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ABSTRACT
We present a survey of the non-cryptographic pseudorandom
number generators provided to applications by a variety of
highly prevalent platforms. Most of the pseudorandom num-
ber generators examined exhibit properties that enable var-
ious attacks and techniques, including forward and reverse
prediction, seeking, and the recovery of internal state from
pseudorandom application output many orders of magni-
tude more quickly than naive brute-force. We describe the
attacks and present examples and algorithms to illustrate
their implementation.

1. INTRODUCTION
Despite user sentiment to the contrary, computers are

rigidly deterministic and struggle to appear unpredictable
when such behavior is intended. A computer’s random be-
havior is therefore termed pseudorandom, and the source of
this pseudorandomness is typically a pseudorandom number
generator, or PRNG.

The core requirements for a PRNG are a) that its out-
put appear unpredictable to a human and b) that it always
produce the same sequence of output when initialized with
a particular seed value. Other desirable properties include
a long period−how many numbers the PRNG can yield be-
fore its output sequence begins repeating itself−and an ab-
sence of obvious correlations between numbers in the se-
quence. Egregious examples of such correlations have pre-
viously been demonstrated in various PRNGs ([14][15][16]).
The PRNGs we examined are expected to exhibit a uniform
distribution, meaning every value that the PRNG is capa-
ble of producing should have equal probability of being pro-
duced, although PRNGs that yield nonuniform distributions
have also been constructed and statistically analyzed[3].

It is widely recognized in the security community that
PRNGs are not adequate for generating random data for
use in security-sensitive applications[11], in particular be-
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cause they accept a small seed initially (typically 32 to 64
bits, often derived from the current time) and by design
operate deterministically thereafter, never gathering further
entropy. In fact, this problem of a guessable seed has oc-
casionally subjected even a cryptographically secure ran-
dom number generator (CSRNG) to successful attack[5][12].
Our research contrasts with these historical attacks in that
it demonstrates guessing the seed or internal state based
on an application’s pseudorandom output rather than from
foreknowledge of how the seed is derived. We also present a
number of attacks that speed this guessing by many orders of
magnitude compared to naive brute-force. For some PRNGs
we demonstrate the prediction of future pseudorandom out-
put even though the PRNG’s complete internal state cannot
be efficiently recovered.

Although there have been decades of research exploring
attacks on PRNG-based systems, we feel that much of the
analysis presented here is novel, and we hope that its embod-
iment in a relatively simple utility for use in black-box sce-
narios will advance practitioners’ and researchers’ ability to
practically identify and remediate insecure usage of PRNGs.
The solution, of course, is to use a CSRNG in security-
relevant code−or as a simpler rule, use CSRNGs whenever
possible. This has long been an established best practice,
but unfortunately general security awareness among devel-
opers tends to lag behind until prompted to improve.

2. PRIOR WORK
We have tried to acknowledge much of the relevant prior

work around attacking applications’ usage of PRNGs, but
last year’s Black Hat USA presentation by Argyros and Ki-
ayias[1] deserves particular mention. Their work focused
specifically on the PHP PRNGs and on various open-source
PHP applications’ use of them, and to mount their attacks,
they give consideration both to techniques for ascertaining
the values used to construct the seed and to state recovery
attacks which operate on the target application’s pseudoran-
dom output. Our research considers only attacks that oper-
ate on pseudorandom output, we assess a somewhat wider
variety of prevalent PRNGs, and we present rather different
attacks with generally very low computation, memory, and
output length requirements.

Readers interested in analyses of more secure alternatives
to the PRNGs we consider are recommended to review an
examination of the Windows CSRNG by Dorrendorf et al.[8]
and inspections of various Java PRNGs presented earlier this



year at RSA Conference USA by Meyer et al.[2].

3. HOW APPLICATIONS USE PRNGS
We consider a PRNG to be a simple algorithm for trans-

forming a state stored internally by the PRNG into another
state and for producing a pseudorandom number as its out-
put. The state transformation is determinate, as is the pro-
cess of computing the output from a state, and the state
itself is a fixed size for a given PRNG. Computation of the
output could take place before, during, or after the state
transformation, although every PRNG we have reviewed
computes its output after transforming its state.

The internal state of a PRNG is initialized, or seeded, from
a seed typically derived from external values or supplied by
the application. Every PRNG we studied accepts a seed ef-
fectively ranging from 31 bits to 64 bits in size. In many
cases there is no distinction between seed and initial state;
if the seed is the same size as the PRNG’s internal state,
it will typically be assigned with little or no modification.
However in other cases, particularly when the state is larger
than the seed, some algorithm is used to initialize the entire
state from successive transformations of the seed.

In effect, the PRNG is a component of an application that
only requires a seed as input for initialization in order to
generate as many pseudorandom numbers as desired. The
range of possible values that each output number can take
varies among PRNGs, but they tend to be either 15 to 32-bit
integers or floating-point numbers in the interval [0.0, 1.0).

Given such a pseudorandom number, the application then
needs to process it into a form suitable for the application’s
intended use. For the cases in which we are most inter-
ested, the application wants to emit a sequence of symbols
chosen pseudorandomly from a fairly small alphabet. To
accomplish this, the application must derive a position in
the alphabet from the output number. We will refer to this
position as the ordinal value. Ordinal values are typically
derived in one of two ways, which we describe below.

For conciseness, we define the term limit to mean the
count of all possible ordinal values, and we assume through-
out that the ordinal values are the set of distinct integers
in the interval [0, limit). In summary, then, the application
uses a PRNG to generate a pseudorandom number, reduces
that number to an ordinal, and maps that ordinal to a sym-
bol via an alphabet.

3.1 Modular or Take-from-Bottom
The simplest way for an application to process a poten-

tially large integer into a comparatively small ordinal is to
divide it by the limit and use the remainder as the ordinal.
This approach is performed simply by using the modulo op-
erator (typically represented as %), and therefore we refer to
it as modular. Another way of thinking about the approach
is that some least-significant portion of the pseudorandom
number is being consumed and the rest discarded, so we
preferentially use the more evocative term take-from-bottom.

One observation about this approach is that it can intro-
duce detectable biases in a subrange of ordinal values. For
example, consider an application using a PRNG that out-

puts numbers from 0 to 32767 in order to itself output a
string of English alphabet letters represented internally by
the 26 ordinal values 0 through 25. 32768 is not evenly divis-
ible by 26−there is a remainder of eight (32768 % 26 = 8)−so
the first eight letters are slightly favored over the others.
Assuming a uniform distribution of PRNG outputs, each
of the first eight letters occurs with probability 1261/32768
(3.848%), while each of the other eighteen occurs with prob-
ability 1260/32768 (3.845%). With enough output and fa-
vorable application behavior, it might be possible to detect
such a bias with the purpose of identifying the PRNG and
discerning something about the alphabet.

A potentially much more serious consequence of the take-
from-bottom approach is what we term a subgenerator at-
tack ; this and other implementation-dependent attacks are
discussed in Section 4.

3.2 Multiplicative or Take-from-Top
Another common approach for converting pseudorandom

numbers into ordinals is to multiply the limit by a pseudo-
random numerator and divide by the integer just beyond
the highest possible pseudorandom number. Put another
way, the pseudorandom number is normalized to be a real
number in the interval [0.0, 1.0)−a more traditional form
preferred by many PRNGs−and it is then multiplied by the
limit to yield the interval [0.0, limit). The mantissa is then
discarded (the Floor function is applied), leaving an integer
in the desired range of ordinal values. We refer to this ap-
proach as multiplicative, although we hope the reader will
find it intuitive if we use the term take-from-top to empha-
size that the most-significant portion of the pseudorandom
number is consumed, and to contrast with the take-from-
bottom approach.

Like the take-from-bottom approach, take-from-top can
also introduce biases, but spread over the range of ordinal
values rather than clumped in the lowest values. These bi-
ases arise from the normalized pseudorandom numbers not
conforming to a completely uniform distribution over [0.0,
1.0), because in practice, the normalized number is com-
puted as a ratio of two integers of finite size. Continuing the
example from Section 3.1, a pseudorandom number from 0
to 32767, when normalized through division by 32768 and
then multiplied by 26, will yield ordinal values 0, 3, 6, 9,
13, 16, 19, and 22 each with probability 1261/32768, ver-
sus probability 1260/32768 for each of the others. Here,
too, eight of the 26 ordinal values are favored, but a mostly
different eight from those favored by the take-from-bottom
approach.

4. PRNG ANALYSES
The following sections present analyses of a variety of

PRNGs to elucidate properties that could be useful to an
adversary when attacking an application’s pseudorandom
behaviors. These analyses are not intended to be exhaus-
tive.

4.1 Microsoft Visual C Runtime (MSVCRT)
The MSVCRT C PRNG, embodied in the srand (initial-

ization) and rand (pseudorandom number generation) func-
tions of VC/crt/src/rand.c, is a simple linear congruential
generator (LCG) which resembles the ANSI C suggested im-



plementation. The PRNG can be fully expressed as shown
in Listing 1.

The constant 214013 is specified as the LCG’s multiplier
term, while 2531011 is its increment term. Due to 32-bit in-
teger truncation, its modulus term is implicitly 4294967296
(232). The constant 65536 (216) is what we call the discard
divisor, not present in every LCG but commonly employed
to exclude the least significant portion of the state from the
output, while 32768 (215) is what we refer to as the output
modulus.

Listing 1: MSVCRT PRNG.
1 UInt32 State;
2

3 void srand(UInt32 seed)
4 {
5 State = seed;
6 }
7

8 Int16 rand()
9 {

10 // 32−bit integer truncation may occur
11 State = (State ∗ 214013) + 2531011;
12 return (State / 65536) % 32768;
13 }

This PRNG has a 32-bit internal state, to which the seed is
assigned exactly during initialization, and it outputs a non-
negative integer from 0 to 32767 inclusive. How this output
is consumed is application-dependent: Perl normalizes the
output to a real number in the interval [0.0, 1.0) by dividing
by 32768, the take-from-top approach discussed in Section
3.2, but we believe it’s more common for applications to
apply a modulus in the manner of the take-from-bottom ap-
proach of Section 3.1.

One observation about this PRNG is that its modulus
(232) is divisible by the discard divisor times the output
modulus (216 · 215 = 231), and therefore it has an effective
modulus of 2147483648 (231). In other words, the most-
significant bit of the state never affects the output. This
halves the maximum number of states that need to be con-
sidered when attempting to guess which seed could have
produced a given output sequence. Some of the attacks de-
scribed in the following sections will reduce the number of
candidate states many orders of magnitude further.

Note that we have not evaluated any of the C++ TR1
PRNGs implemented in VC/include/random.

4.1.1 Biases
The potential for bias mentioned in Sections 3.1 and 3.2

applies particularly well to the MSVCRT PRNG due to its
small output modulus of 32768. (The reader might notice
we used that very output modulus in the examples.)

If an attacker is able to collect a large amount of pseu-
dorandom output (typically at least tens of thousands of
ordinals), and if the limit is not a power of two, then a
noticeable bias should eventually emerge. How quickly the
bias becomes pronounced, the number of ordinal values ex-
hibiting bias, and the distribution of those biased values
should provide clues as to the PRNG’s output modulus, the
count of ordinal values and their mapping to symbols (es-
pecially if multiple ordinal values map to the same symbol),

and whether the application employs a take-from-bottom or
take-from-top approach.

4.1.2 Subgenerator Attack
Because of the MSVCRT PRNG’s choice of parameters, it

is potentially susceptible to what we term a subgenerator at-
tack when consumed using the take-from-bottom approach.
A subgenerator is like a PRNG within a PRNG: the subgen-
erator’s modulus (the submodulus), which defines the size of
its internal state, is a factor of the full PRNG’s modulus,
and therefore the subgenerator’s period is a fraction of the
full PRNG’s period.

The subgenerator phenomenon occurs when (discard divi-
sor · output modulus) divides the modulus and GCD(limit,
modulus / (discard divisor · output modulus)) > 1. In these
cases, the submodulus is the product of the GCD times (dis-
card divisor · output modulus). The higher portion of the
full PRNG’s state has no effect on the output of the subgen-
erator, which is a sequence of pseudorandom numbers in the
interval [0, GCD). Therefore, the subgenerator’s initial state
can be brute-forced to “fix” the least-significant portion of
the full PRNG’s initial state, and then the most-significant
portion can be brute-forced separately.

Consider again the example of an application emitting a
string of pseudorandom letters using the take-from-bottom
approach with the MSVCRT PRNG. Since the limit 26 is di-
visible by two, the least-significant bit of each letter’s ordinal
value (assuming a standard A-through-Z alphabet) can be
considered as though it was generated by a similar PRNG
with a modulus of two times the discard divisor−that is,
131072 (217). This means that only 131072 seeds need to
be tested in order to determine which seeds if any produce
the observed sequence of least-significant bits; for this step,
all the more-significant bits of each ordinal can be ignored.
For each matching subgenerator seed, the higher portion of
the seed can then be brute-forced to determine which if any
produces the observed letter sequence in full. This attack
reduces the search space from 231 seeds to 217 + 214 seeds,
given output of a length sufficient to ensure that only one
candidate subgenerator seed is found.

4.1.3 Reversing
If the PRNG’s complete state is known, it can be easily

reversed to the previous state by subtracting the increment
and multiplying by the multiplier’s inverse modulo the mod-
ulus. For the modulus 2147483648, the multiplicative in-
verse of the multiplier 214013 is 968044885.

As an example, if the PRNG’s current state is 12345678,
its next state is

((12345678 · 214013) + 2531011)%2147483648 = 733229785

That state’s previous state can be computed as

((733229785−2531011)·968044885)%2147483648 = 12345678

Reversing an LCG-type PRNG’s state was previously demon-
strated by Kamkar[6].

4.1.4 Seeking
The PRNG’s state can be efficiently advanced by an arbi-



trary number of states through computation of the following:

state[n] = ((state[0] ·An) + (C · (An−1)/(A− 1)))%M

Where n is the number of states by which to advance,
state[0] is an arbitrary state to which the seek is relative, A
is the LCG’s multiplier constant, C is the LCG’s increment
constant, and M is the LCG’s modulus constant. This equa-
tion appears as Formula 3.2.1-6 in Knuth’s Seminumerical
Algorithms[7]. Our implementation uses exponentiation by
squaring and computes the right term modulo (M · (A - 1))
prior to dividing by (A - 1). This extends L’Ecuyer’s “jump-
ing ahead” technique[9] from multiplicative LCGs to LCGs
with a nonzero increment.

To seek backwards using the same function, supply the
multiplicative inverse (A−1) for the A parameter, and supply
the additive inverse times the multiplicative inverse (−C ·
A−1) for the C parameter.

4.1.5 Partial State Fixation
Each piece of an application’s pseudorandom output re-

veals a portion of its PRNG’s internal state as it was at
the time the output was generated. Typically the amount
of information divulged is small compared to the entirety
of the internal state, and the arithmetic performed on the
much greater unknown portion obscures the past and fu-
ture states. However, given one ordinal we can again “fix” a
portion of the state and thereby divide the number of possi-
bilities by the limit, as the fixed portion is known to take one
specific ordinal from the set of all values. Unlike the sub-
generator attack of Section 4.1.2, this attack applies to an
LCG-type PRNG without regard to its choice of parameters
or the limit being used to process pseudorandom numbers
into ordinals.

For example, suppose again that an application outputs a
string of pseudorandom A-through-Z letters using straight-
forward ordinal values. For the string “TQKBKKUDW-
EVTJYAB” the first ordinal (of ‘T’) is 19, and so we know
that after the PRNG generated that value, its state was
such that either (state / 65536) % 26 = 19 (for take-from-
bottom) or ((state/65536) · 26)/32768 = 19 (for take-from-
top). Armed with this knowledge, we can then brute-force
the state that produces the suffix“QKBKKUDWEVTJYAB”
while skipping approximately 25/26 (96%) of the possibili-
ties. Once we find the right state, we can then reverse us-
ing the technique of Section 4.1.3 to compute the state that
begets the full string. The code shown in Listing 2 illustrates
a take-from-bottom implementation of the attack.

Listing 2: MSVCRT take-from-bottom.
1 for (top = 19; top < (2147483648 / 65536); top += 26)
2 for (bottom = 0; bottom < 65536; bottom++)
3 {
4 seed = (top ∗ 65536) + bottom;
5 if (string from seed(seed) == ”QKBKKUDWEVTJYAB”)
6 {
7 seed = ((seed − 2531011) ∗ 968044885) % 2147483648;
8 found seed(seed);
9 }

10 }

The attack could be implemented for a take-from-top ap-
plication as shown in Listing 3.

Listing 3: MSVCRT take-from-top.
1 start = (((19 ∗ 32768 + 25) / 26) ∗ 65536); // +25 to round up
2 end = (((20 ∗ 32768 + 25) / 26) ∗ 65536) − 1;
3

4 for (seed = start; seed <= end; seed++)
5 if (string from seed(seed) == ”QKBKKUDWEVTJYAB”)
6 {
7 seed = ((seed − 2531011) ∗ 968044885) % 2147483648;
8 found seed(seed);
9 }

When the subgenerator attack applies, it can be combined
with this partial state fixation attack to further accelerate
PRNG state recovery.

4.1.6 Improved Partial State Fixation
There is an improvement we can make to the partial state

fixation attack that divides the reduced search space by the
limit again, but only in a take-from-top application. Because
the multiplier is only a fraction of the modulus, increment-
ing a given candidate state by one−which has the effect of
adding the multiplier into the next state−usually does not
influence the next state enough to produce an ordinal dif-
ferent from what is produced from the unincremented can-
didate state. More specifically, each block of approximately
(M / A / limit) sequential candidate states will cause the
same ordinal to be output. For modulus 2147483648, multi-
plier 214013, and a limit of 26, this means that we can add
as much as 385 or 386 to skip a block of candidate states
that does not yield the correct next ordinal. Each time we
reach a desirable block, we test its candidate states serially,
after which we can skip the next (limit - 1) blocks.

This technique usually cannot be extended to an ordinal
beyond the second, because typical choices of LCG param-
eters specify a multiplier large enough that its powers are
not small fractions of the modulus. As a result, for further
distances into the output the aforementioned blocks become
unitary or generally too small and too scattered to enable
recursive application of the attack.

4.2 Java
The Java PRNG implemented in the java.util.Random

class is essentially an LCG but with a few idiosyncrasies.
It can be expressed as shown in Listing 4.

Java’s LCG uses a multiplier of 0x5DEECE66D (the hex-
adecimal representation of 25214903917), an increment of
0xB (11), and a modulus of 0x1000000000000 (248). The
Next() method, which returns an unconstrained pseudoran-
dom integer, applies a discard divisor of 0x10000 (65536
or 216) and an implicit output modulus of 232. Because
this method can return negative integers, we feel that pro-
grammers are more likely to use the variant depicted as
Next(Int32), which accepts an argument expressing the ex-
clusive upper bound for the desired range of pseudorandom
integers−what we have referred to more succinctly as the
limit. In this way, the Java PRNG spares the programmer
the decision of whether to transform the raw pseudorandom
numbers via take-from-bottom or take-from-top; in fact, the
Next(Int32) method uses both.



Listing 4: Java PRNG.
1 class Random
2 {
3 UInt64 State;
4

5 void Seed(UInt64 seed)
6 {
7 State = (seed ˆ 0x5DEECE66D) % 0x1000000000000;
8 }
9

10 Int32 Next()
11 {
12 State = ((State ∗ 0x5DEECE66D) + 0xB) % 0x1000000000000;
13 return (Int32)(State / 0x10000);
14 }
15

16 Int32 Next(Int32 limit)
17 {
18 State = ((State ∗ 0x5DEECE66D) + 0xB) % 0x1000000000000;
19 Int32 randint = (State / 0x20000);
20

21 if (limit is a power of 2)
22 return ((Int64)randint ∗ limit) / 0x80000000;
23

24 // reject ’randint’ in top non−multiple of ’limit’ to avoid bias
25 while (randint >= 0x80000000 / limit ∗ limit)
26 {
27 State = ((State ∗ 0x5DEECE66D) + 0xB) %

0x1000000000000;
28 randint = (State / 0x20000);
29 }
30

31 return (randint % limit);
32 }
33 }

For a power-of-two limit, the most-significant bits are used
in a take-from-top approach, ostensibly because it is known[9]
that the less-significant bits have a shorter period given a
power-of-two modulus. For other limits, a take-from-bottom
approach is used with a discard divisor of 0x20000 (217), al-
though numbers drawn from the highest portion of the 48-
bit number space are skipped to avoid introducing even tiny
biases into the PRNG’s output.

4.2.1 Subgenerator Attack
The subgenerator attack of Section 4.1.2 applies to the

Java PRNG in cases where the chosen limit is a multiple of
two but not a power of two. Given sufficient output and a
limit which shares a greatest common divisor of two with the
modulus, the subgenerator attack should reduce the search
space from 248 to 218 + 230.

4.2.2 Reversing
The Java PRNG’s multiplier and modulus are coprime, so

the multiplier has a multiplicative inverse, namely
0xDFE05BCB1365 (246154705703781), which can be used
to reverse to the previous PRNG state. However, because
the Random.Next(Int32) method in its take-from-bottom
mode skips states that would bias the output, a reversing
implementation must similarly skip any such states it en-
counters in order to accurately recover past output.

4.2.3 Seeking
The seeking technique of Section 4.1.4 also applies to the

Java PRNG, although as noted above, certain biasing states
may need to be accounted for manually, which complicates
long-distance seeks.

4.2.4 Partial State Fixation
The partial state fixation attack of Section 4.1.5 is equally

applicable to all modes of use of the Java PRNG, with the
caveat that the recovered intermediate state must be re-
versible as described in Section 4.2.2.

4.2.5 Improved Partial State Fixation
The partial state fixation attack improvement described

in Section 4.1.6 can be applied to the Java PRNG when the
limit is a power of two, because such a limit engages the
take-from-top logic which is a prerequisite of the improved
attack.

4.2.6 Timing
The special logic in the Java PRNG’s take-from-bottom

code path, meant to avoid biasing the PRNG’s distribu-
tion very slightly in favor of the lowest values, consequently
causes pseudorandom number generation to take slightly
longer when a biasing state is encountered. If the timing
difference were observed after generation of a single pseudo-
random value, it would reveal that the skipped state was in
the interval [(248 - (231%limit) · 217), 248). We don’t expect
the timing difference to be detectable in realistic Internet-
borne attack scenarios, especially when considering that ap-
plications typically emit pseudorandom output in chunks.
In general, the subgenerator attack (when the limit is even)
and the partial state fixation attack are far more useful in
those cases where the limit is not a power of two.

4.3 BSD libc
The modern BSD libc PRNG, which is also used on Mac

OS X, is a simple multiplicative LCG with a multiplier of
16807 (75), a modulus of 2147483647 (231 - 1), and an in-
crement of zero, which is the distinguishing characteristic of
a multiplicative LCG. It can be expressed in code as shown
in Listing 5.

Listing 5: BSD libc PRNG.
1 UInt32 State;
2

3 void srand(UInt32 seed)
4 {
5 if (seed == 0) // don’t allow an initial state of zero,
6 State = 123459876; // or else every future state will be zero
7 else State = seed;
8 }
9

10 Int32 rand()
11 {
12 // avoid 32−bit truncation, as that conflicts with modulus
13 State = ((UInt64)State ∗ 16807) % 2147483647;
14 return State;
15 }

Due to the choice of parameters, this PRNG exhibits the
maximum period of 2147483646 when the seed is nonzero
(A seed of zero will cause it, like all multiplicative LCGs, to
remain at the zero state forever). Because the modulus is
prime, no subgenerator attack is possible.

There also exists an older BSD libc PRNG based on an
ANSI C rand() recommendation, an LCG with multiplier
1103515245, increment 12345, modulus 2147483648 (231),
no discard divisor, and an output modulus of 32768 (215).
Analysis of this PRNG is left as an exercise for the reader.



4.3.1 Biases
Because the modulus 2147483647 is prime, the PRNG’s

distribution is slightly biased for most choices of limit less
than the modulus, and a further extremely minor bias is in-
troduced due to the PRNG’s inability to output zero. These
biases actually cancel out when the limit divides 2147483646
(i.e., when 2147483647 % limit = 1), which for reference fac-
torizes as follows:

2147483646 = 2 · 3 · 3 · 7 · 11 · 31 · 151 · 331

For any other limit, (2147483647 % limit) - 1 ordinal val-
ues occur with probability Ceiling(2147483647 / limit) /
2147483647, while all other ordinal values occur with proba-
bility Floor(2147483647 / limit) / 2147483647. The amount
of application output required to detect such a bias is clearly
prohibitive.

4.3.2 Reversing
The BSD libc’s PRNG can be reversed using a multiplica-

tive inverse of 1407677000. Its additive inverse, like its in-
crement, is zero.

4.3.3 Seeking
Seeking a multiplicative LCG is even simpler than seeking

an LCG with a nonzero increment, as only modular expo-
nentiation is involved. Compute the n’th state relative to
some current state as follows:

state[n] = (state[0] ·An)%M

4.3.4 Partial State Fixation
The partial state fixation attack described previously ap-

plies to the BSD libc PRNG.

4.3.5 Improved Partial State Fixation
The improved partial state fixation attack is also effective

against the BSD libc PRNG, if the PRNG is being used in
a take-from-top application.

4.4 Microsoft VBScript and ASP
Microsoft’s VBScript processor (which executes Active Server

Pages) implements the VisualBASIC Rnd function as an
LCG with a multiplier of 0x00FD43FD (the hexadecimal
representation of 16598013 or -179203), an increment of
0x00C39EC3 (12820163 or -3957053), and a 24-bit state,
meaning an effective modulus of 0x01000000 (16777216 or
224)−and therefore a period of 16777216 as well. The PRNG
can be represented in code as shown in Listing 6.

Listing 6: Microsoft VBScript and ASP PRNG.
1 UInt32 State;
2

3 Double Rnd()
4 {
5 // 32−bit integer truncation may occur
6 State = ((State ∗ 0x00FD43FD) + 0x00C39EC3) % 0x01000000;
7 return (Double)State ∗ 0.000000059604645; // roughly 1/2∗∗24
8 }

Multiplying by 0.000000059604645 is almost the same as
dividing by the modulus, but it is different enough that at-
tempting the latter as a shortcut will occasionally produce
incorrect output.

Because the PRNG is designed to always return a nor-
malized real number, it can be assumed to operate in the
take-from-top mode only, which precludes a subgenerator
attack but enables the partial state fixation attack on what
is in any case a small seed space.

4.4.1 Biases
The smaller output size of the VBScript PRNG means it

exhibits more pronounced biases for non-power-of-two lim-
its, although these biases are still relatively small. For ex-
ample, given a limit of 26, fourteen (16777216 % 26 = 14)
of the possible ordinal values will appear with probability
645278/16777216 (3.846157%), while the other twelve will
appear with probability 645277/16777216 (3.846151%).

4.4.2 Reversing
Given the full state of the PRNG, it can be reversed in

the typical manner for mixed LCGs described in Section
4.1.3, using a multiplicative inverse of 0x00093155 (602453
or -16174763 in decimal).

4.4.3 Seeking
Seeking to an arbitrary future or past state can be accom-

plished as described in Section 4.1.4.

4.4.4 Partial State Fixation
The VBScript PRNG is susceptible to the partial state

fixation attack.

The improved partial state fixation attack does not signif-
icantly apply to the VBScript PRNG due to the large size of
the multiplier relative to the modulus. The expression (M /
A / limit) of Section 4.1.6 evaluates to zero for any mean-
ingful choice of limit, meaning there are not large blocks of
consecutive states that can be skipped.

4.5 Microsoft SQL Server and PHP
Both Microsoft SQL Server’s RAND and PHP’s session

ID generation code use a PRNG that combines the out-
put of two multiplicative LCGs. The first LCG has mul-
tiplier 40014 and modulus 2147483563, while the second has
multiplier 40692 and modulus 2147483399; both moduli are
prime. Effectively, the PRNG has an approximately 62-bit
internal state comprising the internal states of both LCGs,
and its period should be the product of the two LCGs’ mod-
uli, each reduced by one.

Internally, the PRNG computes the first LCG’s output
minus the second LCG’s output, wraps the difference to
2147483562 or less if nonpositive (not the same as modulo
2147483563), and then multiplies the result by 4.656613e-10
(equivalently, divides by 2147483589.46728, which is some-
what greater than the upper bound) to produce pseudo-
random floating-point numbers in the approximate interval
(0.0, 0.9999999872]. The code in Listing 7 illustrates the
algorithm.

4.5.1 Biases
The difference between 1.0 and the top of the raw output

interval introduces a slight bias against the highest ordinal
value, but this bias is not believed to be detectable in re-
alistic attack scenarios. The exclusion of zero reduces the
frequency of the lowest ordinal value by a tiny amount.



Listing 7: Microsoft SQL Server and PHP PRNG.
1 UInt32 State1, State2;
2

3 Double rand()
4 {
5 // avoid 32−bit truncation, as that conflicts with modulus
6 State1 = ((UInt64)State1 ∗ 40014) % 2147483563;
7 State2 = ((UInt64)State2 ∗ 40692) % 2147483399;
8

9 // confine to the interval [1, 2147483562]
10 Int32 diff = (Int32)State1 − (Int32)State2;
11 if (diff <= 0) diff += 2147483562;
12

13 return (Double)diff ∗ 4.656613e−10;
14 }

4.5.2 Reversing
If the PRNG’s complete state is known, it can be simply

reversed by applying the standard technique for reversing a
multiplicative LCG to each of the two LCG’s separately−that
is, multiply the first LCG’s state by its multiplicative inverse
of 2082061899 (modulo 2147483563) and the second LCG’s
state by its multiplicative inverse of 1481316021 (modulo
2147483399).

4.5.3 Seeking
Likewise, the PRNG can be advanced or reversed by an

arbitrary number of states using the exponential approach
of Section 4.3.3 on each LCG separately.

4.5.4 Partial State Fixation
We construct a partial state fixation attack for this PRNG

by first computing lower and upper bounds on the difference
of the two constituent LCG’s outputs. Continuing the ex-
ample of a limit of 26 and a first output ordinal of 19, we
obtain the following:

Listing 8: Partial State Fixation.
1 difflo = ((19 ∗ 2147483589 + 25) / 26); // +25 to round up
2 diffhi = ((20 ∗ 2147483590 + 25) / 26) − 1;

Notice that the 2147483589.46728 divisor is rounded down
when computing the lower bound and rounded up when com-
puting the upper bound. This is a very slight overcompen-
sation to allow us to retain the convenience of integer arith-
metic without a risk of missing a viable candidate seed.

With this range computed, we then brute-force the full
state space of the first LCG, but for each possible value we
only need to brute-force a range of size (diffhi - difflo +
1) of the second LCG’s state space. The beginning of that
range is offset so that the difference of each pair of can-
didate states falls within [difflo, diffhi], and therefore fea-
tures a fixed top portion corresponding to the first ordinal
of the output. This attack effectively divides the complete
state space of the PRNG (approximately 262) by the limit,
meaning a brute-force search is significantly accelerated but
remains relatively computationally expensive.

4.5.5 Improved Partial State Fixation
Because this PRNG appears to only be consumed in take-

from-top mode, the improved attack described in Section
4.1.6 can always be applied, further dividing the reduced
search space by the limit.

Listing 9: Google V8 PRNG.
1 UInt32 State1, State2;
2

3 Double random()
4 {
5 State1 = (18273 ∗ (State1 & 0xFFFF)) + (State1 >> 16);
6 State2 = (36969 ∗ (State2 & 0xFFFF)) + (State2 >> 16);
7

8 // discards the top 14 bits of State1 and of State2
9 return ((State1 << 14) + (State2 & 0x3FFFF)) / 4294967296.0;

10 }

4.6 Google V8
The PRNG used in the Math.random() implementation of

Google’s V8 JavaScript engine (the function random base in
v8/trunk/src/v8.cc) is described as“using George Marsaglia’s
MWC [multiply-with-carry] algorithm”. The code in Listing
9 depicts the algorithm. (For reference, we will refer to the
integer derived from portions of the two internal states as
the composite output.)

This algorithm has some unusual properties which we’ll
examine here and in the following sections. Perhaps the
most useful observation is that the second MWC generator
influences the output only rarely. The first MWC generator
is used to populate the 18 most significant bits of the 32-bit
result, while the second populates the 18 least significant
bits, so the two overlap in the middle four bits. Because the
two are combined using addition, it’s possible for a bit to
be carried out of the overlapping four bits (the first state’s
bits 3..0 plus the second state’s bits 17..14), with a probabil-
ity of approximately 47%. Each bit position the carry must
propagate across in order to affect the output ordinal further
attenuates the second MWC generator’s influence by 50%.
So for example, given a limit of 26, the odds of the second
MWC generator affecting the output ordinal is 0.07%. We
consider the application of this observation in the next sec-
tion.

Although both states are 32 bits in size and are initial-
ized with 32 bits of external data, both MWC generators
use roughly a quarter to a half of the 32-bit number space.
Specifically, each generator has a maximum recurring value
of (multiplier ·216 - 1). Initial values higher than the maxi-
mum will return to this range after at most two transforma-
tions and cannot leave it thereafter.

Both MWC generators contain four cycles: two cycles
with a period of one, at zero and at (multiplier ·216 - 1); and
two cycles with period (multiplier ·215 - 1), one with a lowest
value of one and the other with a lowest value of five. These
periods do not include the extracyclic values discussed previ-
ously. Note that the first MWC generator’s higher state with
a period of one, 0x4760FFFF, can be reached from two other
extracyclic states which are its multiples, 0x8EC1FFFE and
0xD622FFFD. Because the second MWC generator’s higher
state with a period of one (0x9068FFFF) is greater than half
of the 32-bit space, it has no such multiples.

4.6.1 State Reduction
As mentioned above, the second MWC generator can safely

be ignored for more than 99% of all ordinals when brute-
forcing the PRNG’s internal state. If we substitute zero for



the effective portion of the second generator’s state, those
rare discrepancies will always be one value greater (mod-
ulo the limit) than expected; if we substitute the midpoint
value 0x20000, the discrepancies could be one value greater
or lesser but will occur half as frequently.

In any case, ignoring the second MWC generator shrinks
the raw state space we need to brute-force from 64 bits to
32 bits, or from approximately 61 bits to approximately 30
bits when excluding extracyclic values.

4.6.2 Biases
The most significant bits (positions 17 and 16) of the

state portions used to derive the pseudorandom output are
slightly biased. Because the highest recurring value is (mul-
tiplier ·216 - 1) for both generators, and in both cases (multi-
plier % 4) = 1, bit positions 17 and 16 in these state portions
both favor zero with a bias of (1 / multiplier).

4.6.3 Reversing
The MWC generator can always be reversed, but not nec-

essarily to the correct previous state. Because the genera-
tors’ states can be initialized to any 32-bit value, the first
and even second states may be extracyclic before the genera-
tor enters a cycle. Most intracyclic states of either generator
can be reached from one, two, or three extracyclic states in
addition to its predecessor intracyclic state.

In cases where the goal is to recover the original seed val-
ues, reversing may at worst provide a few possible previous
states (or fail, if no state could have been transformed into
the current state). Practically speaking though, this ambi-
guity only matters when the generator is initialized to one
extracyclic state and transitions to a second before enter-
ing a cycle, which means the very first pseudorandom num-
ber will be derived from an extracyclic state, and therefore
we would need to test all predecessor states when reversing
to determine which actually generated the observed output.
Forward prediction, and reverse prediction up to the point
of initialization, should not be impacted.

Our reversing algorithm for either of the MWC generators
can be expressed as shown in Listing 10.

Listing 10: Reverse Algorithm for MWC.
1 if (State <= (Multiplier ∗ 0x10000) − 1)
2 return ((State % Multiplier) ∗ 0x10000) + (State / Multiplier);
3 else if (State <= (Multiplier ∗ 0xFFFF) + 0xFFFF)
4 return ((State − (Multiplier ∗ 0xFFFF)) ∗ 0x10000) + 0xFFFF;
5 else fail();

The first case reverses one intracyclic state to its preceding
intracyclic state, while the second reverses an extracyclic
state to another extracyclic state that could have produced
it. States not handled by either case cannot be produced
from another state and therefore cannot be reversed.

4.6.4 Partial State Fixation
Like the partial state fixation attack of Section 4.5.4, our

attack on the V8 PRNG fixes a portion of the composite
output prepared from portions of the two MWC generators’
states, which makes it slightly more convoluted than most
of the other partial state fixation attacks. Because this com-
posite output is used to produce ordinals in take-from-top

fashion, we restrict its possible values to the interval capable
of producing the first observed ordinal. This has the effect
of dividing the search space for bits 17..0 of the first MWC
generator’s state by the limit, but we still need to brute-force
bits 31..18 of the first state separately. We leave the second
MWC generator’s state at zero, for the reasons discussed in
Section 4.6.1.

Revisiting our preferred example of a string of pseudo-
random A-through-Z letters (say “TJJJJINTVJUQLTBM”)
using straightforward ordinal values, with a first ordinal of
19, we compute a range for the composite output and brute-
force it as shown in Listing 11.

Listing 11: Brute-force of composite output.
1 complo = ((19 << 32 + 25) / 26) >> 14; // +25 to round up
2 comphi = ((20 << 32 + 25) / 26) >> 14 − 1;
3

4 for (s1lo = complo; s1lo <= comphi; s1lo++)
5 // top 16 bits of intracyclic states are always < multiplier,
6 // and s1hi is top 14 bits, so that’s why (18273 / 4)
7 for (s1hi = 0; s1hi < 18273 / 4; s1hi++)
8 {
9 s1 = (s1hi << 18) + s1lo;

10 if (string from states(s1, 0) == ”JJJJINTVJUQLTBM”)
11 {
12 s1 = previous state(s1, 18273);
13 found states(s1, 0);
14 }
15 }

4.6.5 Improved Partial State Fixation
With some adaptation, we can apply the improved partial

state fixation attack to the V8 PRNG. Consider that incre-
menting the high 16 bits of the first MWC generator’s state
adds one to the succeeding state (the state used to derive the
next output), while incrementing the low 16 bits adds the
multiplier to the state. Because the effective portion of the
first MWC generator’s state covers bits 31..14 of the compos-
ite output, incrementing the high 16 bits of the state adds
0x4000 (214) to the composite output, while incrementing
the low 16 bits adds 0x11D84000 (18273 · 214) to the com-
posite output. Notice that this means adding the multiplier
to the high 16 bits also adds 0x11D84000 (18273 · 214) to
the composite output. Therefore, if we imagine the set of
all candidate states in [0, multiplier · 216) sorted in ascend-
ing order first by the low 16 bits, then by the high 16 bits,
we can identify blocks of consecutive states that will all re-
sult in the same second ordinal. The size of each block is
(0x100000000 / 0x4000 / limit), which is essentially the (M
/ A / limit) expression of Section 4.1.6.

There is one slight complication in skipping these blocks:
our algorithm increments the top 18 bits of the state, not the
top 16 bits, and this has four times the effect−i.e., it adds
0x10000 (216) to the composite output instead of 0x4000
(214). For an example limit of 26, then, instead of encoun-
tering blocks of size (0x100000000 / 0x4000 / 26) = 10082
or 10083, we will observe four times as many blocks, each
of size 2520 or 2521. If the difference (modulo the limit) of
the expected second ordinal minus the next ordinal to be
produced from a candidate seed is not 0 or 1, we skip the
next (difference - 1) blocks of candidate states. We include
the -1 term to skip very conservatively, not wanting to skip
into the middle of a block of viable candidate states. Af-



ter completing a block of candidate states that will produce
the expected ordinal, we can then skip the next (limit - 1)
blocks.

4.7 Microsoft .NET
The Microsoft .NET Framework’s PRNG, implemented in

System.Random (see Random.cs in the SSCLI[10]), is copied
almost verbatim from the ran3 implementation of Numer-
ical Recipes in C, 2nd Edition[13], except for its choice of
modulus (the prime 2147483647 versus ran3’s 1000000000)
and its offset between indices (31 versus 21), and a couple
details of its seeding implementation. It is described as a
“subtractive” PRNG, at the heart of which is a 55-integer
array accessed cyclically using a pair of indices with a fixed
separation of 21 modulo 55 (similar to the “lag” described
by Kahaner et al.[4]). When a pseudorandom number is
requested, the indices are incremented, the element at the
second index is subtracted (modulo 2147483647) from the
element at the first index, and the difference is both stored
at the first index and returned.

The .NET Framework provides both System.Random.Next()
and System.Random.Next(Int32) methods, so it is unclear
whether application developers will prefer to use the former
in a take-from-bottom or take-from-top approach, or use the
latter which is inherently take-from-top in its implementa-
tion. We consider both modes in the following sections.

Admittedly, we have no highly effective attacks to present
for this PRNG. Since the PRNG’s internal state is so large
(approximately 1700 bits) compared to the size of its seed
(31 bits), even brute-forcing the entire seed space will not
reach all possible states. Outputs produced after some use of
the PRNG following seeding would not be matched, because
both seeding and stepping are necessary to arrive at the state
that produced that output. Brute-forcing the 1700-bit state
space is clearly impossible.

4.7.1 Biases
The .NET Framework PRNG, like most we reviewed, ex-

hibits very small biases which should not be realistically
detectable. Because the PRNG’s modulus is prime, there is
no limit less than the modulus such that all ordinal values
occur with equal probability.

4.7.2 Forward Prediction
A very important property of the .NET Framework PRNG

is that it can be expressed as the following recurrence rela-
tion:

xi+55 = xi − xi+21

To avoid confusion, x refers to the ordinal at the indicated
position in the pseudorandom stream, and not to an element
of the internal array.

For each pair xi and xi+21 we obtain, we can predict the
future output xi+55. If we obtain 55 consecutive outputs, we
should be able to predict all future output. This is equally
true in the take-from-top and take-from-bottom modes.

Unfortunately, it’s not completely true. At least half of
all ordinals predicted in this way will differ from the actual
ordinal by a fixed constant, and this effect compounds after

the 34th prediction, when inaccurate predictions become the
bases for further predictions.

In a take-from-top application, the actual value might be
less than the predicted value by one, due to the effects of the
hidden “fractional” portion of each element of the internal
array−that is, the mantissa of multiplying the element by
the limit and dividing by the modulus. If an element with a
greater fractional part is subtracted from an element with a
lesser fractional part, the actual output value will be lower
than expected.

In a take-from-bottom application, the actual value might
be greater than the predicted value by (modulus % limit),
which signifies that an integer underflow occurred during the
subtraction and caused the difference to wrap around the in-
teger ring defined by the modulus. Because the modulus is
prime, such errors occur for all choices of limit.

(Note that when we refer to one integer in a ring being
“greater” or “less” than another by some amount, we mean
that the first integer equals the second integer plus or minus
the amount, not that the integer is actually greater or lesser
in any absolute, number-line sense.)

4.7.3 Reverse Prediction
The recurrence relation describing the .NET Framework

PRNG can be equivalently expressed as follows:

xi−55 = xi−34 + xi

This permits us to predict past output ordinals by sum-
ming pairs of known values. With 55 consecutive values, we
should be able to predict all past output as well, but the
same complications arising in forward prediction apply here
in reverse. Each actual value of take-from-top-generated
output might be greater than the predicted value by one, due
to carry from the sum of the two known elements’ hidden
fractional parts. In a take-from-bottom mode, the actual
value might be less than the predicted value by (modulus
% limit) if an integer underflow occurred when the actual
value was generated. In both cases, the inaccuracies start
to compound after 21 predictions.

4.7.4 Reversing
Given the full state of the internal array, the .NET Frame-

work PRNG is easily reversible with complete accuracy by
adding the element at the second index to the element at
the first index and then decrementing the indices.

4.7.5 Seeking
Although it might not be immediately obvious, it is pos-

sible to efficiently seek the PRNG by an arbitrary number
of states in either direction. The key is to construct a 55 x
55 matrix that represents the effects of 55 consecutive pseu-
dorandom number generations. Conceptually, the internal
state array comprises 55 variables, and each row of the ma-
trix contains the coefficients for a 55-variable equation to
compute the value that the corresponding element will take
after the transformation represented by the matrix occurs.

To seek by ‘n’ states, raise this matrix−or its inverse when
seeking backward−to the (n / 55)th power, and multiply the
matrix by the state vector (the current contents of the in-



ternal array) to perform a “coarse seek” by a multiple of 55
states (Note that the matrix arithmetic must also be modu-
lar). For the “fine seek,” step forward or backward up to 54
times to reach the desired state.

Because matrix exponentiation is expensive, one suggested
optimization involves reducing the number of matrix multi-
plications at the cost of some amount of overshooting or
undershooting.

4.7.6 Seed Computation
With the complete state of the internal array and the ap-

proximate position of that state (i.e., how many pseudo-
random numbers have been generated since the PRNG was
seeded), it is possible to compute the seed value that was
used to initialize the array. First, compute the array for two
reference seeds, 161803398 (which becomes zero due to a
subtraction from the constant MSEED in the initialization
code) and 161803397 (which becomes one) and seek both
to the given position. Next, subtract the first array from
the second to compute what we’ll call the delta vector. The
elements of this vector represent the contribution−specific
to this position−made by increasing the seed from the first
seed to the second.

Now subtract the first array from the array of interest to
make the latter relative to the former. We’ll now essentially
divide each element by the contributions found in the delta
vector. Compute the multiplicative inverse of each element
of the delta vector (for instance, using the extended Eu-
clidean algorithm), and multiply each element in the now-
relative array of interest by the computed inverse. If the
approximate position is sufficiently close, most or all of the
products will equal the difference of the seed of interest mi-
nus the reference seed. Finally, subtract the first reference
seed from the resulting seed, and subtract that difference
from 161803398 to arrive at the original seed.

In summary, we compute the following:

Listing 12: Seed Computation.
1 DeltaVector = ReferenceVector1 − ReferenceVector0
2

3 SeedVector[i] = 161803398 − (StateVector[i] − ReferenceVector0[i]) ·
DeltaVector[i]−1

If most or all elements of SeedVector agree, the result
is the original seed. (Note that all arithmetic is modulo
2147483647.)

4.7.7 Minor Partial State Recovery
In Sections 4.7.2 and 4.7.3, we mentioned the difficulty

of accurately predicting past and future output because of
arithmetic underflow or borrow causing actual output to di-
verge from our predictions. However, if we can collect hun-
dreds of consecutive ordinals of output, we can compare each
actual value to what we would have expected based on the
recurrence relation, and the errors might reveal some small
amount of information about the PRNG’s internal state at
the time the output was generated.

We identify chains in the sequence of ordinals where er-
rors do not occur and, based on the length of the chain,
infer a distribution for the hidden portion of the correspond-

ing state element. For example, given xi, xi+(k·55)+21, and
xi+(k·55)+55 for some choice of i, xi is the head of the chain,
each xi+(k·55)+21 is a subtrahend, and each xi+(k·55)+55 is a
difference. For each difference where no error is observed,
it must be the case that no underflow or borrow occurred
when subtracting the corresponding internal state elements.
If k successive differences fail to exhibit an error, then the
head of the chain can be said to have “survived” k subtrac-
tions, and therefore it is more likely that the corresponding
state (take-from-bottom) or its fractional part (take-from-
top) was large. This information can then be used to refine
the distributions of values likely to be taken by the “associ-
ated” states at (i-55), (i-21), (i+21), and (i+55).

As of this writing, we have only tested very basic proofs-
of-concept of this attack; we have not yet prepared a more
formal treatment.

4.8 glibc (type 3)
The GNU C Library default rand() implementation, type

3, is an array-based PRNG with some similarities to the
.NET Framework PRNG, but also some crucial differences.
It comprises a 31-element array and two indices, with the
front index leading the rear by three elements. Each time a
pseudorandom number is generated, the element at the rear
index is added to the element at the front index, and the
sum is both stored at the front index and returned, although
the value to be returned−but not the value to be stored−is
first divided by a discard divisor of two. The indices are
incremented only after the sum is computed and stored.

The discard divisor effectively gives each array element a
hidden“fractional”bit which causes significant unpredictabil-
ity; this bit’s contribution is particularly important because
the PRNG operates with a modulus of 232.

The seed computation technique of Section 4.7.6 does not
apply to the glibc PRNG because it applies a modulus of
2147483647 during the first phase of seeding and a modulus
of 232 otherwise.

4.8.1 Forward Prediction
The glibc PRNG can be expressed as the following recur-

rence relation:

xi+31 = xi + xi+28

Where x represents the ordinal at the stated position in
the pseudorandom stream, plus a hidden fractional bit which
is not reflected in the output.

For each pair xi and xi+28 we obtain, we can predict the
future output xi+31, both in take-from-top and in take-from-
bottom modes; with 31 consecutive outputs, we can predict
all future output. However, all such predictions are subject
to errors similar to those described in Section 4.7.2, arising
in take-from-bottom mode from arithmetic overflows when
the limit is not a power of two, and in both modes due to
carry from summing hidden fractional portions. These er-
rors begin compounding after the third prediction.

Carry-based errors manifest as the actual ordinal being
greater than the predicted ordinal by one, while arithmetic
overflow-based errors appear as the actual ordinal being less
than predicted by ((modulus / 2) % limit). Each ordinal
generated through a take-from-bottom approach can exhibit
neither, either, or both errors. Because (modulus / 2) - 1 =



2147483647 is prime, no practical choice of limit can result
in ((modulus / 2) % limit) = 1, meaning the two types
of error cannot interfere destructively. The only choices of
limit that yield ((modulus / 2) % limit) = (limit - 1) are
3 and 715827883, and therefore the two error types should
practically always be distinguishable.

4.8.2 Reverse Prediction
The recurrence relation of the preceding section can equiv-

alently be rendered as:

xi−28 = xi+3 − xi

Using this relation, we can predict past ordinals as the
differences of pairs of known ordinals, subject to the same
errors as described in the previous section, but inverted.
These errors start to compound after the 28th prediction.

4.8.3 Reversing
Given the complete state of its internal array and indices,

the glibc PRNG can be easily reversed by decrementing the
indices and then subtracting the element at the rear index
from the element at the front index.

4.8.4 Seeking
The glibc PRNG can be advanced or reversed by an arbi-

trary number of states using the same technique described
in Section 4.7.5, except with a 31 x 31 matrix and coarse
seeking in multiples of 31 states.

4.8.5 Partial State Recovery
When the glibc PRNG is used in a take-from-bottom ap-

proach, and we have access to scores or hundreds of consec-
utive ordinals of pseudorandom output, we can deduce the
fractional bits’ states by detecting the errors they induce.
Once we know 31 consecutive fractional bits, we can predict
with complete certainty all future values they will take.

For each output ordinal triple xi, xi+28, and xi+31, if xi+31

is greater than expected by one after accounting for arith-
metic overflow-based error, then the triple exhibits a carry-
based error. If we detect a carry-based error, we know that
xi and xi+28 both have fractional bits of one, and therefore
xi+31 has a fractional bit of zero; otherwise, we don’t learn
anything.

Once we know that an xi has a nonzero fractional bit, we
can assign the fractional bits of xi−28 and xi+3 based on the
presence or absence of a carry-based error at xi+3 (1+1=10
if an error was detected, or 0+1=01 if not), and likewise
for xi+28 and xi+31 according to the carry-based error at
xi+31 (1+1=10 or 1+0=01). Once any pair of xi, xi+28, and
xi+31 is known, the unknown fractional bit can be computed
as an XOR of the known fractional bits. By repeatedly
applying this algorithm to pseudorandom output, we can
eventually determine 31 consecutive fractional bit values,
enabling forward and reverse prediction with certainty of
fractional bits and the N least-significant bits of ordinals
such that 2N is a factor of the limit.

4.8.6 Position Recovery
As mentioned in the glibc PRNG source code, the internal

state’s 31 fractional bits form a linear feedback shift register
(LFSR) which exhibits the maximal period of 2147483647

(231 - 1) assuming that at least one bit is nonzero. With com-
plete knowledge of two LFSR states−for instance, the LFSR
state immediately after the PRNG is initialized with a par-
ticular seed, and the LFSR state recovered some time later
using the algorithm of Section 4.8.5−we can compute the
distance modulo 2147483647 between the two corresponding
points in the pseudorandom stream. This effectively allows
us to quickly compute the position of pseudorandom output
relative to a known initial state, provided that the output
is long enough to let us recover 31 consecutive fractional bits.

Our implementation for computing position simply ad-
vances an LFSR state until it matches one of a sorted list of
”waypoint” states, and then it subtracts the number of iter-
ations from the waypoint’s position retrieved from a parallel
list. The distance between two LFSR states is the difference
modulo 2147483647 of their positions identified in this way.

4.8.7 Seed and Position Recovery
We now describe an attack that allows us to serially brute-

force the position in a pseudorandom stream at which a sam-
ple of output occurs and simultaneously learn the seed from
which that pseudorandom stream arises. At each candidate
position, we must test at most 16 seeds; for each seed, we
initialize the glibc PRNG, seek to the candidate position,
and compare the PRNG’s output to the sample. When the
output matches the sample, the tested seed and position
can then be used to immediately reconstruct the full inter-
nal state of the application’s PRNG, which enables forward
and reverse prediction with complete accuracy.

However, this attack has two significant drawbacks. One
serious limitation is that the attack requires knowledge of 31
consecutive fractional bits, which we term an LFSR state.
The partial state recovery attack of Section 4.8.5 can be used
to reveal this information, although it tends to require on
the order of a hundred consecutive output ordinals, a high
but not impossible number. We suspect that attacks capa-
ble of operating on discontinuous samples are also possible.

A second drawback is paying for the time-memory trade-
off: we have to precompute a huge amount of data in order to
efficiently translate any given LFSR state back into the seed
values that could produce it. In our present implementation,
this data totals 24 gigabytes, a 16 GB table organizing all
of the seeds that produce each of the 2147483648 possible
LFSR states (there can be from zero to 16 seeds per LFSR
state), and an 8 GB table translating LFSR states to indices
into the first table. To conserve space, we let the range in
which an index falls denote the number of seeds stored at
that index. For example, if an LFSR state maps to an in-
dex in the interval [0x22A5B043, 0x6826A3EA], then there
are two seeds that produce it, while an index in the interval
[0x6826A3EB, 0xADA75392] indicates that three seeds pro-
duce the associated LFSR state.

The 24 GB of tables can be precomputed once and used
forever after, but their size and the character of their con-
tents make even operating upon them resource-intensive.
Specifically, the attack involves repeatedly accessing small
pieces of data at unpredictable offsets within the tables,
which hobbles the efficacy of caching portions of the table as
they are read from disk and causes chaotic disk seeking. For



Listing 13: Seed and Position Recovery attack.
1 lfsr = recover fractional bits(output, length);
2

3 for (pos = 0; pos < cutoff; pos++)
4 {
5 index = LfsrToIndex[lfsr];
6 seedcount = index to seed count(index);
7

8 for (i = 0; i < seedcount; i++)
9 {

10 seed = IndexedSeeds[index + i];
11

12 glibc3 srand(seed);
13 glibc3 seek(pos);
14

15 if (glibc3 rand output(length) == output)
16 found seed and position(seed, pos);
17 }
18

19 // compute previous fractional bits
20 // reverse: o[0] = o[31] − o[28]
21 lfsr <<= 1;
22 lfsr |= ((lfsr >> 31) ˆ (lfsr >> 28)) & 1;
23 lfsr &= 0x7FFFFFFF;
24 }

performance, we recommend that the tables be consumed
on a 64-bit system with enough RAM to keep substantially
all of both tables in memory−a non-negligible requirement
by today’s standards−and that they be read from beginning
to end into memory in preparation for the attack.

Assuming that the tables are fully resident in memory, our
attack can be expressed as shown in Listing 13.

As suggested by the placeholder “cutoff” above, it is not
possible to exhaustively test all possible positions, only some
arbitrary reasonable number of them, up to the maximal pe-
riod of the PRNG. For reference, when the PRNG is seeded
with a value of one, we have observed that its period has an
upper bound of 0x143E438A0426502B921B3DC0C576769A5
A9A7DE2F5B5995A9439E51775C6E66411F6CDCC903B19
D53897F94B0AC8A684C5C134A1FF2D03E4D7519D49B09
6DA864B16FDE9634A18406373C1801BB754331731C35DE
04C22CC791476F64E24C62CAEF80000000, or approxima-
tely 2.16 · 10243.

4.9 Perl
Perl’s no-argument rand() implementation simply invokes

the underlying platform’s rand() and divides it by the plat-
form’s output modulus (RAND MAX + 1) to produce a
normalized pseudorandom number in the interval [0.0, 1.0).
If an argument is supplied to rand(), the normalized pseu-
dorandom number is multiplied by that argument. In either
case, the Perl PRNG amounts to a take-from-top approach
to generating pseudorandom output, using a platform-provided
PRNG which is otherwise, presumably, typically operated in
a take-from-bottom capacity.

We did not examine any of the other PRNGs offered by
Perl.

5. CONCLUSIONS
We have presented analyses of a number of mainstream

PRNGs and demonstrated a variety of what we believe to be

novel attacks to facilitate recovery of a PRNG’s state and/or
seed based on an application’s pseudorandom output. We
also offer various techniques−some old, some new−for effi-
ciently transforming a PRNG’s internal state. Updates to
this work will be featured on www.cylance.com, and it is our
hope that this work will inspire improvements and contribu-
tions from other researchers. Most of all, we hope that the
insecurity of non-cryptographic PRNGs will become com-
mon knowledge for all developers.
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