
ZU064-05-FPR main 16 July 2010 13:46

Under consideration for publication in J. Functional Programming 1

Space Profiling for Parallel Functional Programs

DANIEL SPOONHOWER∗, GUY E. BLELLOCH, ROBERT HARPER
Carnegie Mellon University

PHILLIP B. GIBBONS
Intel Research Pittsburgh

(e-mail: {spoons,blelloch,rwh}@cs.cmu.edu, phillip.b.gibbons@intel.com)

Abstract

We present a semantic space profiler for parallel functional programs. Building on previous work in
sequential profiling, our tools help programmers to relate runtime resource use back to program source
code. Unlike many profiling tools, our profiler is based on a cost semantics. This provides a means
to reason about performance without requiring a detailed understanding of the compiler or runtime
system. It also provides a specification for language implementers. This is critical in that it enables us
to separate cleanly the performance of the application from that of the language implementation.

Some aspects of the implementation can have significant effects on performance. Our cost semantics
enables programmers to understand the impact of different scheduling policies while hiding many
of the details of their implementations. We show applications where the choice of scheduling policy
has asymptotic effects on space use. We explain these use patterns through a demonstration of our
tools. We also validate our methodology by observing similar performance in our implementation of a
parallel extension of Standard ML.

1 Introduction

Approaches to multi-core and multi-processor programming can be divided into two
broad categories: concurrency and parallelism. In the case of concurrency, programmers
reason explicitly about the order in which tasks are executed and must use some form of
synchronization to ensure that programs yield correct results. In the case of parallelism,
multi-core execution is purely a means to improve performance: programmers provide
opportunities for parallelism, but the results of program execution are defined independently
of whether or not those opportunities are taken.

While some problems require concurrency (e.g., applications that must respond to network
requests or user interaction), many algorithms can be expressed using only parallelism
(e.g., those based on divide-and-conquer strategies). Reasoning about and debugging
parallel programs can be performed independently of the number of processors or processor
cores and is therefore much simpler than for concurrent programs. There are also many
opportunities for profiling parallel programs with only a few assumptions about how tasks
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will be assigned to processor cores. We will investigate several such opportunities in this
work.

Functional programming languages are an attractive means for writing parallel programs.
By eschewing side effects, programmers can find many opportunities for parallel evaluation.
Many sequential functional programming languages also offer a clear semantic definition
that can serve as a foundation for a semantic definition of parallelism.

In practice, however, achieving better performance through parallelism can be quite
difficult. While the extensional behavior of parallel functional programs does not depend
on the language implementation, their performance certainly does. In fact, even sequential
implementations of functional languages can have dramatic and unexpected effects on
performance. To analyze and improve performance, functional programmers often rely
upon profilers to analyze resource use (Appel et al., 1988; Runciman & Wakeling, 1993a;
Sansom & Peyton Jones, 1995; Röjemo & Runciman, 1996). With parallel implementations,
the need for profilers is magnified by such issues as task granularity, communication, and
scheduling policy—all of which can have a significant impact on time and space use.

We present a semantic space profiler for a call-by-value parallel functional language and
implementations of that language for shared memory architectures. Our method abstracts
away from many details of language implementation and yet allows programmers to reason
about asymptotic performance. Because it is based on a semantics rather than a particular
implementation, our profiling method remains true to the spirit of functional programming:
thinking about program behavior does not require a detailed understanding of the compiler
or target machine.

Our profiling method must account, at least abstractly, for some parts of the implementa-
tion. In this work, we focus on scheduling policy and its effects on application space use.
Because the choice of scheduling policy often has dramatic, and even asymptotic, effects on
space use (as detailed in this paper), it is critical that a programmer has the flexibility to
choose a policy that is best-suited to his or her application. This flexibility must be reflected
both in the language implementation and in any profiling tools.

Our profiling tools are based on a cost semantics (Sansom & Peyton Jones, 1995; Blelloch
& Greiner, 1995). A cost semantics is a dynamic semantics that, in addition to the ordinary
extensional result, yields an abstract measure of cost. In our semantics, this cost is a pair of
directed graphs that capture essential dependencies during program execution (Section 3).
One of these graphs is used to record sequential dependencies; parallel pebblings of this
graph correspond to different scheduling policies. The second graph, novel to this work,
records dependencies between parts of the program state.

These graphs are used by our tools to simulate the behavior of different scheduling
policies and to make predictions about space use. For example, by generating graphs for a
range of inputs, programmers can perform an asymptotic analysis of space use. Our profiling
tools also allow programmers to visualize the parallel execution of programs and compare
scheduling policies (Section 4).

We emphasize that our method enables users to profile parallel programs. This stands in
contrast to many existing profilers, which provide a means of profiling a program based
only on a particular language implementation. While our approach leads to some loss of
precision, there is a tradeoff between precision and offering performance results that can
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be easily related to the program text. Our cost semantics is the fulcrum that enables us to
balance this tradeoff.

Our cost semantics also provides a formal specification that forces language imple-
mentations to be “safe-for-space” (Shao & Appel, 1994). Besides acting as a guide for
implementers, it maintains a clean separation between the performance of a program and
the performance of the language implementation. This ensures that profiling results are
meaningful and that programmers can expect the same asymptotic performance when
moving from one compliant implementation to another.

To demonstrate that this specification does not place an onerous burden on implementers,
we present an implementation (Section 5) of a parallel extension of Standard ML (Milner
et al., 1997) based on our cost semantics and the MLton optimizing compiler (Weeks, 2006).
Our framework also extends to other parallel extensions of ML (e.g., Fluet et al. (2007))
as well as languages with eager parallelism such as NESL (Blelloch et al., 1994) and Data
Parallel Haskell (Peyton Jones et al., 2008). By factoring out scheduling, our framework can
also bring to light performance issues in language implementations that bake in a particular
scheduling policy.

Our implementation includes three scheduling policies: two based on parallel breadth-
and depth-first traversals of the cost graphs and a third based on work stealing (Burton &
Sleep, 1981; Blumofe & Leiserson, 1999). As we anticipate the need for other policies, we
have isolated the core decisions of such policies behind a simple signature.

We implemented several parallel algorithms to validate our work and measured perfor-
mance using both our tools and by sampling memory use in our implementation. The results
show that our cost semantics is able to correctly predict asymptotic trends in memory use
(Section 6).

Using our semantics, we also discovered a space leak in an optimization in MLton (Sec-
tion 7.2). As a specification, a cost semantics determines which performance problems must
be blamed on the programmer and which can be attributed to the language implementation.

2 Motivating Example

In the next section, we introduce a profiling semantics that assigns a space cost to each pro-
gram. This cost abstracts away from many details of the compiler, but enables programmers
to predict (within a constant factor) the space behavior of different scheduling policies. To
motivate this work, we present a small example, matrix multiplication, where the choice of
scheduling policy has a dramatic effect on space use. We give a cursory discussion here, and
consider this application in further detail in Section 6, along with three other applications
(sorting, convex hull, and n-body simulation).

Figure 1 shows the source code for matrix multiplication written in our parallel extension
of ML. This example defines two top-level functions. The first is a parallel version of
tabulate and the second, mm mult, multiplies two matrices of appropriate sizes using
persistent vectors. Within the definition of mm mult, two additional functions are defined.
The first, vv mult, computes the dot product of two vectors. The second, mv mult, computes
a matrix-vector product. In this example, variables A and B stand for matrices, a and b for
vectors, and x for scalars. Persistent vectors are created with one of two primitives. The
first primitive, vector (s, x), creates an vector of size s where every element is given by the
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fun tabulate (f, n) =
let fun loop (i, j) = (∗ offset i, length j ∗)

if j = 0 then vector (0, f i)
else if j = 1 then vector (1, f i)
else let

val k = j div 2
val lr = { loop (i, k), loop (i + k, j − k) }

in
append (#1 lr, #2 lr) (∗ line flagged by tool ∗)

end
in

loop (0, n)
end

fun mm mult (A, B) =
let
fun vv mult (b, a) = reducei op+ (fn (i, x) ⇒ sub (b, i) ∗ x) 0.0 a
fun mv mult (B, a) = tabulate (fn i ⇒ vv mult (sub (B, i), a), length B)

in
tabulate (fn i ⇒ mv mult (B, sub (A, i)), length A)

end

Fig. 1. Matrix Multiplication Code.

value of x. The other primitive, append, creates a new vector that is the result of appending
its arguments. (For simplicity, this implementation of multiplication assumes that one of its
arguments is in row-major form while the other is in column-major form.)

The parallelism in this example is derived in part from the implementation of tabulate.
As in an ordinary implementation of tabulate, this function returns a vector where each
element is initialized using the function supplied as an argument. In this implementation,
whenever the result will have two or more elements, each half of the result may be built in
parallel. In our parallel language, the two components of a pair written with curly braces
({ . . . }) may be computed in parallel. Thus the two recursive calls to loop in the body of
tabulate maybe computed in parallel.

Matrix multiplication offers a tremendous amount of potential parallelism. In this example,
multiplying two n×n matrices may result in n3 scalar multiplications occurring parallel.
(Recall that there are n scalar multiplications for each of the n2 elements in the result.)

Not shown here are the implementations of several other functions on vectors, including
length, which returns the length of its argument, and reducei, which acts like a form of fold

but may reduce two halves of a vector in parallel before combining the results.
With this example in hand, we will now briefly consider this example in a broader

context of parallel programs, how these programs can be implemented, and the performance
consequences of these implementation choices.

Our framework can be used by programmers to predict the behavior of parallel programs
such as matrix multiplication, as summarized below. In general, a programmer would:

1. Select a program and run it using the profiling interpreter based on our cost semantics.
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(a) summarized cost graphs for 4×4 matrix multiplication
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(b) simulated space use
Fig. 2. Profiler Output for Matrix Multiplication. This figure shows (a) summarized cost graphs and
(b) simulated space use as a function of input size for two scheduling policies: breadth-first (left) and
depth-first (right).

The cost semantics yields a pair of directed graphs. As these graphs are too detailed to
present in their raw form, our tools summaries these graphs into a more compact form.
An example of summarized graphs for matrix multiplication is shown in Figure 2(a).
In these graphs, nodes represent sequential computation. In the top graph, edges point
downward, and an edge from n1 to n2 indicates that n1 must be executed before n2.
For matrix multiplication, we see the regular structure of its parallelism: work is
evenly distributed among parallel branches. In the bottom graph, edges point upward,
and an edge from n2 to n1 indicates that n2 depends on the value allocated at n1.
At the first stage of analysis, these graphs allow programmers to make qualitative
statements about their programs and to classify parallel algorithms visually: algo-
rithms with different parallel structure will give rise to graphs with different shapes.
These graphs are also used as input in the following step.
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2. Use our simulator to predict the space performance for different scheduling policies
and numbers of processors.
Each scheduling policy determines a traversal of the cost graphs. By fixing a policy
and the number of processors, our simulator uses these graphs to determine the high-
water mark for space use (i.e., the smallest heap that can be used to run the program).
It also determines the point during execution at which this mark is reached, as well as
where in the source code these data are allocated and used.

3. Repeat steps 1 and 2 for different inputs. Plot the results to draw conclusions about
asymptotic performance.
For each input, programmers generate a new pair of graphs. Our tool can then be used
to generate plots such as those shown in Figure 2(b). These plots show trends in space
use as a function of input size for different schedulers. In this example, we compare
two schedulers each using two processors. The scheduling policy on the left manages
parallel tasks using a FIFO queue and implements a breadth-first traversal of the
top cost graph. The scheduling policy on the right implements a parallel depth-first
traversal (see Section 5.2 for details) of the top cost graph. Our tools also help explain
the space use through a breakdown according to particular allocation points (as shown
in the figure) or use points. As the figure shows, for both schedulers, a significant part
of the space use at the high-water mark can be attributed to the vectors allocated in
the implementation of tabulate (i.e., append (. . . ), as marked in Figure 1). However,
for the breadth-first scheduler (on the left), most of the space is attributed to the work
queue and two forms of closure (denoted with “[. . . ]” in the key). These two closures
appear during the application of reducei.

4. Reexamine the cost graphs to isolate space use and elucidate the effects of the
scheduling policy.
While the plots generated in the previous step depict trends in space use, they provide
little insight into how the scheduling policy affects these trends. The final step in an
analysis often requires programmers to revisit the cost graphs, this time including
information about the scheduling policy. In the course of analyzing our example
applications, we will show how computing the difference between two executions
based on different schedules can explain why one policy yields better performance and
how programs can be modified to improve performance. In our matrix multiplication
example (bottom graph of Figure 2(a)), we see that the point where the graph is the
widest (i.e., where the most parallelism is available) also marks a shift in how the
program uses space. From this point on, most of the data allocated by the program
are no longer in use. Our tools can show that the high-water mark for space under a
breadth-first policy arises because all these nodes at the widest point are concurrently
active. These nodes represent the evaluation of the body of vv mult and correspond
to the top three entries in Figure 2(b).

We have presented a simple example here but the framework and tools also apply to
programs with irregular parallel structure.
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(expressions) e ::= x | fun f (x) = e | e1 e2 | {e1,e2} | #1 e | #2 e
| true | false | if e1 then e2 else e3 | v

(values) v ::= 〈 f .x.e〉` | 〈v1,v2〉` | true` | false`
(locations) ` ∈ L

Fig. 3. Language Syntax. Components of pairs written {e1,e2} may be computed in parallel. We
include a separate class of values with annotations that capture sharing explicitly, but these values do
not appear in the surface syntax used by programmers. As in Standard ML, projections from a pair are
denoted #1 and #2 .

3 Cost Semantics

The cost semantics for our language is an evaluation semantics that computes both a result
and an abstract cost reflecting how that result is obtained. It assigns a single cost to each
closed program that enables us to construct a model of parallel execution and reason about
the behavior of different scheduling policies.

In general, a cost semantics is necessary for any asymptotic analysis of running time
or space use. For sequential implementations of eager languages, there is an obvious cost
semantics that nearly all programmers understand implicitly. For languages that fix the
order of evaluation, the source code contains all the information necessary to reason about
performance.

In this work, we give a cost semantics that serves as a basis for the asymptotic analysis
of parallel programs, including their use of space. We believe that it is important that
this semantics assigns costs to source-level programs. However, since the performance of
programs depends on some aspects of the implementation, we must further interpret the
results of the cost semantics, as discussed in Sections 3.2 and 3.3 below.

Figure 3 shows the syntax of the call-by-value language we discuss in this section. In
addition to variables x, recursive functions fun f (x) = e, and function application e1 e2, it
includes syntax for constructing pairs {e1,e2} in parallel. As in Standard ML, components
of a pair may be projected using function #1 and #2 . We also include booleans and
conditional expressions as they will play an interesting role in the cost semantics.

The syntax of values v (including functions, pairs, and booleans) is distinguished from
the syntax of the corresponding source expressions: programmers never write values in their
code. Associated with each value is a location ` drawn from an infinite set of locations L.
The location of a value loc(v) is defined in Figure 6. Locations are used to express sharing
and will be important in reasoning about the space use of programs. For example, given
the pair value 〈v1,v2〉`, if loc(v1) = loc(v2) then both components occupy the same space.
If loc(v1) 6= loc(v2) then the two components are represented separately. For example,
the two components may be extensionally identical (i.e. they are indistinguishable using
language primitives) but represented using disjoint parts of the heap. We refer to the subset
of expressions that does not contain any values as source expressions.

In the implementation of our profiler, we extend this fragment with integers, floating-
point numbers, lists, trees, and vectors, but none of these extensions prove difficult. We
also include an additional form of pairs that always evaluates components of the pair
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sequentially. The choice between parallel and sequential pairs allows programmers to
control the granularity of parallel tasks explicitly. Finally, we assume that all values are
allocated in the heap for the sake of simplicity, but this assumption may also be relaxed.

3.1 Semantics

A cost semantics is a dynamic semantics and thus yields results only for closed expressions,
i.e., for a given program over a single input. Just as in ordinary performance profiling, we
must run a program over a series of inputs before we can generalize its behavior. Our cost
semantics is defined by the following judgment, which is read, expression e evaluates to
value v with computation graph g and heap graph h.

e ⇓ v;g;h

This judgment is defined in Figure 4. The extensional portions of this judgment are standard
in the way that they relate expressions to values. As discussed below, edges in a computation
graph represent control dependencies in the execution of a program, while edges in a heap
graph represent dependencies on and between values.

Computation Graphs. Each node in the computation graph represents a single reduction
of some sub-expression, or more specifically an event associated with that reduction. Edges
represent constraints on the order in which these events can occur. Computation graphs are
similar to the graphs introduced by Blumofe & Leiserson (1993) and those used by Blelloch
& Greiner (1996).

For the programs considered in this article, each computation graph is a series-parallel
graph. Each such graph consists of a single-node, or a sequential or parallel composition of
smaller graphs. Every series-parallel graph has a unique initial node that precedes all other
nodes. Dually, every series-parallel graph also has a unique final node that is preceded
by all other nodes. Nodes are denoted ` and n (and variants). Graph are written as tuples
such as (n;n′;E) where n is the initial node, n′ is the final node, and E is a set of edges.
The remaining nodes of the graph are implicitly defined by the edge list. The primitive
operations used to build computation graphs are shown in Figure 7. (In this figure and
elsewhere, a gray diamond stands for an arbitrary subgraph.) A graph consisting of a single
node n is written (n;n; /0) or more briefly [n]. In the parallel composition (on the right), the
node n is called the fork point and the node n′ is called the join point. We identify graphs
up to reordering of nodes and edges: binary operations ⊕ and ⊗ on computation graphs are
commutative and associative. As suggested by the notation,⊗ is assigned higher precedence
than ⊕.

Edges in the computation graph point forward in time: an edge from node n1 to node n2

indicates that the expression corresponding n1 must be evaluated before that corresponding
to n2. In our figures, nodes will be arranged so that time passes from top to bottom. We
follow standard terminology and say that if there is an edge from n1 to n2 then n1 is the
parent of n2 and n2 is the child of n1. If there is a non-empty path from n1 to n2 then we
write n1 ≺g n2 and say that n1 is an predecessor of n2, and that n2 is a descendant of n1.
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e ⇓ v;g;h

e1 ⇓ v1;g1;h1 e2 ⇓ v2;g2;h2 (` fresh)

{e1,e2} ⇓ 〈v1,v2〉`;g1⊗g2⊕ [`];h1∪h2∪{(`, loc(v1)),(`, loc(v2))}
C-FORK

e ⇓ 〈v1,v2〉`;g;h (n fresh)
#i e ⇓ vi;g⊕ [n];h∪{(n, `)}

C-PROJi
(n fresh)

v ⇓ v; [n]; /0
C-VAL

(` fresh)

fun f (x) = e ⇓ 〈 f .x.e〉`; [`];
⋃
`′∈locs(e)(`,`

′)
C-FUN

e1 ⇓ 〈 f .x.e3〉`1;g1;h1
e2 ⇓ v2;g2;h2 [〈 f .x.e3〉`1/ f ][v2/x]e3 ⇓ v3;g3;h3 (n fresh)
e1 e2 ⇓ v3;g1⊕g2⊕ [n]⊕g3;h1∪h2∪h3∪{(n, `1),(n, loc(v2))}

C-APP

(` fresh)

true ⇓ true`; [`]; /0
C-TRUE

(` fresh)

false ⇓ false`; [`]; /0
C-FALSE

e1 ⇓ true`1;g1;h1 e2 ⇓ v2;g2;h2 (n fresh)
if e1 then e2 else e3 ⇓ v2;g1⊕ [n]⊕g2;

h1∪h2∪{(n, `1)}∪
⋃
`∈locs(e3)(n, `)

C-IFTRUE

e1 ⇓ false`1;g1;h1 e3 ⇓ v3;g3;h3 (n fresh)
if e1 then e2 else e3 ⇓ v3;g1⊕ [n]⊕g3;

h1∪h3∪{(n, `1)}∪
⋃
`∈locs(e2)(n, `)

C-IFFALSE

Fig. 4. Cost Semantics. This semantics yields two graphs that can be used to reason about the parallel
performance of programs. The substitution [v/x] of a value v for a variable x is a capture-avoiding
substitution defined in Figure 5. The outermost locations of values loc(v) and expressions locs(e) are
defined in Figure 6. Parallel composition takes precedence over serial composition so g1⊗g2⊕g3
should be read as (g1⊗g2)⊕g3.

Heap Graphs. We extend the work of Blelloch & Greiner (1996) with heap graphs. Heap
graphs are also directed, acyclic graphs but are not necessarily series-parallel graphs. Each
node again represents the evaluation of a sub-expression. For source expressions, each heap
graph shares nodes with the computation graph arising from the same execution. In a sense,
computation and heap graphs may be considered as two sets of edges on a shared set of
nodes. While edges in the computation graph point forward in time, edges in the heap graph
point backward in time.
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[v/x]x = v
[v/x]y = y (if x 6= y)
[v/x]fun f (y) = e = fun f (y) = [v/x]e (if x 6= y and x 6= f )
[v/x]e1 e2 = [v/x]e1 [v/x]e2
[v/x]{e1,e2} = {[v/x]e1, [v/x]e2}
[v/x](#i e) = #i ([v/x]e)
[v/x]true = true
[v/x]false = false
[v/x]if e1 then e2 else e3 = if [v/x]e1 then [v/x]e2 else [v/x]e3
[v/x]v′ = v′ (where v′ is a value)
Fig. 5. Substitution. These equations define substitution for our semantics. This is a standard,

capture-avoiding substitution.

loc(〈 f .x.e〉`) = `
loc(〈v1,v2〉`) = `
loc(true`) = `

loc(false`) = `

locs(fun f (x) = e) = locs(e)
locs(e1 e2) = locs(e1)∪ locs(e2)
locs({e1,e2}) = locs(e1)∪ locs(e2)
locs(#i e) = locs(e)
locs(true) = /0
locs(false) = /0
locs(if e1 then e2 else e3) = locs(e1)∪ locs(e2)∪ locs(e3)
locs(v) = loc(v)

Fig. 6. Locations of Values and Expressions. Locations are used in measuring the space required to
represent a value and can appear in expressions after a substitution has occurred.

Edges in the heap graph represent a dependency on a value: if there is an edge from n to `

then n depends on the value with location `. The sink of a heap edge will always be a node `
corresponding to the value allocated at that point in time. The source of a heap edge may be
either a node `′ (indicating a dependency among values) or node n (indicating a dependency
on a value by an arbitrary computation). In the first case, the memory associated with `

cannot be reclaimed while the value represented by `′ is still in use. In the second case
(where n represents a point in the evaluation of an expression) the memory associated with `

cannot be reclaimed until after the expression corresponding to n has been evaluated. Heap
graphs will be written as a set of edges. As above, the nodes are left implicit. The evaluation
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Single Node Serial Composition Parallel Composition
[n] g1⊕g2 g1⊗g2

(n1;n′1;E1)⊕ (n2;n′2;E2) (n1;n′1;E1)⊗ (n2;n′2;E2)

n

g1

g2

g1 g2

n

n′

(n;n; /0) (n1;n′2;E1∪E2∪{(n′1,n2)}) (n;n′;E1∪E2∪{(n,n1),
(n,n2),(n′1,n

′),(n′2,n
′)})

n,n′ fresh
Fig. 7. Graph Operations for Pairs. The graphs associated with our language (a language with parallel

pairs) are built from single nodes as well as the serial and parallel composition of smaller graphs.

rule for parallel pairs (C-FORK) is example of a dependency between values: two edges are
added to the heap graph to represent the dependencies of the pair on each of its components.
Thus, if the pair is reachable, so is each component.

In the evaluation of a function application (C-APP), however, two edges are added to
express the use of values. The first such edge marks a use of the function. The second edge
is more subtle and denotes a possible last use of the argument. For strict functions, this
second edge is redundant: there will be another edge leading to the argument when it is used.
However, for non-strict functions, this is the first point at which the garbage collector might
reclaim the space associated with the argument. As discussed in Section 7, these edges are
critical in ensuring that the specification given by the cost semantics can be implemented.

A similar concern arises in the rules for conditionals. In C-IFTRUE, the semantics must
record the locations that appear in the branch that is not taken. (In this case, these are
the locations of e3.) Again, the intuition is that this is the first point at which the storage
corresponding to these locations might be reclaimed. These edges represent our imperfect
knowledge of program behavior at runtime: we cannot, in general, predict which branch will
be taken nor which values may be reclaimed. The rule C-IFFALSE is analogous. These rules
will be discussed in more detail after we have made a more concrete connection between
heap graphs and space use.

While there is some flexibility in designing these rules, we choose the versions presented
here because they can be implemented in a reasonable way and yet seem to constrain the
implementation sufficiently. Care must be taken, however, as the implications of rules can
be subtle; see the example in Section 7.1.
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3.2 Schedules

Together, the computation and heap graphs enable a programmer to analyze the behavior of
her program under a variety of scheduling policies. For a given program, each policy will
give rise to a particular parallel execution that is constrained by the computation graph g (as
well as other parameters such as the number of processors).

Definition 1 (Schedule Order)
A schedule order E (or more briefly a schedule) for a computation graph g is defined by a
partial order on the nodes of g such that,

• ∀n ∈ nodes(g). n E n,
• ∀n1,n2 ∈ nodes(g). n1 ≺g n2⇒ n1 C n2,

Where C is the corresponding strict partial order given by the reflexive reduction of E.

An instance n1 E n2 of this partial order can be read as “n1 is scheduled no later than
n2.” The definition above requires that every node in g is scheduled. It also requires that the
corresponding strict partial order is a super-order of the precedence relation given by the
edges of g. It follows that the initial node of a graph is the always the first node scheduled,
and the final node is always the last node scheduled.

We can extend a schedule order from individual nodes to sets of nodes in a straightforward
manner. Given two sets of nodes N1 and N2, N1 is scheduled before N2 if every node in N1

is scheduled before every node in N2.

N1 C N2 iff ∀n1 ∈ N1,n2 ∈ N2. n1 C n2

The partial order defining a schedule gives a global view of all the events that occur
during the evaluation of a program. In some cases, it will be useful to consider more narrow
views of the events that occur in a schedule. For example, we can view a schedule from
a particular moment in time. Two nodes n1 and n2 are scheduled simultaneously (written
n1 ./ n2) if neither n1 nor n2 is scheduled after the other.

n1 ./ n2 iff n1 E n2∧n2 E n1

We shall use this notion of simultaneity to reason about space use in the next section.

3.3 Roots

To understand the space use of a schedule E, we first partition the set of nodes in the
computation graph into a sequence of sets of simultaneously scheduled nodes. We call such
a partition of the steps of the schedule.

steps(E) = N1, . . . ,Nk such that


∀n ∈ nodes(g). ∃Ni.n ∈ Ni,

N1 C . . .C Nk, and
∀1≤ i≤ k,∀n1,n2 ∈ Ni. n1 ./ n2

The first two conditions ensure that these sets define a partition: no node is related to itself
by the strict partial order C. This partition is unique because every node in Ni is scheduled
simultaneously and is therefore incomparable with every other node in Ni. Thus no node in
Ni can be moved to any other set that is scheduled before or after Ni.
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For any step Ni, we define the closure N̂i as the set of all the nodes that have been
scheduled up to and including that step.

N̂i =
j≤i⋃
j=1

N j

While nodes in N̂i are not necessarily scheduled simultaneously, it is still the case that
N̂i C Ni+1. With these sets in mind, we can think of a schedule as defining a wavefront that
advances across the computation graph, visiting some set of nodes at each step. We say that
a node n is ready at step i+1 if all of the parents of n appear in N̂i but n 6∈ N̂i.

Given a schedule E of a graph g with steps N1, . . . ,Nk, consider the moment of time
represented by some Ni. Because N̂i contains all previously scheduled nodes and because
edges in h point backward in time, each edge (n, `) in h will fall into one of the following
three categories.

• Both n, ` 6∈ N̂i. As the value associated with ` has not yet been allocated, the edge
(n, `) does not contribute to the use of space at step N̂i.
• Both n, ` ∈ N̂i. While the value associated with ` has been allocated, the use of this

value represented by this edge is also in the past. Again, the edge (n, `) does not
contribute to the use of space at step N̂i.

• We have ` ∈ N̂i, but n 6∈ N̂i. The value associated with ` has been allocated, and n
represents a possible use in the future. The edge (n, `) does contribute to the use of
space at step N̂i.

In the definition below, we must also explicitly account for the location of the final value
resulting from evaluation. Though this value may never be used in the program itself, we
must include it when computing space use.

Definition 2 (Roots)
Given e ⇓ v;g;h, the roots after scheduling the nodes in N and with respect to location `,
written rootsh,`(N), is the set of nodes `′ ∈ N where `′ = ` or h contains an edge leading
from outside N to `′. Symbolically,

rootsh,`(N) = {`′ ∈ N | `′ = `∨ (∃n.(n, `′) ∈ h∧n 6∈ N)}

The location of a value loc(v) is the outermost location of a value as defined in Figure 6,
and serves to uniquely identify that value. The locations of an expression locs(e) are the
locations of any values that appear in that expression as a result of substitution. As we
will often be interested in the roots with respect to a value, we write rootsh,v(N) as an
abbreviation for rootsh,loc(v)(N).

We use the term roots to evoke a related concept from work in garbage collection. For
the reader that is most comfortable thinking in terms of an implementation, the roots
might correspond to those memory locations that are reachable directly from the processor
registers or the call stack. In a parallel implementation, it also includes those locations that
are reachable directly from the scheduler queue.

Roots must be defined “with respect to a location” so that the final result of evaluating an
expression is not lost. This corresponds to an observation of that result. Thus rootsh,v(N)
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Fig. 8. Modeling Space Use For Conditional Expressions. This figure shows cost graphs for a
conditional expression evaluated using the rule C-IFTRUE. Each part shows one step of a schedule of
these graphs: before (a) and after (b) the branch is taken. A dashed line divides those nodes that have
been scheduled from those that have not, and heap edges that point to roots are drawn with heavy
lines.

will account for the cost of representing v even if v is not used in the remainder of the
computation.

As an example, Figure 8 shows simplified cost graphs derived from an expression of the
form if e1 then e2 else e3 and an application of the rule C-IFTRUE. The two parts of the
figure depict two distinct points in time for a single schedule of these graphs. In both parts,
a dashed line divides those nodes that have been scheduled from those that have not. As in
other figures, edges in a computation graph run from top to bottom, while edges in a heap
graph run from bottom to top. Those heap edges that point to roots are drawn as thicker
lines.

By assumption, e1 evaluates to true (or more precisely, a value true`1 ). This computation
is represented by the sub-graph g1. Next, e2 is evaluated (as represented by the sub-graph
g2). The three clouds at the top of each graph represent the sets of nodes in the heap
graph corresponding to the locations of the expressions e1, e2, and e3. (We assume that
this conditional expression appears within the context of a larger expression and that this
conditional may have sub-expressions which are values.) The node labeled n represents the
point at which the condition is tested and the branch is taken. Recall that the cost semantics
adds heap edges from n to the locations of the branch that is not taken (here, e3).

In Part (a), n has not yet been scheduled. At this point in time, the roots include the
locations of e3 as well as those of e2 and the value that is being tested. Each of the four heavy
heap edges in the figure points to one such root. A garbage collector cannot (in general)
determine which values will actually be required in the remainder of the computation and
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therefore must preserve any reachable values until the branch is taken. The cost semantics
allows such an implementation by including all these locations among the roots.

Part (b) depicts the point in time just after n has been scheduled, or equivalently, after
the branch has been taken. At this point, a garbage collector may reclaim space used to
represent any values that appear in e3 (but do not appear in e2). The figure shows how this
is reflected in the cost semantics: the edges from n to the locations of e3 are no longer roots.

It is possible to define a cost semantics that does not include edges pointing to the
values of the branch not taken (e.g., those from n to the locs(e3)). However, building an
implementation faithful to such a cost semantics would be impossible: it would require
the language implementation (and in particular, the garbage collector) to predict which
branch will be taken for each conditional expression in the program. Furthermore, it must
make such predictions without consuming any additional space. These additional edges
distinguish what might be called “true” garbage from “provable” garbage: though we
would like to measure the memory required by only those values that will actually be used
in the remainder of the computation, we cannot expect an implementation to efficiently
determine that set of values. Instead, we settle for an approximation of those values based
on reachability.

Our cost semantics maintains an invariant that at each point in a schedule, the roots of the
heap graph correspond to values that must be preserved given information available at that
point in time. Thus the heap graph encodes not only information about values in the heap,
but also information about uses of those values over time.

The following theorem serves as a sanity check for our definition of roots and of the heap
graphs defined in the cost semantics. Informally, it states that, given an expression e and
cost graphs g and h, the locations of e are the same as the roots at the start of the evaluation
of e. (When considered in the context of a larger computation, all of the locations of e will
be scheduled before any of the nodes of g. Thus rootsh,v(locs(e)) is the smallest set of roots
at the start of the evaluation of e in any parallel schedule.) If one of the locations in locs(e)
did not appear in the set of roots, then either our definition of roots is incorrect or there are
edges missing from the heap graph.

Theorem 1 (Initial Roots)
If e ⇓ v;g;h then rootsh,v(locs(e)) = locs(e).

Proof
By induction on the given derivation.
Case C-FORK: Here, we have locs(e) = locs(e1)∪ locs(e2). For i ∈ {1,2}, the induction
hypothesis yields rootshi,vi(locs(ei)) = locs(ei). It suffices to show that for each ` ∈ locs(e)
either `= loc(v) or that there exists an edge (n, `) ∈ h such that n 6∈ locs(e). Consider one
location `′ such that `′ 6= loc(v). Without loss of generality, assume that `′ ∈ locs(e1), and
therefore `′ ∈ rootsh1,v1(locs(e1)). It follows that either `′ = loc(v1) or there exists an edge
(n, `′) ∈ h1 such that n 6∈ locs(e1). Take the first case; by construction, there is an edge
(`, loc(v1)) and ` 6∈ locs(e) since ` was chosen to be fresh. In the second case, the edge
(n, `′) is also in h and it remains to show that n 6∈ locs(e2). Since (n, `′) ∈ h1 it follows that
n∈ nodes(g1) and since nodes in the computation graph are chosen to be fresh, n 6∈ locs(e2).
Case C-PROJi: In this case, e = #i e′ and locs(e) = locs(e′). As a sub-derivation, we
have e′ ⇓ 〈v1,v2〉`;g′;h′ with h = h′ ∪ (n, `). Inductively, rootsh′,`(locs(e′)) = locs(e′). It
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is sufficient to show that for each `′ ∈ locs(e′) either `′ = loc(v) or there exists an edge
(n′, `′) ∈ h such that n′ 6∈ locs(e′). Assume that `′ 6= loc(v). Since `′ ∈ locs(e′) we have
`′ ∈ rootsh′,`(locs(e′)). Then either `′ = ` or there exists an edge (n′, `′) ∈ h′ such that
n′ 6∈ locs(e′). In the first case, we have an edge (n, `′) ∈ h and since n was chosen to be fresh
n 6∈ locs(e′). In the second case, the required edge is also in h since h′ ⊆ h.
Case C-VAL: Here, locs(e) = {loc(v)}. From the definition, rootsh,v({loc(v)}) = {loc(v)}.
Case C-FUN: In this case, e= fun f (x) = e′ and locs(e) = locs(e′). Assume loc(v) = `. As
there are edges in h from ` to each `′ ∈ locs(e′), it follows that rootsh,v(locs(e′)) = locs(e′).
Case C-APP: In this case, e = e1 e2. Each of the locations in locs(e) comes from e1 or
e2. As in the case for C-FORK, we apply the inductive hypothesis to each sub-expression
and then show that each location in locs(ei) is also in rootsh,v(e), either because of an edge
appearing in one of the heap sub-graphs or because of one of the edges added in this rule.
Case C-TRUE (and C-FALSE): Here, locs(e) is empty, and the result is immediate.
Case C-IFTRUE (and analogously C-IFFALSE): As the locations of a conditional expression
may come from either branch, we must ensure that they are also in the initial roots. In
C-IFTRUE, the locations of e2 are included in the set of roots as has been shown inductively
in previous cases. For each location ` in e3, there is an edge from n to each ` and, because n
does not appear in the locations of e, each such location is also in the roots of e.

3.4 Space Use

Roots describe only those values which are immediately reachable from the current program
state. To understand the total space required to represent a value, we must consider all
reachable nodes in the heap graph. We write `1 4h `2 if there is a (possibly empty) path from
`1 to `2 in h. Below, we define the space required for the parallel evaluation of expressions.
Though these definitions do not precisely account for the space required to represent values
in some implementations of the language, they will still enable us to account for the
asymptotic space use of programs. Moreover, an implementation may use more space than
is described here, depending on some details of the language implementation (e.g., how
frequently the garbage collector runs).

The first definition gives the space required to represent the state of parallel evaluation at
a single moment in time. It accounts for all values that have been allocated and may be used
in the remaining evaluation of the expression.

Definition 3 (Space Required at a Step)
The space required at a step N̂ of a schedule that eventually computes a value v is the
number of nodes in the heap graph h that are reachable starting from the nodes in rootsh,v(N̂).

spacev,h(N̂) = |{` ∈ h | ∃`′ ∈ rootsh,v(N̂).`′ 4h `}|

Definition 4 (Space Required by a Schedule)
The space required by a schedule E that computes a value v is the maximum amount of
space required in any step in that schedule.

spacev,h(E) = max({spacev,h(N̂) | N ∈ steps(E)})

These definitions are implemented as part of our profiler and are used to generate the
plots such as those in Figure 2(b) and in the following section. Plots that show the simulated
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high-water mark for space-use (such as Figure 2(b)) are derived as follows: given a program
and input, the cost semantics is used to derive a value v, a computation graph g, and a heap
graph h; a scheduling policy is then used to determine a schedule E for g; and the minimum
required space is computed as spacev,h(E).

3.5 Provable Implementations

In the following section, we will use cost graphs, schedules, and roots as a basis for our
profiling tools. However, these concepts can also serve as part of a formal specification of a
language implementation. The definition of schedules given above includes any execution
that respects the dependencies present in the original program. This includes schedules that
use an unbounded amount of parallelism in a single step as well as those that allow some
processor to remain idle even when there is work to be performed.

We can refine this definition to limit ourselves to more realistic classes of schedulers
and even to particular policies. One advantage of using cost graphs is that such refinements
can be stated in a simple and clear manner. For example, greedy scheduling policies are
those that avoid leaving processors idle whenever possible. Using the definitions above, a
schedule E that uses p processors is greedy if

∀n1,n2. n1 C n2⇒∃n3.(n3 ≺g n2∧n1 ./ n3) ∨ |{n | n ./ n1}|= p

This states that a schedule that uses p processors is greedy if, whenever n2 is scheduled
after n1 then either there was a sequential dependency to n2 from some node scheduled
simultaneously with n1, or there were p−1 other nodes that were scheduled simultaneously
with n1.

Similarly, we can define the behavior of any scheduling policy that is based on a schedule
for a single processor or a 1-schedule (Blelloch et al., 1999). This includes both the depth-
first and breadth-first scheduling policies used in this work. A 1-schedule is defined by a
strict linear order <1 on the nodes of the computation graph. The following implication
must hold for any parallel schedule E based on such a 1-schedule.

∀n1,n2. n1 C n2⇒ n1 <1 n2 ∨ ∃n3.(n3 ≺g n2∧n1 ./ n3)

This implication states that whenever a node n1 is scheduled before node n2 then either n1

came before n2 in the strict order <1 or there was a predecessor of n2 that was scheduled
simultaneously with n1.

Though it is beyond the scope of the current work, one can also give an implementation of
our parallel language that makes the scheduling policy explicit. For example, one can present
such an implementation using a small-step parallel semantics. Such a semantics is known as
a provably efficient implementation (Blelloch & Greiner, 1996) because each transition can
be related to a step in a schedule of the corresponding cost graphs. The constraints described
in this section serve as concise specifications for these implementations.

4 Profiling

Profiling has long been used as a means for improving the performance of programs, and
space profiling has been used to great effect in improving the performance of sequential
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call-by-need programs (Runciman & Wakeling, 1993a). Measurements are usually taken by
instrumenting either the source code or the runtime system and then running the program.
One issue that arises is that measurements derived using this method reflect not only the
original program but also the compiler and runtime system. In the case of our implementation
in MLton and for one particular program, there was a significant difference in space use
between the original and the compiled versions of that program, due to a space leak
introduced by one of the existing optimizations in MLton.

We address this issue by considering an alternative method of profiling. Semantic
profiling relies only on the semantics of the source program. While more traditional
profiling can be viewed as a set of measurements about a program together with a particular
implementation of the language, semantic profiling gives results independently of any
implementation. Using the profiling tools described in this section, we discovered and
helped to fix the aforementioned bug in MLton (see Section 7).

To achieve this implementation-independence, our profiler is based on the cost semantics
presented in the previous section. Though this method offers less precision than a traditional
profiler, its results predict asymptotic space use for any provable implementation of the
language. In addition, a semantic profiler can be used to reason about the performance of
scheduling policies or hardware configurations even without full implementations of these
policies or access to the hardware.

As with other forms of profiling, semantic profiling gives answers specific to a particular
input and, similarly, only yields results for inputs where the program terminates. For
each closed program, the cost semantics is used to derive a pair of cost graphs. We
have implemented our cost semantics as an interpreter in Standard ML (Milner et al.,
1997) using a straightforward transcription of the inference rules. The cost graphs are then
interpreted using the techniques described in this section, and the results are presented to
the programmer along with more concrete measures of performance. We remind the reader
that cost graphs, and therefore the results of the profiler, are not abstract in the sense of
abstract interpretation (Cousot & Cousot, 1977): they do not approximate the extensional
behavior of programs. Instead, they are abstract in that they do not explicitly account for
many aspects of the language implementation, including the compiler and garbage collector.

4.1 Simulation

Using cost graphs, our profiler can simulate the parallel execution of programs. This
simulation can be broken down into three parts: a generic component that maintains
information about the graph traversal, an implementation of a scheduling policy, and
a function that measures some aspect of program performance. Below, we describe how
different scheduling policies are integrated into our profiler and how information about
memory use is computed and presented to the programmer.

Scheduling Policies. To include different scheduling policies in our profiler, one must
simply implement a function that, given a graph and a set of nodes scheduled in the previous
step, determines which nodes should be scheduled in the current step. Policies can usually
be implemented with a few lines of code.
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For example, the depth-first scheduling policy is simulated using a list to represent the
set of ready nodes. (Recall that a node is ready if all its parents have been visited, but it
has not yet been visited.) To simulate P processors, the first P nodes are removed from the
list. The profiler must then determine the set of nodes that are enabled in this step. This is
accomplished by mapping a function defined by the edges of the computation graph across
these nodes. The results are then concatenated together and added at the front of the list of
ready nodes. These concatenated nodes must be kept in the same order as the corresponding
nodes that were removed from the ready list to ensure a depth-first traversal of the graph
(Blelloch et al., 1999). Note that the profiler performs none of the actual computation of
the program. The process of simulating a scheduling policy requires only the nodes and
edges of the computation graph. The breadth-first policy uses a similar implementation, but
instead of adding new nodes to the beginning of the list, it adds them at the end.

The work-stealing scheduling requires slightly more effort: it must maintain a separate
set of nodes for each processor. Each set is maintained using a list similar to that used by
the depth-first scheduler. If a list becomes empty, another list from which to steal is chosen
randomly. Though work-stealing derives many of its benefits from efficient techniques for
managing these sets of tasks (e.g., using doubly ended queues as described by Frigo et al.
(1998)), these techniques have little if any effect on space use and we are free to omit them
in our profiler.

We have also implemented a variant of each of these policies that simulates the more
coarsely grained schedules that are used by our runtime implementation. That is, the
versions described above schedule tasks at the granularity of individual nodes. Put another
way, those versions simulate the behavior of threads that can be preempted at arbitrary
points in the execution of the program. In our runtime implementation (as described in
Section 5), scheduling is performed cooperatively by processors, and thus a thread will
only be interrupted if it makes a call to the scheduling library, for example, to spawn a new
task. In terms of the cost graphs, that means that whenever there is exactly one node n2 that
becomes ready as a result of processor p visiting a node n1, then p will always visit n2 in
the next step, regardless of what nodes are enabled by other processors.

As the profiler is a sequential program, simulating scheduling policies in the profiler
avoids most of the complexity associated with implementing a scheduling policy as part of
the runtime: an online scheduler implemented as part of a language runtime is an example
of a concurrent program, since its behavior depends crucially on the interleaving of memory
accesses by the hardware. Such an implementation must carefully use synchronization
primitives to guard any state shared among different processors. This is not necessary in our
profiler. While the profiler could easily be implemented as a parallel program, we leave such
an implementation as future work. Note, however, that the extensional semantics of such a
implementation would be identical, by definition, to the one we describe in this article. We
should further note that our implementation is not a hardware simulator. It is an abstraction
of the actual implementation: it does not account for the precise cost of scheduling each
node and it only approximates the interleaving of tasks that would occur in the runtime
implementation. In the simulation, processors move in lock-step as they visit nodes and
fully “synchronize” after each step.
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Space Use. Once the profiler has computed the set of nodes visited at a given step, the
amount of memory required at this step can be determined by following the steps outlined in
the previous section. In particular, the profiler uses the set of visited nodes to determine the
set of roots (i.e., visited nodes that are the sink of a heap edge that leads from an unvisited
node). The total space use is determined by the set of nodes in the heap graph that are
reachable from these roots. Because the number of nodes visited in each step is small
compared to the total number of nodes in the computation graph, our profiler explicitly
maintains the set of edges that cross between unvisited and visited nodes. At each step, it
simply adds and removes edges from that set based on which nodes are visited.

While it is possible to use this technique to show the total space use as a function of time
since the beginning of program execution (as in Runciman & Wakeling (1993a)), we have
found it more useful to record the maximum amount of space required at any point during
an execution. We refer to this quantity as the high-water mark of space use. By iterating
over different inputs, this quantity may then be plotted as a function of input size to show
trends in space use.

The profiler is also able to attribute space use to variables and expressions found in the
source program. To do so, it uses an extended version of the cost semantics that associates a
source expression or other annotation with each node on the heap graph. For example, the
node corresponding to the allocation a (sequential) pair comprised of the values bound to
variables x and y would be annotated with the source expression (x,y). Nodes representing
the allocation of function values are annotated with a list of variables that appear freely in
the body of the function (excluding the function argument). These lists are written within
square brackets (e.g., [a,b,c]). For uses of values (e.g., in the applications of array primitives
such as append) nodes are annotated with the source code of the application. Note that
this means that the annotations of some nodes may be sub-strings of the annotations of
other nodes. For example, there may be a node with an annotation such as #1 lr as well as
one annotated append (#1 lr, #2 lr). While it is possible that this could lead to very long
annotations, this has not been a problem in our experience. In general, ML programmers
tend to name intermediate results (as is good programming practice), and this limits the
length of annotations. In addition, if we only consider the annotations of nodes at the
sources or sinks of root edges (as we do in the subsequent development), there will be little
duplication of source code in the annotations in which we are interested.

These annotations support profiling both the creation of values and the uses of those
values. If we are interested in what sort of values are present in the heap, then we look at
the annotations associated with the sinks of heap edges. As noted in Section 3, the sink
of a heap edge always represents a value. When showing space use (or “retainers” in the
terminology of Runciman & Röjemo (1996)), we instead consider the sources of heap edges.
These correspond both to values as well as uses of those values (e.g., function applications,
pair projections).

In this article, we focus on the uses of values (or retainers). Using annotations, our profiler
is able to break down the total space use by attributing part of this total to each root. As
described previously, the total space use is proportional to the total number of heap nodes
reachable from the roots. For nodes that are reachable from more than one root, the space
associated with that node is divided equally among all such roots. For example, if there are
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six nodes in the heap graph that are each reachable from three roots, then each root would
be charged two units of space.

4.2 Visualization

The cost graphs given by our semantics are often quite large and thus difficult for pro-
grammers to comprehend. We have implemented a method that distills these graphs and
yields their essential components. As our goal is to produce a meaningful visual output, we
associate a size and color with each node and edge. (In this write-up, we restrict ourselves
to black and shades of gray.) As the computation and heap graphs share nodes, we show one
superimposed over the other. The resulting graph can then be rendered into various image
formats using generic graph layout software.1 All of the graphs shown in this paper are
mechanically generated from our cost semantics and an implementation of the following
numbered rules. We determined these rules in part through experimentation, but in a large
part upon the principles discussed below.

We are most interested in the parallel structure of program execution. Thus a series of
nodes that describes sequential computation can be rendered as a single node. We use
node size to indicate the amount of sequential computation and node position to indicate
computational dependencies.

1. For each node n in the computation graph, if n has out-degree one, n has in-degree
one, and the (sole) predecessor of n also has out-degree one, then coalesce n with its
predecessor. The area of the resulting node is the sum of the area of the two coalesced
nodes. Nodes in the original graph have unit area.

2. Remove edges between coalesced nodes in both the computation and heap graphs.
(There are no self-edges in the result.)

3. Constrain the layout so that the vertical position of nodes respects the partial order
determined by computation edges.

4. Constrain the layout so that the horizontal position of nodes reflects the sequential
schedule: nodes that are scheduled earlier in the sequential schedule should appear
further to the left.

In the output graph, we draw computation edges in a light gray as the structure of the
computation graph can be roughly derived from the layout of the nodes: among vertically
aligned nodes, those closer to the top of the graph must be executed first. Nodes are also
drawn so that the sequential schedule follows a left-to-right traversal. Finally, we also omit
arrowheads on edges as they add to visual clutter. An example of node coalescing is shown
here.

distills to

1 We used Graphviz (http://www.graphviz.org/) to generate the graphs shown in this article.
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Due to the structure of the cost graphs, coalescing will never create non-unique edges in
the computation graph (i.e., more than one edge between the same pair of nodes). On the
other hand, it will often be the case that there are several heap edges between the same
pair of nodes. We considered trying to represent these duplicate heap edges, for example,
by weighting heap edges in the output according to number of duplicates. This, however,
ignores any sharing among these heap edges and may lead to confusing visual results (e.g.,
a group of heavy edges that represents a relatively small amount of heap space). For graphs
distilled independently of a particular point in time, duplicate heap edges are removed, and
all heap edges are given the same weight.

If we restrict ourselves to a single moment in time, we can overcome the difficulties with
representing sharing and also focus on the behavior of a specific scheduling policy and its
effect on space use. We use the color of both nodes and heap edges to highlight the behavior
of the scheduling policy at step i, the moment when space use reaches it high-water mark.

5. Fill nodes with black if they are executed at or before step i, and gray otherwise.
6. Draw heap edges that determine roots at step i in black and other heap edges in gray.

We must be careful about which nodes we coalesce, as we expect those heap edges that
determine roots to connect only executed and unexecuted nodes.

7. Avoid coalescing two nodes if one has been executed at or before step i and the other
has not.

Finally, now that we have restricted ourselves to a single moment in time, we can properly
account for sharing in the heap graph.

8. Weight each heap edge according to its share of the total amount of heap space
reachable from that edge at step i.

Thus the total space use at the high-water mark may be determined from the total weight of
the black heap edges (i.e., those representing the roots). Generally, the above rules mean
that the visual properties of distilled graphs can be interpreted as follows.

The larger the. . . then the greater the. . .

graph height sequential dependencies
graph width possible parallelism
node size computation
edge thickness space use

The sizes of graphs for several example applications are shown in Table 1, both before
and after coalescing nodes and edges. These applications are described in Section 6.

5 Implementation

In this section, we describe an implementation of a parallel functional language based on our
semantics. This serves to validate our profiling results and demonstrate that implementations
of our specification can achieve good parallel speed-ups.

Our implementation is an extension of MLton (Weeks, 2006), a whole-program, optimiz-
ing compiler for Standard ML (Milner et al., 1997). This is the first parallel implementation
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Table 1. Graph Sizes Before and After Distillation.

original distilled
application input size nodes heap edges nodes heap edges

matrix multiplication 4 4028 1371 314 168
” 6 12690 4239 1074 534
” 8 29032 9579 2554 1212
quicksort 16 9720 6773 79 76
” 24 21496 15341 119 116
” 32 37880 27365 159 156
quickhull 16 15259 8788 459 618
” 24 29343 17264 859 1218
” 32 40327 23912 1219 1794
n-queens 4 16985 7959 79 91
” 5 82377 38252 264 402
” 6 397873 175821 759 1051

of MLton. In keeping with the philosophy that performance-critical code can be written in
a high-level language, we implemented as much of the runtime support for parallelism in
SML as we could. That said, we were also required to make some changes and additions to
the existing runtime system, which is written in C.

5.1 Runtime System

MLton is comprised of a compiler, a set of libraries, and a uniprocessor runtime system. Our
first task was to make modifications to the runtime to ensure that shared resources would be
safely accessed by concurrently executing processors. In our initial revision, we added a
global mutex around all accesses to these shared resources. We then found the hottest code
paths and replaced this mutex with lighter-weight mechanisms or restructured the code to
avoid synchronization altogether. In some cases, this required adding per-processor state.
For example, each processor maintains a local allocation pool that it may use to satisfy
allocation requests without synchronization. When the local pool is exhausted, the runtime
uses an atomic compare-and-swap operation to claim a portion of memory from the global
pool. We were also required to make some minor changes to the compiler and standard
basis library to ensure thread safety.

We have not yet addressed the issue of parallel garbage collection in our implementation.
However, we believe that previous work in parallel collection for SML (Cheng & Blelloch,
2001) could be carried over in a straightforward manner.

Our runtime supports an additional runtime parameter that indicates how many processors
to use.2 For each processor, the runtime sets up the local processor state and invokes the
main scheduling loop. The remaining parallel functionality, including the scheduling loop,
is handled by a set of SML modules, described below.

2 We envision a version that allows users to dynamically add and remove processors from the active
set, but in the current implementation, this set remained fixed.
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signature SCHEDULING POLICY =
sig

(∗ processor identifier ∗)
type proc = int
(∗ abstract type of a task, defined elsewhere as unit→ unit ∗)
type work

(∗ the first argument is the identifier of the current processor ∗)
(∗ add new work to the queue; highest priority appears first ∗)
val add : proc → work list → unit
(∗ remove the next, highest priority work ∗)
val get : proc → work option
(∗ mark the most recent unit of work as done ∗)
val finish : proc → unit
(∗ is there higher priority work for the given processor? ∗)
val shouldYield : proc → bool

end

Fig. 9. Signature for Scheduling Policies. Scheduling policies are defined by implementing this
signature.

5.2 Scheduling Policies

At the core of our parallel library is the scheduler loop. The loop is run in parallel by each
processor and consists of running a single task. It is the role of the scheduling policy to
determine the which task is run in each iteration of the loop. To plug-and-play with different
scheduling policies, we developed a simple signature that any policy must implement
(Figure 9).

Given the purpose of scheduling policies, the functions add and get should be self-
explanatory. With respect to add, “priority” means the order in which tasks would have
been evaluated by a sequential implementation. Each scheduling policy chooses whether or
not to respect this priority when returning tasks from the get function: a policy’s notion of
priority may differ depending on how that policy organizes tasks.

The finish function is called once for each task removed from the queue. For many
scheduling policies, finish does nothing. The final function shouldYield is used to avoid
some non-trivial thread operations in cases where they are unnecessary. This function
returns a boolean value that indicates whether or not there is any other ready task that has
a higher priority (as assigned by the scheduling policy) than the task being evaluated by
the current processor. If the result is true, then the current task should be suspended and
enqueued. Otherwise, the current task can continue. The shouldYield operation is discussed
in more detail in the description of the work-stealing scheduler below. Though we present
this interface as an SML signature, we believe that this abstraction would be useful for
parallel implementations of other languages.

We include three scheduling policies in our analysis and implementation: depth-first,
breadth-first, and work-stealing. (Each is between 50 and 125 lines of SML in our imple-
mentation.) Each of these policies is greedy, in that processors will not be kept idle if there
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are available tasks (as discussed in Section 3). Moreover, each permits rescheduling only at
fork points and join points. These are features of the particular schedulers we study and not
limitations of our framework.

Breadth-First Scheduling. The breadth-first policy is the simplest policy in our imple-
mentation. It maintains a single FIFO queue and uses a global lock to serialize concurrent
access to the queue. This scheduling policy performs a left-to-right, breadth-first traversal
of the computation graph and is equivalent to a round-robin scheduler. It is the “fairest” of
the three schedulers we implemented in the following sense: if we consider each chain of
nodes in the computation graph as a thread, it alternates scheduling each of these threads
among the available processors.

Depth-First Scheduling. The parallel depth-first policy (Blelloch et al., 1999) prioritizes
tasks according to a left-to-right depth-first traversal of the computation graph. Our imple-
mentation uses a single global queue and runs tasks from the front of the queue. This it
not strictly a LIFO queue: to ensure that our implementation obeys the global left-to-right
depth-first priority, the children of the leftmost task must be given higher priority than the
children of nodes further to the right. (In a sense, priority is inherited.) To assign proper
priorities, our implementation also maintains one “finger” for each processor that indicates
where new tasks should be inserted into the queue (Blelloch et al., 1999). The finish function
is used to clean up any state associated with this finger.

We also experimented with a scheduling policy without this complication (where the
global queue is maintained as LIFO stack). However, as noted above, this policy is not
faithful to a depth-first scheduling policy. There is little theoretical work addressing this
form of scheduling, and we have not considered it in our experiments.

Work-Stealing Scheduling. A work-stealing scheduling policy (Burton & Sleep, 1981;
Blumofe & Leiserson, 1999) maintains a separate queue for each processor. Locally, each
queue is maintained using a LIFO discipline. However, if one of the processors should
exhaust its own queue, it randomly selects another processor to “steal” from and then
removes the oldest task from that queue. In the common case, each processor only accesses
its own queue, so we can use a more finely-grained synchronization mechanism than in the
other two scheduling policies to serialize concurrent access. This leads to less contention
and significantly smaller overhead compared to the breadth- and depth-first schedulers, both
of which use a single global queue.

Because a work-stealing policy favors local work, a dequeue that immediately follows an
enqueue will always return the task that was enqueued. Our implementation avoids these
two operations (and also avoids suspending the current thread) by always returning false

as the result of shouldYield. The remainder of the parallel library checks the result of this
function in cases where a dequeue will follow an enqueue.

5.3 Parallel Library

The lowest-level parallel interface in our library provides methods for suspending and
resuming computation along with adding new tasks to the work queue. It is built as a thin
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wrapper around MLton’s user-level thread library. This wrapper adds the proper calls to
the scheduling policy to ensure that tasks are initiated in the proper order and finished
correctly. This interface, however, is not intended for programmers. Instead, we also provide
routines for parallel pairs, futures, vector, and array manipulation based on these primitives.
For example, the parallel pair construct used in our cost semantics is implemented by the
following function.

(∗ run two functions, possibly in parallel, and return their results as a pair ∗)
val fork : (unit → α) ∗ (unit → β ) → α ∗ β

This function is implemented by (possibly) suspending the current computation and
adding two new parallel tasks, one for each branch of the fork. Through the use of shared
state and an atomic compare-and-swap operation, these tasks agree which of the two finished
second. This task is responsible for adding a third task that will resume the suspended
computation with the new pair. The other routines in our library are implemented in a
similar manner, or by building upon functions such as fork.

5.4 Space Profiling in MLton

One method to measure space use is to record the maximum amount of live data found in
the heap at the end of any garbage collection. Given the default behavior of most collectors,
however, there is no way to understand the accuracy of this measurement. Using the
collector to determine the high-water mark of space use with perfect accuracy would require
a collection after every allocation or pointer update. This would be prohibitively expensive.

To rectify this problem, we have modified MLton’s garbage collector to measure memory
use with bounded error and relatively small effects on performance. To measure the high-
water mark within a fraction E of the true value, we restrict the amount of memory available
for new allocation as follows. At the end of each collection, given a high-water mark of
M bytes and L bytes of live data currently in the heap, we restrict allocation so that no
more than M ∗ (1+E)−L bytes will be allocated before the next collection. In the interim
between collections (i.e., between measurements) the high-water mark will be no more than
M ∗ (1+E) bytes. That is, consider the worst-case scenario, where M ∗ (1+E) bytes of
data was live at some point between collections. No more data could be live because there
was L bytes live after the previous collection and only M ∗ (1+E)−L additional bytes
were allocated since then. Regardless of how many bytes are live at the next collection, the
runtime will always report a high-water mark of at least M, because the high-water mark
is a monotonically increasing value. (It will report more than M if more than M bytes of
live data are discovered by the collector.) We will, therefore, achieve the desired level of
accuracy. This technique differs from most collector implementations, which use only the
current amount of live data L in determining when to perform the next collection.

For example, suppose that during the execution of a program, we have already observed
10 MB of live data in the heap but at the present moment (just after completing a collection),
there is only 5 MB of live data. If we are satisfied with knowing the high-water mark to within
20% of the true value, then we constrain the collector to allocate at most 10∗(1+0.2)−5 =

7 MB before performing another collection. Even if all of this newly allocated data were to
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be live at some point in time, the high-water mark would never exceed 12 MB. At the end
of the second collection, the runtime will report a high-water mark no less than 10 MB.

The two key properties of this technique are, first, that is slowly increases the threshold
of available memory (yielding an accurate result) and second, that it dynamically sets the
period between collections (as measured in bytes allocated) to avoid performing collections
when doing so would not give any new information about the high-water mark. Continuing
the example above, if a second collection found only 1 MB of live data, then there is no
reason to perform another collection until at least 11 MB of new data have been allocated.

Note that this technique may also be combined with a generational garbage collector
(Lieberman & Hewitt, 1983; Ungar, 1984), for example, as in MLton. In this case, limiting
allocation simply means limiting the size of the nursery. As in an Appel-style generational
collector (Appel, 1989), all of the remaining space may be assigned to the older generation.
Thus, this technique need not increase the frequency of major collections. When reporting
the high-water mark after a minor collection, the collector must assume that all of the data
in the older generation is live.

As we report in the next section, this technique has enabled us to measure space use with
low overhead and predicable results and without additional effort by the programmer.

6 Empirical Results

Predictions about program performance based on a high-level semantics are only useful if
those predictions are also realized by an efficient implementation. We validate our profiling
tools empirically using an instrumented version of our MLton implementation. Because
our profiling tools do not measure exact memory usage, we can only confirm that these
predictions match the asymptotic behavior of our implementation on equivalent inputs:
where the semantics predicts space use as a constant, linear, or super linear function of the
input size, our MLton implementation delivers similar results.

We performed our experiments on a four-way dual-core x86-64 machine with 32 GBs of
physical RAM running version 2.6.21 of the Linux kernel. Each of the four processor chips
is a 3.4 GHz Intel Xeon, and together they provide eight independent execution units. In the
remainder of this section, we will refer to each execution unit as a processor. We focus on
measurements of space use, but also report on scalability.

We implemented several small parallel applications as part of our study. These include the
matrix multiplication example described above, several sorting algorithms, the Quickhull
algorithm for finding the convex hull of a set of points (Preparata & Shamos, 1988), the
n-queens problem, and the Barnes-Hut simulation of gravitational bodies (Barnes & Hut,
1986). Table 2 provides a list of these applications along with their sizes. Note that this
includes a more sophisticated version of matrix multiplication, discussed in more detail in
Section 6.2 below.

6.1 Space Use

For each application, we report the effect of scheduling policy and number of processors on
the amount of memory required by the application. We measured the high-water mark of
space use including both stacks and reachable objects in the heap. Measuring this quantity
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Fig. 10. Space Use vs. Input Size. Each plot shows the high-water mark of space use for one of four
applications. We tested three scheduling policies (depth-first, breadth-first, and work-stealing) with
up to four processors. Larger symbols indicate that more processors were used. Different scheduling
policies yield dramatically different performance, as discussed in the text.

with complete accuracy would require traversing all reachable objects in the heap after every
allocation and pointer mutation. Instead, we use the technique described in Section 5.4 to
measure this quantity within a tunable bound. Figure 10 shows the high-water mark of space
use for four of the applications in our study. Smaller values indicate better performance. We
use different shapes to represent different policies: for breadth first, for depth-first, and

for work-stealing. Larger symbols indicate more processors were made available; we
show results for space use on one, two, and four processors.
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Table 2. Lines of Code in Applications. This table shows the size of each of the applications
described in the section. This does not include library routines such as the implementations
of parallel vectors or the collection of matrix operations used in Barnes-Hut simulation.

name lines of code

matrix multiplication 165
quicksort 29
mergesort 132
selection sort 41
insertion sort 13
quickhull 68
n-queens 40
Barnes-Hut 379
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Fig. 11. Simulated Space Use for Quicksort. This plot shows space use, as predicted by our profiler,
as a function of input size when using a depth-first scheduling policy and a single processor. Overall,
this plot agrees with the measurements shown in Figure 10(b). The legend shows how space use can
be attributed to sub-expressions of the program.

Matrix Multiplication. The analysis in Section 2 (recall Figure 2(b)) predicts that the
breadth-first scheduling policy uses asymptotically more space than the depth-first policy.
A similar analysis predicts that breadth-first is far worse than work-stealing. Both these
predictions are confirmed by the space use in our implementation, as plotted in Figure 10(a).

Sorting. We implemented several sorting algorithms including quicksort, mergesort, inser-
tion sort, and selection sort. Figure 10(b) shows the space use of a functional implementation
of quicksort where data are represented as binary trees with lists of elements at the leaves.
In each recursive call, the first element is taken as the pivot element. This plot shows the
behavior for the worst-case input: the input elements are given in reverse order. While we
would expect quicksort to take time quadratic in the size of the input in this case, it is
perhaps surprising that it also requires quadratic space. This behavior is also predicted by
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Fig. 12. Cost Graphs for Quicksort. These summarized graphs show the point at which the program
reaches the high-water mark of space use under a depth-first scheduling policy: after the first
completion of a recursive invocation with a non-empty input.

the cost semantics. The plot in Figure 11 is generated by our semantic profiler and shows
the consumers of space for the depth-first policy at the high-water mark. The shape of this
plot agrees with the data in Figure 10(b). The plot also shows that this space is referenced
by various parts of the filter function. In particular, most of the live heap data is referenced
by the variable xs that appears in the expressions tail xs, head xs, isnil xs, and filter xs as
well as the closure [xs,filter,f].

The cost graphs in Figure 12 show that the high-water mark for this policy occurs after the
left branch of each parallel fork has executed. As expected, there are few opportunities for
parallel execution with this input because at each level of the recursion, quicksort splits its
input into a single element on the right and all the remaining elements on the left. However,
until the partition is complete each branch on the right-hand side is still holding on to the
recursive input. This analysis suggests an alternative implementation. If we introduce a
join point between partitioning the elements and recursively sorting them, we can avoid the
asymptotic increase in space use.

Convex Hull. This application computes the convex hull in two dimensions using the
quickhull algorithm. (This name was first used by Preparata & Shamos (1988).) We again
show results for the worst-case input: the input points are arranged in a circle and so every
point in the input is also in the hull. Figure 10(c) shows the high-water mark of space use,
which again matches our cost semantics-based predictions (not shown).

Quickhull offers more parallelism than the previous example, but this parallelism is
still more constrained than that found in matrix multiplication. The algorithm proceeds by
partitioning the point set by dividing the plane in half (in parallel) and then recursively
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Fig. 13. Cost Graphs for Quickhull. Quickhull displays a more irregular form parallelism. Heap edges
show how data is split between different parallel branches. Portions of the graph labeled “A” and “B”
are discussed in the text.

processing each half (in parallel). Between these two phases there is a synchronization. This
is shown through the widening and narrowing of the graphs shown in Figure 13.

Nodes are colored to illustrate one point in the execution of the work-stealing scheduling
policy with two processors. In this case, the work-stealing policy performs more poorly
than either of the other two policies because it starts, but does not finish, computing these
partitions. The point labeled “A” represents the code that allocates one set of points. The
black lines extending to the right of this point indicate part of the program that will compute
one half of a partition of these nodes. The circled nodes labeled “B” also compute half a
partition, but have already completed their work and have allocated the result. At this point
in time, the program is holding onto the entire original set plus half of the resulting partition.
The same pattern appears for each processor. Neither of the other two scheduling policies
exhibit this behavior.

n-Queens. The n-queens problem asks for a placement of n tokens on an n-by-n grid such
that no two tokens appear in the same row or column, or on the same diagonal. In the
terminology of the game of chess, this would be a placement of n queens on the board
such that no queen could attack any other queen. For a given n there may be zero or
more solutions; our implementation finds all solutions for each board size. This problem is
representative of a wide class of constraint problems that can be solved by some form of
search. In this example, these constraints take the form of partial placements of less than n
pieces. We represent these placements as lists of integer pairs, one element for each queen
denoting the row and column where it is placed.

Figure 14 shows the cost graphs for the instance of this problem with n = 5. Each branch
of the search after the initial placement can be computed independently, and these branches
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Fig. 14. Cost Graphs for n-Queens. This figure shows the graphs for n = 5 and the breadth-first
scheduler. This scheduler requires the most space when it is maintaining a large set of partial
placements.

are arranged roughly as five columns of nodes. The graphs are highlighted to show the
point at which the breadth-first scheduler reaches its high-water mark for space use. The
breadth-first scheduler performs relatively poorly in this application because it explores
too many branches in parallel and must maintain the sets of constrains for each of these
branches. The profiler predicts that the space use for the breadth-first scheduler will grow
faster than either of the other two scheduling policies. This is also reflected in our MLton
implementation, as shown by the last two data points in Figure 10(d).

Barnes-Hut Simulation. Figure 10(e) shows space use for our implementation of the
Barnes-Hut simulation. This algorithm approximates the gravitational force among particles
in 3-space. The force on each particle is calculated either by computing the pairwise force
between two particles or by approximating the effect of a distant set of particles as a
single, more massive particle. Particles are organized using an octree. This algorithm and
representation are easily adapted to a parallel setting: not only can the forces on each particle
be computed in parallel, but the individual components of this force can also be computed
in parallel.

Due to its complexity (e.g., use of modules, pattern matching), we have not implemented
a version of this application that is compatible with our profiling tools. Applying our
methodology informally, however, we expect the program to generate very wide cost graphs.
Like the matrix multiplication example, the breadth-first scheduling policies performs poorly
due to the large amount of available parallelism and the size of the intermediate results.
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Fig. 15. Profiling Space Use. Four different space measurements (a) and the cost of obtaining these
measurements (b). Execution times are normalized to an uninstrumented version and shown on a
logarithmic scale.

Though its performance is not as bad as in the multiplication example, it is still significantly
worse than the other two policies.

6.2 Overhead of Space Measurements

Measuring space use precisely can be expensive. Using the technique described above,
however, we can measure the high-water mark of space use within a fixed bound. Here,
we compare the quality and cost of these measurements with those derived from a hand
instrumented version. In Figure 15(a), we show space use for blocked matrix multiplication
measured four different ways. Blocked multiplication is a version of multiplication where
the input matrices are partitioned and the products of the partitions are computed before
summing them to yield the final result. It is often chosen because it offers much better cache
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Table 3. Profiling Space Use. These data are presented graphically in Figure 15. Measured
space use is the amount of space reported by each method. A bound on the actual space
use can be derived by adding the appropriate percentage. Time overhead is reported as the
ratio between the instrumented and uninstrumented execution times. Averages are reported
for the time overhead of restricted allocation measurements.

measured space (MB) time overhead
automatic (% error) automatic (% error)

input size explicit GCs 10% 20% 50% explicit GCs 10% 20% 50%

50 0.12 0.24 0.24 0.24 2.00 6.00 3.67 2.33
100 0.86 1.54 1.54 1.55 3.87 3.09 2.26 1.70
150 1.73 2.69 2.65 2.55 2.56 1.71 1.46 1.15
200 10.16 11.49 11.51 10.87 12.00 3.24 2.18 1.54
250 13.85 15.38 14.94 15.16 10.50 2.54 1.97 1.56
300 19.73 19.88 19.28 19.02 8.35 2.39 1.73 1.35
350 25.00 24.89 24.61 22.34 8.00 2.49 1.61 1.52
400 90.43 89.22 88.09 86.04 84.27 3.77 2.60 1.74
450 107.64 102.72 101.31 99.33 78.92 3.62 2.54 1.74
500 125.96 116.93 118.05 111.54 66.79 3.19 2.40 1.71

average 3.20 2.24 1.63

behavior. We found it to be an example that was difficult to instrument in a way that was
accurate but not prohibitively slow.

All data shown in this figure use the breadth-first scheduler and one processor. The
first series shows the measurements obtained when additional garbage collections are
explicitly added by the programmer. The other three series show the results using the
restricted allocation technique with bounds of 10%, 20%, and 50%, respectively. These
bounds are shown with error bars, but only positive errors are shown (as the true high-water
mark cannot be smaller than the reported value). The reported values appear at the bottom
of the indicated ranges. The gap between inputs of sizes of 150 and 200 as well as the
one between 350 and 400 are due to an additional level of recursion in the algorithm. That
is, the algorithm has a fixed maximum size at which sub-matrices are multiplied directly
rather than by partitioning them, and input sizes such as 200 and 400 require an additional
partition. Table 3 shows the data used in these plots. The space use measurements for the
restricted allocation technique are reported values; the true values may be 10%, 20%, or
50% higher. (For an input size of 500, the 50% datum indicates that as much as much as
167.31 MB were used.)

We take the measurements derived from the explicitly added garbage collections to be
the most accurate measurement of memory use. In each case, this technique reported the
greatest values. The data show that the restricted allocation measurements are much more
accurate than we might expect. For example, the 50% bound seems to be overly conservative:
the actual measurements are within 15% of the measurement derived using explicit garbage
collections.
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In addition to requiring less knowledge on the part of the programmer and yielding
measurements with a bounded error, this technique requires less time to perform the same
measurements. Figure 15(b) shows the execution time of these four instrumented versions.
Values are normalized to the execution time of an uninstrumented version and shown on a
logarithmic scale. By “uninstrumented,” we mean a version of the algorithm without any
explicit calls to the garbage collector or additional restrictions on the amount of allocation
between collections; that is, the allocator and garbage collector are the unmodified MLton
versions. As in the case of the space measurements themselves, the time required to take
these measurements increases significantly at input sizes of 200 and 400, when the size
of the input requires an additional level of recursion. In Table 3, we also report averages
over the range of input sizes for the restricted allocation technique. On average, the ratio
between the time required to measure space use with a 10% (20%, 50%) bound and the
time required by the uninstrumented version is 3.20 (2.24, 1.63, respectively).

6.3 Parallel Efficiency

As the purpose of parallelism is to improve performance, we also report parallel efficiency.
Efficiency is a measure of how well an implementation scales up as more processor cores
are added. While we are still working to improve the performance of our implementation,
these data should be sufficient to convince the reader that we have not “cooked” our
implementation simply to match the space use predictions of our semantic profiler.

We depart from common practice by plotting efficiency rather than execution time or
speed-up. While execution time is easy to interpret, it is difficult to use plots of execution
time to ascertain trends in data or to make comparisons between different applications or
scheduling policies. Plots showing speed-up ameliorate these problems by normalizing
parallel execution time using the sequential execution time. However, it is still difficult to
understand the effect on performance when using a small number of processors (including
the overhead for a single processor) as speed-up devotes little space to this portion of the
plot. In addition, comparing trends in the performance requires the reader to compare the
relative curvature of different data sets. Finally, efficiency is a direct indication of the cost
(or overhead) of adding additional processors and makes it more clear how this cost might
be related to the number of processors.

Instead of either execution time or speed-up, we plot parallel efficiency, defined as
100 ·T1/(TP ·P), where T1 is the sequential execution time and TP is the execution time
on P processor. Equivalently, efficiency is equal to the speed-up divided by the number
of processors. Efficiency can be interpreted as the percentage of processor cycles that are
being used to run the application rather than performing some form of communication or
synchronization. Thus 100% efficiency corresponds to a linear speed-up. As an example, if
a scheduling policy is 80% efficient with two processors, then it will achieve a speed-up of
1.6. If efficiency falls to 70% with three processors, then it will only achieve a speed-up
of 2.1. Intuitively, efficiency tells us how much more computational throughput we get for
each additional processor.

Though we might hope for applications and scheduling policies that are 100% efficient,
we expect some overhead from parallel execution. Practically speaking, we are looking
for applications and scheduling policies where efficiency is independent of the number
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Fig. 16. Parallel Efficiency. As a measure of scalability, we plot efficiency as a function of the number
of processor cores. As discussed in the text, efficiency is defined as 100 ·T1/(TP ·P) where T1 is
the sequential execution time and TP is the execution time on P processor cores. 100% efficiency is
equivalent to a linear speed-up.

of processors. This indicates that adding additional processors will continue to improve
performance at the same rate. In plots such as those shown above, efficiency that is
independent of the number of processors will appear as a horizontal line.

Figure 16 shows parallel efficiency for one to eight processor cores for four applications.
In these plots, we do not include the cost of garbage collection. As we argued above,
previous work has shown that garbage collection can be performed efficiently in parallel.
We do, however, include overhead due to synchronization and contention for other shared
resources.
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We chose benchmarks for this set of measurements not based on interesting space use
patterns, but instead by looking for applications with a reasonable potential for parallel
execution. In each case the sequential execution time T1 is the execution time on a single
processor without any of the support required for multi-core execution. In our implementa-
tion, support for multi-core execution is controlled using a compile-time constant. Though
we performed some experiments with variations in task granularity, we report on only a
single granularity for each example. In each case, this granularity was chosen to limit the
overhead when run on a single processor to an acceptable amount (typically no more than
10-20%).

Figure 16(a) shows overhead for a blocked version of matrix multiplication. Part (b)
shows overhead for parallel mergesort on uniformly randomly distributed input. Part (c)
shows the overhead of quickhull for points distributed uniformly a circle. Part (d) shows
the overhead for the n-queens problem with n = 14 and where no parallelism is used for
sub-problems of size 6 or less. Part (e) shows the overhead for the Barnes-Hut simulation
with points distributed uniformly randomly. Though all of these applications show some
potential for faster execution, some scale better than others. In addition, there are some
clear differences in the performance trends for difference scheduling policies. For example,
in the matrix multiplication example, the initial cost of adding parallelism is greater for
the work-stealing scheduler when compared to the depth-first scheduler (leading to lower
efficiency with one processor). This cost levels off as more processors are added: work
stealing is more efficient for five or more processors. The efficiency of a work-stealing
scheduler is less dependent on the number of processors. In Part (c), the point for the
depth-first schedule with one processor is not shown due the ranges we selected for the
plots; this point lies at 113% efficiency. That is, the depth-first scheduler with one processor
is 13% faster than the sequential version of this algorithm. We attribute this to the fact the
scheduler is fixed at compile-time and that MLton is a whole-program compiler: we believe
this choice of scheduler causes a small perturbation of the code in the inner loop of the
algorithm that results in faster execution. In the cases of mergesort and quickhull, there does
not seem to be enough parallelism to (efficiently) leverage all of the cores available on this
hardware. In all cases, however, using more cores leads to lower efficiency per core, most
likely because of contention on the memory bus. In contrast, the n-queens problem provides
many opportunities for parallel execution: given a placement of pieces in the first k rows,
each valid placement in row k+1 is considered in parallel. In this case, the more efficient
data structures of the work-stealing scheduler (e.g. per-processor queues) lead to better use
of parallel resources. The final point for the breadth-first scheduler does not appear within
the selected range; with eight processors, the breadth-first scheduler is only 23% efficient.
Finally, the Barnes-Hut simulation scales the best of any of our applications. It performs
significantly more sequential computation than the other examples relative to the size of
the data structures it builds. As in case of the Quickhull algorithm, the depth-first scheduler
achieves an efficiency greater than 100% (or equivalently a super-linear speed-up for up to
three processors); we believe this is again due to a whole-program optimization performed
by the compiler.
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7 Discussion

7.1 Alternative Rules

There are a number of design choices latent in the rules given in Figure 4. Different rules
would have led to constraints that were either too strict (and unimplementable) or too lax.

Consider as an example the following alternative rule for the evaluation of function
application. The premises remain the same, and the only difference from the conclusion in
Figure 4 is highlighted with a rectangle.

e1 ⇓ 〈 f .x.e3〉`1 ;g1;h1 e2 ⇓ v2;g2;h2 · · ·

e1 e2 ⇓ v3;g1⊕g2⊕ g3⊕ [n] ;h1∪h2∪h3∪{(n, `1),(n, loc(v2))}

This rule yields the same extensional result as the version given in Figure 4, but it
admits more implementations. Recall that the heap edges (n, `1) and (n, loc(v2)) represent
possible last uses of the function and its argument. This variation of the rule moves those
dependencies until after the evaluation of the function body.

This rule allows implementations to preserve these values, even in the case where they
are not used during the function application or in subsequent evaluation. This includes the
case where these values are bound to variables that do not appear in the program text of the
function body or after the application. This is precisely the constraint described by Shao &
Appel (1994) as “safe-for-space.”

In contrast, the original version of this rule requires that these values be considered for
reclamation by a garbage collector as soon as the function is applied. Note, however, that
the semantics does not specify how the implementation makes these values available for
reclamation: it is left to the implementer to determine whether this is achieved through
closure conversion, by clearing slots in the stack frame, or by some other means.

As this example suggests, there is some leeway in the choice of the semantics itself.
Our goal was to find a semantics that describes a set of common implementation tech-
niques. When they fail to align, our experience suggests that either the semantics or the
implementation can be adjusted to allow them to fit together.

7.2 Program Optimizations

In validating our work, we discovered one example where we were required to change the
language implementation. We came across an example where our implementation failed to
distinguish two scheduling policies as our profiler had predicted. Specifically, instead of one
policy leading to linear use of space and the other to quadratic use of space, the program
required quadratic space under both policies.

Some investigation revealed that the problem was not in our semantics or our parallel
implementation, but in an existing optimization in MLton: reference flattening. Analogously
to tuple flattening, references that appear in a heap-allocated data structure (e.g. a record)
may be flattened or treated as a mutable field within that structure. At run time, such a
reference is represented as a pointer to the containing structure. Accesses to the reference
must compute an offset from that pointer.

This optimization can save some space by eliminating the memory cell associated with
the reference. However, it can also increase the use of space. As the reference is represented
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as a pointer to the entire structure, all of the elements of the structure will be reachable
anywhere the reference is reachable. If the reference would have outlived its enclosing
structure then flattening will extend the lifetime of the other components.

To avoid asymptotically increasing the use of space, MLton uses the types of the other
components of the structure to conservatively estimate the size of each component. If any
component could be of unbounded size then the reference is not flattened. The problem
was that this analysis was not sufficiently conservative in its treatment of recursive types.
Though a single value of a recursive type will only require bounded space, an unbounded
number of these values may be reachable through a single pointer. Based on our reporting,
this problem has been corrected in a recent version in the MLton source repository. The
fix requires this optimization to consider any record that contains a field with a recursive
type to be of potentially unbounded size. With this change, the example which previously
required quadratic space could be run using only linear space (as a function of its inputs
size).

As flattening and other program optimizations affect space use, it is critical that the
language provides a specification of performance at the level of the source code. This
specification can then be used to guide programmers expectations about performance and
validate compiler optimizations.

7.3 Nested Parallelism

Another form of “flattening” appears in implementations of nested parallelism (e.g., Blelloch
& Sabot (1990); Blelloch et al. (1994); Chakravarty & Keller (2000)). Here, flattening refers
to a compilation technique where by nested parallelism (where parallel tasks may spawn
new parallel tasks) is transformed into flat parallelism (where parallel tasks are spawned
only at the top level). This automatically balances work by simultaneously exposing all
available parallelism.

Though this technique is largely implemented by the compiler and less so by the
language runtime, we can still reason about it using cost graphs and our scheduling
formalism: flattening can be described as a constrained form of breadth-first scheduling.
This characterization agrees with our experience with the flattening implementation of
NESL: examples such as matrix multiplication required so much space that they were
unrunnable for even moderately sized inputs, requiring the user to scale back parallelism
explicitly. These space use problems in NESL are an important part of the motivation for
the current work.

8 Related Work

Parallelism and Concurrency. Many researchers have studied how to improve perfor-
mance by exploiting the parallelism implicit in side-effect free languages. This includes
work on data-flow languages (e.g., Arvind et al. (1989)), lazy parallel functional languages
(e.g., Aditya et al. (1995)), and nested data parallel languages (e.g., Blelloch et al. (1994);
Chakravarty & Keller (2000); Peyton Jones et al. (2008)). Like these languages, we provide
a deterministic semantics and rely on the language implementation to spawn new tasks
and synchronize on results. Unlike languages such as Concurrent ML (Reppy, 1999) or
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JoCaml (Conchon & Fessant, 1999), we provide no explicit concurrency constructs to the
programmer. Manticore (Fluet et al., 2007) subsumes both paradigms and provides for both
implicit parallelism and explicit concurrency.

Profiling. In their seminal work on space profiling for lazy functional programs, Runciman
& Wakeling (1993a) demonstrate the use of a profiler to reduce the space use of a functional
program by more than two orders of magnitude. Like the current work, they measure space
use by looking at live data in the heap. However, their tool is tied to a particular sequential
implementation. Sansom & Peyton Jones (1993, 1995) extend this work with a notion of
“cost center” that enables the programmer to designate how resource use is attributed to
different parts of the source program.

There has been a series of works on profiling methods and tools for parallel functional
programs (Hammond & Peyton Jones, 1992; Runciman & Wakeling, 1993b; Hammond
et al., 1995; Charles & Runciman, 1998). This work focuses on the overhead of parallel
execution instead of how different parallel implementations affect the performance of the
application. None of this work measures how different scheduling policies affect space use.

Scheduling. Scheduling policies and their effects on space use have been studied exten-
sively in the algorithms community (e.g., Blumofe & Leiserson 1999; Blelloch et al. 1999).
Our representation of parallel tasks as directed graphs is inspired by this work. However,
we use these graphs as part of a formal semantics rather than simply as an abstract model of
computation.

Most implementations of data parallel languages have provided only a single scheduling
policy that is either left unspecified or fixed as part of a compilation technique. In contrast,
Fluet et al. (2008) make scheduling policies explicit using an intermediate language and
support nested scheduling policies. It would be interesting to see how our cost semantics
could serve as a specification such policies.

Evaluation strategies (Trinder et al., 1998) enable the programmer to explicitly control the
parallel evaluation structure (e.g., divide-and-conquer). Like much of the work on profiling
parallel functional programs, this focuses on when to spawn to parallel tasks and how much
work to perform in each task (i.e., granularity) instead of the order in which parallel tasks
are evaluated.

In the course of their profiling work, Hammond & Peyton Jones (1992) considered two
different scheduling policies. While one uses a LIFO strategy and the other FIFO, both use
an evaluation strategy that shares many attributes with a work-stealing policy. These authors
found that for their implementation, the choice of policy did not usually affect the running
time of programs, with the exception in the case where they also throttled the creation of
new parallel threads. In this case, the LIFO scheme gave better results. Except for the size
of the thread pool itself, they did not consider the effect of policy on space use.

Cost Semantics. Language semantics extended with some notion of cost have been used
to reason about the time complexity of sequential functional programs (Sands, 1990;
Rosendahl, 1989; Roe, 1991). Sansom & Peyton Jones (1995) used a cost semantics in the
design of their profiler. However, their profiling results are derived from an instrumented
version of their compiler and runtime system, not from the semantics itself.
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A cost semantics similar to the one used in the current work was introduced by Blelloch
& Greiner (1996). That work gave an upper bound on space use and assumed a fixed
scheduling policy (depth-first). Our semantics extends this work by adding heap edges to
the cost associated with each closed program. This enables us to reason about different
scheduling policies and attribute space use to different parts of the program.

Lazy, purely functional programs can be evaluated in many different ways, and different
strategies for evaluation can yield wildly different performance results. Ennals (2004) uses a
cost semantics to compare the work performed by a range of sequential evaluation strategies,
ranging from lazy to eager. Like the current work, he also uses cost graphs with distinguished
types of edges, though his edges serve different purposes. He does not formalize the use
of space by these different strategies. Likewise, program transformations that change the
order of evaluation can also affect performance. Gustavsson & Sands (1999) give a semantic
definition of what it means for a transformation to be “safe-for-space” (Shao & Appel, 1994).
They provide several laws to help prove that a given transformation does not asymptotically
increase the space usage of sequential, call-by-need programs.

Jay et al. (1997) describe a static framework for reasoning about the costs of parallel
execution using a monadic language. Static cost models have also been used to automat-
ically choose a parallel implementation at compile-time based on hardware performance
parameters (Hammond et al., 2003) and to inform the granularity of scheduling (Loidl
& Hammond, 1996). This work complements ours in that it focuses on how the sizes of
program data structures affect parallel execution (e.g., through communication costs), rather
than how different parallel schedules affect the use of space at a given point in time.

9 Conclusion

We have described and demonstrated the use of a semantic space profiler for parallel
functional programs. One beauty of functional programming is that it isolates programmers
from gritty details of the implementation and the target architecture, whether that architecture
is sequential or parallel. However, when profiling functional programs, and especially
parallel functional programs, there is a tension between providing information that relates
to the source code and information that accurately reflects the implementation. In our
profiling framework, a cost semantics plays a critical role in balancing that tradeoff.

We have focused on using our framework to measure and reason about the performance
effects of different scheduling policies. One possible direction for future work is to study
other important aspects of a parallel implementation such as task granularity. We believe
there is a natural way to fit this within our framework, by viewing task granularity as an
aspect of scheduling policy.

We invite readers to download and experiment with our prototype implementation,
available from the first author’s website3 or the shared-heap-multicore branch of the
MLton repository.

3 http://www.cs.cmu.edu/~spoons/parallel/
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