dependencies on loop counts are very common,
we choose to use a linear relationship analysis.

Specifically, our tool searches for variables whose value is a
linear function oftrip count variables representing the number of
times one or more loops execute. Unlike the syntactic “induction
variable” analysis commonly performed in compilers [1], we wish
to extend dependencies on loop execution counts after the loop it-

[c1] ◦ [c2] → [c1 ◦ c2] for any operator◦
[c1 +a1 ·TC1]+ [c2 +a2 ·TC1] → [(c1 + c2)+(a1 +a2) ·TC1]
[c1] · [c2 + a2 · TC1] → [(c1 · c2) + (c1 · a2) · TC1]
⊤ ◦ E → ⊤ E ◦ ⊤ → ⊤
[c1 + a1 · TC1] ◦ [c2 + a2 · TC1] → ⊤ otherwise
raise(E〈0〉) → E〈1〉 raise(E〈∗〉) → E〈∗ + 1〉
[a〈0〉] ⊔ [(a + b)〈1〉] → [a + b · TC1〈∗〉]
[a + b · TC1〈∗〉]⊔ [(a + b) + b · TC1〈∗+ 1〉] → [a + b · TC1〈∗〉]

Figure 3: Key rules for linear relationship analysis. Square
brackets delimit abstract values and lowercase characters rep-
resent constants.

self has finished, and combine dependencies on separate loops, so
we implement the linear relationship analysis in style of symbolic
execution. Our approach is intermediate between purely syntactic
induction variable analysis, and a general analysis for linear equal-
ities among arbitrary program variables, which would be signifi-
cantly more expensive. We will first describe the abstract interpre-
tation in general terms, in which form it can also be applied purely
statically, and then discuss how to modify it to produce more useful
results in our mixed static/dynamic context.
Analysis algorithm. For each loopi in the program, we introduce
a symbolic trip count variableTCi, which represents the number of
times the loop (specifically, its back edge) has executed. The core
of an abstract value in our analysis is a symbolic linear combina-
tion whose terms are trip counts or other symbolic variables, with
integer scaling factors and an integer constant term. For instance,
the abstract value10 + 4 · TC1 + 2 · TC2 would correspond to a
variable initialized as 10, then incremented by 4 on each iteration
of the first loop and by 2 on each iteration of the second loop.

In order to link these abstract values with the loops and under-
stand how to combine them between loop iterations, each abstract
value also specifies the domain for each trip count variable it ap-
plies to. We refer to the four possible domains as0, 1, ∗, and∗+1.
Intuitively, 0 represents points before the loop has finished its first
iteration,1 represents later points before the end of the second iter-
ation, and∗ and∗+1 both represent abstract values applicable to all
iterations, before and after the trip count in question is incremented.
We write the domains in angle brackets after an expression, in order
(first TC1, thenTC2, etc.); domains not listed are assumed to be
0. Finally, to represent values that cannot be represented as a linear
combination of trip counts, we have a distinguished element⊤

The key rules for operations on these abstract values are shown
in Figure3. The analysis builds an abstract store that associates
an abstract value as described above with abstract variables corre-
sponding to distinct variables in our machine-level trace (tempo-
raries and machine registers) and memory locations. The abstract
store is updated with the side effect of each assignment, including
stores to memory, and propagates forward through the program.
We propagate across forward control flow graph edges in a topo-
logically sorted order to reduce re-computation. Theraiseoperator
is applied to abstract values on loop back edges; the values are then
joined with the abstract values representing previous iterations. It
is the join operation⊔ that introduces trip count variables into a
symbolic expression;⊔ also prefers∗ to ∗ + 1, which ensures that
1 and∗ + 1 domain values will not be propagated. After the first
(abstract) execution of a back edge,0 and1 values will be joined to
a∗ value. After each subsequent abstract execution, the∗ and∗+1
values will be joined into either a∗ value if they are consistent, or
to⊤ otherwise.

For instance, consider the analysis of loop 3 on lines 26–27 of
Figure1. At the beginning of the loop,ptr has the abstract value

0〈0, 0, 0〉. At the end of the first iteration,ptr is incremented, and
on the loop back edge the two abstract values are joined to give
0〈0, 0, 0〉 ⊔ 1〈0, 0, 1〉 = TC3〈0, 0, ∗〉. Whenptr is incremented
again on the next iteration, its abstract value after the back edge
will be 1 + TC3〈0, 0, ∗ + 1〉, which again joins toTC3〈0, 0, ∗〉 ⊔
1+TC3〈0, 0, ∗+1〉 = TC3〈0, 0, ∗〉. The effect of the increments
on lines 28 and 31 and loop 4 on lines 30–31 are analyzed in a
similar way, giving a final abstract value forptr of 1 + TC3 +
TC4〈0, 0, ∗, ∗〉.
Adapting to dynamic traces.Though as previously described, the
linear dependence analysis could be applied in a completely static
context, some additional improvements are possible when operat-
ing as our tool does on a single execution trace.

An important simplification is that analysis of a trace does not
require a conservative alias analysis, which is often a source of
scalability challenges and/or imprecision in static analysis. Instead,
our analysis can distinguish memory regions using the concrete ad-
dresses observed on the trace. When a symbolic value is used as
a memory address (e.g., indexing an array), we use the concrete
address value, as is common in single-path symbolic execution.

A second difference relates to our coverage goals. A purely static
analysis attempts to give an answer that holds for the entire space
of program inputs; but sometimes, no informative answer can be
given, such as if the true relationship is too complex for the abstract
domain. Other things equal, a result that covers a larger class of ex-
ecutions is most useful, but results that represent no constraint at
all are useless. In mixed concrete and symbolic execution the par-
ticular set of executions to which our results apply can be flexible,
so we aim for the largest set of executions for which the analysis
gives an informative result.

To achieve this, we also allow our tool to lower uninformative
⊤ abstract values back to the constant value representing the value
the variable had in the concrete trace at that point. This is simi-
lar in effect to removing from consideration all the executions on
which that variable had any other value, though less drastic because
those executions can still contribute to the generality of other ab-
stract values. Given that there is a limit to the amount of generality
our abstract values can represent, this lowering reflects a judgment
that it is more valuable for them to abstract over variation that oc-
curs close to the point where they are queried. For instance, if the
combined effect of two nested loops is nonlinear, our analysis will
retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to lower an
abstract value in this way would be: for instance, delaying a lower-
ing at one program point might remove the need to lower another
value later. However, we have had good results by performing the
lowering eagerly just before a⊤ value would otherwise propagate.

3.2 Linking Loops to Input
After Step 1 (symbolic analysis of loop dependencies), the sym-

bolic expressions for program state variables our tool computes de-
pend on two types of symbolic variables: the symbolic variables
representing the data values of each byte in the input and the trip
count variables. Thus, to obtain the relationship between the pro-
gram state variables and the input, we need to obtain the relation-
ship between the trip count variables and the input. In general, such
relationships might be very complicated. However, we leverage the
observation that most such trip count variables relate to certain fea-
tures of the structure of the input such as the length of a variable-
length field (such as a string) or the number of records of the same
type (callediterative fields).

To precisely capture these repetitive features of program inputs,
which are missing from descriptions like context-free grammars,

we introduce the concept ofauxiliary attributes. For instance, we
introducelengthattributes to represent the size of fields that might
vary in length, andcountattributes to represent the number of times
iterative fields are repeated. Auxiliary attributes are associated with
grammatical units at any level (e.g., terminals and non-terminals
in a context-free grammar), such as Length(URI) for the length
of a URI field in the HTTP grammar. They can also be system-
atically added to an existing parser as an attribute grammar (as in
yacc [29]); for instance, the length for a non-terminal in a rule can
be computed as the sum of the lengths on the right-hand side of the
rule. In some cases, the value of an auxiliary attribute is provided
in another field of the input. Our technique can take advantage of
auxiliary attributes that appear in the input in this way, but it also
uses them in ways that do not require them to appear in the input.

The goal for the linking step is to identify loop-computed values
in the program that represent auxiliary attributes; for instance, if a
loop is used to compute the length of a field. Previous work [11]
shows that automatic inference of variables that iterate over multi-
ple variable-length fields is feasible, and more recently Caballero
et al. show how to relate certain program variables to features of an
input grammar [10]. We use similar techniques based on the same
intuition; we determine that a loop’s iteration count is the length of
a field if its exit condition checks either a delimiter for the field or a
value derived from a length or count auxiliary attribute of the field.
In more detail, we use the following steps:

1. Relate data-dependent bytes to fields. As in single-path sym-
bolic execution, our tool determines for each variable in the
trace which input byte(s) (identified by offset) it directly de-
pends on. Our tool also parses the input according to the
known grammar, and so determines which protocol field con-
tains each input byte. Therefore, one simple way of matching
variables with one or more input fields is to combine these
two mappings. For instance, in the example of Figure1, the
bufferURI contains the contents of the fieldURI.

2. Identify variable length fields, counts, and delimiters. The
input grammar also identifies which fields correspond to the
lengths or iteration counts of other fields, and our tool maps
this information through direct dependencies to determine
program variables that represent lengths and counts. Also,
we use the grammar to determine which values are used as
delimiters to signal the end of a variable-length field. For in-
stance, in the HTTP grammar, the fieldURI is delimited by a
space character.

3. Identify variables used in loop exit conditions. By analyzing
loops as described in Section5.1, our tool determines which
variables are used in the conditions that determine when to
exit a loop. For instance, the loop on lines 26–27 of Figure1
is guarded by a condition on the variablesi anduri_len.

4. Recognize loops over delimited fields. If the exit condition of
a loop compares bytes of a field to a value that is the delimiter
of the field, then we link the iteration count of the loop to the
length of the field. For instance, in Figure1, the loop on
lines 12-16 compares each byte of the URI field to a space,
which is known from the grammar to be the delimiter of the
URI, so the execution count of that loop is the length of the
field (TC1 = Length(URI)). In other situations, a loop may
process several bytes on each iteration, which gives a relation
with a scale factor. For instance, if each iteration processes a
4-byte word, the field length is equal to 4 times the loop trip
count.

5. Recognize loops over counted fields. If the exit condition of
a loop compares a variable to a value that is identified in the
grammar as the length of a field or the counter for a repeated
field, then we link the iteration count of the loop to that length
or count field. As in the case of a delimited field, the scale
factor between the field and the trip count may not be 1, for
instance if a loop process several items in each iteration.

While these techniques are not enough to recognize every loop
that might be written, they represent the most common patterns,
and we have found them to be sufficient to capture the relationships
for both length and count attributes in practice.

4. APPLYING LESE
Loop-extended symbolic execution can be used to get better re-

sults from mixed concrete and symbolic execution whenever it is
used with programs in which loops occur. In this section we de-
scribe how to apply it to test generation and in problems about se-
curity bugs in software. First, we describe the primitive operation
of using LESE to determine how a given predicate might be satis-
fied during program execution: on a single program path, but per-
haps involving different numbers of loop iterations. We then show
how to use this primitive for improving coverage in test generation,
discovering previously unknown security bugs, and diagnosing the
cause of a bug given only an execution that exercises it.

4.1 Loop-extended Condition Analysis
A basic use of single-path symbolic execution is to determine

the conditions under which a predicate at a program location can
be true. For instance, the predicate might be a branch condition, a
programmer-provided assertion, or an array bounds check. We start
with the predicate (which we will call thequery predicate), associ-
ated with a program point, and an execution that reaches that point,
but does not satisfy the predicate. Then the task is to determine the
conditions on an input to the program that could cause execution
to follow the same path, but cause the query predicate to be true.
Using loop-extended symbolic execution, we enhance this condi-
tion analysis by taking into account other program executions that
are similar to the observed one, but might involve different num-
bers of loop executions. Once the predicate has been chosen, this
loop-extended condition analysis takes the following 3 steps:

1. Derive symbolic expressions in terms of inputs.Given the
original execution trace, our tool first performs loop-extended
symbolic execution on the trace as described in previous sec-
tions. The result of this step gives a symbolic expression
for each program state variable that depends on the inputs,
including both data dependencies and control dependencies
introduced by loops.

2. Instantiate query predicate.Our tool instantiates the query
predicate by using the symbolic expression computed for
each variable that appears in the predicate.

3. Solve constraints.The query predicate can be satisfied if
there exist inputs to the program that simultaneously cause
it to reach the location of the predicate, and satisfy the pred-
icate. So our tool conjoins a path condition with the query
predicate, and passes this formula to a decision procedure to
determine if it is satisfiable. Constraints in the path condition
that arise from loop exit conditions are removed, since they
are superseded by loop-dependent symbolic expressions. Our
implementation uses STP [21], an SMT solver that repre-
sents machine values precisely as bounded bit vectors. If

the formula is solvable, STP returns a satisfying assignment
to its free variables, which represent particular input bytes
and auxiliary attributes. A grammar-based input generation
tool [5, 24] can then be used to produce a version of the ini-
tial input, modified according to the satisfying assignment,
which is a candidate to satisfy the predicate.

4.2 Uses for Loop-enhanced Conditions
Loop-extended condition analysis has many applications. In this

section, we describe three: improving the coverage of test genera-
tion based on mixed concrete and symbolic execution, discovering
violations of security properties, and diagnosing the exploit condi-
tions of a security flaw.

4.2.1 Improving Test Generation
Test generation is the task of discovering inputs to a program

that cause it to explore a variety of execution paths. Single-path
symbolic execution can be used in an iterative search process to
find such inputs [12,25,41], but it does not cope well with program
branches that involve loop-dependent values; using LESE instead
allows test generation to achieve higher coverage.

The basic operation in such an iterative search is to take an ex-
ecution path and a branch along that path, andreversethe branch:
find an input that causes execution to reach that branch, but then
take the opposite direction. Reversing a branch is just an appli-
cation of the primitive of Section4.1, where the query predicate
is a branch condition or its negation. The benefit of using loop-
extended symbolic execution instead of single-path symbolic exe-
cution in test generation can be seen in two aspects: First, an LESE-
based exploration is able to reverse branches whose conditions in-
volve loop-dependent values; in a tool based on SPSE, by contrast,
loop-dependent values are not considered symbolic. Second, an
iterative search performed with LESE is more directed, since the
conditions it reasons about capture the effect on values computed
in loops. For instance, if a subsequent branch depends on a loop-
derived value, LESE-based search requires only one iteration to de-
termine a number of iterations of the loop to reverse the condition.
The length check on line 23 in the example of Figure1 shows this
benefit: an LESE-based generation tool can immediately construct
an input with a long-enough version field, because the length is a
symbolic variable, while an SPSE-based tool could only stumble
on such an input by trial and error.

4.2.2 Vulnerability Discovery
Many classes of security vulnerabilities can occur when asecu-

rity predicateis violated during program execution. For instance,
given a program that writes to an array, a buffer overflow occurs
if the index of a write to an array is outside of the correct bounds.
In a program that uses machine integers to compute the length of
a data structure, an integer overflow vulnerability occurs if a com-
putation gives the wrong result when truncated to word size. To
check whether program logic is sufficient to prevent such failures,
the problem of vulnerability discovery, or “fuzzing,” asks whether
there is a program input that could violate the security predicate.
Vulnerability discovery is similar to test case generation; the only
difference is the additional checking of a security predicate at each
dangerous operation. Thus, like test generation, it can be performed
using our loop-extended condition analysis: the query predicate is
just the negation of the security predicate.

Loop-extended symbolic execution is a particularly good match
for discovering vulnerabilities related to input processing, because
the data structure size values that are misused in buffer overflow
and integer overflow vulnerabilities are often processed using loops.

The buffer overflow in Figure1 is typical in this way. Depending
on the security property, some preprocessing might be needed to
precisely define the security predicate describing how an operation
might be unsafe: for instance, when checking for a buffer overflow,
to determine the length of the vulnerable buffer. We will discuss
some practical aspects of such preprocessing in Section5.1.

4.2.3 Vulnerability Diagnosis
If a vulnerability has already been exploited by an attacker, an-

other important application is diagnosing it: extracting a set ofvul-
nerability conditions(general constraints on the values of inputs
that exploit the vulnerability). Diagnosis is an important problem
in security because vulnerability conditions are useful for automat-
ically generating signatures to search for or filter attacks, or to help
a security analyst understand a vulnerability.

Vulnerability diagnosis is again based on the loop-extended con-
dition analysis primitive of Section4.1: in fact, the combination
of a path predicate and a negated security predicate gives a vul-
nerability condition. However, symbolic execution typically gen-
erates thousands of constraints, so our tool performs several opti-
mizations to simplify them into a smaller set, as discussed in Sec-
tion 5.1. Such simplification is particularly important for applica-
tions involving manual analysis, but a compact condition is also
more efficient for use by later automated tools.

Some forms of vulnerability diagnosis could be performed us-
ing SPSE, but an SPSE-based diagnosis would be too narrow for
many applications, including most buffer overflows. For instance,
an SPSE-based diagnosis of the web server in Figure1 could cap-
ture some generality in the contents of the input fields, but it would
restrict their lengths to the particular values seen in the sample ex-
ploit. A filter based on such a diagnosis could be easily bypassed
by an attack that used a different length URI. By contrast, LESE
finds more general conditions; for instance, in the example of Fig-
ure1, it finds thatmsgbuf can be overflowed by inputs of arbitrary
size, as long as the sum of the lengths of two fields is at least 99.

5. EXPERIMENTAL EVALUATION
We evaluated the effectiveness of loop-extended symbolic exe-

cution by implementing an infrastructure based on the proposed
techniques and applying it to discovery and subsequent diagnosis
of buffer overflow vulnerabilities. We selected two kinds of subject
programs for this evaluation. For comparison with other implemen-
tations, which require source code and/or run only on Linux, we use
standard benchmark suites containing known overflows. To test the
practical utility of our tool, we use real-world Windows and Linux
applications with historic vulnerabilities. Our tool discovers all the
benchmark overflows, as well as those in real-world applications,
by generating just a few candidate inputs.

5.1 Implementation
We have implemented the core loop-extended symbolic execu-

tion component described earlier in OCaml, and the protocol for-
mat linkage in OCaml combined with C and Python code to in-
tegrate with off-the-shelf parsers. We utilized our existing binary
analysis infrastructure [4,42] for taking an execution trace and get-
ting the semantics of x86 instructions.

In this section, we outline several additional components we de-
veloped to realize our proposed primitives, and heuristics that make
this approach practical when working with binaries.
Memory layout extraction. To check for overflows in pointer ac-
cesses, we need a representation of the memory allocations made
by the program at different points in its execution. To deal with dy-
namic allocation, our existing infrastructure records the arguments

to memory allocation functions. For stack-based memory accesses,
we implemented an existing technique called stack analysis [40],
though more detailed techniques [2,3] could alternatively be used.
Loop information extraction. Our infrastructure uses the IDA
Pro tool [28] to disassemble binaries and we reused standard loop
detection analysis algorithms existing in our infrastructure [10].
There are two notable additional caveats which were useful for ob-
taining results for our case studies.

1. Addition of dynamic edges.The presence of indirect call and
jump instructions hinders static CFG extraction: an analy-
sis may completely miss code blocks that are reachable only
through indirect jumps. Our static control flow graph extrac-
tion is supplemented with indirect jump targets observed in
the trace, which allow many more loops to be discovered.
For instance, such loops were critical to obtaining accurate
results in the SQL Server case study of Section5.3.

2. Irreducible loops. Unlike in high-level languages, loops in
binaries are often irreducible. We dealt with this by em-
ploying standard transformation techniques to make loops
reducible.

Protocol Grammar. Our existing infrastructure interfaces with
Wireshark [43], an off-the-shelf IDS/IPS, to obtain protocol gram-
mars of network protocols we study.
Input Generation. We find that a relatively simple input genera-
tion approach works well with our LESE implementation: when a
constraint requires that a length or count be larger, we repeat ele-
ments from the initial input until the result is long enough. In more
general examples where the field being extended is subject to more
additional constraints, one could also leverage grammar-based in-
put generation approach [5,24].
Constraint simplification. Our tool performs live-variable anal-
ysis to remove irrelevant constraints. It then performs constant
folding on the remaining constraints, and simplifies them using the
algebraic simplification routines built-in with the STP constraint
solver [21].

5.2 Benchmarks Comparison
As benchmarks, we used a set of 14 samples extracted from

vulnerabilities in open-source network servers (BIND, Sendmail,
and WuFTP) by researchers at the MIT Lincoln Laboratories [47],
which range between 200 and 800 lines of code each. (These are
the same benchmark programs used by Xuet al. [46].)

Replacing SPSE with LESE would be beneficial throughout in-
put space exploration in vulnerability discovery, since symbolic ex-
pressions for loop-dependent values allow more branches to be re-
versed, as discussed in Section4.2.1. However, it can be difficult
to fairly compare symbolic execution tools on an end-to-end basis,
because of differences in input assumptions and search heuristics.
Therefore, we confine our evaluation to the last stage of vulner-
ability search by starting both our tool and an SPSE tool with a
program input that reaches the line of code where a vulnerability
occurs, but does not exploit it. These inputs are short and/or close
to usual program inputs, so they could be found relatively easily
by either an SPSE-based or an LESE-based approach (though the
time required would still be highly dependent on the initial input
and search heuristics used). Therefore, the results on these inputs
provide a bound on the performance of an end-to-end system: if
a tool is unable to find a vulnerability given the hint of a nearby
input, it would also be unable to find it starting from a completely
unrelated input.
Results and New Bugs.The upper half of Table1 shows the results
of our tool on the Lincoln Labs overflow benchmarks. The first

Program Input Format Initial Input Exploit Input Bug / Time (s) Loop-Dep.
Candidate Conditions

BIND 1 DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 1/1 4464 52
Sendmail 1 Byte Array “<><><>” “<>” (89 times) 4/5 672 1
Sendmail 2 struct passwd (Linux) (“”,“root”,0,0,“root”,“”,“”) (“”,“root”,0,0,“rootroo”,“”,“”) 1/1 526 38
Sendmail 3 [String]N [“a=\n”]2 [“a=\n”]59 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array “\\\” “\” (148 times) 3/3 18080 6
Sendmail 6 OPTION◦’ ’ ◦ARG “-d aaaaaaaaaa-2” “-d 4222222222-2” 1/1 676 11
Sendmail 7 DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WuFTP 1 String “aaa” “a” (9 times) 2/2 483 5
WuFTP 2 PATH “aaa” “a” (10 times) 1/1 197 29
WuFTP 3 PATH “aaa” “a” (47 times) 1/1 109 7

GHttpd Method◦URI◦Version “GET /index.html HTTP/1.1” “GET ”+188 bytes + “ HTTP/1.1” 2/2 1562 41
SQL Server Command◦DBName x04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0182 INP[19:18]=0x4003 1/1 353 2

Table 1: Discovery Results for benchmarks and real-world programs. A circle (◦) represents concatenation. In[X]k, k denotes the
auxiliary count attribute specifying the number of times elementX repeats.

column identifies each benchmark, and the second column summa-
rizes the input grammar our tool uses. The third and fourth columns
give the initial input our tool started with, and the exploit input it
found. The fifth column gives the number of candidate inputs our
tool generates (after the slash), and the number of those that in fact
cause an overflow (before the slash). The sixth column gives the
total runtime of our tool, starting with the initial input trace and
including all the discovered overflows. (The seventh column will
be discussed in Section5.4.) All experiments were performed on a
3GHz Intel Core 2 Duo with 4GB of RAM.

Our LESE tool discovers most of the bugs in just a few minutes,
requiring only a few candidate inputs each. In each case, we sup-
plied a small benign input, and the tool automatically found that
a longer input could cause an overflow. Our tool also discovered
an apparently new bug in one of the Lincoln Labs benchmarks: in
addition to the known overflows (marked with/* BAD */ com-
ments in the benchmark code) our tool finds a new overflow on line
340 of the functionparse_dns_reply in Sendmail benchmark
7. (In the other cases where our tool reports multiple overflowing
inputs, they were a set of related errors marked in the benchmark.)
Comparison with Splat. Xu et al. [46] suggest a different ap-
proach to making SPSE work better for certain buffer overflows,
by abstracting over the length of string buffers. Specifically, their
length abstraction technique requires programmer-supplied source
code annotation to mark a chosen prefix of the relevant buffer’s con-
tents as symbolic. In contrast, our technique automatically extracts
memory buffers and their dependency on the input fields using a
combination of static and dynamic analysis. More importantly,
LESE does not need any information about string-manipulating
functions and uses no programmer specifications for summarizing
common string operations—our key enhancement to handle loop
dependencies is practically sufficient to reason about the imple-
mentations of the string functions for our applications. As a result,
LESE can reason about vulnerabilities present in custom operations
on array inputs that may not use any common string operations (ex-
amples of these are available in our studied benchmarks).

Though the Lincoln Labs benchmarks were also studied by Xu
et al. [46], a head-to-head empirical comparison was not possi-
ble. Unfortunately, because of the way the original benchmarks are
designed to be self-contained, it was unclear which buffers (and
which parts) were annotated as program inputs in their work. For
instance, the BIND 2 benchmark exercises code from BIND that
parses a DNS packet, and also includes code to generate an appro-

priate packet. In Xuet al. [46], it was unclear which value in the
packet generation process was treated as the input. As shown in
Table1, we considered the whole packet itself to be the input, so
that only an input that is a mostly syntactically correct packet will
cause an overflow. We believe our choice makes for a more realis-
tic evaluation, but it implies that a direct comparison of the tools’
execution times would not be meaningful.

Our tool was able to find exploits for the two benchmarks (Send-
mail 1 and 5) on which Splat times out. (In the case of Sendmail 5,
the total running time of our tool to evaluate 3 candidate inputs is
longer than the two hour timeout used with Splat, but our tool re-
ports its first vulnerability before two hours have elapsed.) On the
remaining benchmarks, our tool reproduces Splat’s positive results
on the complete programs.
Accuracy of candidate inputs.In the fifth column, Table1 shows
the number of candidate test inputs our tool generated in the process
of finding each exploit. The fact that only a few tests were required
(on average,62.5% of the candidates our tool generates are real
exploits) demonstrates the targeted nature of LESE-based search:
the tool efficiently chooses appropriate loop iteration counts and
prunes buffer operations that are safe, concentrating on the most
likely vulnerability candidates. Of course, since the candidates are
concrete inputs that can be automatically tested, failed candidates
are not reported: the tool gives no false positive results.

5.3 Evaluation on Real-World Programs
As full-scale case studies, we took 3 real-world Windows and

Linux programs which are known to have buffer overflow vulnera-
bilities. These include the program targeted by the infamous Slam-
mer worm in 2003 [37], the one affected by a recent GDI vulnera-
bility in 2007 [34], and an HTTP server [22]. Table1 summarizes
the vulnerabilities in these programs and the input grammars our
tool used. We gave benign initial inputs to these programs that are
representative of normal inputs that they would receive in practice.

Starting with a benign input, our tool uses just one iteration of
LESE to discover buffer overflows in all 3 real world programs.
The bugs found in the GDI and SQL cases are the same reported
earlier in these programs, as we manually confirmed. For ghttpd,
our tool discovers two buffer overflow vulnerabilities in theLog
function inutil.c. One of these is described in previous research
using this subject program [14]. The new overflow involves a sep-
arate buffer and would need a separate fix. These results are shown
in Table1; next we explain each vulnerability in more detail.

GHttpd vulnerability. GHttpd is a Linux web server; we use ver-
sion 1.4.3. We send an initial benign input,GET /index.html
HTTP/1.1, to the running web service, and it responds normally.
Given a trace of this execution and the HTTP grammar, our tool dis-
covers 2 potential buffers to overflow and generates candidate ex-
ploits for each. These inputs are the same as the initial input except
that their URI fields have lengths of 188 and 140 bytes respectively.
Testing confirms that both candidates indeed cause overflows: the
shorter request overflows one buffer, and the longer one overflows
both that buffer and a subsequent one.
SQL Server vulnerability. This vulnerability is a stack-based
overflow in Microsoft’s SQL Server Resolution Service (SSRS),
which listens for UDP requests on port 1434. Based on its speci-
fication [35], one valid message format contains 2 fields: a header
byte of value 4, followed by a string giving a database name. We
send the SSRS service a benign request that consists of the header
byte and a string “aaa”, to which the service responds correctly.
Given the trace and the input grammar, our tool finds 3 potential
buffers to overflow and generates one candidate inputs for each.
Our automated testing reports that one candidate, which is 195
bytes long, overflows a buffer that is the same one exploited by the
SQL Slammer worm. (The other two candidate inputs are longer
than the maximum-length UDP packet, so they are discarded dur-
ing testing and not reported.) The fact that such large inputs could
be generated in a single step, rather than via a long iteration pro-
cess, shows the power of LESE.
GDI vulnerability. This vulnerability in the Microsoft Windows
Graphic Rendering Engine was patched in 2007. We created a be-
nign and properly formatted WMF image file using Microsoft Pow-
erPoint, containing only the text “aa”; the file is 1014 bytes long.
We attempt to open the file using a sample application and record
the program execution. Without using an input grammar, our tool
discovers a potential buffer read overflow and creates an exploit in-
put, which crashes the sample application. The only differences
between the exploit and the benign input are the values in bytes
18 and 19 (shown in Table1). Comparing with a grammar for the
WMF format, these bytes correspond to the size of the image field.

5.4 Further Applications
Improving test coverage. Though our evaluation does not focus
on the exploration phase of vulnerability detection, our experiments
do demonstrate a feature of loop-extended symbolic execution that
makes it more effective in obtaining input space coverage. As de-
scribed in Section4.2.1, LESE improves on SPSE by finding sym-
bolic expressions for more branch conditions that depend on the
number of times loops execute, making it possible for a coverage
tool to reverse them. To measure this effect, we give in the last col-
umn of Table1 the number of branches for which our tool found
a loop-dependent condition but no directly input-dependent condi-
tion, so that an LESE-based tool would be able to reverse them but
an SPSE-based tool would not. The count is a number of unique
program-counter locations (i.e., static and context-insensitive), and
excludes loop exit conditions. For instance, one of the 29 loop-
dependent conditions in WuFTP 2 is a length check (on line 464)
intended to prevent the buffer overflow. Because the check is faulty,
it is false on both our benign and exploit inputs, but exploring both
sides would be critical for an exploration task, such as verifying the
lack of overflows in a fixed version. The condition is immediately
apparent to our tool, but would not be considered symbolic under
standard SPSE.
Vulnerability diagnosis. Our tool can also be used for vulnera-
bility diagnosis: to find a general set of conditions under which an
exploit occurs. Diagnosis is most useful when a vulnerability is

Program Buffer size Condition for overflow Constraint
(bytes) generation time (s)

GHttpd (1) 220 URI.len > 172 420 + 23
GHttpd (2) 208 URI.len > 133 420 + 140
SQL Server 128 DBName.len > 64 192
GDI 4096 (2·INP[19:18])»2 < 0 200

Table 2: Diagnosis results on real-world software. Generation
time for GHttpd consists of the pre-processing time (420 s) and
the post-processing time (23 s and 140 s) for each condition.

already being used by attackers, and it is important to understand
and defend against attacks quickly: vulnerability conditions can
accelerate or replace manual analysis of an exploit, and be used to
generate filters to detect or block attacks. But to be useful, such
conditions must be broad enough to cover a large class of attacks.

We used our tool to perform diagnosis on the same real-world
programs described in Section5.3. Either a publicly available ex-
ploit, or the exploits generated by our discovery tool, could be used
and produce the same results.

Our tool’s diagnoses, summarized in Table2, are more accurate
and usable than those given in previous work [18]. For instance,
for the Microsoft SQL Server vulnerability, the condition our tool
generates states that the vulnerable field’s length must be greater
than 64 bytes, whereas the buffer overrun vulnerability condition
generated in previous work states that the length must be at least 97
bytes [18]. This difference turns out to be significant. Because we
have no access to source code, we validated our results experimen-
tally by supplying inputs of various sizes to the server. We found
that when the vulnerable field has a size larger than 64 bytes, the
overflow overwrites pointers with invalid values, causing an excep-
tion when these values are dereferenced.

Also note that most diagnoses of buffer overflows, including the
GHttpd and SQL Server examples shown in Table2, could not be
produced by a standard SPSE tool, which lacks even a notation to
refer to the length of an input field.

6. RELATED WORK
This section discusses two classes of related research: first, other

work on analysis approaches similar to our loop-extended symbolic
execution; then, work that also addresses the problem of discover-
ing and/or diagnosing buffer-overflow attacks.

6.1 Analysis Approaches
Single-path symbolic execution.The technique we refer to as

single-path symbolic execution has been proposed by a number of
researchers, though the same core idea has been given several dif-
ferent names. It is also called “directed testing” [25], “execution-
generated test cases” [12], “concolic testing” [41], and “whitebox
fuzzing” [26]. It was first proposed as a test-generation technique to
produce program inputs that cover new program paths, and there-
fore uncover bugs, including security vulnerabilities. In addition
to generating new inputs, the symbolic conditions derived from an
execution path also have a number of other applications, such as
building signatures to filter network attacks [7] or searching for
differences between implementations [6].

Extensions to single-path symbolic execution.Several previ-
ous approaches have extended single-path symbolic execution with
additional information about the program or its possible inputs.
Previous grammar-based approaches [10,23,24,33] have takenad-
vantage of knowledge of which program inputs are legal to reduce
the size of the search space when generating new inputs. By com-

parison, our use of an input grammar in Section3.2 is focused on
extracting more information from a single execution. The Splat
tool of Xu et al. [46] also targets the problem of buffer-overflow
diagnosis, but they do not explicitly model loop constructs as in
loop-extended symbolic execution. An empirical and analytical
comparison to their approach is presented in Section5.2. Pre- and
post-conditions can summarize the behavior of a function so that
it need not be reanalyzed [23], similar to how our approach avoids
the need to reanalyze with different numbers of loop iterations. If
repeated constraints are generated, they can also be later removed
by optimizations such as constraint subsumption [26].

Static analysis. Determining linear (technically, “affine”) rela-
tionships among the values of variables, as our analysis in Sec-
tion 3.1 does, is a classic problem of static program analysis, pi-
oneered by Karr [30]. Like many properties that involve multiple
variables, it can potentially become expensive. For instance the
polyhedron technique [16] requires costly conversion operations on
a multi-dimensional abstract representation. More recent research
has considered restricted abstract domains that allow for more effi-
cient computation, such as “octagons” [36] and “pentagons” [32].
The techniques of Müller-Olm and Seidl [38] have the advantage
of giving precise results even with respect to overflow, but their
runtime is a high power of the number of variables in a program
(k7 for the interprocedural case). Random analysis [27] can also
be used to determine linear relationships, with a small probability
of error. For the simpler case we consider, it is sufficient to take
a more efficient non-relational approach: we express the values of
program variables not in terms of each other but in terms of a small
set of auxiliary trip-count variables.

6.2 Discovering and Diagnosing Buffer Over-
flows

Buffer-overflow vulnerabilities are a critical security challenge,
and many approaches target them. Sound static analysis holds
the possibility of eliminating false negatives, but in practice buffer
overflow checking is difficult enough that sound analysis is possible
only for small programs with extensive user annotation [19]. More
comparable to our approach are scalable bug-finding tools [20,45].
However, pure static analysis approaches suffer from false posi-
tives, which tool users must examine by hand. For instance, one
comparison [47] using the same benchmarks we use in Section5.2
found that many tools produced so many false positives they did
only slightly better than chance. Dynamic analysis techniques, on
the other hand, avoid false positives by examining programs as they
execute [15, 17, 39]. However, the requirement of running on all
executions means that the overhead of dynamic analysis tools can
limit their applicability. Symbolic execution combines static and
dynamic techniques to generalize from observed executions to sim-
ilar unobserved ones, and loop-extended symbolic execution ex-
tends this generalization to include loops.

Our vulnerability diagnosis using loop-extended symbolic exe-
cution extends previous diagnosis approaches based on single-path
symbolic execution [7, 9, 14]. Bouncer [14] employs source-code-
based static alias analysis along with SPSE. ShieldGen [18] uses
a protocol-specification-based exploration of the input space to di-
agnose a precise vulnerability condition. However, in contrast to
our work, it treats the program as a black-box, ignoring the imple-
mentation. In addition, it does not capture complex relationships
between fields that may be necessary to exploit a vulnerability. For
instance, as its authors point out, ShieldGen cannot capture the con-
dition that the combined length of two fields must exceed a buffer
size for exploit (as in the example of Section2), which our tech-
niques can.

7. CONCLUSION
We propose loop-extended symbolic execution, a new type of

symbolic execution that gains power by modeling the effects of
loops. It introduces trip count variables with a symbolic analysis
of linear loop dependencies, and links them to features in a known
input grammar. We apply this approach to the problem of detect-
ing and diagnosing buffer overflow vulnerabilities, in a tool that
operates on unmodified Windows and Linux binaries. Rather than
trying a large number of inputs in an undirected way, our approach
often discovers an overflow on the first candidate it tries. Our tool
finds all the vulnerabilities in the Lincoln Labs benchmark suite and
gives accurate symbolic conditions describing real vulnerabilities.
These results suggest that loop-extended symbolic execution has
the potential to make many kinds of program analysis, including
important security applications, faster and more effective.

Acknowledgements
We are grateful to Juan Caballero and Zhenkai Liang for their help
with the implementation and for many helpful discussions through-
out this work. We also thank David Molnar, Ru-Gang Xu and the
anonymous reviewers for their insightful feedback on this work.
This material is based on work supported in part by the National
Science Foundation under Grants No. 0311808, No. 0448452, No.
0627511, and CCF-0424422, and by the Air Force Office of Scien-
tific Research under MURI Grant No. 22178970-4170. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily re-
flect the views of the Air Force Office of Scientific Research, or the
National Science Foundation.

8. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques and Tools. Addison
Wesley, second edition, 2006.

[2] G. Balakrishnan and T. W. Reps. Analyzing memory
accesses in x86 executables. InCompiler Construction, Apr.
2004.

[3] G. Balakrishnan and T. W. Reps. DIVINE: DIscovering
Variables IN Executables. InVerification, Model Checking,
and Abstract Interpretation (VMCAI), Jan. 2007.

[4] BitBlaze: Binary analysis for computer security.
http://bitblaze.cs.berkeley.edu/.

[5] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility
analysis for string-manipulating programs. InTools and
Algorithms for the Construction and Analysis of Systems,
Mar. 2009.

[6] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song. Towards automatic discovery of deviations in
binary implementations with applications to error detection
and fingerprint generation. InUSENIX Security Symposium,
Aug. 2007.

[7] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based
signatures. InIEEE Symposium on Security and Privacy,
May 2006.

[8] D. Brumley, P. Poosankam, D. Song, and J. Zheng.
Automatic patch-based exploit generation is possible:
Techniques and implications. InIEEE Symposium on
Security and Privacy, May 2008.

[9] D. Brumley, H. Wang, S. Jha, and D. Song. Creating
vulnerability signatures using weakest pre-conditions. In
Computer Security Foundations, July 2007.

http://bitblaze.cs.berkeley.edu/

[10] J. Caballero, Z. Liang, P. Poosankam, and D. Song. Towards
generating high coverage vulnerability-based signatures with
protocol-level constraint-guided exploration. Technical
Report CMU-CyLab-08-009, Cylab, Carnegie Mellon
University, June 2008.

[11] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot:
Automatic extraction of protocol message format using
dynamic binary analysis. InComputer and Communications
Security, Oct. 2007.

[12] C. Cadar and D. Engler. Execution generated test cases: How
to make systems code crash itself. InModel Checking
Software, 12th SPIN Workshop, Aug. 2005.

[13] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
Computer and Communications Security, Nov. 2006.

[14] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: Securing software by blocking bad input. In
Symposium on Operating Systems Principles, Oct. 2007.

[15] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. InSymposium on Operating Systems
Principles, Oct. 2005.

[16] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. InPrinciples of
Programming Languages, Jan. 1978.

[17] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos:
Architectural support for protecting control data. InACM
Transactions on Architecture and Code Optimization, pages
359–389, Dec. 2006.

[18] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen:
Automatic data patch generation for unknown vulnerabilities
with informed probing. InIEEE Symposium on Security and
Privacy, May 2007.

[19] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic
tool for statically detecting all buffer overflows in C. In
Programming Language Design and Implementation, June
2003.

[20] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer overrun detection using linear programming and static
analysis. InComputer and Communications Security, Oct.
2003.

[21] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. InComputer Aided Verification, July
2007.

[22] ghttpd.http://gaztek.sf.net/ghttpd/.
[23] P. Godefroid. Compositional dynamic test generation. In

ACM Symposium on Principles of Programming Languages,
Jan. 2007.

[24] P. Godefroid, A. Kiėzun, and M. Y. Levin. Grammar-based
whitebox fuzzing. InProgramming Language Design and
Implementation, June 2008.

[25] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. InProgramming Language
Design and Implementation, June 2005.

[26] P. Godefroid, M. Y. Levin, and D. Molnar. Automated
whitebox fuzz testing. InNetwork and Distributed System
Security, Feb. 2008.

[27] S. Gulwani and G. C. Necula. Discovering affine equalities
using random interpretation. InPrinciples of Programming
Languages, Jan. 2003.

[28] IDA Pro.http://www.hex-rays.com/idapro/.

[29] S. C. Johnson. Yacc: Yet another compiler-compiler.
Technical Report (Computer Science) No. 32, Bell
Laboratories, July 1975.

[30] M. Karr. Affine relationships among variables of a program.
Acta Informatica, 6:133–151, 1976.

[31] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol
format reverse engineering through context-aware monitored
execution. InNetwork and Distributed System Security, Feb.
2008.

[32] F. Logozzo and M. Fähndrich. Pentagons: a weakly
relational abstract domain for the efficient validation of array
accesses. InSymposium on Applied Computing, Mar. 2008.

[33] R. Majumdar and R.-G. Xu. Directed test generation using
symbolic grammars. InAutomated Software Engineering,
Nov. 2007.

[34] Microsoft Corporation. Microsoft security bulletin
MS07-046: Vulnerability in GDI could allow remote code
execution, Aug. 2007.

[35] Microsoft Corporation.SQL Server Resolution Protocol
Specification, Jan. 2009. Revision 0.6.1.

[36] A. Miné. The octagon abstract domain.Higher-Order and
Symbolic Computation, 19(1):31–100, Mar. 2006.

[37] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer worm.IEEE Security
and Privacy, 1(4):33–39, July-Aug. 2003.

[38] M. Müller-Olm and H. Seidl. Analysis of modular
arithmetic.ACM Transactions on Programming Languages
and Systems, 29(5), Aug. 2007.

[39] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InNetwork and Distributed
System Security, Feb. 2005.

[40] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-grained
binary instrumentation with applications to taint tracking. In
Code Generation and Optimization, Apr. 2008.

[41] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. InEuropean Software Engineering
Conference held jointly with Foundations of Software
Engineering, Sept. 2005.

[42] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
BitBlaze: A new approach to computer security via binary
analysis. InProceedings of the 4th International Conference
on Information Systems Security, Dec. 2008.

[43] Wireshark.http://www.wireshark.org.
[44] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda.

Automatic network protocol analysis. InNetwork and
Distributed System Security, Feb. 2008.

[45] Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access errors. In
Foundations of Software Engineering held jointly with
European Software Engineering Conference, Sept. 2003.

[46] R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for buffer
overflows with length abstraction. InInternational
Symposium on Software Testing and Analysis, July 2008.

[47] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis
tools using exploitable buffer overflows from open source
code. InFoundations of Software Engineering, Nov. 2004.

http://gaztek.sf.net/ghttpd/
http://www.hex-rays.com/idapro/
http://www.wireshark.org

	1 Introduction
	2 Overview
	2.1 Motivation and Challenges
	2.2 Technique Overview

	3 Algorithms
	3.1 Symbolic Analysis of Loop Dependencies
	3.2 Linking Loops to Input

	4 Applying LESE
	4.1 Loop-extended Condition Analysis
	4.2 Uses for Loop-enhanced Conditions
	4.2.1 Improving Test Generation
	4.2.2 Vulnerability Discovery
	4.2.3 Vulnerability Diagnosis

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Benchmarks Comparison
	5.3 Evaluation on Real-World Programs
	5.4 Further Applications

	6 Related Work
	6.1 Analysis Approaches
	6.2 Discovering and Diagnosing Buffer Overflows

	7 Conclusion
	8 References

