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Abstract. Declarative parallel programs offer deterministic results, al-
lowing the language implementation to schedule parallel tasks in any
order. However, program performance hinges crucially on the way that
these tasks are scheduled. In this work, we use formal language semantics
to express different scheduling policies. These semantics enable us to
compare different policies and to understand their effects on the use of
space. We offer several example programs to demonstrate that scheduling
policy can have a dramatic, and even asymptotic, effect on space usage.
To predict performance, programmers require a means to understand the
effects of scheduling. We define a cost semantics that allows programmers
to reason about how space is used by parallel declarative programs. At the
same time, these costs provide a specification for how implementations
should behave.

1 Introduction

Parallel architectures are now ubiquitous, and the number of processor cores is
quickly overtaking the number of applications typically run by users. To keep
pace with the number of cores, applications must process the increasingly large
amounts data stored on personal computers in parallel.

Declarative parallel languages [McGraw, 1982, Arvind et al., 1989, Feo et al.,
1990, Blelloch et al., 1994, Aditya et al., 1995, Chakravarty and Keller, 2000]
allow parallel algorithms to be expressed concisely and in a platform-independent
manner. Declarative parallel programs are deterministic, meaning that they
will always yield the same results, regardless of how they are evaluated. Using
declarative languages is important in ensuring that programs take advantage of
many different parallel platforms and that they continue to scale with advances
in hardware technology: these languages encourage programmers to express
massive amounts of parallelism, far greater than the number of processors or
cores available today.

While it is easy to reason about the results of declarative parallel programs,
their performance depends heavily on many aspects of the language implementa-
tion, including control of task granularity, communication, and scheduling policy.
In this work, we focus on scheduling policy and develop a formal model to reason
about its effect on performance. Through a simple example, we show how the
choice of scheduling policy can have asymptotic effects on space use.

Assessing and improving the performance of declarative programs is still a
black art, especially with respect to their use of space. Current practice relies on



runtime space profiling [Runciman and Wakeling, 1993]. While useful in many
cases, space profilers make assumptions about how programs are compiled, and
the results depend on runtime factors including hardware configuration, garbage
collector implementation, and (most relevant to the current work) scheduling
policy.

To reason formally about scheduling, we express each policy not in prose or
as source code, but as a dynamic semantics for our language. An important class
of policies is also described using a similar semantics. This framework allows us
to analyze and compare policies using induction and other familiar techniques.

We also present an abstract cost semantics [Blelloch and Greiner, 1996], which
assigns a time and space cost measure to each program. Our costs include enough
information that they can be used to understand the performance of different
scheduling policies. In the context of these costs, each semantics implementing a
scheduling policy will play the role of a provable implementation, one in which
we can guarantee the asymptotic space use matches that predicted by the cost
semantics.

Our approach offers several benefits. A high-level presentation of scheduling
policies offers programmers a mechanism for understanding performance indepen-
dently of a particular implementation. This includes different implementations
of the same policy. By constraining the intensional behavior of programs, our
cost semantics also provides a specification and guide for language implementers.
Finally, formally specifying the dynamic behavior of a language is the first step
in reasoning statically about programs, including their performance.

2 Related Work

Interest in side effect-free parallel programming began decades ago with languages
such as Val [McGraw, 1982], Id [Arvind et al., 1989], and Sisal [Feo et al., 1990].
These researchers also argue that a deterministic semantics is essential in writing
correct parallel programs and that a language without side effects is a natural
means to achieve determinism.

Though we use a small, call-by-value language in our analysis, our results are
applicable to larger languages such as NESL [Blelloch et al., 1994], pH [Aditya
et al., 1995], and Nepal [Chakravarty and Keller, 2000]. Although these languages
require the ordering of parallel tasks to be determined dynamically, none of them
directly address how this is to be accomplished.

Various work has described operational semantics for parallel execution (e.g.,
Hudak and Anderson [1987], Roe [1991], Aditya et al. [1995]). None of it has
attempted to capture possible schedules at a high level. Evaluation strategies
[Trinder et al., 1998] allow the programmer to explicitly control the structure
parallel evaluation (e.g., divide-and-conquer, data-parallelism). Other than the
work mentioned in the introduction [Blelloch and Greiner, 1996] none of this
work has tried to capture space usage.

Within the algorithms community there has been significant research on
the effects of scheduling policy on memory usage [Blumofe and Leiserson, 1998,
Blelloch et al., 1999, Narlikar and Blelloch, 1999]. In that work, it has been shown
that different schedules can have an exponential difference in memory usage with



(expressions) e ::= x | λx.e | e1 e2 | (e1, e2) | πi e | let par d in e | v
(values) v ::= 〈x.e〉` | 〈v1, v2〉`
(locations) ` ∈ L
(declarations) d ::= x = e | d1 and d2

(value declarations) δ ::= x = v | δ1 and δ2

Fig. 1. Language Syntax. We extend the lambda calculus with declarations and values.
Declarations and the parallel let construct allow us to express the evaluation of parallel
expressions in progress. Declarations within a let par may step in parallel. Annotated
values capture sharing explicitly.

only two processors. These works consider an abstract computation model based
on threads instead of a language-based model as used in this work.

Previous work on cost semantics for parallel languages [Blelloch and Greiner,
1996] has shown that size and depth of a program execution (when presented as
a directed graph) can be used to predict an upper bound on the time and space
requirements when run on a parallel machine. Blelloch and Greiner assumed a
fixed scheduling policy. We model the behavior of the scheduler explicitly in our
semantics and refine their cost model so that we can reason precisely about the
behavior of different scheduling policies.

Cost semantics have also been used to reason about the performance of
sequential programs. Non-strict, purely functional programs can be evaluated
in many different ways, and it is widely understood that different strategies for
evaluation can yield wildly different performance results. Ennals [2004] uses a
cost semantics to compare the work performed by a range of sequential evaluation
strategies, ranging from lazy to eager. Gustavsson and Sands [1999] give a
semantic definition of what it means for a program transformation to be “safe for
space.” They provide several laws to help prove that a given transformation does
not asymptotically increase the space usage of call-by-need programs. Unlike these
previous works, we consider a strict language. Thus the variations in performance
are not due to whether or not a particular expression is evaluated (since all
scheduling policies evaluate exactly the same set of expressions), but the order in
which those expressions are evaluated.

3 Parallel Semantics

As a demonstration of our technique, we consider a call-by-value functional
language extended with parallel pairs (Figure 1). Although pairs allow only a
bounded number of new parallel tasks to be introduced in each step, this will be
sufficient to demonstrate that scheduling policy can have an asymptotic effect on
performance.

We use a purely functional language, but concerns about scheduling and the
use of space arise in any declarative parallel language, functional or imperative,
where there are more parallel tasks than processors.

In this section, we define several policies, each as a transition (small-step)
semantics for this language. The first is a non-deterministic semantics that



allows unbounded parallelism. Though this semantics does not provide a useful
implementation, it will serve as the definition of all possible parallel evaluation
strategies. Subsequent semantics will each define the behavior of a particular
scheduling policy or a class of related policies.

The language we use is described in Figure 1. We extend the usual syntax
of expressions with a parallel let construct. This construct is used to denote
expressions whose parallel evaluation has begun but not yet finished. Declarations
within a let par may step in parallel, depending on the constraints enforced by
one of the transition semantics below. let par expressions and declarations reify a
stack of expression contexts such as those that appear in many abstract machines.
Unlike a stack, which has exactly one topmost element, there are many “leaves”
in our syntax that may evaluate in parallel.

We also include a separate syntactic class of values. Values are annotated with
locations so that sharing can be made explicit without resorting to an explicit
heap: the syntax distinguishes between a pair whose components occupy the
same space and one whose components do not. This is critical, as we will take
the set of labels appearing in an expression as a measure of its space use.

Though we use recursive functions in our examples, we omit them in this
presentation for the sake of space and clarity. We stress that our framework can
easily accommodate recursive functions and therefore possibly non-terminating
programs. As it is a dynamic analysis, however, it does not offer any information
about individual program instances that diverge. While this is certainly a lim-
itation of our framework, it is also a limitation of current practice using heap
profilers [Runciman and Wakeling, 1993]. Furthermore, this is not a significant
issue with respect to the implementation of parallel algorithms (as opposed to
web servers and other interactive applications) since we are only interested in
instances of program execution that actually yield results.

To facilitate the definition of several different parallel semantics, we first
factor out those parts of the implementation that are common to all variations.
These primitive sequential transitions are defined by the following judgment.

e −→ e′

This judgment represents the step taken by a single processor in one time step.
A selection of the axioms that define this judgment appear in Figure 2 and
the remainder are shown in Appendix A.1. These axioms limit where parallel
evaluation may occur by defining the intermediate form for the evaluation of
pairs. Where parallel evaluation actually occurs is defined by the scheduling
semantics, as given in the remainder of this section.

3.1 Non-Deterministic Scheduling

The non-deterministic (nd) transition semantics defines all possible parallel
executions. It is given by a pair of judgments

e
nd7−−→ e′ d

nd7−−→ d′

that state, expression e takes a single parallel step to e′ and, similarly, declaration
d takes a single parallel step to d′. This semantics allows unbounded parallelism: it



e −→ e′

(` fresh)

(v1, v2) −→ 〈v1, v2〉`
(x fresh and e not a value)

πi e −→ let par x = e in πi x πi 〈v1, v2〉` −→ vi

(x1, x2 fresh and e1, e2 not values)

(e1, e2) −→ let par x1 = e1

and x2 = e2 in (x1, x2) let par δ in e −→ [δ]e

Fig. 2. Selected Primitive Transitions. These rules encode transitions where no parallel
execution is possible. They will be used in each of the different scheduling semantics
that follow in this section. The substitution of a value declaration into an expression
[δ]e simultaneously substitutes for all the variables appearing in δ. The remaining rules
appear in Appendix A.1.

models execution on a parallel machine with an unbounded number of processors.
It is defined by the rules in Figure 3.

Most of the nd rules are straightforward. The only non-determinism lies in
the application of the rule nd-Idle. In a sense, this rule is complemented by
nd-Branch: the latter says that all branches may be executed in parallel, but
the former allows any sub-expression to sit idle during a given parallel step.

Extensional Behavior Though this implementation is non-deterministic in how it
schedules parallel evaluation, the result of nd evaluation will always be the same,
no matter which expressions evaluate in parallel. This statement is formalized
in the following theorem. In this and other results below, analogous facts hold
for declarations. In addition, we always consider equality of expressions and
declarations up to the renaming of locations.

Theorem 1 (Confluence). If e
nd7−→ ∗ e′ and e

nd7−→ ∗ e′′ then there exists an
expression e′′′ such that e′

nd7−→∗ e′′′ and e′′
nd7−→∗ e′′′.

Proof. This proof follows from the “diamond” property as shown in Lemma 1.

Lemma 1. If e
nd7−→ e′ and e

nd7−→ e′′, then there exists an expression e′′′ such
that e′

nd7−→ e′′′ and e′′
nd7−→ e′′′.

Proof. By induction on the derivation of e
nd7−−→ e′.

Case nd-Idle: In this case e′ = e. Assume that e
nd7−−→ e′′ was derived using

rule R. Let e′′′ = e′′. Then we have e
nd7−−→ e′′ (by applying R) and e′′

nd7−−→ e′′ (by
nd-Idle), as required.

As all of the non-determinism in this semantics is concentrated in the use of
the nd-Idle rule, the remaining cases follow from the immediate application of
the induction hypothesis.



e
nd7−−→ e′

d
nd7−−→ d′

let par d in e
nd7−−→ let par d′ in e

(ND-Let)

e
nd7−−→ e

(ND-Idle)
e −→ e′

e
nd7−−→ e′

(ND-Prim)

d
nd7−−→ d′

e
nd7−−→ e′

x = e
nd7−−→ x = e′

(ND-Leaf)
d1

nd7−−→ d′1 d2
nd7−−→ d′2

d1 and d2
nd7−−→ d′1 and d′2

(ND-Branch)

Fig. 3. Non-Deterministic Parallel Transition Semantics. This semantics defines all
possible parallel transitions of an expression, including those that take an arbitrary
number of primitive steps in parallel. Parallelism is isolated within expressions of the
form let par. Declarations step in parallel using ND-Let. Note that expressions (or
portions thereof) may remain unchanged using the rule ND-Idle.

We also prove several properties relating the behavior of this parallel semantics
to that of a sequential semantics. We write e ⇓ v for the standard call-by-value
sequential semantics. The first such property (Completeness) states that any
result obtained using an ordinary sequential semantics can also be obtained using
the nd implementation.

Theorem 2 (nd Completeness). If e ⇓ v then e
nd7−→∗ v.

The proof is carried out by induction on the derivation of e ⇓ v.
The following theorem (Soundness) ensures that any result obtained by the

nd semantics can also be derived using the sequential semantics.

Theorem 3 (nd Soundness). If e
nd7−→∗ v, then e ⇓ v.

The proof follows by induction on the number of steps n in the sequence of
transitions. The base case is given by Lemma 2 as shown in the Appendix.

Summary These theorems establish that our parallel language is deterministic
and will yield the same (extensional) result regardless which parallel execution is
chosen. Programmers may therefore use the sequential semantics to reason about
program correctness.

3.2 Depth-First Scheduling

We now define an alternative transition semantics that is deterministic and im-
plements a depth-first schedule. Depth-first (df) schedules prioritize the leftmost
sub-expressions of a program and always complete the evaluation of these leftmost
sub-expressions before progressing to sub-expressions on the right. The semantics



in this section implements a p-depth-first (p-df) schedule, i.e., a depth-first
schedule that uses at most p processors. The p-df transition semantics is defined
by the following pair of judgments.

p; e df7−→ p′; e′ p; d df7−→ p′; d′

These judgments define a single parallel step of an expression or declaration.
Configurations p; e and p; d describe an expression or declaration together with a
non-negative integer p that indicates the number of processors that have not yet
been assigned a task in this parallel step. On the right-hand side, p indicates the
number of processors that remain unused.

The p-df transition semantics is defined by the rules given in Figure 4. Most
notable is the DF-Branch rule. It states that a parallel declaration may take a
step if any available processors are used first on the left sub-declaration and then
any remaining available processors are used on the right. Like the nd semantics
above, the p-df transition semantics relies on the primitive transitions given in
Figure 2. In rule DF-Prim, one processor is consumed when a primitive transition
is applied.

p; e
df7−−→ p′; e′

p; v
df7−−→ p; v

(DF-Val)
p; d

df7−−→ p′; d′

p; let par d in e
df7−−→ p′; let par d′ in e

(DF-Let)

0; e
df7−−→ 0; e

(DF-None)
e −→ e′

p + 1; e
df7−−→ p; e′

(DF-Prim)

p; d
df7−−→ p′; d′

p; e
df7−−→ p′; e′

p; x = e
df7−−→ p′; x = e′

(DF-Leaf)
p; d1

df7−−→ p′; d′1 p′; d2
df7−−→ p′′; d′2

p; d1 and d2
df7−−→ p′′; d′1 and d′2

(DF-Branch)

Fig. 4. p-Depth-First Parallel Transition Semantics. This deterministic semantics defines
a single parallel step for left-to-right depth-first schedule using at most p processors. Con-
figurations p; e and p; d describe expressions and declarations with p unused processors
remaining in this time step.

For the df semantics, we must reset the number of available processors after
each parallel step. To do so, we define a “top-level” transition judgment for
df evaluation with p processors. This judgment is defined by exactly one rule,
shown below. Note that the number of processors remaining idle p′ remains
unconstrained.

p; e df7−→ p′; e′

e
p-df7−−−→ e′

The complete evaluation of an expression, as for the non-deterministic semantics,
is given by the reflexive, transitive closure of the transition relation p-df7−−−→∗ .



We can easily show the df semantics is correct with respect to a sequential
semantics by showing that its behavior is contained within that of the nd
semantics. Informally, this theorem states, “the df semantics is a valid parallel
implementation.”

Theorem 4 (df Soundness). If p; e df7−→ p′; e′ then e
nd7−→ e′.

Proof. By induction on the derivation of p; e df7−→ p′; e′. The case for derivations
ending with rule df-Let follows immediately from an appeal to the induction
hypothesis and the analogous rule in the nd semantics. df-Prim also follows
from its analogue. Rules df-None and df-Val are both restrictions of nd-Idle.

It follows immediately that e
p-df7−−−→ e′ implies e

nd7−−→ e′. This result shows the ben-
efit of defining a non-deterministic semantics: once we have shown the soundness
of an implementation with respect to the non-deterministic semantics, we get
soundness with respect to the sequential semantics for free.

While this implementation says nothing of the queues and locks that would
appear in a more concrete implementation of a df scheduler, it offers a clear
presentation that is easy to understand and compare with other implementations.
Moreover, we believe it mirrors the space use (up to a constant factor) of a
concrete implementation.

3.3 Greedy Scheduling

A p-greedy scheduler is any scheduler that will take exactly p primitive steps in
parallel if p or more steps can be taken; if there are less than p such steps, all
available primitive steps will be taken. The p-df scheduler is one example of
a greedy scheduler. Many policies fall into this category, and many important
results (e.g., Blelloch et al. [1999]) describe the behavior of these polices as a
group.

We can describe this class of policies using another parallel semantics. This
greedy semantics lies at an intermediate point between the nd and df semantics. It
is still non-deterministic, but like the df semantics, does not have an unrestricted
“idle” rule. Instead, it includes Val, None, and Prim rules like the df semantics,
as well as the following rule constraining parallel execution.

p1; d1
gr7−→ p′

1; d
′
1 p2; d2

gr7−→ p′
2; d

′
2

p1 + p2; d1 and d2
gr7−→ p′

1 + p′
2; d

′
1 and d′

2

(GR-Branch)

This rule requires that all available processors be divided between the two
branches. If we take this semantics as the definition of greedy, then to show that
a particular policy is greedy, we need only to show that any derivation in that
semantics gives rise to a similar derivation in the greedy semantics.

3.4 Breadth-First Scheduling

Just as the semantics above captured the behavior corresponding to a depth-
first traversal of the computation graph, we can also give an implementation



corresponding to a breadth-first (bf) traversal. This is the most “fair” schedule in
the sense that it distributes computational resources evenly across parallel tasks.
For example, given four parallel tasks, a 1-bf scheduler alternates round-robin
between the four. A 2-bf scheduler takes one step for each of the first two tasks
in parallel, followed by one step for the second two, followed again by the first
two, and so on.

We omit the presentation of this semantics due to space limitations, and
merely state that, like the depth-first semantics, the breadth-first policy depends
on restrictions of the (ND-Idle) and (ND-Branch) rules. Like the df semantics,
the breadth-first semantics is greedy, as can be shown by proving that whenever
a bf rule can be applied, a greedy rule can also be applied to achieve the same
result.

4 Cost Semantics

The cost semantics (Figure 5) for our language is an evaluation semantics that
computes both a result and an abstract cost reflecting how that result is obtained.
It assigns a single cost to each (closed) program that allows us to construct a
model of parallel execution and reason about the behavior of different scheduling
policies.

A cost semantics is critical for any asymptotic analysis of running time or
space use. For sequential implementations, there is an obvious cost semantics
that nearly all programmers understand implicitly. Moreover, because we are
familiar with sequential implementations, we can easily move between costs at
the level of source code and those of compiled code.

In this work, we give a cost semantics that serves as a basis for the asymptotic
analysis of parallel programs, including their use of space. We believe that it is
especially important that this semantics assigns costs to source-level programs
as programmers are far less familiar with parallel implementations than their
sequential counterparts. While the implementations in the previous section are
relatively abstract, they serve as a bridge between our cost semantics and lower-
level implementations.

The cost semantics is defined by the following judgment, which is read,
expression e evaluates to value v with computation graph g and heap graph h.

e ⇓ v; g;h

The extensional portions of this judgment are standard in the way that they
relate expressions to values. As discussed below, edges in a computation graph
represent control dependencies in the execution of a program, while edges in
a heap graph represent dependencies on and between heap values. We omit
declarations and values in the cost semantics as we treat these as intermediate
forms and limit programmers to the source-level terms that appear in Figure 5.

As in the work of Blelloch and Greiner [1996], computation graphs g are
directed, acyclic graphs with exactly one source node (with in-degree 0) and one
sink node (with out-degree 0) (i.e. directed series-parallel graphs). Nodes are
denoted ` and n (and variants). Edges in the computation graph point forward



e ⇓ v; g; h

(` fresh)

λx.e ⇓ 〈x.e〉`; [`]; {(`, `′)}`′∈locs(x.e)

(E-Fn)

e1 ⇓ 〈x.e3〉`1 ; g1; h1 e2 ⇓ v2; g2; h2 [v2/x]e3 ⇓ v3; g3; h3 (n fresh)

e1 e2 ⇓ v3; g1 ⊕ g2 ⊕ [n]⊕ g3; h1 ∪ h2 ∪ h3 ∪ {(n, `1), (n, loc(v2))}
(E-App)

e1 ⇓ v1; g1; h1 e2 ⇓ v2; g2; h2 (` fresh)

(e1, e2) ⇓ 〈v1, v2〉`; g1 ⊗ g2 ⊕ [`]; h1 ∪ h2 ∪ {(`, loc(v1)), (`, loc(v2))}
(E-Pair)

e ⇓ 〈v1, v2〉`; g; h (n fresh)

πi e ⇓ vi; g ⊕ [n]; h ∪ {(n, `)}
(E-Proji)

Fig. 5. Profiling Cost Semantics. This semantics yields two graphs that can be used
to reason about the parallel performance of programs. Computation graphs g record
dependencies in time while heap graphs h record dependencies among values. The
location of a value loc(v) is the outermost label of a value and is defined in Appendix A.3.

in time. An edge from n1 to n2 indicates that n1 must be executed before n2.
Each computation graph consists of a single-node, or of the sequential or parallel
composition of smaller graphs. Graphs are written as tuples such as (ns;ne;E)
where ns is the source or start node, ne is the sink or end node, and E is a
list of edges. The remaining nodes of the graph are implicitly defined by the
edge list. A graph consisting of a single node n is written (n, n, ∅) or simply [n].
Graph operations are defined below. (Here, a diamond stands for an arbitrary
subgraph.)

Serial Composition Parallel Composition
(ns;ne;E)⊕ (n′

s;n
′
e;E

′) (ns;ne;E)⊗ (n′
s;n

′
e;E

′)

(ns;n′
e;E,E′, (ne, n

′
s)) (n;n′;E,E′, (n, ns), (n, n′

s), (ne, n
′), (n′

e, n
′))

n, n′ fresh

We extend the work of Blelloch and Greiner [1996] with heap graphs. Heap
graphs are also directed, acyclic graphs but do not have distinguished start or end
nodes. Each heap graph shares nodes with the computation graph arising from
the same execution. In a sense, computation and heap graphs may be considered
as two sets of edges on a shared set of nodes. As above, the nodes of heap graphs
are left implicit.



While edges in the computation graph point forward in time, edges in the
heap graph point backward in time. If there is an edge from n to ` then n depends
on the value at location `. It follows that any space associated with ` cannot be
reclaimed until after n has executed and any space associated with n has also
been reclaimed.

Edges in the heap graph record both the dependencies among heap values and
dependencies on heap values by other parts of the program state. As an example
of the first case, in the evaluation rule for pairs, two edges are added to the heap
graph to represent the dependencies of the pair on each of its components. Thus,
if the pair is reachable, so is each component. In the evaluation of a function
application, however, two edges are added to express the use of heap values. The
first such edge marks a use of the function. The second edge denotes a possible
last use of the argument. For strict functions, this second edge is redundant:
there will be another edge leading to the argument when it is used. However, for
non-strict functions, this is the first point at which the garbage collector might
reclaim the space associated with the argument.

This semantics does not capture exact memory behavior but instead asymp-
totic behavior. For example, it assumes that all values require the same amount
of space in the heap. In addition, the analyses in this section, like the policies de-
scribed above, assume fine-grained scheduling mechanism. Despite this, we believe
that our results are equally applicable to more coarse-grained implementations
with only a constant factor difference in the performance results.

4.1 Schedules

Together, the computation and heap graphs allow a programmer to analyze the
behavior of her program under a variety of hardware and scheduling configurations.
For a given program, each configuration will give rise to a particular parallel
execution that is determined by the constraints described by the computation
graph g.

Definition 1 (Schedule). A schedule of a graph g = (ns;ne;E) is a sequence
of sets of nodes N0, . . . , Nk such that ns 6∈ N0, ne ∈ Nk, and for all i ∈ [0, k),

– Ni ⊆ Ni+1, and
– for all n ∈ Ni+1, predg(n) ⊆ Ni.

Here predg(n) is the set of nodes n′ such that there is an edge (n′, n) in g.

4.2 Roots

To understand the use of space, the programmer must also account for the
structure of the heap graph h. Given a schedule N0, . . . , Nk for a graph g,
consider the moment of time represented by some Ni. Because Ni contains all
previously executed nodes and because edges in h point backward in time, each
edge (n, `) in h will fall into one of the following three categories.

– Both n, ` 6∈ Ni. As the value associated with ` has not yet been allocated,
the edge (n, `) does not contribute to the use of space at time i.



– Both n, ` ∈ Ni. While the value associated with ` has been allocated, the
use of this value represented by this edge is also in the past. Again, the edge
(n, `) does not contribute to the use of space at time i.

– ` ∈ Ni, but n 6∈ Ni. The value associated with ` has already been allocated,
and n represents at one possible use in the future. Here, the edge (n, `) does
contribute to the use of space at time i.

This leads us to the following definition.

Definition 2 (Roots). The roots of a heap graph h with respect to a location `
after evaluation of the nodes in N , written roots`,h(N), is the set of nodes `′ in
N where `′ = ` or h contains an edge leading from outside N to `′. Symbolically,

roots`,h(N) = {`′ ∈ N | `′ = ` ∨ (∃n.(n, `′) ∈ h ∧ n 6∈ N)}

We use the term roots to evoke a related concept from work in garbage
collection. For the reader who is most comfortable thinking in terms of an
implementation, the roots might correspond to those memory locations that are
reachable directly from the processor registers or the call stack. This is only one
possible implementation, however: the heap graph constrains an implementation
only in how that implementation manages space.

To relate an analysis of these cost graphs to the intensional behavior of the
nd semantics, we state the following theorem.

Theorem 5 (Cost Completeness). If e ⇓ v; g; h and N0, . . . , Nk is a schedule
of g then there exists a sequence of expressions e0, . . . , ek such that e0 = e and
ek = v and for all i ∈ [0, k), ei

nd7−→∗ ei+1 and locs(ei) ⊆ rootsv,h(Ni).

Here we write rootsv,h(N) as an abbreviation for rootsloc(v),h(N). The locations
of an expression locs(e) are simply the labels of any values embedded in that
expression as defined in Appendix A.3.

The final condition of the theorem states that the use of space in the parallel
semantics, as determined by locs(), is approximated by the measure of space in
the cost graphs, as given by roots(). The proof hinges on the fact that a schedule
for a parallel (respectively, serial) graph can be decomposed into two schedules
that are run in parallel (serially).

With theorems of this form, each semantics described in the previous section
becomes (in the terminology of Blelloch and Greiner) a provable implementation.
With a suitable simulation technique (as used in the examples below) or visual-
ization tool, a programmer need not understand the parallel semantics in the
previous section: once an implementation is proved correct, we are free to reason
about performance using only the cost semantics.

4.3 Examples

We have implemented our cost semantics as an interpreter in Standard ML.
This interpreter yields exactly the cost graphs described by the cost semantics
(Figure 5). Graphs may then be analyzed to produce numerical results as shown
in Figure 6, which are explained below.



Quicksort Consider the following implementation of quicksort where the input
list is partitioned and each half is sorted in parallel. Recall that the components
of a pair (e1, e2) may be evaluated in parallel.

fun qsort xs =
case xs of nil ⇒ nil

| x::xs ⇒ append (qsort (filter (le x) xs), x::(qsort (filter (gt x) xs)))

Figure 6(a) shows an upper bound on the use of space as a function of the
input size. By creating cost graphs for each input size we can generate the data
shown in the figure. Each point is derived by computing the roots for depth-
and breadth-first schedules and then finding all nodes in the heap graph that
are reachable from these roots. The largest such set, over all points in time,
constitutes the space high-water mark.

The four configurations described in the figure are (from top to bottom)
a 1-df (i.e. sequential) schedule, a 2-df schedule, a 3-df schedule, and p-bf
schedules for p ≤ 3. While the second requires less space than the first, both
require space that is polynomial in the input size. The space used in the third
and fourth configurations is a linear function of the input size. In all cases, we
are considering the worst-case behavior for this example: sorting a list whose
elements are in reverse order. We emphasize that these plots all represent the
execution of the same program, each with a different scheduling policy.
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Fig. 6. Space Use. Part (a) shows an upper bound on the space required to sort a list
as a function of input size. Each configuration differs in the number of processors or
the scheduling policy used to prioritize parallel tasks. Part (b) shows an upper bound
on space required to approximate an integral a function of the number of processors.

The first two policies require more space because they start to partition many
lists (one for each recursive call) before the first such partitions are completed.
In the worst case, each of these in-progress partitions requires O(N) space, and
there are N such partitions.

The p-bf schedules avoid this asymptotic blowup in space use by completing
all partitions at a given recursive depth before advancing to the next level of



recursion. This implies that no matter how many partitions are in-progress, only
O(N) elements will appear in these lists. The p-df schedules for p > 2 achieve
the same performance by simulating the behavior of the breadth-first schedules.

Numerical Integration In our second example, we approximate an integral using
the adaptive rectangle rule: this algorithm computes the area under a polynomial
function as a series of rectangles, using narrower rectangles in regions where the
function seems to be undergoing the most change. Whenever the algorithm splits
an interval, the approximation of each half is computed in parallel. Note that
the parallel structure of this example is determined not by the size or shape of a
data structure, but instead by the behavior of the polynomial.

Figure 6(b) shows an upper bound on the space required by this program
as a function of the number of processors. Unlike the quicksort example, the
depth-first schedule requires far less space for a small number of processors since
it quickly reduces intermediate results to a single scalar value. Even as we increase
the number of processors, the depth-first scheduler only gradually increases its
use of space. In contrast, the breadth-first scheduler requires more space because
it determines (and stores) nearly all of the intervals to approximate before
aggregating any of the results. Given enough processors, the depth-first scheduler
will eventually emulate the behavior (and performance) of the breadth-first
scheduler.

5 Conclusion and Future Work

Expressing parallel scheduling policies explicitly in the language semantics offers
a powerful mechanism for modeling their behavior. It allows us to compare
different policies, for example, showing the correctness of an implementation by
proving that its behavior is contained within that of the non-deterministic (nd)
semantics. It also allows us to prove a tight correspondence between the behavior
of scheduling policies and results of a profiling analysis. This is important as the
choice of policy has significant effects on performance.

We briefly draw a connection with another important component of a language
implementation, the garbage collector. Programmers who use garbage-collected
languages must consider the effect of the collector on application performance.
Switching between collector algorithms or changing the configuration of a given
algorithm can have significant impact on end-to-end performance. No single
collector algorithm is appropriate for all applications. In the same way, we argue
that programmers building parallel applications must understand the performance
impact of the scheduler: no single scheduling policy is best for all applications.
However, in both cases, it sufficient to understand an abstract model of the
implementation in order to reason about performance.

One direction for future work lies in building a more concrete implementation
of our language: an implementation that runs on parallel hardware. One challenge
is understanding the impact of compiler optimizations (such as inlining) on
performance. We are currently working toward such an implementation with the
goal of validating the predictions made by our framework.
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SUPPLEMENTARY MATERIAL FOLLOWS
(for referees only)

A Appendix

A.1 Primitive Transitions

The full set of primitive transitions for our language appears below.

e −→ e′

(` fresh)

λx.e −→ 〈x.e〉`

(x1, x2 fresh and e1, e2 not values)

e1 e2 −→ let par x1 = e1 in
let par x2 = e2 in x1 x2

〈x.e〉` v2 −→ [v2/x]e

(` fresh)

(v1, v2) −→ 〈v1, v2〉`
(x fresh and e not a value)

πi e −→ let par x = e in πi x πi 〈v1, v2〉` −→ vi

let par δ in e −→ [δ]e

(x1, x2 fresh and e1, e2 not values)

(e1, e2) −→ let par x1 = e1
and x2 = e2 in (x1, x2)

A.2 Soundness of nd Semantics

The following lemma is used in the proof of soundness for the non-deterministic
semantics.

Lemma 2. If e
nd7−→ e′, e′

nd7−→∗ v, and e′ ⇓ v, then e ⇓ v.

The proof follows by induction on the derivation of e
nd7−−→ e′.

A.3 Locations

The location of a value is the outermost label of that value. The locations of an
expression are the labels of any values that appear in that expression. Similarly
for declarations.

loc(〈x.e〉`) = `
loc(〈v1, v2〉`) = `

locs(λx.e) = locs(e)
locs(e1 e2) = locs(e1) ∪ locs(e2)
locs((e1, e2)) = locs(e1) ∪ locs(e2)
locs(πi e) = locs(e)
locs(let par d in e) = locs(d) ∪ locs(e)

locs(x = e) = locs(e)
locs(d1 and d2) = locs(d1) ∪ locs(d2)


