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Summary

Bio-inspired randomized search heuristics such as evolutionary algorithms, hybridiza-
tions with local search, and swarm intelligence are very popular among practitioners
as they can be applied in case the problem is not well understood or when there is
not enough knowledge, time, or expertise to design problem-specific algorithms. Evo-
lutionary algorithms simulate the natural evolution of species by iteratively applying
evolutionary operators such as mutation, recombination, and selection to a set of solu-
tions for a given problem. A recent trend is to hybridize evolutionary algorithms with
local search to refine newly constructed solutions by hill climbing. Swarm intelligence
comprises ant colony optimization as well as particle swarm optimization. These modern
search paradigms rely on the collective intelligence of many single agents to find good
solutions for the problem at hand. Many empirical studies demonstrate the usefulness
of these heuristics for a large variety of problems, but a thorough understanding is still
far away.

We regard these algorithms from the perspective of theoretical computer science and
analyze the random time these heuristics need to optimize pseudo-Boolean problems.
This is done in a mathematically rigorous sense, using tools known from the analysis of
randomized algorithms, and it leads to asymptotic bounds on their computational com-
plexity. This approach has been followed successfully for evolutionary algorithms, but
the theory of hybrid algorithms and swarm intelligence is still in its very infancy. Our
results shed light on the asymptotic performance of these heuristics, increase our under-
standing of their dynamic behavior, and contribute to a rigorous theoretical foundation
of randomized search heuristics.
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Nomenclature

bi String with i concatenations of the letter b

δ The local search depth in memetic algorithms

E(X) Expectation of the random variable X

e Euler’s number e = exp(1) = 2.7182 . . .

f = Ω(g) Function f grows at least as fast as g, see Definition 2.1.3

f = ω(g) Function f grows faster than g, see Definition 2.1.3

f = Θ(g) Functions f and g have the same order of growth, see Definition 2.1.3

f = O(g) Function f grows at most as fast as g, see Definition 2.1.3

f = o(g) Function f grows slower than g, see Definition 2.1.3

fa A function f transformed according to fa(x) = f(x ⊕ a) for x, a ∈ {0, 1}n

H(x, y) Hamming distance between x and y for x, y ∈ {0, 1}n

λ The number of offspring created in one generation

ln(x) Natural logarithm of x, i. e., logarithm of x to the base e

log(x) Logarithm of x to the base 2

µ The size of the population

n The number of bits in the search space, also called problem dimension

N(x) Open Hamming neighborhood of x (excluding x)

N∗(x) Closed Hamming neighborhood of x (including x)

Nk Neighborhood containing all points with Hamming distance exactly k

N The set of natural numbers, N = {1, 2, 3, . . . }

N0 The set of natural numbers including 0
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pm The mutation probability with which each bit is flipped in a mutation

Prob(A) Probability of the event A

R The set of reals

R
+ The set of positive reals

R
+
0 The set of positive reals including 0

ρ The evaporation factor in ant colony optimization

τ Function indicating pheromones on edges in ant colony optimization

τ Reciprocal of the local search frequency in memetic algorithms

vmax The maximum velocity value of a particle swarm optimizer

|x|1 The number of bits with value 1 in x

|x|0 The number of bits with value 0 in x

{Xt}t≥0 An infinite sequence of random variables X0,X1,X2, . . .

Z The set of integers, Z = {. . . ,−2,−1, 0, 1, 2, . . . }
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1 Introduction

1.1 Motivation and Overview

Optimization is one of the most important topics in computer science, engineering, and
many other disciplines. Theoretical computer science has brought forward a plethora
of sophisticated algorithms to solve optimization problems, especially for combinatorial
optimization. In combinatorial optimization the space S of possible solutions can be
described as a finite combination of finite discrete subspaces: S = S1×· · ·×Sm. Famous
examples are packing problems where a set of objects is given with associated values for
weight and profit and one is looking for a selection of objects that maximizes the total
profit of selected objects while respecting constraints such as a limit on the total weight.
The (combinatorial) search space is then given by a combination of single bits, where
Si = {0, 1} encodes the choice whether to select the i-th object. Another famous problem
is the traveling salesman problem (TSP) where a complete weighted graph is given and
a shortest tour is sought, i. e., a closed path through the graph of minimal cost that
visits all vertices exactly once. This space can, again, be regarded as a combination of
choices for the vertex to visit at the i-th position of the tour. As all single spaces of a
combinatorial space are finite, they can be encoded as a binary string. Concatenating all
these strings for a problem results in a so-called pseudo-Boolean function f : {0, 1}n → R.
This class of functions therefore includes all problems from combinatorial optimization.

A binary encoding of a combinatorial problem resembles a genome in nature, except
that the state space for a single gene consists of four symbols (“alleles”) A,T,C,G instead
of just two values 0 and 1. The Darwinian evolution of species has led to extremely well-
developed organisms using simple mechanisms such as mutation and recombination of
genes and selection. Selection includes environmental selection, a principle often referred
to as “survival of the fittest”, as well as the selection process of animals or humans looking
for appropriate mating partners.

From today’s point of view, it is not surprising that the simple yet powerful principle
of evolution has been used to “evolve” good solutions for a combinatorial problem in an
artificial environment. The so-called Genetic Algorithms have been established in the
United States by Holland (1975). The main idea is to generate a binary encoding for the
problem at hand and then to apply mutation, recombination, and selection to a multiset
(“population”) of solutions in an iterative process. Selection is done according to the
“fitness” of a solution, that is, the objective value of a maximization problem. Given
enough time, the hope is that the process is able to evolve good solutions with high
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1 Introduction

fitness, similar to natural evolution. Independently, so-called Evolution Strategies were
founded in Germany by Rechenberg (1973) and Schwefel (1975). In contrast to Genetic
Algorithms, which heavily relied on recombination, Evolution Strategies mainly or only
used mutation. Moreover, Evolution Strategies have been formulated for optimization
in continuous spaces. Nowadays, both Genetic Algorithms and Evolution Strategies are
known by the name of Evolutionary Algorithms and they form the basis of a highly
active and vivid area of research known as Evolutionary Computation.

Evolutionary algorithms have been applied to a large variety of practical problems, of-
ten with very good results reported in the literature. The popularity of these algorithms
can be explained as they are easy to implement and they can be applied in complex
settings where the problem to be optimized is not well enough understood to allow the
design of problem-specific algorithms. In an extreme case, the problem is just a black box
to the algorithm designer and knowledge on the problem at hand can only be obtained
by simulations or evaluations of candidate solutions. Moreover, evolutionary algorithms
can easily be applied when there is not enough time, knowledge, or expertise to design
a customized algorithm.

In contrast to problem-specific algorithms, evolutionary algorithms are not tailored
towards an analysis. Hence, assessing the performance of an evolutionary algorithm on
a specific problem is a non-trivial task. It is widely agreed that a solid theoretical foun-
dation of these algorithms is needed. First approaches towards a theoretical foundation
mostly dealt with convergence results or simplified models of evolutionary algorithms.
A convergence result states that as time goes to infinity, the probability of the algorithm
to find a global optimum tends to 1. However, in discrete spaces common mutation
operators trivially ensure convergence. As practical evolutionary algorithms represent
complex dynamical systems, simplified models have been generated. One exemplary
simplification is to assume a “population” of infinite size and then to compute fractions
of solutions with a specific property at some point of time. The investigation of sim-
plified models may result in statements that reflect the behavior of the real algorithm.
However, the real algorithm may still differ from the model in an uncontrolled way, which
makes it difficult to transfer results for the model to the real algorithm. In particular,
without bounding the errors introduced by simplifications it is not possible to obtain
proven theorems for the real algorithm.

In the late 1990s a new line of research emerged from theoretical computer science.
Instead of creating a model of an algorithm, researchers analyzed the algorithm as a
model of itself. Evolutionary algorithms were regarded as randomized algorithms and
the random time until these algorithms find a global optimum was assessed with math-
ematical rigor using tools from the analysis of randomized algorithms. This led to first
theorems proving (asymptotic) bounds on the expected time to find an optimum.

Initial studies of this kind considered simple evolutionary algorithms on simple exam-
ple functions. A well-known algorithm is the so-called (1+1) EA using a “population”
consisting of a single individual and no recombination (see the seminal article by Droste,
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1.1 Motivation and Overview

Jansen, and Wegener, 2002a). The example functions chosen represented simple bench-
mark problems, functions with an interesting characteristic, or examples constructed
to demonstrate specific effects observed through the evolution. The analysis of these
simple functions encouraged the development of new methods and tools for analyzing
the runtime of evolutionary algorithms. Moreover, these works clarified some questions
that were intensively discussed in the field, for instance whether all unimodal func-
tions (a definition will be given on page 17) are easy to optimize (Droste et al., 2002a;
Droste, Jansen, and Wegener, 2006), whether selection should accept solutions with
equal fitness (Jansen and Wegener, 2001), or whether there is a problem for which the
use of recombination can improve the performance significantly (Jansen and Wegener,
2005). This way, the described theoretical studies yielded new insights for the design
of evolutionary algorithms and increased our understanding of the dynamic behavior of
evolutionary algorithms.

The analysis methods gained through these initial studies were then applied to more
complex evolutionary algorithms and to various classical combinatorial optimization
problems. For simple problems it has been shown that appropriately designed evolu-
tionary algorithms can solve the problem to optimality in expected polynomial time, for
instance for shortest path problems (Scharnow, Tinnefeld, and Wegener, 2004), sorting
(as the minimization of unsortedness) (Scharnow et al., 2004), Eulerian cycles (Doerr and
Johannsen, 2007a; Neumann, 2004), minimum spanning trees (Neumann and Wegener,
2006, 2007) and matroid optimization (Reichel and Skutella, 2007). For other problems
such as maximum matchings (Giel and Wegener, 2003), the NP-hard partition prob-
lem (Witt, 2005), or the NP-hard minimum multicut problem (Neumann and Reichel,
2008), simple evolutionary algorithms can provide good approximations in polynomial
time or, in the case of maximum matchings, they constitute a PRAS (polynomial-time
randomized approximation scheme). Although we cannot expect evolutionary algorithms
to outperform problem-specific algorithms, these results underline the capabilities (and,
in some cases, also the limitations) of evolutionary algorithms. Hence, the fundamen-
tal research on simple algorithms on simple example functions in the end led to very
interesting results that demonstrate the usefulness of evolutionary algorithms from a
well-founded theoretical perspective.

Motivation

The purpose of this thesis is to continue this fruitful line of research and to apply the
techniques for the analysis of evolutionary algorithms to new classes of randomized
search heuristics. In recent years practitioners have developed and established a variety
of different extensions of evolutionary algorithms. One such extension is the use of addi-
tional mechanisms for maintaining diversity (i. e., dissimilarity of solutions) within the
population. A large diversity is often essential for the exploration of a search space with
different local optima. Furthermore, many new mutation and recombination operators
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1 Introduction

have been proposed, some of which are, intentionally or unintentionally, biased towards
creating particular solutions more likely than others. The effect of such a bias on search
is not well understood from a theoretical perspective.

Another very popular extension of evolutionary algorithms is to hybridize the evo-
lutionary process with local search. The purpose is to apply local search to newly
constructed solutions to quickly find good solutions. In an extreme case, the evolution
is then focused on the space of local optima. These algorithms are also well suited for
constrained optimization problems because local search can work as a repair mechanism:
if mutation and/or recombination lead to constraint violations, local search may turn
an infeasible solution with low fitness into a much more promising feasible solution with
good fitness. It is plausible that the evolution benefits from using local search from a
local point of view, but it is not obvious how the use of local search affects the global be-
havior and hence the performance of the algorithm. One important practical issue in the
design of these hybrids is the balance between evolutionary search and local search. As
local search is often computationally expensive, resources have to be spread adequately
among the two components. Moreover, using too much local search may interfere with
the exploration of the search space as the algorithm behaves too greedily. In the worst
case, this may result in the same local optima being rediscovered over and over again or
in the population quickly collapsing to the same local optimum. The theoretical under-
standing of these effects as well as the limits and capabilities of these hybrids is still in
its infancy.

Another important topic addressed by this thesis is the analysis of new bio-inspired
optimization paradigms. The area of Swarm Intelligence relies on the collective intelli-
gence of agents that interactively explore the search space. The two best known areas of
swarm intelligence are Ant Colony Optimization and Particle Swarm Optimization. Ant
colony optimization imitates the foraging behavior of real ants. Certain ant species com-
municate by placing chemicals called pheromones on the ground. If an ant locates a food
source, it leaves a trail of pheromones when walking back to the nest. These pheromones
can be smelled by other ants and other ants are then attracted by the pheromone trail.
The more ants follow this trail, the more pheromones are placed on this trail and the
more ants are attracted. This reinforcement of paths then leads to well known ant trails.
Moreover, when different ants discover different paths from the nest to a food source,
short paths are likely to be invested with pheromones more quickly than longer paths.
This way, ants are capable of finding short paths in nature, using a very simple form of
communication.

Ant colony optimization mimics this simple mechanism to reinforce good solutions.
The main idea is that artificial ants perform a random walk on a so-called construc-
tion graph. This graph is chosen such that the path taken by an ant can be mapped
to a solution of the problem at hand. All edges receive a certain amount of artificial
pheromone. The ant’s random walk is then biased by the amount of pheromone placed
on all edges; edges leading to currently unvisited vertices are chosen with a probability
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1.1 Motivation and Overview

proportional to their amount of pheromone. When the solution construction is com-
pleted, the constructed solution is evaluated and, in case of a sufficiently good solution,
the pheromones on the chosen edges are increased to increase the probability that sub-
sequent ants rediscover the same good solution or take similar paths.

Particle swarm optimization mimics the social behavior of a fish school or a bird flock.
These algorithms have originally been defined for optimization in continuous (e. g., Eu-
clidean) spaces. A “swarm” of particles is maintained, where every particle flies through
the search space with a certain velocity. Moreover, each particle has a current position,
corresponding to a candidate solution for the problem, and it memorizes the best posi-
tion it has occupied up to now. In every step the velocity of each particle is then updated
with respect to the particle’s own experience and the experience of other particles in its
neighborhood. More precisely, the velocity is updated in the direction of its own best
position and the best position of any particle in its neighborhood. The motivation for
this kind of update stems from psychology; it combines cognitive and social effects to
determine the behavior of a particle. In the literature discrete variants of particle swarm
optimizers have been defined, where the velocities are used in a probabilistic process to
construct new (binary) positions for a particle. The velocities there play a similar role
for particle swarm optimization as pheromones for ant colony optimization.

The theoretical analysis of swarm intelligence is a new and a major challenge as,
similar to the first days of evolutionary algorithms, only convergence results and results
for simplified models were known until 2006.

Overview

We give an overview of the thesis. Chapter 2 introduces the reader into evolutionary
algorithms and some frequently used tools for their analysis. We present an introduction
into evolutionary algorithms, including commonly used terms, definitions, and ways of
speaking. Then some prominent fitness functions are defined. Most functions played a
role in the theory of evolutionary algorithms so far and many functions will be revis-
ited later on in the context of different algorithms. A major part of this chapter is a
description of methods and tools from the analysis of randomized algorithms that are
used for or adapted to the analysis of evolutionary algorithms. As these methods will
be frequently used throughout this thesis, we use a textbook-like presentation, includ-
ing illustrative examples, to familiarize the reader with their application. Moreover,
the examples give a first impression on the asymptotic runtime of simple evolutionary
algorithms on interesting example functions.

Chapter 3 covers extensions of simple evolutionary algorithms. In Section 3.1 we
investigate a mutation operator that is biased towards solutions containing either few
or many 1-bits. This operator is motivated by applications where some knowledge on
the problem is available; in particular, where it is known that good solutions have either
few or many 1-bits. We consider illustrative example functions where this operator leads
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1 Introduction

to a significant speed-up, but we also take a broader perspective including general and
negative effects this operator can have.

Section 3.2 covers mechanisms to maintain diversity within the population. Main-
taining diversity is non-trivial as fitness-based selection and a large diversity are often
conflicting goals. Many different strategies have been proposed in the literature. We
compare these mechanisms on a bimodal test function that reflects characteristics found
in practical problems, but also allows for a theoretical analysis. The results show that
some of these mechanisms can find the global optimum efficiently, while other mecha-
nisms fail even with a fairly large population.

Chapter 4 contains the first analyses of hybridizations of evolutionary algorithms with
local search. These algorithms are known by various names such as memetic algorithms,
genetic/evolutionary local search, and global-local search hybrids. We first address the is-
sue of finding a good parametrization of such a memetic algorithm, i. e., a proper balance
between evolutionary search and local search. It is often believed that finding a good
parametrization is always easy. Section 4.1 describes classes of worst-case examples for
this task. For these functions certain parametrizations lead to an efficient optimization,
but only slight changes of the parameters lead to a disastrous decline in performance.
Moreover, for almost all parametrizations there is a function where this parametrization
turns out to be very inefficient. This disproves the existence of simple a priori design
guidelines that work well for every problem.

Still, memetic algorithms are powerful search heuristics that have been successfully
applied for various combinatorial problems. Section 4.2 contains an initial study why
these algorithms are so effective in combinatorial optimization. We investigate a memetic
algorithm using a local search operator called variable-depth search, which resembles
the well known Lin-Kernighan operator for the traveling salesman problem and the
Kernighan-Lin operator for graph partitioning. We consider simple instances of three
classical combinatorial problems, Mincut, Knapsack, and Maxsat. These instances
all contain local optima that are very hard to overcome for common algorithms like the
simple (1+1) EA (see page 14 for a definition), simulated annealing, and even a simple
memetic algorithm using a more greedy kind of local search. While all these algorithms
need exponential time with a fairly high probability, a simple memetic algorithm using
variable-depth search turns out to be very effective. These results give a first impression
on the reason why memetic algorithms are so effective in practice.

Last but not least, Chapter 5 deals with the analysis of swarm intelligence algorithms.
The rigorous mathematical analysis of ant colony optimization was started in 2006, inde-
pendently by Gutjahr (2008) and Neumann and Witt (2006). The latter authors defined
a simple algorithm called 1-ANT and analyzed its performance on the simple example
function OneMax that simply counts the number of bits set to 1 in the given solution.
Section 5.1 brings forward the analysis of the 1-ANT on slightly more difficult example
functions. Thereby, we develop new methods for the analysis of ant colony optimization
algorithms and insights into the dynamic behavior of the 1-ANT. It turns out, as already
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1.1 Motivation and Overview

observed by Neumann and Witt (2006) for OneMax, that the 1-ANT is very sensitive
to a parameter called ρ that determines the strength of a pheromone update. More
precisely, there is a phase transition from polynomial runtimes to exponential runtimes
as ρ decreases. Gutjahr and Sebastiani (2008) presented an analysis of a slightly dif-
ferent ant colony optimizer called MMAS* where this phase transition does not occur.
This motivates us to study this algorithm and variants thereof in Section 5.2. In these
algorithms, the best solution found so far is reinforced in every iteration. We contribute
to the analysis of these algorithms, building upon previous results by Gutjahr and Se-
bastiani (2008) and thereby also demonstrate the importance of the question whether
the best-so-far solution should be exchanged by new solutions with the same objective
value.

Similar to hybrid evolutionary algorithms, a common strategy in ant colony optimiza-
tion is to use local search to refine newly constructed solutions. Interestingly, the use
of local search here has additional effects, compared to evolutionary algorithms, as the
pheromones only slowly adapt to changes of the best-so-far solution. If local search
creates a new best-so-far solution that is far away from the previous best one, this may
result in the algorithm sampling in a region of the search space that has never been
visited before. Section 5.3 describes this effect in more detail and demonstrates the im-
pact on performance on two constructed functions where the use of local search is either
beneficial or detrimental.

Finally, Section 5.4 contains the first rigorous runtime analysis of a particle swarm
optimizer (PSO). We stick to the space of pseudo-Boolean functions and consider the
binary PSO algorithm introduced by Kennedy and Eberhart (1997). We present a
general lower bound for all functions with unique global optimum and provide a general
method for proving upper bounds by transferring a method well-known from evolutionary
algorithms to particle swarm optimization. A more detailed analysis on the simple test
function OneMax yields additional insights into the dynamic behavior of the algorithm.

In addition to theoretical bounds on the (expected) time to find an optimum, Chap-
ters 3 and 5 contain supplementary experimental results that accompany our theoretical
findings and give a more concrete impression on the performance of the considered al-
gorithms.

This thesis ends with conclusions and an outlook in Chapter 6 and an appendix
containing some useful mathematical tools collected from the literature.
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1 Introduction

1.2 Underlying Publications

This thesis is based on the following publications, listed in the order in which they appear
in this thesis. For all joint papers with k authors, this author’s contribution in terms of
ideas, proofs, and writing can roughly be quantified as 1/k.

1. Jansen, T. and Sudholt, D. (2005). Design and analysis of an asymmetric mutation
operator. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’05), pages 497–504. IEEE Press.

Section 3.1 is based on the following extension.

Jansen, T. and Sudholt, D. (2009). Analysis of an asymmetric mutation operator.
Evolutionary Computation. To appear.

2. Friedrich, T., Oliveto, P. S., Sudholt, D., and Witt, C. (2008). Theoretical analysis
of diversity mechanisms for global exploration. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’08), pages 945–952. ACM Press.
Best paper award in the track “Genetic Algorithms.”

Section 3.2 is based on the following extension.

Friedrich, T., Oliveto, P. S., Sudholt, D., and Witt, C. (submitted). Analysis of
diversity mechanisms for global exploration.

3. Sudholt, D. (2006b). On the analysis of the (1+1) memetic algorithm. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO ’06),
pages 493–500. ACM Press.

4. Sudholt, D. (2006a). Local search in evolutionary algorithms: the impact of the
local search frequency. In: Proceedings of the 17th International Symposium on
Algorithms and Computation (ISAAC ’06), volume 4288 of LNCS, pages 359–368.
Springer.

Section 4.1 is based on the following extension that contains 4. and parts of 3.

Sudholt, D. (submitted). The impact of parametrization in memetic evolutionary
algorithms.

5. Sudholt, D. (2008). Memetic algorithms with variable-depth search to overcome
local optima. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’08), pages 787–794. ACM Press. Nominated for a best paper
award in the track “Formal Theory.”

Section 4.2 is based on this paper. An extended version has been invited to a
special issue in Algorithmica.
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1.2 Underlying Publications

6. Doerr, B., Neumann, F., Sudholt, D., and Witt, C. (2007b). On the runtime analy-
sis of the 1-ANT ACO algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’07), pages 33–40. ACM Press. Best paper
award in the track “Ant Colony Optimization, Swarm Intelligence, and Artificial
Immune Systems.”

Section 5.1 is based on the following extended version.

Doerr, B., Neumann, F., Sudholt, D., and Witt, C. (submitted). Runtime analysis
of the 1-ANT ACO algorithm.

7. Neumann, F., Sudholt, D., and Witt, C. (2007). Comparing variants of MMAS
ACO algorithms on pseudo-Boolean functions. In: Proceedings of Engineering
Stochastic Local Search Algorithms (SLS ’07), volume 4638 of LNCS, pages 61–75.
Springer.

Section 5.2 is based on the following extended version.

Neumann, F., Sudholt, D., and Witt, C. (2009). Analysis of different MMAS ACO
algorithms on unimodal functions and plateaus. Swarm Intelligence. To appear.

8. Neumann, F., Sudholt, D., and Witt, C. (2008). Rigorous analyses for the com-
bination of ant colony optimization and local search. In: Proceedings of the
Sixth International Conference on Ant Colony Optimization and Swarm Intelli-
gence (ANTS ’08), volume 5217 of LNCS, pages 132–143. Springer.

Section 5.3 is based on this paper.

9. Sudholt, D. and Witt, C. (2008b). Runtime analysis of Binary PSO. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO ’08),
pages 135–142. ACM Press.

Section 5.4 is based on the following extended version.

Sudholt, D. and Witt, C. (submitted). Runtime analysis of a binary particle
swarm optimizer.
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2 Preliminaries

2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are randomized search heuristics inspired by the natural
evolution of species. The main idea is to simulate the evolution of candidate solutions
for an optimization problem. A typical evolutionary algorithm maintains a multiset
of solutions called population. The quality of the solutions in the population is given
by the objective value of the function to be optimized; one speaks of the fitness of a
solution and refers to the function as fitness function. The algorithm iteratively tries
to evolve the current population into a population of higher fitness. This is done by
selecting parents from the current population, applying mutation and/or recombination
operators to create new solutions, called offspring , and finally selecting good solutions
from the old population and the newly created offspring to form a new population. By
mimicking the principle of “survival of the fittest”, we can hope to evolve a population
of good individuals in the long run.

Evolutionary algorithms and other such heuristics are popular among practitioners as
they can be applied in a setting where the optimization problem is not well understood
or when there is not enough time, money, or expertise to design a problem-specific
algorithm. In the extreme case, nothing is known about the problem at hand and
evaluations of solutions are the only way to gather knowledge about it. This setting is
known as black-box scenario as here the problem can be seen as a black box. In such
a scenario, randomized search heuristics like evolutionary algorithms are often the only
possible way to deal with these problems.

This thesis covers the maximization of pseudo-Boolean functions f : {0, 1}n → R. The
search space {0, 1}n represents a “natural” space for evolutionary algorithms; moreover,
all problems from combinatorial optimization can be described as a pseudo-Boolean
function. Throughout this thesis n always denotes the number of bits. The restriction
to maximization problems is not essential as all minimization problems can be mapped
to maximization problems by multiplying the objective function by −1. Elements of
the search space are synonymously called search points, solutions, or individuals in the
context of evolutionary algorithms. For a search point x we often denote x = x1 . . . xn

where xi represents the value of the i-th bit in the bit string. Thereby, we use the string
notation x1 . . . xn as concatenation of x1, x2, . . . , and xn. In particular, we adopt the
widely used notation bi for the i concatenations of the letter b. Thus, the all-one bit
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2 Preliminaries

string of length n can be written as 1n. The most natural metric underlying {0, 1}n is
the Hamming distance.

Definition 2.1.1 (Hamming distance). For two search points x, y ∈ {0, 1}n with bit
values x = x1 . . . xn and y = y1 . . . yn let

H (x, y) :=

n∑

i=1

|xi − yi|

be the Hamming distance between x and y. If H (x, y) = 1, then y is called Hamming
neighbor of x. For two non-empty sets of search points X,Y ⊆ {0, 1}n let

H (x, Y ) := min
y∈Y

{H(x, y)}

be the Hamming distance between the search point x and the set Y and

H (X,Y ) := min
x∈X

{H (x, Y )}

be the Hamming distance between the sets X and Y .

We also define optima with respect to Hamming distance.

Definition 2.1.2 (Local and global optima). A search point x is called local optimum
of a function f : {0, 1}n → R if f(x) ≥ f(y) holds for all Hamming neighbors y of x. In
addition, x is called global optimum of f if f(x) = max{f(y) | y ∈ {0, 1}n}.

The term local optimum will often be used for local optima that are not global optima,
although every global optimum also represents a local optimum. In the language of
evolutionary computation, one often speaks of local and global optima in the context of a
fitness landscape. A fitness landscape is an imaginary “landscape” that reflects the search
space. The height of search points in this landscape corresponds to their fitness. A local
or global optimum can be seen as the top of a “hill” if it is surrounded by search points
whose fitness increases towards the optimum. Such a “hill” then corresponds to the
“basin of attraction” of a local or global optimum, another informal notion characterizing
a region of the search space where the fitness points towards a specific optimum. Similar
to hills, one can also speak of “valleys” in the landscape and even “ridges”, i. e., paths
of Hamming neighbors with high fitness, surrounded by points of lower fitness. A more
frequently used term is that of a “plateau”, a set of solutions with equal fitness value,
usually connected in Hamming space. We do not present formal definitions for these
terms as they are only used in informal discussions on a high level of abstraction.

Now, we describe the general scheme of an evolutionary algorithm. First, the popu-
lation is initialized by choosing a multiset of µ individuals uniformly at random from
{0, 1}n. Thereby µ is a common notation for the size of the population. Then a loop
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is executed until some stopping criterion is fulfilled. In this loop, first a set of parents
is selected; this process is called parent selection. These parents may then be mutated
and/or recombined to create new offspring. The number of offspring created in one gen-
eration is denoted by λ. Finally, the next generation’s population is created by selecting
good individuals from the set of µ parents and the λ new offspring. This selection step
is also referred to as environmental selection.

Algorithm 1 General scheme of an evolutionary algorithm

Initialize the population as a multiset of µ individuals.
repeat

Select a multiset of parents from the population.
Create λ offspring by mutating and/or recombining the selected parents.
Select µ individuals from the union of the population and the offspring.
Let these individuals replace the current population.

until stopping criterion.

For both kinds of selection, individuals may be selected uniformly at random (uni-
form selection) or with a probability proportional to their fitness (fitness-proportional
selection). Other common strategies are simply to deterministically select the individ-
uals with the best fitness (cut selection) or to simulate a tournament among randomly
selected individuals and then to select the winner (tournament selection). Any selection
mechanism that ensures the survival of the best individuals found so far is also termed
elitist selection.

In case the new population is selected from both old population and offspring, the
corresponding evolutionary algorithm (EA) is called a (µ+λ) EA as the new population
is created out of µ + λ individuals. An alternative is to ignore the old population and
to select µ individuals among the λ offspring. This requires λ ≫ µ and it leads to
algorithms denoted as (µ, λ) EAs. To emphasize the use of recombination, also called
crossover , “EA” may be replaced by “GA” for Genetic Algorithm.

The runtime analysis of evolutionary algorithms usually focuses on (µ+λ) EAs with cut
selection, where in case of equal fitness offspring usually are preferred over their parents.
In such an algorithm it is ensured that the fitness of the best individual is monotone
increasing over time. This also reflects the principle of “survival of the fittest.” We take
the same perspective in this thesis and consider a (µ+λ) EA with cut selection to be a
“typical” evolutionary algorithm.

We also describe a few common mutation and recombination operators. Mutation is
usually done by flipping each bit independently with a fixed parameter called mutation
probability pm. A common choice for this value is pm = 1/n as then the expected number
of flipping bits equals 1.
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A common recombination operator is 1-point crossover: when crossing two parents
x1 . . . xn and y1 . . . yn, a value i ∈ {1, . . . , n − 1} is chosen uniformly at random and an
offspring is created by cutting the parents at position i and taking parts from differ-
ent parents. The resulting offspring is then x1 . . . xiyi+1 . . . yn; a second offspring may
be constructed as y1 . . . yixi+1 . . . xn. Similarly, 2-point crossover or, generally, k-point
crossover chooses multiple such cut points at random and then takes parts from alter-
nating parents. These recombination operators depend on the ordering of bits. This
does not hold for uniform crossover : uniform crossover chooses each bit value from a
parent chosen uniformly at random. This implies, in particular, if both parents share a
common value at some bit, the offspring will receive the same value at this position. If
both parents have different bit values, the bit is assigned randomly in the offspring.

The analysis of evolutionary algorithms started with very simple variants. One very
popular algorithm in the theory of evolutionary algorithms is the so-called (1+1) EA
using a “population” of size µ = 1 and an offspring population of size λ = 1. As there
is no mating partner available, the (1+1) EA only uses mutation and no recombination.
Still, there is evolution as the current search point constantly competes with its offspring.
We give a formal definition of the (1+1) EA.

Algorithm 2 (1+1) EA

Choose x uniformly at random.
repeat

Create y by flipping each bit in x independently with probability 1/n.
if f(y) ≥ f(x) then x := y.

We refrain from specifying a stopping criterion and consider the algorithm as an infinite
stochastic process instead. This makes sense as we are mainly interested in the random
time until a global optimum is found. As performance measure, denoted as runtime or
optimization time, we often consider the number of generations needed to find a global
optimum. In case of population-based algorithms or memetic algorithms using local
search, it is often more fair to consider the number of fitness evaluations instead. This
accounts for the computational effort in one generation. Relying on the number of fitness
evaluations has become a standard for the analysis of randomized search heuristics.
One reason is that the additional computational effort necessary to run an evolutionary
algorithm is often polynomially related to the number of fitness evaluations. Moreover,
in practice often fitness evaluations are the most expensive operations, for example if
the fitness can only be assessed by simulations. Finally, in the following we often allow
ourselves to neglect the cost of initialization as this only constitutes an additive term
of µ.

Randomized search heuristics are usually not designed with an analysis in mind. When
analyzing such algorithms, one therefore often considers simple variants. In the case
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of evolutionary algorithms, a popular way to obtain a simple variant is to consider a
population of size 1. Such an algorithm is often called a trajectory-based algorithm as
the sequence of current solutions over time corresponds to a single trajectory through
the search space.

This restriction to trajectory-based algorithms makes sense for several reasons. One
is that the analysis for these algorithms is simpler than for “real” populations. The dy-
namics within a large populations are often quite difficult to control. If the population
is well-spread in the search space, a new solution might be created by mutation from
different parents at different locations, implying a large variance in the offspring con-
struction. When considering a crossover of two or more parents, this further increases
the variance. Moreover, the analysis has to take into account that with selection dif-
ferent individuals in the population compete against one another. This means that the
analysis cannot simply focus on the trajectory of one specific individual as this individ-
ual might be suddenly removed from the population if other individuals evolve towards
better solutions more quickly. Those effects can be quite challenging for an analysis. In
particular, when analyzing new classes of heuristics, it therefore makes sense to start
with a simple algorithm.

Second, the analysis of a trajectory-based algorithm can lead to valuable insights about
the behavior of an algorithm and it encourages the development of analysis methods.
These methods can then be used to analyze more complicated algorithms later on.

Third, often simple trajectory-based algorithms are somewhat representative for more
complicated algorithms. The hints given by an objective function that determine the
behavior of a trajectory-based algorithm also apply to larger populations in many cases.
The behavior of these two classes of algorithms is then similar, unless the behavior of a
large population is superimposed by other effects (like crossover). We can say that often
the analysis of population-based algorithms is more complicated than the analysis of a
trajectory-based algorithm and that it is simply not worthwhile to make this additional
effort as conclusions can also be drawn from the analysis of a simple algorithm.

Last but not least, for many problems investigated theoretically trajectory-based al-
gorithms perform surprisingly well. When taking the number of f -evaluations as perfor-
mance measure, the following holds. If the objective function gives good hints towards
global optima, algorithms with population size 1 are often more effective than variants
with a larger population. When a better solution is found, an algorithm with population
size 1 immediately occupies this new location in the search space. A larger population,
however, may need more time to occupy this new spot with an adequate number of
individuals (either by successful mutations or by offspring at the new location replacing
worse individuals at the old location). A small population is able to adapt more quickly
to the fitness landscape. This is an advantage for “easy” functions, but it may be a
disadvantage on difficult multimodal problems where a more diverse search is needed.
Many problems in applications are of this kind. On the other hand, many problems
investigated theoretically are easier as the purpose of the analysis is often to better
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understand the behavior of these algorithms. This partially explains why practitioners
often use large populations and theoreticians favor much smaller populations.

We conclude this section with a bit of notation. Bounds on the (expected) optimization
time are usually stated as asymptotic results. This reflects the order of growth of the
bound and neglects constant factors or smaller order terms, leading to simplified terms
for our bounds. We use the well-known asymptotic notation, also known as Landau
notation or “big-Oh” notation (see for example Cormen, Leiserson, Rivest, and Stein,
2001).

Definition 2.1.3 (Asymptotic notation). Let f, g : N0 → R be two functions.
We say f grows at most as fast as g and write f = O(g) if and only if there exist

n0 ∈ N and c ∈ R
+ such that for all n ≥ n0 we have f(n) ≤ c · g(n). We say f grows at

least as fast as g and write f = Ω(g) if and only if g = O(f).
We say f and g have the same order of growth and write f = Θ(g) if and only if

f = O(g) and f = Ω(g).
We say f grows faster than g and write f = ω(g) if and only if limn→∞ g(n)/f(n) = 0.

We say f grows slower than g and write f = o(g) if and only if g = ω(f).

When dealing with asymptotics, this always refers to the problem size n. Note that
asymptotic bounds such as O(n2) or Ω(n log n) hold trivially if n is bounded from above
by a fixed constant; then every function of n is of order Θ(1). Therefore, for proofs of
such bounds it is safe to assume that n ≥ n0 for a suitable constant n0.

An important distinction is between polynomial and exponential (expected) optimiza-
tion times. An algorithm with exponential optimization time is clearly inefficient for the
considered problem. Contrarily, an algorithm with polynomial expected optimization
time can be called efficient, when opposed to an exponential runtime. We also define
notions for inverse polynomial and inverse exponential functions that will be used mostly
for probabilities.

Definition 2.1.4 (Polynomial/superpolynomial/exponential). Let f : N → R
+.

– We say that f is polynomial and write f = poly(n) if f(n) = O(nk) for some
constant k ∈ R

+
0 .

– We say that f is superpolynomial if f(n) = ω(nk) for every constant k ∈ R
+
0 .

– We say that f is exponential if f(n) = Ω
(
2nε)

for some constant ε ∈ R
+.

– We say that f is polynomially small and write f = 1/poly(n) if 1/f is polynomial.

– We say that f is superpolynomially small if 1/f is superpolynomial.

– We say that f is exponentially small if 1/f is exponential.
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Concerning probabilities, we also define a handy notation for events that are very
likely.

Definition 2.1.5 (Notions for probabilities). We say that an event A occurs with high
probability (w. h. p.) if 1 − Prob(A) = O(n−k) for some k ∈ R

+.
We say that an event A occurs with overwhelming probability (w. o. p.) if 1−Prob(A)

is exponentially small.

2.2 Fitness Functions

The theoretical investigation of evolutionary algorithms started with simple example
functions. This makes sense since, unlike many problem-specific algorithms, evolutionary
algorithms are usually not designed to support an analysis. Often example functions were
chosen that were simple enough to be attacked by rigorous arguments, had interesting
properties, and reflected characteristics of practical problems. Analyzing such example
functions allowed researchers to build up a reservoir of methods and insights. This
then helped to attack more complicated problems. Nowadays, this approach can be
called a success story since analyses are now possible for more realistic problems from
combinatorial optimization. When analyzing extensions of evolutionary algorithms and
new classes of search heuristics, we will try to follow this path and to develop new
analysis methods with simple example functions. We present some of these functions
here.

The number of bits with value 1 is denoted by |x|1 and the number of bits with value 0
is denoted by |x|0. The most simple test function is the function

OneMax(x) := |x|1
that simply counts the number of ones in x. OneMax is often chosen to test whether
a heuristic algorithm can hit a specific target point efficiently. Here the fitness function
gives best possible hints towards the optimum and small steps of length 1 are sufficient
to optimize the function. The latter also holds for a more general class of functions,
so-called unimodal functions.

Definition 2.2.1. A function f is called unimodal if and only if for every search point x
that is not a global optimum there is a Hamming neighbor y of x with f(y) > f(x).

Remark 2.2.2. An alternative definition is that f contains exactly one local optimum. A
unimodal function from this definition is also unimodal under Definition 2.2.1. The latter
definition is more general as it allows multiple local optima with the same f -value. In
particular, a constant function is unimodal as there is no x that is not globally optimal.

Functions with several local and global optima of different fitness are commonly called
multimodal or bimodal in the case of two such optima.
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Some example functions have been proposed as examples or counterexamples to com-
mon beliefs. One such example is the function

LeadingOnes(x1 . . . xn) =
n∑

i=1

i∏

j=1

xi

that counts the number of leading ones, i. e., the length of the longest prefix of the
bit string that contains only 1-bits. Observe that this function is unimodal as flipping
only the leftmost 0-bit results in a Hamming neighbor with larger fitness. The function
LeadingOnes was proposed by Rudolph (1997a) as a counterexample for the belief that
all unimodal functions can be optimized by simple hill-climbers like the (1+1) EA in
expected time O(n log n).

Another interesting function is Ridge (Quick, Rayward-Smith, and Smith, 1998),
also known as SPI, short path with increasing fitness, in Jansen and Wegener (2001).
The most interesting part of the function is a path, a sequence of Hamming neighbors,
called ridge, that ends with the unique global optimum. In the rest of the search space
the function gives hints to reach the start of the ridge. An evolutionary algorithm
typically reaches the ridge close to the starting point and then has to climb up the ridge
towards the optimum. In particular, the (1+1) EA optimizes Ridge in expected time
Θ(n2) (Jansen and Wegener, 2001).

Ridge(x) :=

{

n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}
n + i if x ∈ {1i0n−i | 0 ≤ i ≤ n}

The concept of guiding an algorithm towards a path with increasing fitness is interesting.
The benefit of such a construction is that the course of the evolution can be predicted
quite well once the whole population reaches the path. If all individuals close to the
path (but not belonging to it) have low fitness, the creation of search points that are far
away from the path is very unlikely. Similar constructions will reappear in Sections 4.1
and 5.3.

All functions defined so far are unimodal. One difficulty with non-unimodal functions
is that there may be regions of the search space of equal fitness. Such a region is called a
plateau. Depending on size and structure of the plateau, it may be hard for an algorithm
to leave the plateau towards better individuals as the fitness function does not give useful
hints. A simple example of a plateau is given in the following function Plateau, which
is also known as SPC in Jansen and Wegener (2001).

Plateau(x) :=







n − |x|1 if x /∈ {1i0n−i | 0 ≤ i ≤ n}
n + 1 if x ∈ {1i0n−i | 0 ≤ i < n}
n + 2 if x = 1n
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The function Plateau resembles Ridge, except that the path of increasing fitness is
now a plateau of equal fitness. However, the plateau is small enough to be efficiently
overcome by simple algorithms like the (1+1) EA, whose expected optimization time is
of order Θ(n3) (Brockhoff, Friedrich, Hebbinghaus, Klein, Neumann, and Zitzler, 2007;
Jansen and Wegener, 2001).

In the most extreme case the whole search space is a plateau, except for a single global
optimum. In such a setting, search is like looking for a needle in a haystack. This is
reflected in the function

Needle(x) :=

n∏

i=1

xi

for which Droste, Jansen, Tinnefeld, and Wegener (2003) proved that every black-box
algorithm needs Ω(2n) function evaluations on average (with respect to a natural gen-
eralization to a class of functions).

2.3 Methods for the Analysis of Randomized Search Heuristics

In order to set the stage for the upcoming analyses, we describe some of the methods
frequently used in the analysis of randomized search heuristics. Many tools are ac-
companied by examples showing their concrete application for the (1+1) EA. Parts of
this presentation are freely adapted from Wegener (2002), Oliveto, He, and Yao (2007),
and lectures on evolutionary algorithms by Wegener (Summer term 2002) and Jansen
(Winter term 2006/2007).

2.3.1 Standard Mutations

The most common mutation operator, called standard mutation, flips each bit indepen-
dently with probability 1/n. In order to understand evolutionary algorithms and their
extensions, it is crucial to gain some intuition about the characteristics of this operator.

Consider a standard mutation of a parent x. Fix a specific target point y with
H (x, y) = k ≥ 1. Then the probability that the mutation creates y is

(
1

n

)k

·
(

1 − 1

n

)n−k

.

Obviously, this probability is bounded from above by 1/nk. We obtain a lower bound
1/(enk) using (1 − 1/n)n−k ≥ (1 − 1/n)n−1 ≥ 1/e with e = exp(1) = 2.7182 . . . by
Lemma A.13 in the appendix.

The probability of generating y from x by a standard mutation only depends on the
Hamming distance H (x, y). Therefore, all search points with Hamming distance k from x
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have the same probability of being generated. The probability of creating an arbitrary
search point with Hamming distance k is therefore

(
n

k

)

·
(

1

n

)k

·
(

1 − 1

n

)n−k

.

Using
(n
k

)
≤ nk/k! (cf. Lemma A.10) yields 1/k! as upper bound. We summarize our

findings in the following lemma.

Lemma 2.3.1. Consider a standard mutation of a search point x and let 1 ≤ k ≤ n.
The probability that a specific search point with Hamming distance k to x is created is
bounded from below and above by

1

enk
≤
(

1

n

)k

·
(

1 − 1

n

)n−k

≤ 1

nk
.

The probability that an arbitrary search point with Hamming distance k is created is

(
n

k

)

·
(

1

n

)k

·
(

1 − 1

n

)n−k

≤ 1

k!
.

In every generation of the (1+1) EA there is a chance that the events from Lemma 2.3.1
happen. The expected time until one such event with probability p happens is therefore
geometrically distributed with parameter p. By Lemma A.1, the expected waiting time
equals 1/p. It follows that the expected waiting time for a specific k-bit mutation is at
least nk and at most enk. The expected waiting time for a mutation flipping k bits is at
least k!.

2.3.2 The Fitness-Level Method

The (µ+λ) EA and all other evolutionary algorithms considered in this thesis have in
common that the fitness of the best individual in the population cannot decrease over
time. The expected optimization time can therefore be bounded from above if we have
bounds for the expected waiting times until the fitness of the best individual increases.
The following theorem is known as method of f -based partitions (Wegener, 2002) or
fitness-level method .

Theorem 2.3.2 (Fitness-level method). For two sets A,B ⊆ {0, 1}n and fitness func-
tion f let A <f B if f(a) < f(b) for all a ∈ A and all b ∈ B. Consider the (µ+λ) EA
and a partition of the search space into non-empty sets A1, . . . , Am such that

A1 <f A2 <f · · · <f Am

and Am only contains global optima. Let si be a lower bound on the probability of creating
a new offspring in Ai+1∪· · ·∪Am, provided the population contains a search point in Ai.
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Then the expected number of generations for the (µ+λ) EA to find an optimum is bounded
by

m∑

i=1

1

si
.

Note that this bound is independent of the initialization as we pessimistically assume
that all fitness-level sets have to be passed. In Wegener (2002) a more precise bound is
presented taking into account the random initialization. However, in most applications
the initialization does not have a significant impact, therefore we stick to this simplified
formulation of the method.

We exemplarily apply the fitness-level method to the analysis of the (1+1) EA on
OneMax, following Droste et al. (2002a).

Theorem 2.3.3 (Application: upper bound for OneMax). The expected optimization
time of the (1+1) EA on OneMax is O(n log n).

Proof. We choose the canonical partition A0, . . . , An where Ai contains all search points
x with |x|1 = i. Let 0 ≤ i < n. Given that the current solution x is in Ai, there are
n − i bits with value 0. Flipping one such bit and not flipping the other n − 1 bits
results in a search point in Ai+1∪· · ·∪An. For a specific 0-bit, this event has probability
1/n · (1−1/n)n−1 ≥ 1/(en), recalling Lemma 2.3.1. As the considered events for all n− i
0-bits are disjoint, we have si ≥ (n − i) · 1/(en). Theorem 2.3.2 leads to the bound

n−1∑

i=0

1

si
≤

n−1∑

i=0

en

n − i
= en ·

n∑

i=1

1

i
≤ en · ((ln n) + 1).

For the last inequality we have used Lemma A.11. Therefore, the expected runtime of
the (1+1) EA on OneMax is O(n log n).

It is also easy to arrive at a general upper bound for all unimodal functions.

Theorem 2.3.4 (Application: general upper bound for unimodal functions). The ex-
pected optimization time of the (1+1) EA on a unimodal function f attaining d different
function values is O(nd).

Proof. As f contains d different function values, there is an f -based partition A1, . . . , Ad

where every set contains search points of equal fitness. For every set Ai, i < d, every
search point has at least one Hamming neighbor on a better fitness level. It follows
si ≥ 1/(en) and the expected optimization time is at most (d − 1) · en = O(nd).
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2.3.3 Analyzing Typical Runs

The fitness-level method is a simple yet powerful method, but it does not need to reflect
a typical behavior of the algorithm. It may happen that many fitness level sets are
skipped or that the values si are too pessimistic. For example, si may be dominated by
a few challenging search points with a low probability of leaving Ai, which are unlikely
to be reached when passing through Ai.

Therefore, it is often necessary to track the typical behavior of an evolutionary algo-
rithm. This can be done by (explicitly or implicitly) identifying “phases” in the run of
the algorithm. We usually identify subsequent phases where Phase i ends when some
goal is achieved, and then Phase i + 1 starts. The total runtime can be estimated by
the sum of times spent in all phases. The main benefit of such a phase argumentation is
that a carefully specified goal for Phase i allows a more detailed analysis of the following
phases. For example, when looking for an upper bound, the goal of Phase i may imply
that then the goal of Phase i+1 is reached efficiently. By a careful specification of phases
and their corresponding goals, we can obtain strong results on the runtime distribution
of an evolutionary algorithm.

Such a phase argumentation may contain situations where unlikely events may “dis-
turb” the search dynamics in a typical run. For example, a very unlucky initialization
may lead the algorithm to regions of the search space that are never visited in a typi-
cal run. Other “disturbing” events may be that standard mutation causes overly large
jumps that result in a very untypical behavior. We often speak of these unlikely events
as “errors” or “failures” and its probabilities as “error probabilities” and “failure prob-
abilities”, respectively.

In a typical analysis, we bound the total error probability perror by the sum of all error
probabilities (cf. the union bound from Lemma A.4). By the law of total probability (cf.
Lemma A.2), we have for the runtime T

E(T ) = E(T | error) · perror + E(T | no error) · (1 − perror)

In order to obtain lower bounds, we can use the trivial lower bound E(T | error) ≥ 0,
resulting in

E(T ) ≥ E(T | no error) · (1 − perror). (2.1)

For upper bounds on E(T ), we require an upper bound for E(T | error), a smaller upper
bound for E(T | no error) and an upper bound for the total error probability. In case
there is no suitable upper bound for E(T | error), we at least obtain a statement on
the conditional expected runtime in a typical run without errors. Moreover, if this
conditional expectation is concentrated, we can prove runtime bounds that hold with
high probability.

Theorem 2.3.5 (Application: lower bound for OneMax). The expected optimization
time of the (1+1) EA on OneMax is Ω(n log n).
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Proof. Partition a run of the (1+1) EA into two phases. Phase 1 only contains the
initialization and Phase 2 comprises the rest of the run. The goal of Phase 1 is that
initialization creates a search point x with at least n/3 zeros. The expected number of
initial zeros is E(|x|0) = n/2. Chernoff bounds (cf. Lemma A.6) state that the probability
of having less than n/3 zeros is at most

Prob
(

|x|0 ≤ n

3

)

= Prob

(

|x|0 ≤
(

1 − 1

3

)

E(|x|0)
)

≤ e−E(|x|0)·1/18 = e−n/36.

Assume that Phase 1 has been successful and consider Phase 2. The goal here is not to
reach the optimum within t := (n−1) · ln(n/3) = Ω(n log n) steps. Consider the opposite
event that the optimum is reached within t steps. A necessary condition is that every
0-bit has to be flipped at least once during t steps. The probability that a specific bit is
not flipped during t steps is at least

(

1 − 1

n

)t

=

((

1 − 1

n

)n−1
)ln(n/3)

≥ e− ln(n/3) =
1

n/3
.

The probability that this bit is flipped at least once is therefore at most 1−1/(n/3) and
the probability that n/3 bits are flipped at least once in t steps is at most

(

1 − 1

n/3

)n/3

≤ 1

e
.

By the union bound (cf. Lemma A.4) the total error probability in both phases is e−n/36+
1/e ≤ 1/2 if n is large enough. Hence with probability at least 1/2 a run is typical and
the goal of Phase 2 implies a lower bound of t steps. By Equation 2.1 we obtain the
lower bound t/2 = Ω(n log n).

For a typical run, we often demand that during a phase of random length an undesired
event must not happen. In order to compute the error probability for the whole phase,
we can simply multiply the error probability for a single generation with the expected
length of the phase.

Lemma 2.3.6 (Error probability in a phase). Consider a phase of random length T . If
in every generation there is a probability of at most p that some undesired event happens,
the probability that the event happens at least once during the phase is bounded by

∞∑

t=0

Prob(T = t) · t · p = E(T ) · p.
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In order to obtain bounds that hold with high probability the following argumentation
often proves useful. We describe this argument for a general stochastic process—an
infinite sequence of random variables X0,X1,X2, . . . , denoted by {Xt}t≥0. Such a process
is called Markov chain or Markov process if

Prob(Xt = xt | X0 = x0, . . . ,Xt−1 = xt−1) = Prob(Xt = xt | Xt−1 = xt−1)

holds, i. e., the current state only depends on the previous state.

Lemma 2.3.7 (Independent phases). Consider a Markov chain {Xt}t≥0 and the first
hitting time T of some desired event. If E(T | X0) ≤ α for all X0 and some integer
α ∈ N0, then Prob(T ≥ α · 2k) ≤ 2−k for every k ∈ N.

Proof. By Markov’s inequality (cf. Lemma A.5) Prob(T ≥ 2α | X0) ≤ 1/2 for all X0.
Consider k phases of length 2α each. As the above statement holds for every initialization
and the process is Markovian, each phase independently contains the desired event with
probability at least 1/2. Hence the probability that the event does not occur in all k
phases is at most 2−k.

Note that Lemma 2.3.7 is applicable for runtime bounds obtained by the fitness-level
method as the bound from Theorem 2.3.2 holds for every initialization.

2.3.4 Drift Analysis

Often the fitness value of the individuals in the population does not provide enough in-
formation to obtain good runtime bounds. For example, there may be plateaus of search
points with equal fitness where fitness alone does not give any useful information about
the algorithm’s progress. It then makes sense to consider other measures than fitness.
Let g be a function defined over the space of possible populations with codomain R

+
0 .

Consider g as a sort of distance measure to some target population with g-value 0. We
are then interested in the first hitting time T of a target state with g-value 0. A natural
example is to choose g as the Hamming distance of the population to a global optimum.
One can also think of other applications, for example in the context of typical runs where
g may denote some sort of distance to the goal of the current phase.

There are various settings where such a consideration proves useful. It may be that
the algorithm has a natural tendency to move towards the desired state with g-value 0.
Imagine a simple deterministic scenario where every step decreases the current g-value
by some δ ∈ R

+, with probability 1. Then, starting with state X0, we would clearly
have E(T ) = g(X0)/δ, provided g(X0)/δ ∈ N0. The same statement holds if the expected
g-decrease in one step equals δ, i. e., if E(g(Xt) − g(Xt+1) | Xt) = δ holds for g(Xt) > 0.
This relationship between E(T ) and δ is known as Wald’s equation (Mitzenmacher and
Upfal, 2005; Wald, 1944).
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We will often speak of the expected g-decrease as drift . In order to derive upper or
lower bounds on E(T ), it is not necessary that δ describes the drift exactly. If δ is a
lower bound for the drift and nevertheless δ > 0, then we can derive an upper bound
E(T ) ≤ E(g(X0))/δ. Symmetrically, if δ is an upper bound for the drift and δ > 0, a
lower bound E(T ) ≥ E(g(X0))/δ can be shown.

Although the above-mentioned bounds were derived independently in other studies
(see Wegener and Witt (2005, Lemma 6) for an upper bound and Jägersküpper (2007,
Lemma 12) for a lower bound), we refer to He and Yao (2004) for bounds on the condi-
tional expectation E(T | X0). Using the law of total expectation (cf. Lemma A.3) yields
E(T ) = E(E(T | X0)). This is used to extend results from He and Yao (2004) with
bounds for the unconditional expected first hitting time E(T ).

Theorem 2.3.8 (Drift arguments, He and Yao (2004)). Consider a Markov process
{Xt}t≥0 with state space S and a function g : S → R

+
0 . Let T := inf{t ≥ 0: g(Xt) = 0}.

1. If there exists δ > 0 such that for every time t ≥ 0 and every state Xt with
g(Xt) > 0 the condition E(g(Xt) − g(Xt+1) | Xt) ≥ δ holds, then

E(T | X0) ≤ g(X0)

δ
and E(T ) ≤ E(g(X0))

δ
.

2. If there exists δ ∈ R
+ such that for every time t ≥ 0 and every state Xt with

g(Xt) > 0 the condition E(g(Xt) − g(Xt+1) | Xt) ≤ δ holds, then

E(T | X0) ≥ g(X0)

δ
and E(T ) ≥ E(g(X0))

δ
.

Theorem 2.3.9 (Application: upper and lower bounds for LeadingOnes). The ex-
pected optimization time of the (1+1) EA on LeadingOnes is Θ(n2).

Proof. We choose as distance function the fitness difference to an optimal fitness value,
i. e., g(xt) := n−LeadingOnes(xt) where xt denotes the current search point in gener-
ation t. First, we bound the expected g-value of the initial solution x0. The probability
that the initial solution contains i leading ones is 2−i−1 for 0 ≤ i < n as this requires
the first i bits to be set to 1 and the (i + 1)-st bit to be 0. We have

E(g(x0)) = n −
(

n−1∑

i=0

i · 2−i−1 + n · 2−n

)

= n − 1 + 2−n,

proving n − 1 ≤ E(g(x0)) ≤ n.
For the upper bound it is sufficient for a fitness increase that all i leading ones are

reproduced and an (i + 1)-st 1-bit is appended. This event has probability at least
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(1 − 1/n)i · 1/n ≥ 1/(en) and then g(xt+1) = g(xt) − 1. As the LeadingOnes-value
cannot decrease, this implies E(g(xt) − g(xt+1)) ≤ 1/(en) if LeadingOnes(xt) > 0.
Invoking Theorem 2.3.8 with δ := 1/(en) yields the upper bound en2 = O(n2).

We now strive at proving a lower bound of the same order. A necessary event to
decrease the g-value is to flip the leftmost 0-bit. This happens with probability 1/n.
However, the LeadingOnes-value may increase by more than 1 if some of the following
bits happen to have value 1. These bits are called free riders by Droste, Jansen, and
Wegener (2002a). The bits following the leftmost zero have never yet contributed to the
fitness value, hence, intuitively, these bits are due to a uniformly random distribution.
(The interested reader may consult Droste et al. (2002a) for a formal proof.) If t+1 is the
first generation where such a bit is first relevant for the fitness value, it attains value 1 in
xt+1 with probability 1/2. Note that we consider an unconditional probability, i. e., we
do not condition on the bit’s value in any previous search point, including initialization.
Instead, we pretend that the random decision about the bit’s value at time t + 1 is first
made at time t + 1. This way of arguing is known as principle of deferred decisions
(Mitzenmacher and Upfal, 2005; Motwani and Raghavan, 1995). After generation t + 1,
all considered bits either belong to the block of leading ones or represent the leftmost
0-bit, hence we cannot make multiple deferred decisions for the same bit.

By these arguments the probability that the first j bits following the leftmost 0-bit all
become free riders is 2−j. Repeating the calculations for E(x0) from above, the expected
number of free riders gained in a step increasing the LeadingOnes-value is at most 1
and the expected fitness increase is at most 2. We conclude E(g(xt) − g(xt+1)) ≤ 2/n,
hence Theorem 2.3.8 results in the bound (n − 1) · n/2 = Ω(n2).

Another scenario where a consideration of a distance function g proves useful is when
there is a tendency to move away from the target point, i. e., when there is a drift to
increase the distance g. As we are dealing with finite search spaces, the distance g cannot
become arbitrarily large. So a tendency to increase g cannot be present in the whole
search space. However, if we restrict our considerations to an interval [a, b] on the scale
of g, it is possible that for this interval we have a tendency to increase the distance g.
It then may be hard to decrease the g-value below a.

A drift in the interval [a, b] alone is not sufficient to derive lower bounds as the interval
may be skipped or traversed very quickly by large jumps on the g-scale. To avoid this,
we need the additional assumption that the probability of large jumps decreases fast
enough. Hajek (1982) presented a drift theorem where lower bounds could be derived
from the two above-mentioned assumptions. This theorem was used for the runtime
analysis of evolutionary algorithms (Friedrich, Oliveto, Sudholt, and Witt, 2008; Giel
and Wegener, 2003). Oliveto and Witt (2008) recently presented a simplified theorem
that is much easier to apply than the previous formulation. To simplify the notation,
we consider a general Markov process {Xt}t≥0 that includes the case where Xt = g(xt).
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Theorem 2.3.10 ((Simplified) Drift Theorem, (Oliveto and Witt, 2008)). Consider a
Markov process {Xt}t≥0 over the state space S = {0, 1, . . . ,N} for some integer N ∈ N.
Let 0 ≤ a < b ≤ N and T = min{t ≥ 0: Xt ≤ a | X0 ≥ b}. For i ∈ S and t ≥ 0 let
∆t(i) := (Xt+1 − Xt | Xt = i). Suppose there are constants δ, ε, r > 0 such that for all
t ≥ 0

1. E(∆t(i)) ≥ ε for a < i < b and

2. Prob(∆t(i) = −j) ≤ 1/(1 + δ)j−r for i > a and j ≥ 1,

then there is a constant c > 0 such that Prob
(
T ≤ 2c(b−a)

)
= 2−Ω(b−a).

The following example is adapted from Oliveto and Witt (2008).

Theorem 2.3.11 (Application: lower bound for Needle). The probability that the
(1+1) EA optimizes Needle in 2cn generations is 2−Ω(n) for some constant c > 0.

Proof. Let xt be the current search point of the (1+1) EA in generation t and let
Xt = |xt|0. We use the following observation: if the number of zeros in the current
search point is low, i. e., smaller than n/4, it is likely that more 1-bits flip to 0 than
0-bits flip to 1. Therefore, for these search points there is a drift towards an increased
number of zeros.

To apply Theorem 2.3.10, we set a := 0 and b := n/4. With probability 1 − 2−Ω(n)

the initial search point contains at least n/4 zeros and then the condition X0 ≥ b in the
definition of T is fulfilled. We first estimate E(∆t(i)) = E(|xt+1|0 − |xt|0 | |xt|0 = i) for
0 ≤ i < b. Given |xt|0 = i, the expected number of zeros flipping to 1 is i/n, while the
expected number of ones flipping to 0 is (n − i)/n. Together, we have

E(∆t(i)) =
n − i

n
− i

n
=

n − 2i

n
≥ 1

2

and choosing ε := 1/2, the first condition of Theorem 2.3.10 holds. For the second
condition the number of newly created 0-bits is clearly bounded by the number of flipping
bits. Recall that flipping k bits simultaneously has probability at most 1/k! ≤ (e/k)k ≤
23−k for k ∈ N. Therefore, choosing δ := 1 and r := 3, we have Prob(∆t(i) = −j) ≤
23−j = 1/(1 + δ)3+j and the second condition has been verified as well. Theorem 2.3.10
then yields the claim.

2.3.5 Random Walks and Martingales

In case there is no drift, neither towards nor pointing away from the target state, the
considered algorithm performs an unbiased random walk through the state space. It
may happen that for almost all states the expected progress equals 0. Such a process is
known in probability theory as martingale.
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Definition 2.3.12 (Martingales, submartingales, and supermartingales). Let {Xt}t≥0

be a stochastic process and {Yt}t≥0 be a real-valued stochastic process such that Yt is a
function of X0, . . . ,Xt and E(|Yt|) < ∞ for all t ≥ 0.

Then {Yt}t≥0 is called a martingale with respect to {Xt}t≥0 if

E(Yt+1 | X0, . . . ,Xt) = Yt.

Moreover, {Yt}t≥0 is called a submartingale with respect to {Xt}t≥0 if

E(Yt+1 | X0, . . . ,Xt) ≥ Yt

and supermartingale if

E(Yt+1 | X0, . . . ,Xt) ≤ Yt.

Note that we do not require {Xt}t≥0 to be Markovian. However, in the Markovian
case we can replace E(Yt+1 | X0, . . . ,Xt) by E(Yt+1 | Xt) in Definition 2.3.12. Also note
that a martingale is a submartingale and a supermartingale at the same time. If {Yt}t≥0

is a submartingale, then {−Yt}t≥0 is a supermartingale, and vice versa. Finally, it is
possible that {Xt}t≥0 = {Yt}t≥0, i. e., a martingale can be defined with respect to itself.

Of course, an expected progress of 0 does not imply that the algorithm is unable to
reach specific target states. This is due to the variance in the stochastic process. We are
interested in the random time until a target state is hit. This time is commonly denoted
as stopping time.

Definition 2.3.13. A stopping time T of a stochastic process {Xt}t≥0 is a random
variable with codomain N0 ∪ {∞} such that for all t ≥ 0 the event T = t does only
depend on X0, . . . ,Xt (and not on Xt+1,Xt+2, . . . ).

By definition of a martingale, its expected progress in one step equals 0. Moreover,
its expected progress in t ≥ 0 steps still equals 0 if t is fixed. Consider the expected
progress within T steps, where T is a stopping time and hence a random variable that
may depend on the process itself. One might think that the statement for all fixed t
implies the statement for T , but this need not be the case. Consider a symmetric
random walk {Xt}t≥0 on Z, starting with X0 = 0, where Prob(Xt+1 = Xt + 1) = 1/2
and Prob(Xt+1 = Xt − 1) = 1/2. Define the stopping time T := inf{t | Xt = 1}. It
is known that E(T ) < ∞, hence E(XT ) is defined, but E(XT ) = 1 6= X0 by definition
of T . However, under certain conditions E(XT ) = E(X0) still holds. The following
martingale stopping theorem is also known as optional stopping theorem or optional
sampling theorem.

Theorem 2.3.14 (Martingale Stopping Theorem (Williams, 1991, Theorem 10.10)). Let
{Yt}t≥0 be defined with respect to a process {Xt}t≥0 and T be a stopping time of {Xt}t≥0.
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If E(T ) < ∞ and there is a constant c ∈ R
+
0 such that E(|Yt+1 − Yt| | X0, . . . ,Xt) ≤ c

for all 0 ≤ t < T , then

E(YT ) ≥ E(Y0) if {Yt}t≥0 is a submartingale,
E(YT ) ≤ E(Y0) if {Yt}t≥0 is a supermartingale, and
E(YT ) = E(Y0) if {Yt}t≥0 is a martingale.

We will use the martingale stopping theorem to estimate the expected time until a
real-valued stochastic progress first hits some boundary values. The application is not
immediate. After all, all statements related to martingales seen so far tell us that such
a stochastic process does not move, in expectation. The trick is to introduce another
martingale process that incorporates the variance of the original process. Then the
martingale stopping theorem is applied for both processes and the relationship between
the two processes yields the desired bound. We make this argumentation precise for the
following simple random walk.

Theorem 2.3.15 (Application: analysis of a simple random walk). Let {Xt}t≥0 by a
stochastic process on Z where Xt+1 := Xt + 1 with probability 1/2 and Xt+1 := Xt − 1
otherwise. Define T := inf{t ≥ 0 | Xt ∈ {0, n}} and observe that T is a stopping time
with respect to {Xt}t≥0. If 0 ≤ X0 ≤ n, then E(T ) = X0(n − X0).

Proof. Observe that {Xt}t≥0 is a martingale:

E(Xt+1 | X0, . . . ,Xt) =
1

2
· (Xt + 1) +

1

2
· (Xt − 1) = Xt.

Define a stochastic process {Yt}t≥0 with respect to {Xt}t≥0 by

Yt := (Xt)
2 − t.

We claim that {Yt}t≥0 is a martingale with respect to {Xt}t≥0:

E(Yt+1 | X0, . . . ,Xt) = (Xt+1)
2 − t − 1

=
1

2
· (Xt + 1)2 +

1

2
· (Xt − 1)2 − t − 1

= (Xt)
2 − t = Yt.

We apply the martingale stopping theorem to {Yt}t≥0. As there is always a probability of
at least 2−n/2 that the next ⌊n/2⌋ steps reach either 0 or n, we have E(T ) ≤ n·2n/2 < ∞.
Along with |Yt+1 −Yt| ≤ (Xt)

2 ≤ n2, the second condition of Theorem 2.3.14 is fulfilled.
This implies E(YT ) = E(Y0) = (X0)

2. On the other hand, we have by definition of Yt

that E(YT ) = E
(
(XT )2 − T

)
= E

(
(XT )2

)
− E(T ). Putting the two statements together

yields
E(T ) = E

(
(XT )2

)
− (X0)

2. (2.2)
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Observe E
(
(XT )2

)
= Prob(XT = n) · n2. Applying the martingale stopping theorem

again for {Xt}t≥0 yields E(XT ) = X0, which implies Prob(XT = n) = X0/n as E(XT ) =
Prob(XT = n) · n. We conclude E

(
(XT )2

)
= X0 · n and plugging this into Equation 2.2

yields

E(T ) = X0 · n − (X0)
2 = X0(n − X0).

Note that the term −t in the definition of {Yt}t≥0 reflects the total variance in t steps
of the process {Xt}t≥0. We will see in Section 3.1 how the result from Theorem 2.3.15
can be generalized to random walks with arbitrary step lengths.

2.3.6 The Role of Experiments

Although the main focus of this thesis is on rigorous theoretical results, some analyses
are accompanied by experimental supplements. We would like to explain how these
results relate to our theoretical results. It should be noted that the explanatory power
of experiments is limited. Clearly, experimental results cannot prove positive general
results (i. e., “for all” statements). To disprove a general result, one counterexample
is sufficient. However, when dealing with purely asymptotical results, we cannot find
a counterexample by experiments. One reason is that asymptotic results only hold for
n ≥ n0 for some unknown constant n0 ∈ R

+
0 . When doing experiments for problem

dimensions up to n′, we cannot exclude that n0 > n′, i. e., the asymptotic result under
consideration does not hold for the problem dimension investigated experimentally. Even
if n0 is known, statements on random variables mostly are of stochastic nature and thus
cannot be proved or disproved by experiments for logical reasons.

On the other hand, experiments can be a useful enhancement to theoretical results.
First, they can provide information for small problem dimensions that may not be cov-
ered by asymptotic results. Second, experiments can reveal insight into the constant
factors and lower-order terms hidden in the asymptotic notation. In particular, experi-
ments can provide hints whether the asymptotic runtime bounds are tight. It may thus
happen that theory and experiments cross-fertilize.

We often add experiments for illustrative purposes. We think that a combination of
theoretical results and experiments can deliver a more complete picture. Moreover, if
visualized properly, experimental data is readable and easy to grasp. Another benefit
of experiments is therefore that the scope of a scientific work is broadened and a wider
audience is addressed. As a final consequence, this may help to narrow the gap between
theory and practice.

All experiments in this thesis have been conducted by the author using FrEAK, the
“Free Evolutionary Algorithm Kit” (Briest, Brockhoff, Degener, Englert, Gunia, Heer-
ing, Jansen, Leifhelm, Plociennik, Röglin, Schweer, Sudholt, Tannenbaum, and Wegener,
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2004b), developed within the student project group 427 (Briest, Brockhoff, Degener, En-
glert, Gunia, Heering, Jansen, Leifhelm, Plociennik, Röglin, Schweer, Sudholt, Tannen-
baum, and Wegener, 2004a). The list of authors includes the two supervisors Thomas
Jansen and Ingo Wegener. FrEAK is a platform for running evolutionary algorithms
and other randomized search heuristics, released under the GNU General Public License
(GPL). It has been designed such that it is easily extendable to incorporate new fit-
ness functions, new operators and many other new components of randomized search
heuristics. The process of designing new modules is described in the Module Developer’s
Guide (Briest et al., 2004b). Moreover, the user can specify and add so-called observer
modules that collect information from the run of the algorithm. This information can
then be displayed on a graphical interface, which enables a detailed and customized view
into the dynamic behavior of the algorithm.

For the experiments in this thesis version 0.2 of FrEAK has been used and some
additional modules have been written that have not been published. As pseudo-random
number generator the Mersenne Twister was used (Matsumoto and Nishimura, 1998).

In some cases, we apply statistical hypothesis tests to the experimental data to test the
hypothesis whether one algorithm outperforms another one. For this purpose, we use the
non-parametric Mann-Whitney test (Mann and Whitney, 1947) to test the hypothesis
whether two sets of samples originate from the same probability distribution. Unlike
other common statistical tests such as Student’s t-test, a non-parametric test does not
require the underlying distribution to be normal. This is important as, in contrast
to typical statistical tests in other disciplines (arts, biology, medicine, . . . ), measured
runtimes are not necessarily normally distributed. Instead of using the absolute sampled
values, the Mann-Whitney test operates on the ranks of the sampled data to avoid the
normality requirement, so that this test can be safely applied in our settings.
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The (1+1) EA and the (µ+1) EA using a parent population constitute the most simple
evolutionary algorithms. These algorithms are most interesting for a theoretical analysis
as they are a clean and straight representation of basic working principles of evolutionary
algorithms. Yet these algorithms can be attacked by rigorous arguments. Evolutionary
algorithms used in practical applications, however, often contain various extensions of
these basic mechanisms. In this chapter we consider two such extensions in detail: the
use of biased operators and mechanisms to maintain diversity within the population. The
extended algorithms are compared with their simple variants (1+1) EA and (µ+1) EA,
respectively. All other aspects of algorithms design are kept fixed, which allows us to
isolate the effects of the extension under consideration.

Evolutionary algorithms are usually applied in a black-box scenario where nothing is
known about the fitness function at hand and fitness evaluations of search points are the
only way to gather knowledge about the problem. In such a setting it makes sense to use
operators that are not biased towards specific regions of the search space. The only bias
in the search process is supposed to result from fitness evaluations of the search points
found so far. In a practical setting, some problem-specific knowledge may be known
beforehand. Then it might be advantageous to apply search operators that are tailored
towards the problem to focus the search on more promising parts of the search space.
In Section 3.1 we investigate a specialized mutation operator biasing the search towards
solutions with either few 1-bits or few 0-bits. The use of this operator can speed up the
evolution considerably in case the bias gives helpful hints. On the other hand, the bias
may also slow down the search drastically if it leads the search into the wrong direction.
Another aspect is that the biased mutation operator renders the algorithm vulnerable
to simple transformations of the fitness function that do not affect search for the simple
(1+1) EA. Such a transformation can determine whether the hints given by the biased
operator are helpful or misleading. Therefore, the use of such a transformation can also
be beneficial or detrimental in this context.

When using populations, one typically aims at maintaining a certain amount of di-
versity within the population. This enables the algorithm to discover different local or
global optima. Many different approaches are known how this goal can be achieved, for
example avoiding duplicates, crowding, and fitness sharing. In Section 3.2 we compare
the (µ+1) EA incorporating these mechanisms with a plain (µ+1) EA without diver-
sification on a simple bimodal test function. Our results show that some mechanisms
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are able to find both optima quite efficiently, while other mechanisms fail to find both
optima, even with a fairly large population.

3.1 Analysis of a Biased Mutation Operator

Evolutionary algorithms are often applied in the context of optimization when there is
not enough knowledge, time, or expertise to design problem-specific algorithms. When
analyzing such algorithms, one typically assumes that nothing is known about the fitness
function at hand and that fitness evaluations are the only way to gather knowledge about
it. This optimization scenario is called black-box optimization (Droste et al., 2006) and
then it makes sense to use search operators that are not biased towards predetermined
regions of the search space (see Droste and Wiesmann, 2003). When taken to its extreme,
the black-box scenario leads to the well-known no free lunch theorem (NFL): when there
is no structural knowledge at all, then all algorithms have equal average performance (Igel
and Toussaint, 2004). In applications, such a scenario is hardly ever realistic since
there is almost always some knowledge about typical solutions. It is well known that
incorporating problem-specific knowledge can be crucial for the success and the efficiency
of evolutionary algorithms (see Doerr, Hebbinghaus, and Neumann (2007a); Doerr and
Johannsen (2007a); Raidl, Koller, and Julstrom (2006) for some recent studies).

Here, we consider one specific mutation operator for binary strings that is plausible
when good solutions contain either very few bits with value 0 or very few bits with value 1.
Many real-world problems share this specific property. One example is the problem of
computing a minimum spanning tree (Cormen et al., 2001) on a graph G = (V,E). A
bit string x ∈ {0, 1}|E| represents an edge set where each bit corresponds to exactly one
edge of the graph and the selected edges correspond to bits with value 1. Most graphs
with |V | nodes contain Θ(|V |2) edges whereas trees contain only |V | − 1 edges. So in
this case all feasible solutions contain only a very small number of bits with value 1.

The most common mutation operator for bit strings of length |E| flips each bit in-
dependently with probability 1/|E|. In case the current population contains bit strings
that represent spanning trees and we wait for another spanning tree to be generated by
mutation, the operator tends to create offspring with more than |V |−1 edges. This sug-
gests to bias the search towards strings with few 1-bits. Neumann and Wegener (2004)
introduced the asymmetric mutation operator analyzed here and proved that it leads to
a significant speed-up for the minimum spanning tree problem. This mutation operator
tends, on average, to preserve the number of 1-bits.

Our aim is to present a broad and informative analysis of this mutation operator. We
consider its performance on illustrative example functions and on interesting classes of
functions. In particular, we also consider functions beyond the class of functions the
operator was originally designed for. All example functions considered here have been
introduced elsewhere and for completely different reasons. Thus, they are not designed
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with this mutation operator in mind. With this approach we are able to demonstrate
the assets and drawbacks of this specific mutation operator in a clear and intuitive,
yet rigorous way. We accompany our asymptotic results with the results of empirical
investigations. We believe that the combination of theoretical results with empirical
findings delivers a more complete picture. While presenting a concrete analysis for one
concrete mutation operator we hope that this analysis can serve as an example of how
a thorough analysis of new operators and variants of evolutionary algorithms can be
presented.

In the search space {0, 1}n one can think of all points with exactly i 1-bits as forming
the i-th level. Clearly, for i = O(1) and i = n−O(1) the levels contain only a polynomial
number of points whereas the levels with i ≈ n/2 are exponentially large (up to size

( n
n/2

)

for even n). Imagine a random walk on {0, 1}n induced by repeated standard mutations.
Standard mutations flip each bit independently with some fixed mutation probability,
typically 1/n. Thus, standard mutations tend to sample the search space uniformly. This
implies that the random walk induced by repeated standard mutations spends most of
the time on levels with i ≈ n/2. When reaching a search point x with either very few
or lots of 1-bits, there is a strong tendency to return to levels i ≈ n/2 since these levels
have a much larger size.

The asymmetric mutation operator considered here is likely to preserve the current
level, on average. However, considering a random walk induced by repeated asymmetric
mutations, variance lets the random walk change the current level. Since there is no
tendency to the medium levels, the random walk is more likely to reach levels with
very few or lots of 1-bits than the random walk based on standard mutations. We will
investigate the influence of this bias on the search by considering two extreme cases.
The mutations operator’s bias becomes most visible when analyzing its behavior in the
absence of a fitness-driven selection. On the other hand, we discover how this bias can be
counterbalanced by guiding the evolutionary search via fitness. To this end, we consider
a class of functions where fitness values point in the direction of a unique global optimum.
Thereby, we also consider a simple transformation of the fitness function that allows us to
choose the position of the optimum arbitrarily in the search space. This transformation
is irrelevant to evolutionary algorithms using unbiased mutation operators, but with
asymmetric mutations the transformation may alter the performance drastically.

In Section 3.1.1, we define the asymmetric mutation operator and the mentioned
transformation. We also derive some simple properties and prove general upper and
lower bounds. In Section 3.1.2, we concentrate on the performance on simply structured
example functions and demonstrate that the operator shows increased efficiency as ex-
pected. This helps to build a more concrete intuition of the properties of the asymmetric
mutation operator. In a more general context, we explain in Section 3.1.3 that the per-
formance on a broad and interesting class of functions does not differ from that of an
unbiased mutation operator. Section 3.1.4 presents an example where the bias intro-

35



3 Extensions of Evolutionary Algorithms

duced by the mutation operator has an immense negative impact. Finally, we conclude
in Section 3.1.5.

3.1.1 Asymmetric Mutations

Recall that the mutation operator of the (1+1) EA is called standard mutation. We give
a formal definition of this mutation operator.

Operator 3 Standard Mutation(x)

Independently for each bit in x ∈ {0, 1}n, flip the bit with probability 1/n.

The asymmetric mutation operator aims at leaving the number of bits with value 1
unchanged. This can be achieved by letting the probability of mutating a bit depend on
its value.

Operator 4 Asymmetric Mutation(x)

Independently for each bit in x ∈ {0, 1}n, flip the bit with probability 1/(2 |x|1) if it has
value 1 and with probability 1/(2 |x|0) otherwise.

In the following, we refer to the (1+1) EA with standard mutations as the standard
(1+1) EA and to the (1+1) EA using asymmetric mutations instead as the asymmetric
(1+1) EA.

Remark 3.1.1. We use 1/(2|x|i) as mutation probability instead of 1/|x|i to prevent the
mutation operator from becoming deterministic in the special case of exactly one bit
with value 0 or 1. In this deterministic case the property that any y ∈ {0, 1}n can
be reached from any x ∈ {0, 1}n in one mutation is not preserved. The value 2 is a
straightforward choice since for every x with 0 < |x|1 < n the expected number of
flipping bits is |x|0 · 1/(2 |x|0) + |x|1 · 1/(2 |x|1) = 1. This coincides with the expected
number of flipping bits for standard mutations.

For many objective functions, mutations of single bits turn out to be important leading
from x to a Hamming neighbor y ∈ N(x). Using standard mutations, steps to specific
Hamming neighbors have probability Θ(1/n). Asymmetric mutations do not decrease the
probability of such mutations significantly. They may, however, increase the probability
for such steps significantly.

Lemma 3.1.2. Let x, y ∈ {0, 1}n with y ∈ N(x). The probability of mutating x into y in
one asymmetric mutation is bounded from below by 1/(8 |x|i) if a bit with value i needs
to flip.
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Proof. Assume that one 0-bit in x needs to flip; the other case is symmetric. For x 6= 0n,
the probability of flipping only this bit equals

1

2 |x|0

(

1 − 1

2 |x|0

)|x|
0
−1(

1 − 1

2 |x|1

)|x|
1

≥ 1

8 |x|0

since (1 − 1/(2k))k ≥ 1/2 for k ∈ N. For x = 0n we obtain 1/(4 |x|0) > 1/(8 |x|0) in the
same way.

For standard mutations, we have seen in Lemma 2.3.1 that the probability of flipping
k bits simultaneously is at most 1/k! ≤ (e/k)k. The latter, weaker bound also holds for
asymmetric mutations.

Lemma 3.1.3. For every k ∈ N the probability that one asymmetric mutation flips
k bits simultaneously is bounded from above by (e/k)k.

Proof. If the search point x to be mutated is either 0n or 1n, the probability that k bits
flip is at most

(
n

k

)

·
(

1

2n

)k

≤ nk

k!
· n−k =

1

k!
≤
( e

k

)k
.

Let Z be the random variable describing the number of bits flipping in the asymmetric
mutation of x. If x /∈ {0n, 1n} the expected number of flipping bits equals E(Z) = 1. By
Chernoff bounds (Lemma A.6),

Prob(Z ≥ k) ≤ ek−1

kk
≤
( e

k

)k
.

We start our analysis with some very general bounds on the expected optimization
time of the asymmetric (1+1) EA that only rely on basic properties of the asymmetric
mutation operator. The same considerations have also been made for the standard
(1+1) EA, so we have a direct comparison of both mutation operators. For the standard
(1+1) EA it is known that the expected optimization time is bounded from above by
nn for all functions (Droste, Jansen, and Wegener, 2002a) and bounded from below by
Ω(n log n) if the global optimum is unique (Jansen, De Jong, and Wegener, 2005). It is
easy to extend this lower bound to functions with multiple global optima. We present
corresponding bounds for the asymmetric (1+1) EA.

Theorem 3.1.4. The expected optimization time of the asymmetric (1+1) EA on every
function f : {0, 1}n → R is at most (2n)n. If f has at most 2n/2 global optima, the
expected optimization time is bounded below by Ω(n).
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Proof. As long as the current search point x is not a global optimum, the probability
of hitting an optimum x∗ by a direct jump is bounded below by (1/(2n))n. Hence the
expected time to hit a global optimum is at most (2n)n.

For the lower bound let OPT be the set of all global optima and consider the Hamming
distance H (x,OPT) from the current search point x to the closest point in OPT. By
Chernoff bounds, the probability that the initial search point has Hamming distance at
most n/24 to a specific global optimum is at most

(

e1/12−1

(1/12)(1/12)

)n/2

= 2−n/2−Ω(n).

Taking the union bound for at most 2n/2 global optima, the probability that initially
H (x,OPT) ≤ n/24 holds is 2−Ω(n). The expected initial distance is therefore at least
(
1 − 2−Ω(n)

)
· n/24 ≥ n/25 if n is large enough. We now apply drift arguments w. r. t.

the potential H (x,OPT). Observe that the expected number of flipping bits when
mutating x equals 1 for x /∈ {0n, 1n} and 1/2 for x ∈ {0n, 1n}. Therefore, the distance
to the closest global optimum decreases by at most 1 in expectation. The lower bound
n/25 then follows by drift arguments from Theorem 2.3.8.

Comparing standard mutations to asymmetric mutations, Theorem 3.1.4 does not
show a clear advantage for any operator. We also see that the resulting bounds are
weak due to the weak assumptions made on the fitness function. This motivates the
investigation of concrete functions for which much stronger results can be obtained.

Moreover, we will investigate the impact of simple transformations of the fitness func-
tion that only affect asymmetric mutations. We adopt the definition and notation
of Droste, Jansen, Tinnefeld, and Wegener (2003) where the generalization of objec-
tive functions is considered in the context of black-box complexity.

Definition 3.1.5. For f : {0, 1}n → R and a ∈ {0, 1}n we define fa : {0, 1}n → R by
fa(x) := f(x ⊕ a) for all x ∈ {0, 1}n where x ⊕ a denotes the bit-wise exclusive or of x
and a.

Since the standard (1+1) EA is insensitive to the number of 1-bits in the current bit
string and since it treats 1-bits and 0-bits symmetrically, it exhibits the same behavior
on f as on fa for every a. So, the class of functions fa is a straightforward generalization
of f . When we use asymmetric mutations instead, this is not necessarily the case.
Transforming x to x ⊕ a does in general change the number of 1-bits and therefore
alters the mutation probabilities. Note, however, that the (1+1) EA with asymmetric
mutations behaves the same on fa and fa where a denotes the bit-wise complement of a.
This is due to the symmetrical roles of 0 and 1 as bit values if one replaces all 0s by 1s
and vice versa.
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In the following, we will compare the performance of the asymmetric (1+1) EA on f
and fa for various transformations. In particular, we will see that the performance gap
between f and fa can be exponentially large.

3.1.2 Assets of the Asymmetric Mutation Operator

The asymmetric mutation operator preserves, on average, the number of 1-bits in the
parent. This makes this mutation operator very different from standard mutations if
the number of 1-bits is either very small or very large. Thus, we expect to obtain best
results when good search points have this property and when good search points lead
the algorithm to the global optimum. The well-known fitness function OneMax has all
these properties. It is therefore not surprising that the asymmetric mutation operator
leads to a considerable speed-up.

Theorem 3.1.6. The expected optimization time of the asymmetric (1+1) EA on One-

Max is Θ(n).

Proof. As long as the current search point x differs from the global optimum, there are
|x|0 Hamming neighbors with a larger fitness value. Due to Lemma 3.1.2, the probability
of increasing the fitness value is at least |x|0 · 1/(8 |x|0) = 1/8 and the expected time
to increase the fitness is at most 8. Since the fitness value has to be increased at most
n times, 8n is an upper bound on the expected optimization time. The lower bound
follows from Theorem 3.1.4.

Asymmetric mutations outperform standard mutations by a factor of order log n here.
However, this relies heavily on the fact that the unique global optimum is the all-one
bit string. Clearly, the objective function OneMax can be described as minimizing
the Hamming distance to the unique global optimum. This is equivalent to maximizing
the Hamming distance to the bit-wise complement of the unique global optimum. We
can preserve this property but move the global optimum x∗ somewhere else by defining
the fitness as n − H(x, x∗). This function equals OneMaxa with a = x∗. One may
fear that the advantage of asymmetric mutations for OneMax is counterbalanced by a
disadvantage when the global optimum is far away from 1n. However, this is not the
case if one considers asymptotic expected optimization times.

Theorem 3.1.7. For every a the expected optimization time of the asymmetric (1+1) EA
on OneMaxa is Θ(n log(min{|a|0 , |a|1} + 2)).

Proof. W. l. o. g., |a|1 ≤ n/2. The unique global optimum of OneMaxa is a. We begin
with a proof of the upper bound and partition a run into two phases: the first phase
starts with the beginning of the run and ends when we have a search point with at most
2 |a|0 0-bits for the first time. The second phase starts after the first phase and ends
when the global optimum is found.
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Let x be some current search point in the first phase, then there are at least |x|0−|a|0
positions i where xi = 0 and ai = 1. Clearly, a 1-bit mutation flipping such a bit increases
the fitness. During the first phase |x|0 > 2 |a|0 holds. Thus, |x|0 − |a|0 > |x|0 /2 and by
Lemma 3.1.2 the probability of a 1-bit mutation flipping one of the considered bits is at
least |x|0 /2 · 1/(8 |x|0) = 1/16. Therefore, the expected length of Phase 1 is O(n).

At the beginning of the second phase, |x|0 ≤ 2 |a|0 holds. We have H (x, a) ≤ 3 |a|0
since H (x, 1n) = |x|0 ≤ 2 |a|0 and H (1n, a) = |a|0. This implies OneMaxa(x) ≥ n−3 |a|0
for the rest of Phase 2. Thus, the fitness has yet to be increased at most 3 |a|0 = 3 |a|1
times. There are n−OneMaxa(x) Hamming neighbors with function value larger than x.
By Lemma 3.1.2, the probability of reaching a specific Hamming neighbor by a direct
mutation is bounded below by 1/(8n). Thus, the expected length of the second phase is
bounded above by

3|a|
1∑

i=1

8n

i
= 8n

3|a|
1∑

i=1

1

i
= O(n log(|a|1 + 2)).

For the lower bound we distinguish three cases with respect to |a|1. In case |a|1 ≤ 1 the
lower bound Ω(n) follows from Theorem 3.1.4. Consider the case 2 ≤ |a|1 ≤ n/4. Since
the mutation operator does not incorporate bit positions, we can assume a = 1|a|10|a|0

without loss of generality. With probability at least 1/2, the initial search point contains
at least |a|1 /2 1-bits among the first |a|1 positions. Analogously, it contains at least
|a|0 /2 1-bits among the last |a|0 positions with probability at least 1/2. Consider the
case where both events occur, which happens with probability at least 1/4. Since the
Hamming distance to the global optimum a = 0|a|11|a|0 cannot increase, the number of
1-bits in the current search point is bounded below by |a|0 /2 − |a|1 ≥ n/8 during the
run. Thus, the probability that a specific 1-bit is flipped is bounded above by 4/n. We
have at least |a|1 /2 1-bits that all need to flip at least once. The probability that not
all of these bits flip within ((n/4) − 1) ln |a|1 mutations is bounded below by

1 −
(

1 −
(

1 − 4

n

)((n/4)−1) ln|a|
1

)|a|
1
/2

≥ 1 −
(

1 − e− ln|a|
1

)|a|1/2
≥ 1 − e−1/2.

Thus, the expected optimization time is bounded below by

1

4
·
(

1 − e−1/2
)

·
(n

4
− 1
)

ln |a|1 = Ω(n log(|a|1 + 2))

in this case.
Finally, we consider the case n/4 < |a|1 ≤ n/2. Chernoff bounds yield that with

probability 1 − 2−Ω(n) the initial Hamming distance to the unique global optimum is
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bounded below by n/8. Moreover, by Lemma 3.1.3 with probability 1 − 2−Ω(n) we only
have mutations with at most n/16 bits flipping simultaneously within the first O(n log n)
generations. Thus, we may consider the situation at the end when the Hamming distance
to the optimum is in the interval [n/16, n/8]. As the Hamming distance cannot increase
during a run, the number of 1-bits in the current search point is always bounded below
by n/8 and bounded above by 7n/8. This implies that for each bit (regardless of its
value) the probability of flipping it is bounded above by 4/n. Now we are in a situation
very similar to the second case. Repeating the line of thought from there completes the
proof.

We see that, asymptotically, there is no disadvantage for the (1+1) EA with asymmet-
ric mutations in comparison with standard mutations on OneMaxa. We complement
these asymptotical bounds by the results of some experiments. All reported results
are averages of 100 independent runs. For OneMaxa, we choose a with |a|1 = cn
and c ∈ {0, .05, .1, .15, .2, . . . , .95, 1}. We choose n, the length of the bit strings, from
{100, 200, 300, . . . , 1900, 2000}. The average optimization times can be seen in Figure 3.1.
Note that these empirical findings have illustrative purposes. Therefore, we refrain from
a statistical analysis that does not yield additional insights.
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Figure 3.1: Average runtimes on OneMaxa in 100 independent runs for n ∈
{100, 200, . . . , 2000} and |a|1 ∈ {0, .05n, .1n, . . . , .95n, n}.

Two aspects of the empirical data displayed in Figure 3.1 deserve some explanation.
First, we observe that the average runtimes are maximal in some distance to the extreme
values |a|1 = 0 and |a|1 = n and decrease towards |a|1 = n/2. This effect is not contained
in our bound. Note that the observed differences are small enough not to be visible in
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the asymptotic notation Θ(·). Observing concrete runs for |a|1 = cn for small values
of c, the asymmetric mutation operator has the tendency to lead the algorithm too close
to 1n, making final steps back towards the unique global optimum necessary. This causes
an increased optimization time.

Second, the average optimization time at the boundaries seems to increase from a
value very small for |a|1 ∈ {0, n} to something clearly larger almost immediately. This
seems to contradict our theoretical bound Θ(n log(min{|a|0 , |a|1} + 2)). Remembering
that c = .05 implies |a|1 = n/20 = Θ(n) we see that this is not really the case. More
values for |a|1 close to 0 and n are helpful to see this more clearly. We present average
runtimes for |a|1 ∈ {0, 1, 2, . . . , 9} in Figure 3.2. The runtime increases with |a|1 quite
smoothly as our bound predicts. We learn that the investigation of observed runtimes
alone may be misleading.

0
500

1000
1500

2000

0123456789
0

5000

10000

15000

20000

25000

30000

n|a|1

Figure 3.2: Average runtimes on OneMaxa in 100 independent runs for n ∈
{100, 200, . . . , 2000} and |a|1 ∈ {0, 1, 2, . . . , 9}.

The reader might conclude from our findings that the search is not too clearly biased
by asymmetric mutations. However, for OneMaxa, the function values point in the
direction of the global optimum so clearly that the relatively small bias introduced by
the asymmetric mutations is not important when compared to the clear bias introduced
by selection. Thus, optimization is efficient regardless of the location of the unique global
optimum. This is a strong hint that the asymmetric mutation operator can successfully
be applied far beyond the class of problems it was originally designed for.

In the following, we show that there is a clear bias due to asymmetric mutations
that can have a great impact on the performance of the asymmetric (1+1) EA. We
consider the asymmetric (1+1) EA on a flat fitness function: we consider Needle.
Since all non-optimal search points are equally fit, we exclude the effects of selection
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on the optimization process and, as long as the needle is not found, the search process
equals a random walk induced by repeated asymmetric mutations. So, by considering
the function Needle with the needle in 1n, we can learn more about the bias induced
by asymmetric mutations.

Note that the asymmetric (1+1) EA treats all bits symmetrically, regardless of their
position in the bit string. Hence, the behavior of the asymmetric (1+1) EA is determined
only by the number of 1-bits in the current search point. We describe the asymmetric
(1+1) EA on Needle as a discrete Markov chain where the current state represents the
number of 1-bits in the current bit string. The main observation is that, as long as no
search point in {0n, 1n} is reached, this process is a martingale (see Definition 2.3.12),
i. e., the expected change in the number of 1-bits over time is 0: let x ∈ {0, 1}n with
0 < |x|1 < n and x′ be a random variable describing the result of an asymmetric mutation
of x. Then

E
(∣
∣x′∣∣

1
| |x|1

)
= |x|1 ·

(

1 − 1

2 |x|1

)

+ |x|0 ·
1

2 |x|0
= |x|1 .

We therefore observe a Markov chain that is similar to the simple symmetric random
walk on {0, 1, . . . , n} investigated in Theorem 2.3.15. The main differences are that
arbitrary step sizes may occur, including steps of length 0. For the simple symmetric
random walk starting with state X0, the bound X0(n−X0) holds (Theorem 2.3.15). We
are able to generalize this result to a large class of stochastic processes using a lower
bound on the one-step variance. The following lemma is of independent interest.

Lemma 3.1.8. Consider a stochastic process {Xt}t≥0 on {0, . . . , n} for n ∈ N. Let T :=
inf{t | Xt ∈ {0, n}}. If {Xt}t≥0 is a martingale and E

(
(Xt+1 − Xt)

2 | X0, . . . ,Xt

)
≥ δ

for all 0 ≤ t < T and some δ ∈ R
+, then E(T ) ≤ X0(n − X0)/δ and Prob(XT = n) =

X0/n.

Note that for the simple symmetric random walk Lemma 3.1.8 with δ = 1 implies
Theorem 2.3.15.

Proof of Lemma 3.1.8. We follow the line of thought from the proof of Theorem 2.3.15.
Let Ft abbreviate X0, . . . ,Xt. We define {Yt}t≥0 by

Yt := (Xt)
2 −

t−1∑

k=0

E
(
(Xk+1 − Xk)

2 | Fk

)

and claim that {Yt}t≥0 is a martingale with respect to {Xt}t≥0. Consider

E (Yt+1 | Ft) = E
(
(Xt+1)

2 | Ft

)
−

t∑

k=0

E
(
E
(
(Xk+1 − Xk)

2 | Fk

)
| Ft

)
. (3.1)
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Regarding the
∑

-term, the summand for k = t equals

E
(
E
(
(Xk+1 − Xk)

2 | Fk

)
| Ft

)
= E

(
(Xk+1 − Xk)

2 | Fk

)
(3.2)

by definition. For k < t we have

E
(
E
(
(Xk+1 − Xk)

2 | Fk

)
| Ft

)
= E

(
(Xk+1 − Xk)

2 | Fk

)
(3.3)

since the right-hand side is Ft-measurable. Secondly, by the formula E
(
Z2
)

= (E(Z))2 +
E
(
(Z − E(Z))2

)
we have

E
(
(Xt+1)

2 | Ft

)
= (E (Xt+1 | Ft))

2 + E
(
(Xt+1 − E (Xt+1 | Ft))

2 | Ft

)

= (Xt)
2 + E

(
(Xt+1 − Xt)

2 | Ft

)
. (3.4)

Plugging Equations (3.2),(3.3), and (3.4) into Equation (3.1),

E (Yt+1 | Ft) = (Xt)
2 + E

(
(Xt+1 − Xt)

2 | Ft

)
−

t∑

k=0

E
(
(Xk+1 − Xk)

2 | Fk

)

= (Xt)
2 −

t−1∑

k=0

E
(
(Xk+1 − Xk)

2 | Fk

)

= Yt.

Thus, {Yt}t≥0 is a martingale with respect to {Xt}t≥0.
In every state 0 < Xt < n we have a positive one-step variance, so there is a positive

probability of getting closer to the closest state from {0, n}. This implies E(T ) < ∞.
Since for t < T

|Yt+1 − Yt| ≤ |(Xt+1)
2 − (Xt)

2| + E
(
(Xt+1 − Xt)

2 | Ft

)
< 2n2

holds, we can apply the martingale stopping theorem (Theorem 2.3.14). This yields
E(YT ) = E(Y0) = (X0)

2 on one hand and, along with E
(
(Xk+1 − Xk)

2 | Fk

)
≥ δ,

E(YT ) = E
(
(XT )2

)
− E

(
T−1∑

k=0

E
(
(Xk+1 − Xk)

2 | Fk

)

)

≤ E
(
(XT )2

)
− δ · E(T )

on the other hand, which implies

E(T ) ≤ E
(
(XT )2

)
− (X0)

2

δ
=

Prob(XT = n) · n2 − (X0)
2

δ
. (3.5)

Applying the martingale stopping theorem again w. r. t. {Xt}t≥0 yields E(XT ) = X0.
Along with E(XT ) = Prob(XT = n) · n, we obtain Prob(XT = n) = X0/n and plugging
this into (3.5) yields the bound E(T ) ≤ X0(n − X0)/δ.
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In order to apply Lemma 3.1.8 to the analysis of the asymmetric (1+1) EA on Needle

we have to prove a lower bound δ on the one-step variance. Moreover, the stopping time T
from Lemma 3.1.8 does not distinguish between the two absorbing states 0 and n, so we
have to argue how long it takes on average to arrive at n in case state 0 is reached.

Theorem 3.1.9. For every constant k ∈ N0 and all a ∈ {0, 1}n with either at most k
0-bits or at most k 1-bits, the expected optimization time of the asymmetric (1+1) EA
on Needlea is bounded above by O(n2 + nk+1).

Proof. W. l. o. g. we assume that the needle has n− k 1-bits. Let Xt denote the number
of 1-bits in the current search point in generation t. A lower bound on the one-step vari-
ance is E

(
(Xt+1 − Xt)

2 | X0, . . . ,Xt

)
≥ Prob(Xt+1 6= Xt | Xt). For 0 < Xt < n we have

Prob(Xt+1 = Xt + 1 | Xt) ≥ 1/8 and Prob(Xt+1 = Xt − 1 | Xt) ≥ 1/8 by Lemma 3.1.2.
This proves E

(
(Xt+1 − Xt)

2 | X0, . . . ,Xt

)
≥ 1/4 for 0 < Xt < n and the conditions of

Lemma 3.1.8 are fulfilled for δ := 1/4. Thus, starting with an initial search point with
i ones the expected number of essential steps until some x∗ with |x∗|1 ∈ {0, n} is reached
is 4i(n − i) ≤ n2.

With probability 1/2, by symmetry of the initialization, we have |x∗|1 = n and are
done. Otherwise, let T0→n be the random time for the asymmetric (1+1) EA to reach 1n,
starting from 0n. The expected time until an asymmetric mutation flips at least one bit
in 0n is at most 1/(1 − (1 − 1/(2n))n) < 4. Let i ≥ 1 be the number of ones of the first
such offspring. A second application of Lemma 3.1.8 shows that the expected number
of steps to next reach some x∗∗ with |x∗∗|1 ∈ {0, n} is bounded by 4i(n − i). Moreover,
Prob(x∗∗ = n) = i/n, hence we return to 0n with probability 1 − i/n. This implies the
following recursion, pi,j being a compact notation for Prob(Xt+1 = j | Xt = i).

E(T0→n) ≤ 4 +

n∑

i=1

p0,i

(

4i(n − i) +

(

1 − i

n

)

· E(T0→n)

)

By rearranging we obtain

E(T0→n) ≤ 4 +
∑n

i=1 p0,i · 4i(n − i)
∑n

i=1 p0,i · i
n

≤ 4n +

∑n
i=1 p0,i · 4in
∑n

i=1 p0,i · i
n

= 4n2 + 4n.

This implies for k = 0 the bound n2 + 1/2 · E(T0→n) ≤ 3n2 + 2n.

For k > 0 the time until the needle is found is clearly bounded by the expected
time to reach the needle by a direct jump from 1n. The probability for such a jump
is (1/(2n))k · (1 − 1/(2n))n−k ≥ e−1/2 · (2n)−k, hence the expected number of trials is
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O((2n)k). The expected return time from 1n to 1n is at most

4 +

n∑

i=0

pn,i

(

4i(n − i) +

(

1 − i

n

)

· E(T0→n)

)

≤ 4 +

n−1∑

i=0

pn,i (4i(n − i) + (n − i)(4n + 4))

≤ 4 + 8n ·
n−1∑

i=0

pn,i(n − i).

The
∑

-term describes the expected number of flipping bits when mutating 1n, which
can be more easily computed as n · 1/(2n) = 1/2. This results in the bound 4n + 4.
As the expected number of steps between two trials is O(n), we obtain the bound
O(n2 + n · (2n)k) = O(n2 + nk+1) for constant k.

Remark 3.1.10. For an alternative proof of Theorem 3.1.9 for k = 0, we may exploit
that the number of ones is a submartingale, until stopped at time T := inf{t | Xt = n}.
Similarly to Lemma 3.1.8, the following statement can be shown. If {Xt}t≥0 is a sub-
martingale and δ is a lower bound on the one-step variance, then E(T ) ≤ n2/δ. An
extension of this bound will be presented in Section 5.2.

In order to get a closer picture of the actual performance of the asymmetric (1+1) EA,
we consider the results of 100 independent runs for k = 0 and n ∈ {100, 200, . . . , 2000}.
We report the number of runs where the unique global optimum was found within cn2

steps for c ∈ {1, 2, . . . , 6} in Table 3.1.

Let N := {Needlea | a ∈ {0, 1}n} be the class of needle functions with the global
optimum at some point a in the search space. It is known from the black-box complex-
ity of function classes (Droste et al. (2003)) that every search heuristic needs at least
2n−1 +1/2 function evaluations on N on average. Thus, while the asymmetric (1+1) EA
performs very well on Needlea with a close to 0n or 1n, it performs poorly on other
functions Needlea with a far from 0n and 1n. This is another hint that the search
process of the asymmetric (1+1) EA is clearly biased.

Note that the class N = {Needlea | a ∈ {0, 1}n} is closed under permutations of the
search space. Thus, the same conclusion seems to be implied by the NFL: averaged over
all such functions, all algorithms make an equal number of different function evaluations
(Igel and Toussaint (2004)). However, this result has only limited relevance with respect
to the expected optimization time since it does not take into account re-sampling of
points in the search space.
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n 1n2 2n2 3n2 4n2 5n2 6n2

100 72 90 95 100 100 100
200 73 95 100 100 100 100
300 75 90 97 99 100 100
400 78 97 99 99 100 100
500 74 92 96 99 99 100
600 73 92 96 99 100 100
700 74 93 97 100 100 100
800 74 96 100 100 100 100
900 73 96 99 100 100 100
1000 71 94 98 100 100 100
1100 71 90 95 97 100 100
1200 80 94 96 98 99 100
1300 67 90 97 99 100 100
1400 79 93 98 99 100 100
1500 70 91 99 100 100 100
1600 79 91 97 99 100 100
1700 71 89 99 99 100 100
1800 83 90 95 98 99 100
1900 75 94 97 98 99 100
2000 76 92 100 100 100 100

Table 3.1: Number of runs among 100 independent runs where the needle was found
within the given time bound.

3.1.3 Analysis for Unimodal Functions

The results from Section 3.1.2 proved the asymmetric mutation operator to be advan-
tageous for objective functions where good bit strings have either many or few 1-bits.
Clearly, OneMax and Needle are both artificial examples that do not have much in
common with problems encountered in applications. In order to gain a broader perspec-
tive, results on more general function classes are needed. We compare the asymmetric
(1+1) EA with the standard (1+1) EA on the class of all unimodal functions. The class
of unimodal functions is closed under the transformation of objective functions consid-
ered here. That is, for every a ∈ {0, 1}n, fa is unimodal if and only if f is. Thus, again
we can move the unique global optimum anywhere in the search space.

Recall from Definition 2.2.1 that a function is unimodal if and only if every non-
optimal search point has a Hamming neighbor with strictly larger fitness. This implies
that unimodal functions can be optimized via mutations of single bits, i. e., hill climbers
are guaranteed to be successful. Starting with an arbitrary search point, there is a path of
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Hamming neighbors to the unique global optimum with strictly increasing fitness. Note,
however, that paths to the unique global optimum may be exponentially long, making
such functions difficult to optimize. In fact, it is known that every search heuristic needs
in the worst case an exponential number of function evaluations to optimize a unimodal
function (Droste et al. (2006)).

Also recall the upper bound O(nd) for the standard (1+1) EA on unimodal functions
with d different function values from Theorem 2.3.4. Using Lemma 3.1.2, it is easy to
obtain the same general upper bound for the asymmetric (1+1) EA.

Theorem 3.1.11. Let f : {0, 1}n → R be a unimodal function with d different function
values. The expected optimization time of the asymmetric (1+1) EA on f is bounded
above by O(nd).

Proof. We know from Lemma 3.1.2 that the probability of increasing the function value
of the current search point is bounded below by 1/(8n). This yields 8n as upper bound
on the expected time to increase the fitness. Clearly, at most d − 1 fitness increases are
sufficient to reach the global optimum.

Asymmetric mutations deliver the same upper bound on an important class of func-
tions as standard mutations. Of course, in both cases, the upper bound is not necessarily
tight. However, it is known to be tight for standard mutations for some functions. One
example of such a function is LeadingOnes, an example function where the standard
(1+1) EA has expected optimization time Θ(n2) (see Theorem 2.3.9). Moreover, devia-
tions from the expected value by some constant factors are extremely unlikely. The use
of asymmetric mutations, however, leads to a considerable speed-up. This is surprising
as the bits following the leftmost 0-bit are subject to a random process and the stan-
dard (1+1) EA typically has to make Ω(n) improvements where a specific bit has to be
flipped. For the asymmetric (1+1) EA, however, the situation is different. After some
leading ones have been gathered, these bits bias the random process of the following bits
towards bit value 1. This decreases the expected optimization time significantly.

Theorem 3.1.12. The expected optimization time of the asymmetric (1+1) EA on
LeadingOnes is O(n3/2).

Proof. We partition a run into two phases: the first phase starts with the beginning of
the run and ends when some search point x∗ with LeadingOnes(x∗) ≥ n1/2 is reached
for the first time. The second phase starts after the first phase and ends when the global
optimum is found.

Due to Lemma 3.1.2, the expected length of Phase 1 is bounded by O(n3/2) since there
always are Hamming neighbors with larger fitness and the fitness has to be increased at
most n1/2 times to reach the end of Phase 1.

For the investigation of Phase 2, we apply drift arguments to the number of zeros in
the current search point. Let x be the current population and x′ be the population of
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3.1 Analysis of a Biased Mutation Operator

the next generation. Then x′ = x or x′ is an accepted mutant of x. A necessary and
sufficient condition for the acceptance of x′ is that the first LeadingOnes(x) 1-bits do
not flip. Thus, we have

p := Prob
(
x′ is accepted

)
=

(

1 − 1

2 |x|1

)LeadingOnes(x)

≥ 1

2

since LeadingOnes(x) ≤ |x|1. Moreover,

E
(∣
∣x′∣∣

0

)
= E

(∣
∣x′∣∣

0
| x′ is accepted

)
· p + |x|0 · (1 − p).

Since the first LeadingOnes(x) 1-bits cannot flip to 0 in an accepted step,

E
(∣
∣x′∣∣

0
| x′ is accepted

)
= |x|0 ·

(

1 − 1

2 |x|0

)

+ (|x|1 − LeadingOnes(x)) · 1

2 |x|1
= |x|0 −

LeadingOnes(x)

2 |x|1
.

Together, this results in

E
(∣
∣x′∣∣

0

)
=

(

|x|0 −
LeadingOnes(x)

2 |x|1

)

· p + |x|0 · (1 − p)

= |x|0 − p · LeadingOnes(x)

2 |x|1
≤ |x|0 −

LeadingOnes(x)

4 |x|1
.

Hence,

E
(
|x|0 −

∣
∣x′∣∣

0

)
≥ LeadingOnes(x)

4 |x|1
≥ 1

4n1/2

and Theorem 2.3.8 yields an upper bound n/(1/(4n1/2)) = 4n3/2 on the expected time
to complete Phase 2.

Like OneMax, the function LeadingOnes has the property that the unique global
optimum is the all-one bit string 1n. Obviously, this fosters the finding of the global
optimum using asymmetric mutations. Therefore, it makes sense to investigate the
expected optimization time on LeadingOnesa. We would like to see whether there
are some a ∈ {0, 1}n such that the expected optimization time of the (1+1) EA using
asymmetric mutations is ω(n3/2).

We consider a where the optimum has linear Hamming distance to both 0n and 1n.
We will see that then the asymmetric (1+1) EA’s tendency towards some kind of bits is
more hindering than helpful.
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Theorem 3.1.13. Given some constant 0 < c < 1, let a ∈ {0, 1}n be chosen uniformly
at random among all search points with cn 1-bits. The expected (w. r. t. the random bits
of a and the algorithm’s decisions) optimization time of the asymmetric (1+1) EA on
LeadingOnesa(x) is Θ(n2).

Remark 3.1.14. If a is drawn uniformly at random from the whole search space {0, 1}n,
a has a linear number of 1-bits and 0-bits with overwhelming probability and then
Theorem 3.1.13 applies. If this is not the case, we may use the known bounds 0 and
O(n2). We conclude that the bound Θ(n2) also holds in this setting.

Proof of Theorem 3.1.13. The upper bound follows from Theorem 3.1.11. The main
proof idea for the lower bound is to consider pairs of neighbored bits in a, say aiai+1,
where ai 6= ai+1. As long as the current LeadingOnes-value is less than i − 1, for
the current search point x the assignment xixi+1 = 01 has the same probability as
xixi+1 = 10. Hence, both bits are gained as free riders only with probability at most
1/2. Using drift arguments similar to Theorem 2.3.9 yields the claimed lower bound.

W. l. o. g., n is even and c ≤ 1/2. Let k = cn. Call a pair of bits ai, ai+1 in a a
transition if ai 6= ai+1. Let T be the number of transitions in a and Tℓ, Tr be the number
of transitions within the bits a1 . . . an/2 and an/2+1 . . . an, resp. We first estimate E(T ).
We have

(n
k

)
possibilities to choose a. The event ai 6= ai+1 for some 1 ≤ i ≤ n− 1 occurs

if exactly one of these variables is 1 and the remaining k−1 1-bits are distributed among
the remaining n − 2 bits. Hence

Prob(ai 6= ai+1) = 2

(
n − 2

k − 1

)(
n

k

)−1

=
2k(n − k)

n(n − 1)
.

By the linearity of expectation, along with k ≤ n/2, we have

E(T ) = (n − 1) · 2k(n − k)

n(n − 1)
=

2k(n − k)

n
≥ k.

Due to symmetry, Tℓ and Tr are due to the same probability distribution and since
(an/2, an/2+1) is excluded, we have E(Tℓ) = E(Tr) ≥ E(T )/2 − 1 ≥ k/2 − 1.

We claim that Tℓ and Tr are strongly concentrated. Observing

|E(Tℓ | a1, . . . , ai) − E(Tℓ | a1, . . . , ai−1)| ≤ 1

we can apply the method of bounded martingale differences (Lemma A.8) yielding

Prob

(

Tℓ ≤
k

2
− k

4

)

≤ e−( k
4
−1)

2
/n = e−Ω(n).

Hence, with overwhelming probability Tℓ ≥ k/4 and Tr ≥ k/4.
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Assuming Tℓ ≥ k/4 implies that both the number of 1-bits and the number of 0-bits
among the bits a1, . . . , an/2 is bounded below by k/8 as every bit contributes to at
most 2 transitions. Recalling that a is the global optimum, a direct consequence is that
whensoever a search point x with LeadingOnesa(x) ≥ n/2 is mutated, the mutation
probability for a specific bit is at most 4/k.

Let x∗ be the first search point reached during the optimization process, where Lead-

ingOnesa(x
∗) ≥ n/2. We bound the expected optimization time by the expected time

to find the optimum starting with x∗. Let

d(x) := |{i | LeadingOnesa(x) + 1 < i < n ∧ ai 6= ai+1}|

be the number of transitions to the right of the leftmost bit differing in x and a. We now
apply drift analysis arguments in order to estimate the expected time until the current
search point’s d-value has decreased to 0, which is necessary to find the optimum.

Let x be the current search point and x′ be the search point in the next generation.
A necessary condition for d(x′) < d(x) is that the leftmost differing bit flips, which has
probability at most 4/k. Moreover, the positions of the bits to the right have not yet had
any influence on the fitness up to now, hence for every j with LeadingOnesa(x) + 1 <
j < n

Prob(xjxj+1 = 01) = Prob(xjxj+1 = 10) ≤ 1

2
.

We observe that, in case the LeadingOnesa-value increases, the two bits of the following
transition both match the optimum a with probability at most 1/2. Transitions may
overlap, however, two matching bits can decrease the d-value by at most 2. In case
both these bits match, we consider the first transition in xj+2 . . . xn and repeat the
argumentation with independent events. If the considered bits do not both match, the
d-value decreases by at most 2. We arrive at

E
(
d(x) − d(x′)

)
≤ 4

k
·
(

2

∞∑

i=0

2−i

)

=
16

k
.

By the same arguments, E(d(x∗)) ≥ Tr−4 ≥ k/4−4 follows and drift analysis arguments
from Theorem 2.3.8 yield the bound

E(d(x∗))
16/k

≥
(

k

4
− 4

)

· k

16
=

c2n2

64
− O(n).

Note that a bound Ω(n2) also holds when multiplying with the probability 1 − e−Ω(n)

for Tℓ, Tr ≥ k/4 and we have proved the theorem.

Here, we consider experiments for LeadingOnesa for n ∈ {40, 80, . . . , 600} and differ-
ent bit strings a. We fix |a|1 ∈ {0, .05n, .1n, . . . , .95n, n} and choose one such a uniformly
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Figure 3.3: Average runtimes on LeadingOnesa in 100 independent runs for n ∈
{40, 80, . . . , 600} and |a|1 ∈ {0, .05n, .1n, . . . , .95n, n}.

at random for each value of |a|1. In Figure 3.3 we observe a clear increase of the average
optimization time as |a|1 moves towards n/2.

When looking for a known example function where the general upper bound for uni-
modal functions is tight, without applying any transformation, one may think of Ridge

(Quick et al. (1998)). Whereas the unique global optimum is 1n (like for OneMax and
LeadingOnes), the algorithm cannot benefit from additional 1-bits that happen to be
present in the trailing bits. The definition of Ridge forces these bits to be 0 on the
ridge. This makes it seem unlikely that the asymmetric (1+1) EA can outperform the
standard (1+1) EA on Ridge. We prove this intuition to be correct.

Theorem 3.1.15. The expected optimization time of the asymmetric (1+1) EA on
Ridge is Θ(n2). The same holds for Ridgea and every a ∈ {0, 1}n.

Proof. The upper bound follows from Theorem 3.1.11. With probability 1 − 2−Ω(n) the
initial search point has Hamming distance at least n/3 from the unique global optimum.
Offspring closer to the optimum with a fitness value smaller than n + 1 are rejected.
Thus, with probability 1− 2−Ω(n) the first accepted search point x∗ where f(x∗) ≥ n+1
has Hamming distance Ω(n) to the unique global optimum.

Let S = (s0, . . . , sn−1) be the sequence of Hamming neighbors such that f(si) = n + i
for all 0 ≤ i ≤ n− 1. Then for every a there is a coherent subsequence S′ = (s′1, . . . , s

′
m)

of S of length m = Ω(n) such that f(s′1) ≥ f(x∗) and both |s′i|1 = Ω(n) and |s′i|0 = Ω(n)
hold for all 1 ≤ i ≤ m. Due to the definition of Ridgea, this subsequence has to be
traversed in order to optimize Ridgea. The expected decrease in Hamming distance to
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the global optimum on this subsequence in one mutation is O(1/n). Hence, applying
drift arguments yields the lower bound Ω(n2) on the expected optimization time.

Considering the results of experiments for Ridge, designed in the same way as the
experiments for LeadingOnes, our asymptotical bounds are confirmed (see Figure 3.4).
There is hardly any difference for different choices of a.
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Figure 3.4: Average runtimes on Ridgea in 100 independent runs for n ∈
{40, 80, . . . , 600} and |a|1 ∈ {0, .05n, .1n, . . . , .95n, n}.

The performance of the standard (1+1) EA and the asymmetric (1+1) EA are asymp-
totically equal on Ridgea. Even the proofs of the bounds are very similar (Jansen and
Wegener (2001)). So far, we have seen only advantages for asymmetric mutations and
many similarities to standard mutations. In the following section, we consider an exam-
ple where the asymmetric mutation operator leads to an extreme decline in performance.

3.1.4 Drawbacks of the Asymmetric Mutation Operator

The function Plateau is very similar to Ridge. The function values differ only for
n out of 2n points in the search space. These n points are the most important ones,
though. For Ridge, the increase in function values on the ridge leads towards the global
optimum. For Plateau, these points have equal function values and the evolutionary
algorithm has to perform a kind of blind random walk on this plateau. It is known that
standard mutations complete this random walk successfully on average in Θ(n3) steps.
Asymmetric mutations fail to be efficient in any sense here.
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Theorem 3.1.16. The probability that the asymmetric (1+1) EA optimizes Plateau

within 2cn steps is bounded above by 2−Ω(n) for some constant c > 0.

Proof. We first show that with probability 1 − 2−Ω(n) the first point on the plateau
reached by the algorithm has at most n/16 1-bits. As long as the plateau has not been
hit, the asymmetric (1+1) EA behaves as on the function ZeroMax(x) := |x|0. Due to
the symmetry between x and x, we can apply bounds for OneMax also for ZeroMax.
We know from Theorem 3.1.6 that the expected time until 0n is found or the plateau
is hit is O(n). As long as the current search point of the asymmetric (1+1) EA on
Plateau has the same distribution as on ZeroMax the following holds. Let xt be the
search point in generation t. If we know that xt has i 1-bits, then xt is uniform over all
search points with i 1-bits. Therefore, the probability that xt = 1i0n−i is 1/

(n
i

)
, which is

2−Ω(n) if i ≥ n/32 and i ≤ n − n/32. A situation where i > n− n/32 is very unlikely as
the probability that initialization creates a search point with at most n − n/16 1-bits is
1− 2−Ω(n) and then n/32 bits are required to flip simultaneously, which has probability
2−Ω(n) as well. By the last argument, also in case a search point with at most n/32
1-bits is reached, at least n/32 bits would be required to flip in order to reach a plateau
point with at least n/16 1-bits. Considering all mentioned error probabilities for the
initialization and using Lemma 2.3.6 for O(n) expected generations results in a total
error probability of 2−Ω(n). Therefore, the first plateau point has at most n/16 1-bits
with probability 1 − 2−Ω(n).

Assume in the following that the above event happened. We show that then there is a
drift towards decreasing the number of 1-bits. Let xt be the current search point on the
plateau in generation t and xt+1 be the current search point in the following generation.
Abbreviate ∆i := (|xt+1|0 − |xt|0 | |xt|0 = i). For all 7n/8 < i < 15n/16, we have

E(∆i) =

n−|xt|0∑

d=−|xt|0

d · Prob(∆i = d)

≥ Prob(∆i = 1) −
|xt|0∑

d=1

d · Prob(∆i = −d).

For ∆i = 1 it is sufficient to reach a specific Hamming neighbor by flipping a 1-bit.
Lemma 3.1.2 therefore yields Prob(∆i = 1) ≥ 1/(8(n − i)). A necessary condition for
∆i = −d is that d specific 0-bits flip, which has probability (1/(2i))d . Together, using
i > 7n/8 and d ≤ (

√
2)d for d ∈ N,

E(∆i) ≥ 1

8(n − i)
−

|xt|0∑

d=1

d ·
(

1

2i

)d

≥ 1

8(n − i)
−

∞∑

d=1

(
1√
2i

)d
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=
1

8(n − i)
− 1√

2i − 1
≥ 1

n
− 8√

2 · 7n
= Ω

(
1

n

)

.

We conclude that for the observed part of the plateau there is a slight tendency to
decrease the number of 1-bits. Call a step relevant if the offspring y replaces its parent
x 6= y on the plateau. In all non-relevant steps the asymmetric (1+1) EA does not change
its current search point, i. e., a relevant step is equivalent to ∆i 6= 0. The probability
of a relevant step is of order Θ(1/n) due to the conditions on i. By the law of total
probability (Lemma A.2)

E(∆i | ∆i 6= 0) =
E(∆i)

Prob(∆i 6= 0)
≥ ε

for all considered i and a suitable constant ε > 0.
We aim for an application of the simplified Drift Theorem to the number of 0-bits in

relevant steps. Let a := 7n/8 and b := 15n/16, then the first condition has been shown.
The unconditional probability of a step decreasing the number of 0-bits by 1 ≤ d ≤ i is
(1/(2i))d ≤ (4/(7n))d. The conditional probability of this event, given a relevant step,
is by a factor of Θ(n) larger. Still, (4/(7n))d ·Θ(n) ≤ 2−d+O(1) for d ≥ 1, hence also the
second condition of Theorem 2.3.10 is fulfilled for δ := 1 and an appropriate constant r.
Theorem 2.3.10 yields that the optimization time is at least 2cn for some constant c > 0
with probability 1− 2−Ω(n). This still holds if we take into account the error probability
for the first plateau point and the theorem has been proven.

Note, however, that this immense drawback is due to the special definition of Plateau.
In particular, we can transform the landscape in a way that does not influence the stan-
dard (1+1) EA at all but is important for the asymmetric (1+1) EA. This leads to a
function for which we can prove bounds of equal order on the expected optimization
time of the two algorithms.

Theorem 3.1.17. For even n we define a01 := 010101 · · · 01 ∈ {0, 1}n. The expected
optimization time of the asymmetric (1+1) EA on Plateaua01

is Θ(n3).

Proof. It follows from the result on OneMaxa (Theorem 3.1.7) that some point on the
plateau will be found on average within the first O(n log n) steps. Then, the plateau
cannot be left again. For each i ∈ {0, . . . , n − 1} and some search point x on the
plateau we show the following claim. If it is possible to create search points x+i, x−i on
the plateau out of x such that the Hamming distance to the unique global optimum is
increased or decreased by i, resp., then x+i and x−i are reached with equal probability.
This is due to the choice of a01 since all plateau points of Plateaua01

have either n/2 or
(n/2)+1 1-bits and points with n/2 and (n/2)+1 1-bits are alternating on the plateau.
Therefore,

∣
∣x+i

∣
∣
1

=
∣
∣x−i

∣
∣
1

holds and both the number of flipping 1-bits and the number
of flipping 0-bits is the same for x+i and x−i. Furthermore, the choice of a01 implies that
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|x|1 = n/2+O(1) for all x on the plateau yielding a probability of Θ(1/ni) to create x+i

or x−i.

By these arguments, a bound Θ(n3) on the expected optimization time can be shown
analogously to the results by Jansen and Wegener (2001) and Brockhoff et al. (2007).

We consider experiments for Plateaua01
measuring the average runtime of the asym-

metric (1+1) EA over 100 runs for each n ∈ {10, 20, . . . , 200}. The results are shown in
Figure 3.5. A regression analysis with functions cn3 yielded a good fit for c = 1.33951.
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average runtime
1.33951n3

Figure 3.5: Average runtimes on Plateaua01
in 100 independent runs for n ∈

{10, 20, . . . , 200}. The dashed line shows the fitted function 1.33951n3.

Next, we consider experiments for the asymmetric (1+1) EA on the function Plateau.
Since our theoretical result predicts overly large runtimes, we measure the number of
runs where the optimum is found within 16n3 steps. The factor 16 is chosen for the
following reasons according to the empirical results on Plateaua01

. First, this factor
is more than ten times larger than the factor c = 1.33951 of the fitted function for
Plateaua01

. Moreover, all runs on Plateaua01
found the global optimum within 16n3

steps.

The results on Plateau are shown in Table 3.2. The search space dimension n = 10
is too small for the bias of asymmetric mutations to have a significant impact on the
plateau. However, for larger n the asymmetric (1+1) EA clearly fails on Plateau.
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n successful runs

10 60
20 0
30 0
40 0
50 0
60 0
70 0
80 0
90 0
100 0

n successful runs

110 0
120 0
130 0
140 0
150 0
160 0
170 0
180 0
190 0
200 0

Table 3.2: Number of runs among 100 independent runs where the optimum of Plateau

was found within 16n3 generations.

3.1.5 Conclusions

We presented a mutation operator for bit strings that flips bits with a probability de-
pending on the number of 1-bits. The operator is designed in a way that on average
the number of 1-bits is not changed. This helps to bias the search towards bit strings
containing either very few 0-bits or very few 1-bits. Such a mutation operator is moti-
vated by applications where good solutions are known or at least thought of having this
property.

We analyzed this mutation operator by comparing it with standard mutations that
flip each bit independently with probability 1/n. Table 3.3 gives an overview on bounds
for the corresponding expected optimization times. For OneMax, a speed-up of order
log n is proved. For Needle, there is even an exponential advantage for asymmetric
mutations. For the class of unimodal functions, we proved the same general upper
bound as known for standard mutations. For LeadingOnes, a speed-up of order n1/2 is
proved in comparison to standard mutations. However, both mutation operators lead to
runtimes of equal order on a simple transformation of LeadingOnes and on a class of
ridge functions. These results show that the general upper bound for unimodal functions
can be tight and that both algorithms can have similar performance on broad classes of
functions.

Contrarily, we demonstrated a clear weakness of asymmetric mutations on a function
where an unbiased random walk on a plateau is needed in order to be successful. We
showed that there is an exponential performance gap between asymmetric mutations
and standard mutations. However, a simple transformation of the landscape lets both
mutation operators lead to polynomial expected optimization times.
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standard asymmetric asymmetric and transformed

General lower bound Ω(n log n) Ω(n) Ω(n) (every a)
General upper bound nn (2n)n (2n)n (every a)
OneMax Θ(n log n) Θ(n) Θ(n log(k + 2)) (every a)
Needle Θ(2n) O(n2) O(n2 + nk+1) (constant k)
Unimodal functions O(nd) O(nd) O(nd) (every a)

LeadingOnes Θ(n2) O(n3/2) Θ(n2) (random a)
Ridge Θ(n2) Θ(n2) Θ(n2) (every a)

Plateau Θ(n3) 2Ω(n) Θ(n3) (a = 0101 . . . )

Table 3.3: Bounds on the expected optimization times for the standard (1+1) EA, the
asymmetric (1+1) EA, and the asymmetric (1+1) EA on functions trans-
formed according to a with k := min{|a|0 , |a|1}. Conditions on the choice
of a are indicated. Recall that bounds for the standard (1+1) EA also hold
for every transformation. The general lower bound applies to functions with
a bounded number of global optima and the general upper bound holds for
all functions. For unimodal functions d denotes the number of fitness values.

Our results show that the asymmetric mutation operator introduces a remarkable bias
on the search process that is, nevertheless, easy to counteract by fitness-based guidance.
The results on the flat fitness landscape Needlea (Theorem 3.1.9) and Plateau (The-
orem 3.1.16) demonstrate that, in the absence of a fitness-based guidance, the random
search induced by asymmetric mutations is different from the random search induced
by standard mutations. On the other hand our result for OneMaxa (Theorem 3.1.7)
shows that fitness-based guidance is easily able to counteract this search bias. There,
asymmetric mutations improve the performance if the number of ones in the target string
is either very large or very small. But from the perspective of asymptotic optimization
times, the performance is never worse than with standard mutations. In this sense the
asymmetric mutation operator is a successful example of a variation operator inspired
by a specific class of applications that is not limited in its use to this class.

3.2 Diversity Mechanisms for Global Exploration

The term diversity indicates dissimilarities of individuals in evolutionary computation
and is considered an important property. In a population-based evolutionary algorithm
without diversity mechanism there is a risk of the best individual taking over the whole
population before the fitness landscape is explored properly. When the population be-
comes completely redundant, the algorithm basically reduces to a trajectory-based al-
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gorithm while still suffering from high computational effort and space requirements for
the whole population.

Diversity mechanisms can help the optimization in two ways. On one hand, a diverse
population is able to deal with multimodal functions and can explore several hills in the
fitness landscape simultaneously. Diversity mechanisms can therefore support global ex-
ploration and help to locate several local and global optima. In particular, this behavior
is welcome in dynamic environments as the algorithm is more robust with respect to
changes of the fitness landscape. Moreover, the algorithm can offer several good solu-
tions to the user, a feature desirable in multiobjective optimization. On the other hand,
a diverse population gives higher chances to find dissimilar individuals and to create
good offspring by recombining different “building blocks.” Diversity mechanisms can
thus enhance the performance of crossover.

Up to now, the use of diversity mechanisms has been assessed mostly by means of em-
pirical investigations (e. g., Chaiyaratana, Piroonratana, and Sangkawelert, 2007; Ursem,
2002). Theoretical runtime analyses involving diversity mechanisms mostly use these
mechanisms to enhance the performance of crossover. Jansen and Wegener (2005) pre-
sented the first proof that crossover can make a difference between polynomial and
exponential expected optimization times. They used a very simple diversity mechanism
that only shows up as a tie-breaking rule: when there are several individuals with min-
imal fitness among parents and offspring, the algorithm removes those individuals with
a maximal number of genotype duplicates. Nevertheless, this mechanism makes the
individuals spread on a certain fitness level such that crossover is able to find suitable
parents for recombination. Storch and Wegener (2004) presented a similar result for
populations of constant size. They used a stronger mechanism that prevents duplicates
from entering the population, regardless of their fitness value.

Niching methods encourage the exploration of “niches”, that is, they aim at the sur-
vival of individuals far apart from the other individuals. The first theoretical runtime
analysis considering niching methods was presented by Fischer and Wegener (2005) for
a fitness function derived from a generalized Ising model on ring graphs. The authors
compare the well-known (1+1) EA with a (2+2) GA with fitness sharing. Fitness shar-
ing (Mahfoud, 1997) derates the real fitness of an individual x by a measure related to
the similarity of x to all individuals in the population, hence encouraging the algorithm
to decrease similarity in the population. Fischer and Wegener prove that their genetic
algorithm outperforms the (1+1) EA by a polynomial factor. Sudholt (2005) extended
this study for the Ising model on binary trees, where the performance gap between GAs
and EAs is even larger. While a broad class of (µ+λ) EAs has exponential expected
optimization time, a (2+2) GA with fitness sharing finds a global optimum in expected
polynomial time.

In all these studies diversity is used to assist crossover. Contrarily, Friedrich, Heb-
binghaus, and Neumann (2007) focused on diversity mechanisms as a means to enhance
the global exploration of EAs without crossover. Using rigorous runtime analyses, the
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authors compare a mechanism avoiding genotype duplicates with a strategy avoiding
duplicate fitness values to spread individuals on different fitness levels. It is shown for
artificial functions that both mechanisms can outperform one another drastically.

Friedrich et al. (2007) were the first to focus on the use of diversity mechanisms for
global exploration, with respect to rigorous runtime analyses. However, their test func-
tions are clearly tailored towards one particular diversity mechanism. We want to obtain
a broader perspective including a broader range of diversity mechanisms. Therefore, we
compare several well-known diversity mechanisms on the simplest bimodal function that
may also appear as part of a real-world problem. On the considered function simple hill
climbers find the global optimum with constant probability, hence a restart strategy is
sufficient for optimization. We focus on well-known diversity mechanisms that do not
restart the algorithm. Firstly, we rigorously prove that diversity mechanisms are neces-
sary for our function since populations of almost linear size without diversification fail to
find both peaks, with high probability. Then we analyze common diversity mechanisms
and show that not all of them are effective to prevent the population from collapsing to
the local optimum, even for such a simple landscape. As a result, we hope to get a more
objective and more general impression of the capabilities and limitations of common
diversity mechanisms.

In the remainder of this section, we first present our bimodal test function in Sec-
tion 3.2.1. Negative results for a plain (µ+1) EA in Section 3.2.2 show that diversification
is needed. In Sections 3.2.3 and 3.2.4 we investigate the strategies previously analyzed
in Friedrich et al. (2007) to avoid genotype duplicates and fitness duplicates, respectively.
Section 3.2.5 deals with the well-known deterministic crowding strategy (Mahfoud, 1997)
where offspring directly compete with their associated parents. Fitness sharing, which
turns out to be the strongest mechanism, is analyzed in Section 3.2.6. Section 3.2.7 con-
tains experimental results showing how well our theoretical results match with empirical
results and revealing additional insight on the dynamic behavior of the algorithms. We
present our conclusions in Section 3.2.8.

3.2.1 A Simple Bimodal Function

We consider a simple bimodal function called TwoMax that has already been investi-
gated in the context of genetic algorithms by Pelikan and Goldberg (2000) and Goldberg,
Van Hoyweghen, and Naudts (2002). The function TwoMax is essentially the maximum
of OneMax and ZeroMax. Local optima are solutions 0n and 1n where the number
of zeros or the number of ones, respectively, is maximized. Hence, TwoMax can be
seen as a bimodal equivalent of OneMax. The fitness landscape consists of two hills
with symmetric slopes, i. e., an unbiased random search heuristic cannot tell in advance
which hill is more promising. In contrast to Pelikan and Goldberg (2000) and Goldberg
et al. (2002) we modify the function slightly such that only one hill contains the global

60



3.2 Diversity Mechanisms for Global Exploration

TwoMax(x)

|x|1n/2

0

n

n/2 n

Figure 3.6: Sketch of TwoMax. The dot indicates the global optimum.

optimum, while the other one leads to a local optimum. This is done by simply adding
an additional fitness value for 1n, turning it into a unique global optimum.

For x = x1x2 . . . xn

TwoMax(x) := max{|x|0 , |x|1} +
n∏

i=1

xi.

Figure 3.6 shows a sketch of TwoMax. Among all search points with more than n/2
1-bits, the fitness increases with the number of ones. Among all search points with less
than n/2 1-bits, the fitness increases with the number of zeros. We refer to these sets as
branches and the algorithms as climbing these two branches of TwoMax.

The TwoMax function does appear in well-known combinatorial optimization prob-
lems. For example, the Vertex Cover bipartite graph analyzed in Oliveto, He, and
Yao (2008) consists of two branches, one leading to a local optimum and the other to
the minimum cover. In fact similar proof techniques as those used in this paper have
also been applied in the Vertex Cover analysis of the (µ+1) EA for the bipartite
graph. Another function with a similar structure is the Mincut instance analyzed in
Section 4.2.

Simple hill climbers like the (1+1) EA find the global optimum of TwoMax before the
local one with probability 1/2, hence they are efficient with probability 1/2. Considering
µ independent parallel runs of the (1+1) EA (or µ starts of the algorithm with a suitable
restart scheme) yields that the probability of not finding the global optimum efficiently
is 2−µ. When using populations of size µ, we expect the search to be more focused
than with µ independent runs. Hence without diversification the probability of finding
the optimum should be significantly worse. However, from a good diversity mechanism
we expect that the probability of not finding the optimum decreases significantly with
growing µ. We will see in the following that diversity mechanisms avoiding duplicates do
not fulfill this property and that the probability of finding the global optimum efficiently
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is at most 1/2 + o(1), hence comparable to the simple (1+1) EA. We can conclude for
these mechanisms that populations are nearly useless on TwoMax. On the other hand,
deterministic crowding shows a behavior very similar to µ independent runs and fitness
sharing even finds the optimum efficiently with probability 1.

3.2.2 No Diversity Mechanism

In order to obtain a fair comparison of different diversity mechanisms, we keep one
algorithm fixed as much as possible. The basic algorithm, the following (µ+1) EA, has
already been investigated by Witt (2006). The (µ+1) EA uses random parent selection
and elitist selection for survival. As parents are chosen randomly, the impact of selection
is quite weak. Nevertheless, the (µ+1) EA is not able to maintain individuals on both
branches for a long time. We now show that if µ is not too large, the individuals on one
branch typically get extinct before the top of the branch is reached. Thus, the global
optimum is found only with probability close to 1/2 and the expected optimization time
is very large.

Algorithm 5 (µ+1) EA

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
Choose z ∈ Pt with minimal fitness.
if f(y) ≥ f(z) then Pt+1 := Pt \ {z} ∪ {y}

else Pt+1 := Pt.
Let t := t + 1.

Theorem 3.2.1. The probability that the (µ+1) EA with no diversity mechanism and
µ = o(n/log n) optimizes TwoMax in time nn−1 is at most 1/2 + o(1). Its expected
optimization time is Ω(nn).

Proof. The probability that during initialization either 0n or 1n is created is bounded by
µ · 2−n+1, hence exponentially small. In the following, we assume that such an atypical
initialization does not happen as this assumption only introduces an error probability
of o(1).

Consider the algorithm at the first point of time T ∗ where either 0n or 1n is created.
Due to symmetry, the local optimum 0n is created with probability 1/2. We assume
in the following that 0n is created and keep in mind an error probability of 1/2. We
now show that then with high probability 0n takes over the population before the global
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optimum 1n is created. Let i be the number of copies of 0n in the population. From the
perspective of extinction, a good event Gi is to increase this number from i to i+ 1. We
have

Prob(Gi) ≥ i

µ
·
(

1 − 1

n

)n

≥ i

4µ

since it suffices to select one out of i copies and to create another copy of 0n. On the
other hand, the bad event Bi is to create 1n in one generation. This probability is
maximized if all µ − i remaining individuals contain n − 1 ones:

Prob(Bi) ≤ µ − i

µ
· 1

n
<

1

n
.

Together, the probability that the good event Gi happens before the bad event Bi is

Prob(Gi | Gi ∪ Bi) ≥ Prob(Gi)

Prob(Gi) + Prob(Bi)
. (3.6)

Plugging in bounds for Prob(Bi) and Prob(Gi) yields the bound

i/(4µ)

i/(4µ) + 1/n
= 1 − 1/n

i/(4µ) + 1/n
≥ 1 − 4µ

in
.

The probability that 0n takes over the population before the global optimum is reached
is therefore bounded by

µ
∏

i=1

Prob(Gi | Gi ∪ Bi) ≥
µ
∏

i=1

(

1 − 4µ

in

)

.

Using 4µ/n ≤ 1/2 and 1 − x ≥ e−2x for x ≤ 1/2 (cf. Lemma A.12), we obtain

µ
∏

i=1

(

1 − 4µ

in

)

≥
µ
∏

i=1

exp

(

−8µ

in

)

= exp

(

−8µ

n
·

µ
∑

i=1

1

i

)

≥ exp(−O((µ log µ)/n))

≥ 1 − O((µ log µ)/n) = 1 − o(1).

If the population consists of copies of 0n, mutation has to flip all n bits to reach the global
optimum. This event has probability n−n and, by the union bound, the probability of
this happening in a phase consisting of nn−1 generations is at most 1/n. The sum of all
error probabilities is 1/2 + o(1), which proves the first claim.

For the second claim, observe that the conditional expected optimization time is nn

once the population has collapsed to copies of 0n. As this situation occurs with proba-
bility at least 1/2 − o(1), the unconditional expected optimization time is Ω(nn).
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3.2.3 No Genotype Duplicates

It has become clear that diversity mechanisms are very useful to optimize even a simple
function such as TwoMax. The simplest way to enforce diversity within the population
is not to allow genotype duplicates. The following algorithm has been defined and
analyzed by Storch and Wegener (2004). It prevents identical copies from entering the
population as a natural way of ensuring diversity. We will, however, show that this
mechanism is not powerful enough to explore both branches of TwoMax.

Algorithm 6 (µ+1) EA with genotype diversity

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if y /∈ Pt then

Choose z ∈ Pt with minimal fitness.
if f(y) ≥ f(z) then Pt+1 := Pt \ {z} ∪ {y}

else Pt+1 := Pt.
Let t := t + 1.

We prove that if the population is not too large, the algorithm can be easily trapped
in a local optimum.

Theorem 3.2.2. The probability that the (µ+1) EA with genotype diversity and µ =
o(n1/2) optimizes TwoMax in time nn−2 is at most 1/2+o(1). Its expected optimization
time is Ω(nn−1).

Proof. We use a similar way of reasoning as in the proof of Theorem 3.2.1. With proba-
bility 1/2 − o(1), 0n is the first local or global optimum created at time T ∗. Call x good
(from the perspective of extinction) if |x|1 ≤ 1 and bad if |x|1 ≥ n − 1. At time T ∗ the
number of good individuals is at least 1. In the worst case (again from the perspective of
extinction) the population at time T ∗ consists of 0n and µ−1 bad individuals with n−1
ones. Provided that the (µ+1) EA does not flip n − 2 bits at once, we now argue that
the number of good individuals is monotone unless the unique 0-bit in a bad individual
is flipped.

Due to the assumptions on the population only offspring with fitness at least n − 1
are accepted, i. e., only good or bad offspring. In order to create a bad offspring, the
unique 0-bit has to be flipped since otherwise a clone or an individual with worse fitness
is obtained. Hence the number of good individuals can only decrease if a bad individual
is chosen as parent and its unique 0-bit is flipped. If there are i good individuals, we
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denote this event by Bi and have

Prob(Bi) ≤ µ − i

µ
· 1

n
.

On the other hand, the number of good individuals is increased from i to i + 1 if
a good offspring is created and a bad individual is removed from the population. We
denote this event by Gi. A good offspring is created with probability at least 1/(3µ)
for the following reasons. The point 0n is selected with probability at least 1/µ and
then there are n − (i − 1) = n − o(n1/2) ≥ (e/3) · n 1-bit mutations (provided n is large
enough) creating good offspring that are not yet contained in the population. Along
with the fact that a specific 1-bit mutation has probability 1/n · (1− 1/n)n−1 ≥ 1/(en),
the bound 1/(3µ) follows. After creating such a good offspring, the algorithm removes
an individual with fitness n−1 uniformly at random. As there are i−1 good individuals
with this fitness and µ− i bad individuals, the probability of removing a bad individual
equals (µ− i)/(µ− 1) ≥ (µ− i)/µ. Together, the probability that a generation increases
the number of good individuals is at least

Prob(Gi) ≥ 1

3µ
· µ − i

µ
=

µ − i

3µ2
.

Along with inequality (3.6), the probability that Gi happens before Bi is at least

µ−i
3µ2

µ−i
3µ2 + µ−i

µn

=
1

1 + 3µ/n
= 1 − 3µ/n

1 + 3µ/n
≥ 1 − 3µ

n
.

The probability that the number of good individuals increases to µ before the global
optimum is reached is

µ
∏

i=1

Prob(Gi | Gi ∪ Bi) ≥
(

1 − 3µ

n

)µ

≥ 1 − 3µ2

n
= 1 − o(1).

The probability of creating a global optimum, provided the population contains only
search points with at most one 1-bit, is at most n−(n−1). The probability of this happen-
ing in a phase of nn−2 generations is still at most 1/n. Adding up all error probabilities,
the first claim follows.

The claim on the expected optimization time follows as the last situation is reached
with probability at least 1/2− o(1) and the conditional expected optimization time is at
least nn−1 then.

3.2.4 No Fitness Duplicates

Avoiding genotype duplicates does not help much to optimize TwoMax as individuals
from one branch are still allowed to spread on a certain fitness level and take over the
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population. A more restrictive mechanism is to avoid fitness duplicates, i. e., multiple
individuals with the same fitness. Such a mechanism has been defined and analyzed by
Friedrich et al. (2007) for plateaus of constant fitness. In addition, this resembles the
idea of fitness diversity proposed by Hutter and Legg (2006).

The following (µ+1) EA with fitness diversity avoids that multiple individuals with
the same fitness are stored in the population. If at some time t a new individual x is
created with the same fitness value as a pre-existing one y ∈ Pt, then x replaces y.

Algorithm 7 (µ+1) EA with fitness diversity

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if there is a z ∈ Pt such that f(y) = f(z)
then Pt+1 := Pt \ {z} ∪ {y}
else

Choose z ∈ Pt with minimal fitness.
if f(y) ≥ f(z) then Pt+1 := Pt \ {z} ∪ {y}

else Pt+1 := Pt.
Let t := t + 1.

From the analysis of Friedrich et al. (2007) it can be derived that if the population
size µ is a constant, then the runtime on a simple plateau is exponential in the problem
size n. Only if µ is very close to n the expected runtime is polynomial. In particular, if
µ = n then the same upper bound as that of the (1+1) EA for plateaus of constant fitness
(Jansen and Wegener, 2001) can be obtained (i. e., O(n3)). In the following, by analyzing
the mechanism on TwoMax, we show how also on a simple bimodal landscape, fitness
diversity does not help the (µ+1) EA to avoid getting trapped on a local optimum.

The following theorem proves that if the population is not too large, then with high
probability the individuals climbing one of the two branches will be extinguished before
any of them reaches the top. Since the two branches of the TwoMax function are
symmetric, this also implies that the global optimum will not be found in polynomial
time with probability 1/2 − o(1).

Theorem 3.2.3. The probability that the (µ+1) EA with fitness diversity and µ =
poly(n) optimizes TwoMax in time 2cn, c > 0 an appropriate constant, is at most
1/2 + o(1). Its expected optimization time is 2Ω(n).

Proof. Obviously the second claim follows from the first one. W. l. o. g. n/6 ∈ N. By
Chernoff bounds, the probability that initialization creates a search point with at most
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n/3 1-bits or at most n/3 0-bits is at most µ ·2−Ω(n) = o(1). We assume in the following
that only search points x with n/3 < |x|1 < 2n/3 are created and keep in mind an error
probability of o(1).

Let individuals with i < n/2 0-bits be called xi and individuals with i < n/2 1-bits be
called yi. Initially there is neither xi nor yi in the population for 0 ≤ i ≤ n/3. Because of
the fitness diversity mechanism there may be only one such xi or one yi in the population
at the same time for 1 ≤ i ≤ n/3 as xi and yi have the same fitness. For the current
population Pt at time t define a potential ϕ = ϕ(Pt) as follows:

ϕ = ϕ(Pt) := min
{

min{i : yi+1 /∈ Pt},
n

6

}

.

The potential is capped at n/6 for technical reasons that will become obvious later on.
As n/6 < n/3, we can conclude from potential i that x0, . . . , xi /∈ Pt. Intuitively, the
potential is then a lower bound for the Hamming distance from the closest point in the
population to the global optimum.

The following arguments are easier for µ ≤ n/3 as then we do not have to deal with
the fact that the n/3 best fitness levels may contain multiple individuals. For the sake
of simplicity and readability, we first only consider this case. At the end of the proof,
we then argue how to deal with larger population sizes.

We now partition the run into phases and call such a phase good (for the lower bound)
if the global optimum is not found during the phase. Phase 1 ends when a search point
in {0n, 1n} is found for the first time. After the initialization only one new individual
is created in each generation. By symmetry of the TwoMax function, the probability
that 0n is found first equals the probability that 1n is found first. Hence Phase 1 is good
with probability 1/2 − o(1).

At the end of Phase 1 we have a current potential of ϕ ≥ 1. Let m1 := min{µ−1, 3
√

n}
and m2 := min{µ − 1, n/6} be the maximum potential. Define Phase 2 to start after
a good Phase 1 and to end when either the global optimum is found or the potential
increases to ϕ ≥ m1.

We inspect changes of the potential. It may happen that the next step creates yϕ+1.
Then xϕ+1 is removed from the population and ϕ increases by 1. Such a step is called
a good step. On the other hand, if xi for i ≤ ϕ is created, then yi is removed and ϕ
decreases to i − 1. This is referred to as a bad step. All other steps do not change
the potential. For proving a lower bound, given a current potential ϕ, we consider the
following population as a worst case:

Pt = {y0, . . . , yϕ , xϕ+1, . . . , xµ−1}.

In Pt we have y0, . . . , yϕ ∈ Pt by definition of the potential ϕ and the x-individuals
are stacked one after another. The latter maximizes the probability of reaching the
global optimum in a single step. More general, for every i ≤ ϕ the probability of
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creating xi is maximized—this event is equivalent to a bad step decreasing the potential
to i. Furthermore, the probability a good step is minimized as all x-individuals have the
largest possible Hamming distance to search points yϕ+1. Recall that every fitness level
contains at most one search point, hence there cannot be a worse constellation for the
x-individuals.

We now simplify the analysis by making pessimistic assumptions that reduce the
algorithm towards a simple Markov chain. After a step has been made, we compute the
new potential and then pessimistically replace the resulting population by the worst-case
population corresponding to the new potential. The current state of the algorithm can
then be characterized by the current potential only and all transition probabilities to
smaller or larger potentials have been estimated pessimistically.

Even in this pessimistic setting ϕ increases to m1 with high probability before a bad
step happens. If xϕ+j is chosen as parent, a necessary condition for a bad step is that
j out of ϕ + j 0-bits flip. Using

(n
k

)
≤ (ne/k)k (Lemma A.9), the probability of a bad

step is at most

1

µ

n/3−ϕ
∑

j=1

(
j + ϕ

j

)(
1

n

)j

≤ 1

µ

n/3−ϕ
∑

j=1

(
j + m1 − 1

j

)(
1

n

)j

≤ 1

µ

n/3−ϕ
∑

j=1

(
e(j + m1 − 1)

jn

)j

≤ 1

µ

∞∑

j=1

(em1

n

)j
=

1

µ
· em1

n − em1
<

3

µ
· m1

n

as m1 = o(n). If ϕ < m1, the probability of a good step is at least

1

µ
· n − ϕ

en
≥ 1

µ
· n − m1

en
≥ 1

2eµ

since it suffices to select yϕ and to flip exactly one out of n−ϕ bits. So, the probability
that a good step happens before a bad step is at least

1/(2eµ)

1/(2eµ) + 3/µ · m1/n
=

1

1 + 6em1/n
= 1 − 6em1/n

1 + 6em1/n
≥ 1 − 6em1

n
.

The probability of increasing ϕ from 1 to m1 by subsequent good steps before a bad
step happens is bounded by

(

1 − 6em1

n

)m1−1

≥ 1 − 6em2
1

n
= 1 − o(1)

since m2
1 = o(n).
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The next Phase 3 starts after a good Phase 2 and ends when either the global optimum
is found or the potential increases to ϕ ≥ m2. In case m1 = µ the goals of Phase 2
and Phase 3 coincide and Phase 3 is empty. We consider the expected increase of the
potential in one generation. Let ∆ϕ = ∆ϕ(t) := ϕ(Pt+1)−ϕ(Pt). If the current potential
is not maximal, the probability of increasing the potential by 1 can be estimated by the
probability of selecting yϕ and making one out of n − ϕ 1-bit mutations increasing the
number of 1-bits. Define ∆+

ϕ := ∆ϕ · I∆ϕ>0 and ∆−
ϕ := ∆ϕ · I∆ϕ<0 where IA = 1 if

condition A is true and 0 otherwise. Then for ϕ < m2

E
(
∆+

ϕ

)
≥ 1

µ
· n − ϕ

en
.

If xϕ+j is selected, in order to decrease the potential it is necessary that j out of ϕ + j
0-bits flip. The probability for this event is clearly bounded by 1/(j!). Under the
condition that at least j 0-bits flip, the expected number of flipping 0-bits among ϕ + j
0-bits is bounded by j+ϕ/n, the term ϕ/n representing the expected number of flipping
0-bits among ϕ 0-bits. The conditional expected decrease of the potential is then at most
ϕ/n, leading to an unconditional expectation of

E
(
∆−

ϕ

)
≤ 1

µ

n/3−ϕ−1
∑

j=1

1

j!
· ϕ

n

≤ 1

µ
· ϕ

n

∞∑

j=1

1

j!
=

1

µ
· (e − 1)ϕ

n

using e =
∑∞

j=0 1/(j!). Putting E
(
∆+

ϕ

)
and E

(
∆−

ϕ

)
together, along with ϕ < m2 ≤ n/6,

E(∆ϕ) ≥ 1

µ
·
(

n − ϕ

en
− (e − 1)ϕ

n

)

=
1

µ
· n − (e2 − e + 1)ϕ

en
≥ ε

µ

for some ε > 0. One conclusion is that by drift arguments (Theorem 2.3.8) the expected
time until the potential has reached its maximum value m2 or the optimum is found
beforehand is bounded by O(nµ). In other words, Phase 3 ends in expected time O(nµ).

In order to estimate the error probability in this phase, we apply the Drift Theo-
rem 2.3.8 to the potential in the interval between a := 0 and b := 3

√
n. Note that b

cannot be chosen larger as the Drift Theorem requires the starting point to be at least b.
Another obstacle is that the drift ε/µ decreases with µ. So we consider the potential only
in relevant steps, defined as steps where ∆ϕ 6= 0. The arguments from our estimation of
E
(
∆+

ϕ

)
, along with ϕ ≤ n/6, yield the lower bound

Prob(∆ϕ 6= 0) ≥ 1

µ
· n − ϕ

en
≥ 5

6eµ
.
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We also need an upper bound on this probability. If yϕ−k is selected for 0 ≤ k ≤ ϕ, at
least k bits have to flip in order to have a relevant step. The same holds if xϕ+1+k is
selected for 0 ≤ k ≤ µ − ϕ − 2. As all these solutions are selected with probability 1/µ,
the probability of a relevant step is bounded from above by

Prob(∆ϕ 6= 0) ≤ 1

µ
· 2

∞∑

k=0

1

k!
=

2e

µ
.

This yields for i < n/6

E(∆ϕ | ∆ϕ 6= 0) =
E(∆ϕ)

Prob(∆ϕ 6= 0)
≥ ε

2e

and the first condition for Theorem 2.3.10 is fulfilled. For the second condition, it is
necessary for ∆ϕ = −j, j ∈ N, to select some xϕ+k and to flip k + j bits simultaneously.
Using (k + j)! ≥ k! · j! for k, j ∈ N0 yields

Prob(∆ϕ = −j) ≤ 1

µ
·

∞∑

k=0

1

(k + j)!
≤ 1

µ
· 1

j!

∞∑

k=0

1

k!
=

e

µ
· 1

j!
.

For the conditional probabilities in relevant steps this means

Prob(∆ϕ = −j | ∆ϕ 6= 0) =
Prob(∆ϕ = −j)

Prob(∆ϕ 6= 0)
≤ 6e2

5j!
≤ 2−j+5

and the second condition holds for δ := 1 and r := 5. The Drift Theorem shows that
the probability of reaching the global optimum within 2c 3

√
n steps is 2−Ω( 3

√
n) = o(1) for

an appropriate constant c > 0. By Markov’s inequality the probability that Phase 3 is
not finished after this number of steps is also o(1). Concluding, Phase 3 is good with
probability 1 − o(1).

The last Phase 4 starts after a good Phase 3 and ends when the global optimum has
been found. Phase 4 therefore starts with a maximum potential of m2. If µ ≤ n/6 + 1,
then at least 2n/3 bits have to flip simultaneously in order to create an accepted
x-individual. The probability of this event is n−Ω(n) and the claim follows. If µ > n/6+1,
then we apply the Drift Theorem to the larger interval from a := 0 to b := n/6. In the
analysis of Phase 3 we have already shown the preconditions for this larger interval,
hence the algorithm needs at least 2Ω(n) steps with probability o(1). Summing up all
error probabilities proves the claim for µ ≤ n/3.

Finally, we argue how to deal with larger population sizes, µ > n/3. We relax our
condition on worst-case populations Pt to

Pt ⊇ {y0, . . . , yϕ , xϕ+1, . . . , xn/3},
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where the remaining individuals all have a number of ones in between n/3 and 2n/3.
These individuals therefore have Hamming distance at least n/6 to all search points that
determine the current potential. This is the reason why we have capped the potential
to n/6. The probability that such a search point interferes with our previous arguments
is therefore at most 1/(n/6)!. Reinspecting the analysis for Phases 2–4, we see that
compared to the setting for µ ≤ n/3 the probabilities for bad and relevant steps only
increase by additive terms of n−Ω(n). Similarly, E(∆ϕ) is only decreased by n−Ω(n) for
0 < ϕ < n/6. In particular, Phase 2 remains good with probability 1 − o(1) and the
application of the Drift Theorem in Phases 3 and 4 remains possible for appropriate
constants ε, δ, r.

3.2.5 Deterministic Crowding

In the deterministic crowding mechanism offspring compete directly with their respective
parents. According to Mahfoud (1997), in a genetic algorithm with crossover determin-
istic crowding works as follows. In every generation the population is partitioned into
µ/2 pairs of individuals, assuming µ to be even. These pairs are then recombined and
mutated. Every offspring then competes with one of its parents and may replace it if
the offspring is not worse.

As we do not consider crossover, we adapt the main idea of offspring competing with
their parents for a mutation-based algorithm. More precise, in the following algorithm
an offspring replaces its parent if its fitness is at least as good.

Algorithm 8 (µ+1) EA with deterministic crowding

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
if f(y) ≥ f(x) then Pt+1 := Pt \ {x} ∪ {y}

else Pt+1 := Pt.
Let t := t + 1.

The algorithm closely resembles a parallel (1+1) EA since µ individuals explore the
landscape independently. However, in contrast to parallel runs, interactions between the
individuals may be obtained by using other operators together with mutation. Recently,
the mechanism together with crossover has proved to be useful for the Vertex Cover

problem by making the difference between polynomial and exponential runtimes for some
instances (Oliveto et al., 2008). Here we concentrate on the capabilities of guaranteeing
diversity of the mechanism by analyzing the (µ+1) EA with deterministic crowding on
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the TwoMax function. For sufficiently large populations the algorithm can easily reach
both local optima.

Theorem 3.2.4. The (µ+1) EA with deterministic crowding and µ = poly(n) reaches
on TwoMax a population consisting of only local or global optima in expected time
O(µn log n). In that case the population contains at least one global optimum with prob-
ability at least 1 − 2−µ.

Proof. The main observation for the second statement is that the individuals of the
population are independent due to the crowding mechanism. Due to the symmetry
of TwoMax, the i-th individual in the population reaches the global optimum with
probability 1/2. The probability that at least one individual finds the global optimum
is 1 − (1/2)µ.

Let T be the random time until all the individuals have reached local or global optima
on TwoMax. It is easier to find a local optimum on TwoMax than to find a global
optimum on OneMax, hence we estimate E(T ) by the expected global optimization
time on OneMax.

Consider the following game of balls and bins, where bins represent bits and balls
represent 1-values. Imagine a bin for every bit in the initial population, i. e., a set of
µn bins labelled with their respective bits. Place a ball in each bin if the associated bit
is set to 1 in the initial population. In the following generations balls may be put into
empty bins according to certain rules. The game ends when all bins contain a ball—
this corresponds to a population where all bits have been set to 1 and every individual
represents the optimum 1n.

Consider a generation where some individual x is selected as parent. The probability
that mutation only flips a specific 0-bit xi into a 1-bit is 1/µ·1/n·(1−1/n)n−1 ≥ 1/(enµ).
As a consequence of this mutation, the offspring replaces its parent x. Compared to the
previous population, the bit xi is being switched to value 1 and we imagine that in this
case a new ball is put into the empty bin for xi. If mutation creates an offspring y with
OneMax(y) = OneMax(x), y again replaces x and we imagine the bins for x being
rearranged so that their occupancy matches the 1-bits in y. Note that rearranging bins
of an individual, i. e., rearranging bits within an individual, does not make a difference
for the algorithm as all bits are treated equally. In the case where OneMax(y) >
OneMax(x), we imagine that OneMax(y)−OneMax(x) balls are added to arbitrary
empty bins of x and afterwards the bins are again rearranged to match the offspring y.

Fix an arbitrary empty bin. The probability that it receives a ball in one generation
is at least 1/(enµ). The probability that the bin does not receive a ball within t :=
enµ · ln(2nµ) steps is bounded by

(

1 − 1

enµ

)enµ·ln(2nµ)

≤ e− ln(2nµ) =
1

2nµ
.
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By the union bound, the probability that there is still an empty bin left in the game after
t steps is at most 1/2. In case the game has not ended after t steps, we consider another
period of t steps and continue waiting for the game to end. The expected number of
periods until the game ends is at most 2. Hence the expected time of the game is bounded
by E(T ) ≤ 2t = O(µn log n) since ln(2nµ) = O(log n) follows from µ = poly(n).

3.2.6 Fitness Sharing

Fitness sharing (see, e. g., Mahfoud, 1997) derates the real fitness of an individual x by
an amount that represents the similarity of x to other individuals in the population. The
similarity between x and y is measured by a so-called sharing function sh(x, y) ∈ [0, 1]
where a large value corresponds to large similarities and value 0 implies no similarity.
The idea is that if there are several copies of the same individual in the population, these
individuals have to share their fitness. As a consequence, selection is likely to remove
such clusters and to keep the individuals apart. We denote the shared fitness of x in the
population P as

f(x, P ) =
f(x)

∑

y∈P sh(x, y)
.

The fitness of the population is then defined as

f(P ) =
∑

x∈P

f(x, P ).

It is common practice to use a so-called sharing distance σ such that individuals only
share fitness if they have distance less than σ. Given some distance function d, a common
formulation for the sharing function is

sh(x, y) = max{0, 1 − (d(x, y)/σ)α}

where α is a positive constant that regulates the shape of the sharing function. We use
the standard setting α = 1 and, following Mahfoud (1997), we set the sharing distance to
σ = n/2 as this is the smallest value allowing discrimination between the two branches.
As TwoMax is a function of unitation, we allow the distance function d to depend on
the number of ones: d(x, y) :=

∣
∣ |x|1 − |y|1

∣
∣. Such a strategy is known as phenotypic

sharing (Mahfoud, 1997). Our precise sharing function is then

sh(x, y) = max

{

0, 1 − 2

∣
∣ |x|1 − |y|1

∣
∣

n

}

.

We now incorporate fitness sharing into the (µ+1) EA. Our goal is to evolve a good pop-
ulation, hence selection works by comparing candidates for next generation’s population
with respect to their f(P )-values. This selection strategy has already been analyzed by
Sudholt (2005).
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Algorithm 9 (µ+1) EA with fitness sharing

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

Choose x ∈ Pt uniformly at random.
Create y by flipping each bit in x independently with probability 1/n.
Let P ∗

t := Pt ∪ {y}.
Choose z ∈ P ∗

t such that f(P ∗
t \ {z}) is maximized.

Let Pt+1 := P ∗
t \ {z} and t := t + 1.

Note that when evaluating f(P ∗
t \{z}) the shared fitness values have to be recomputed

for all these populations. However, with the use of dictionaries it suffices to compute
f(y) and the sharing values sh(x, y) for x ∈ Pt only once. In addition, fitness evaluations
are often the most expensive operations in evolutionary computation, so the additional
effort is negligible.

We now show that the (µ+1) EA with fitness sharing can find both optima on
TwoMax. Imagining all parents and the new offspring on a scale of |x|1, the indi-
viduals with the smallest and the largest number of ones have the largest distance to
all individuals in the population. Therefore, fitness sharing makes these outer individu-
als very attractive in terms of shared fitness, hence these individuals are taken over to
the next generation. This even holds if an outer individual has the worst fitness in the
population.

Lemma 3.2.5. Consider the (µ+1) EA with fitness sharing and µ ≥ 2 on TwoMax.
Let P ∗

t be the enlarged parent population at some point of time t and w. l. o. g. let P ∗
t =

{x1, . . . , xµ+1} with |x1|1 ≤ |x2|1 ≤ · · · ≤ |xµ+1|1. If |xµ|1 < |xµ+1|1 then xµ+1 ∈ Pt+1.
Also, if |x1|1 < |x2|1 then x1 ∈ Pt+1.

Proof. We only prove xµ+1 ∈ Pt+1 for |xµ|1 < |xµ+1|1. The second claim for the case
|x1|1 < |x2|1 follows by symmetry. Let P− := P ∗

t \ {xµ+1} be a “bad” new population
without xµ+1, contradicting our claim that xµ+1 remains in the population. Let P+ :=
P ∗

t \ {xµ} be one “good” new population where xµ is removed instead and let P∩ :=
P+∩P− contain all other individuals. We will prove f(P−) < f(P+). This implies that
the bad population P− does not have maximal population fitness among all possible
next populations P ∗

t \ {z} examined in the selection step, hence P+ or another “good”
population is chosen and xµ+1 remains in the population.

We first deal with the case f(xµ) ≤ f(xµ+1). Intuitively, xµ+1 is better than xµ both
in terms of real fitness and in terms of sharing distance to the other individuals in P∩.
More precise, we have sh(xµ, x) > sh(xµ+1, x) for x ∈ P∩ due to the ordering of the xi

and the definition of the sharing function. Hence,
∑

y∈P− sh(x, y) >
∑

y∈P+ sh(x, y) for
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x ∈ P∩ and
∑

y∈P− sh(xµ, y) >
∑

y∈P+ sh(xµ+1, y). Together, we obtain

f(P−) =
∑

x∈P∩

f(x)
∑

y∈P− sh(x, y)
+

f(xµ)
∑

y∈P− sh(xµ, y)

<
∑

x∈P∩

f(x)
∑

y∈P+ sh(x, y)
+

f(xµ+1)
∑

y∈P+ sh(xµ+1, y)
= f(P+).

It remains to show f(P−) < f(P+) for the case f(xµ) > f(xµ+1). This means that xµ is
better than xµ+1 in terms of real fitness, but worse with respect to the shared distance
to all individuals in P∩. We want to examine the impact of the distance between the
two individuals on the fitness and the sharing function. Therefore, we define

d := min
{

|xµ+1|1 ,
n

2

}

− |xµ|1 .

Note that d ≥ 0 as |xµ|1 < n/2 follows from f(xµ) > f(xµ+1). The minimum in the
definition of d implies the following inequality.

∀x ∈ P∩ : sh(x, xµ+1) ≤ sh(x, xµ) − 2d

n
, (3.7)

which is immediate from the definition of sh(·, ·) if xµ+1 is within sharing distance from x.
Otherwise, it follows from

sh(x, xµ+1) = 0 ≤ sh(x, xµ) − 2(n
2 − |xµ|1)

n
= sh(x, xµ) − 2d

n
.

Inequality (3.7) can now be used to relate the shared fitness f(x, P−) to the shared fitness
f(x, P+) for x ∈ P∩. This reflects the gain in total shared fitness for the individuals
in P∩ if P+ is selected instead of P−. Using inequality (3.7) and the fact that the
sharing function is at most 1,

∀x ∈ P∩ :
f(x, P−)

f(x, P+)
=

∑

y∈P+ sh(x, y)
∑

y∈P− sh(x, y)

≤
∑

y∈P∩ sh(x, y) + sh(x, xµ) − 2d/n
∑

y∈P∩ sh(x, y) + sh(x, xµ)

≤ µ − 2d/n

µ
= 1 − 2d

nµ
. (3.8)

As f(xµ+1) < f(xµ), the total real fitness of the individuals is worse for P+ than for P−.
We also relate the shared fitness f(xµ, P−) to f(xµ+1, P

+) in order to estimate the loss of
shared fitness. By definition of d and TwoMax it is easy to see that f(xµ)−d ≤ f(xµ+1).
Along with f(x) ≥ n/2 for every x ∈ {0, 1}n, we have

f(xµ+1)

f(xµ)
≥ f(xµ) − d

f(xµ)
≥ n/2 − d

n/2
= 1 − 2d

n
.
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Also, using inequality (3.7), we obtain

∑

y∈P+ sh(xµ+1, y)
∑

y∈P− sh(xµ, y)
=

1 +
∑

y∈P∩ sh(xµ+1, y)

1 +
∑

y∈P∩ sh(xµ, y)

≤
1 +

∑

y∈P∩(sh(xµ, y) − 2d/n)

1 +
∑

y∈P∩ sh(xµ, y)

≤ 1 + (µ − 1)(1 − 2d/n)

µ
.

Taking the last two estimations together,

f(xµ, P−)

f(xµ+1, P+)
=

∑

y∈P+ sh(xµ+1, y)
∑

y∈P− sh(xµ, y)
· f(xµ)

f(xµ+1)

≤ 1 + (µ − 1)(1 − 2d/n)

µ(1 − 2d/n)

=
1 − 2d

n + 2d
nµ

1 − 2d
n

< 1 +
2d

nµ
. (3.9)

So, when comparing P− with P+, we have a gain of shared fitness for all x ∈ P∩ and a
loss of shared fitness for the remaining individual when exchanging xµ for xµ+1. Putting
inequalities (3.8) and (3.9) together yields

f(P−) =
∑

x∈P∩

f(x, P−) + f(xµ, P−)

<
∑

x∈P∩

f(x, P+) ·
(

1 − 2d

nµ

)

+ f(xµ+1, P
+) ·

(

1 +
2d

nµ

)

≤ f(P+) − 2d

nµ

(
∑

x∈P∩

f(x, P+) − f(xµ+1, P
+)

)

.

Now f(P−) < f(P+) follows if we can show that the term in parentheses is non-negative,
i. e.,

∑

x∈P∩

f(x, P+) ≥ f(xµ+1, P
+). (3.10)

Recall |xµ|1 ≤ n/2 and consider the left-hand side of inequality (3.10). This term
is minimized if all x ∈ P∩ equal xµ−1 since then for all individuals in P∩ fitness is
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minimized and sharing is maximized. Along with f(xµ−1) > f(xµ+1) and µ − 1 ≥ 1,

∑

x∈P∩

f(x, P+) ≥ (µ − 1) · f(xµ−1)

µ − 1 + sh(xµ−1, xµ+1)

>
f(xµ+1)

1 + sh(xµ−1, xµ+1)

≥ f(xµ+1)
∑

y∈P+ sh(xµ+1, y)
= f(xµ+1, P

+).

Now it is easy to prove an upper bound on TwoMax. To the best of our knowledge,
the following theorem provides the first runtime analysis of an EA with fitness sharing
for population sizes greater than 2.

Theorem 3.2.6. The (µ+1) EA with fitness sharing and µ ≥ 2 reaches on TwoMax

a population containing both optima in expected optimization time O(µn log n).

Proof. For a population P , we consider the following characteristic values as potential
functions: m0(P ) denotes the maximum number of zeros and m1(P ) the maximum
number of ones for the individuals in P . We are interested in the expected time until
both potentials become n.

According to Lemma 3.2.5, both potentials cannot decrease. If m0(P ) = k then
we wait for an individual with k zeros to be chosen and for the number of zeros
to be increased. The expected time for this to happen is bounded from above by
O(µ · n/(n − k)). Hence, the expected time until the m0-potential reaches its maxi-
mum value n is O(µn log n). A symmetrical statement holds for the m1-potential, hence
the expected time until both optima are found is bounded by O(µn log n).

3.2.7 Experiments

Our negative results for the (µ+1) EA without diversification and the genotype diversity
mechanism only hold for relatively small population sizes. We believe that the same
results also hold for larger values of µ, but a theoretical analysis is challenging. Initial
experiments have shown that also with larger µ extinction is still likely, but the question
which branch gets extinct and when extinction happens is determined by long-term
dynamics that are difficult to understand.

A typical behavior is that one branch starts lagging behind a little. Then chances to
create offspring on higher fitness levels are lower for this branch, while the other branch
has an advantage in this respect. When climbing the next fitness levels, this effect may
intensify until the branch that is behind gets extinct. However, it may also happen that
by chance the branch that is behind creates an offspring on a good fitness level ℓ and
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then the branch is safe from extinction until level ℓ becomes the worst fitness level in
the population. This gives the branch some time to recover, which makes it hard to
predict when a branch will get extinct. It is even hard to tell which branch is “behind.”
One branch may consist of few good individuals and the other one of many inferior
solutions. Which one is more likely to survive in the long run? We feel that completely
new methods have to be developed in order to understand these long-term dynamics.

We rely on experiments to find out how large a population has to be to avoid extinction.
This also allows a more detailed comparison of diversity mechanisms. We consider
exponentially increasing population sizes µ = 2, 4, 8, . . . , 1024 for n = 30 and perform
100 runs in each setting. An obvious performance measure is to record the number of
runs where the global optimum is found. However, for hill climbers like the (1+1) EA this
measure fluctuates around 50 runs. In order to obtain a more clear picture without this
random fluctuation, we instead consider the number of runs where both 0n and 1n were
present in the population at the same time. Such a run is called successful hereinafter.
In all non-successful runs we have a conditional probability of exactly 1/2 that the global
optimum was found due to the symmetry of TwoMax, provided µ ≥ 2. Moreover, we
record the maximum progress on the branch that gets extinct, computed as

min {m0(Pt), m1(Pt)} ,

m0(Pt) (m1(Pt)) denoting the maximum number of zeros (ones) in the population Pt

at time t. In case both 0n and 1n are contained in the population, the maximum
progress equals n. For fitness sharing we present our theoretical results as the outcome
of experiments is predetermined. The number of successful runs is clearly 100 and the
maximum progress is n = 30.

The choice of the stopping criterion is non-trivial. A natural design choice is to stop
the algorithm after the whole population has reached local or global optima. One often
speaks of “convergence”, although this term differs from convergence in a mathematical
sense. For fitness sharing, deterministic crowding, and the (µ+1) EA without diversifi-
cation, we stop the run when either the run is successful or when the whole population
only consists of copies of 0n or 1n. For genotype diversity and, especially, fitness diversity
there is no such “convergence” as copies of 0n and 1n are not allowed. The genotype
diversity mechanism gets stuck when all individuals are as close to 0n or 1n as possible.
The same happens for fitness diversity when µ ≪ n/2 and all individuals are stacked
one after another on one branch. However, the fitness diversity mechanism for µ > n/2
does not converge at all because the population performs a random walk with a drift
pointing away from the optimum when it gets close enough. Therefore, we stop a run
for these two mechanisms after 3600µ generations. The time bound 3600µ was chosen
for the following reason. For n = 30 we have 360µ > µ · en ln(n + 1). The latter is an
upper bound for the expected time of an algorithm to reach a local or global optimum
by relying only on steps selecting the current best individual and performing a 1-bit
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Figure 3.7: The number of successful runs among 100 runs for n = 30 and µ =
2, 4, 8, . . . , 1024. A run is called successful if 0n and 1n were present in the
population at the same time.

mutation towards the considered optimum. This upper bound applies to the (µ+1) EA
without diversification, genotype diversity, deterministic crowding, and fitness sharing.
Moreover, the random time is concentrated around the expectation. Our bound 3600µ
is more than ten times larger than the expectation. This should be enough time for the
two algorithms to “converge” or to reach a meaningful equilibrium state.

Figure 3.7 shows the number of successful runs. While fitness sharing is always suc-
cessful, fitness diversity was never found to be successful. Using deterministic crowding,
the success probability increases very steeply compared to the scenarios of no diversifi-
cation and genotype diversity. Although genotype diversity is a rather weak mechanism,
it turns out to be more successful than no diversification.

Figure 3.8 shows the average maximum progress in 100 runs. It is obvious that fitness
sharing and deterministic crowding perform well due to their high success probabili-
ties. But here also fitness diversity has an effect as its progress indicator increases with
increasing µ, although more slowly than the indicator of all the other algorithms. Con-
cerning the (µ+1) EA without diversification and with genotype diversity, we can see
from Figure 3.8 that for small population sizes extinction occurs very early and for low
fitness values. Contrarily, our theoretical arguments were based on the very last fitness
levels where our estimates of the extinction probabilities were best. This strengthens
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Figure 3.8: The average maximum progress on the branch that is behind, measured
among 100 runs, for n = 30 and µ = 2, 4, 8, . . . , 1024.

our impression that extinction is due to much more complex long-term effects than used
in our proofs.

3.2.8 Conclusions

We have examined the behavior of different diversity mechanisms on a fitness land-
scape consisting of two hills with symmetric slopes. The results are summarized in Ta-
ble 3.4. We rigorously proved that without any diversification the whole population of
the (µ+1) EA runs into the local optimum with probability almost 1/2 (Theorem 3.2.1).
This still holds if we avoid genotype duplicates or fitness duplicates. An implication
is that for these algorithms the population is nearly useless as we experience the same
performance as for simple hill climbers like local search or the (1+1) EA.

On the other hand, stronger diversity mechanisms like fitness sharing and deterministic
crowding allow the (µ+1) EA to find both optima of our test function TwoMax with
high probability. Deterministic crowding performs as well as independent runs and the
probability of not finding both optima decreases exponentially with µ. Fitness sharing
using a phenotypic distance function always finds both optima efficiently for arbitrary
populations of size µ ≥ 2.

Our theoretical results and the experiments from Section 3.2.7 have also revealed
important open problems. Theorems 3.2.1 and 3.2.2 apply only to sublinear population
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Mechanism Population size Success probability in T generations

No diversification µ = o(n/log n) 1/2 + o(1) for T = nn−1

Genotype diversity µ = o(
√

n) 1/2 + o(1) for T = nn−2

Fitness diversity µ = poly(n) 1/2 + o(1) for T = 2cn

Deterministic crowding µ = poly(n) 1 − 2−µ for E(T ) = O(µn log n)
Fitness sharing µ ≥ 2 1 for E(T ) = O(µn log n)

Table 3.4: Summary of the results for variants of the (µ+1) EA w. r. t. conditions on the
population size µ. The success probability denotes (a bound on) the proba-
bility of finding a global optimum within T generations for specific conditions
on the variable T ; c > 0 is an appropriate constant.

sizes. Our experimental results indicate similar behavior also for larger populations, but
a theoretical analysis is difficult. It seems that a more thorough understanding of the
long-term dynamics is required to strengthen the theorems.
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Over the past years, it has become increasingly popular to include local search techniques
into the random search process of evolutionary algorithms. These hybrid algorithms are
known by various names such as memetic (evolutionary) algorithms (MAs), evolutionary
local search, genetic local search, global-local search hybrids, large-step Markov chains,
and others. The term memetic algorithms has been coined by Pablo Moscato (Moscato,
1989) who relates local search to a process of cultural evolution; the word “memetic” is
derived from biologist Richard Dawkins’s notion of “memes” as the cultural and social
equivalent of “genes” (Dawkins, 1976). We stick to this name in the following.

Memetic algorithms apply local search to newly created offspring to quickly find high-
fitness individuals and to discover promising regions of the search space. Researchers
consistently report very good results for memetic algorithms on practical problems and
there is much experimental evidence where this approach outperforms common evolu-
tionary algorithms, see Moscato (1999) for a survey or the book by Hart, Krasnogor, and
Smith (2004b). The benefit of local search is manifold. Firstly, we can expect high-fitness
solutions to be found more quickly. Moreover, there may be low-fitness offspring located
in the basin of attraction of a high-fitness local optimum. In a standard evolutionary
algorithm, such solutions are likely to get lost immediately in the selection process. In
a memetic approach local search may improve upon such solutions and reach a local
optimum with high fitness. This effect is particularly visible in constraint optimization
problems where often infeasible solutions are penalized with respect to their fitness and
the penalty decreases towards feasible regions. If mutation and/or crossover create an
infeasible offspring, local search can work as repair mechanism and find a feasible solu-
tion. Lastly, there is an option to include problem-specific knowledge into the search as
local search may be adopted to the problem at hand. Such an approach is often possible
since local search strategies are typically easy to design, even in cases where no global
problem-specific strategy is known.

An extreme example of a memetic algorithm is known as iterated local search (see,
e. g., Lourenço, Martin, and Stützle, 2002) where local search is performed for every
created offspring until a local optimum is found. This means that the population always
contains only local optima and the algorithm is said to search within the subspace of local
optima. In order to escape from the current local optimum, usually a large mutation is
used, which is also called perturbation.

In recent years many different kinds and variants of memetic algorithms have emerged.
Krasnogor and Smith (2005) present a taxonomy of memetic algorithms and discuss sev-
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eral design issues. One trend is to employ multiple local search operators. These algo-
rithms are sometimes called multimeme algorithms (Neri, Toivanen, Cascella, and Ong,
2007); each local search operator is called a “meme.” The choice of memes is often made
adaptively or even self-adaptively, see the survey by Ong, Lim, Zhu, and Wong (2006).
Furthermore, memetic approaches have been proposed for optimization in continuous
spaces (Hart, 2003) and for other algorithmic paradigms such as estimation of distribu-
tion algorithms (Aickelin, Burke, and Li, 2007) and ant colony optimization (Dorigo and
Stützle, 2004; Levine and Ducatelle, 2004). One “memetic” ant colony optimizer will be
analyzed in Section 5.3.

Hybridization of search heuristics poses new challenges to both theory and practice.
For theory it is hard to keep track with the state-of-the-art as the algorithms become
more and more elaborate. It is widely acknowledged that a solid theoretical founda-
tion of these algorithms is needed. Many operators commonly used in such a hybrid
are fairly simple and easy to implement; this holds for standard genetic operators such
as mutation, crossover, and selection as well as for many local search strategies. How-
ever, the dynamics of an algorithm and the interplay of these components is very hard
to tackle analytically. Therefore, studies on memetic algorithms are mostly empirical
(e. g. Boughaci and Drias (2005); Cotta (2005); Lourenço et al. (2002)) or rely on non-
rigorous arguments (e. g. Sinha, Chen, and Goldberg (2004)). We again take a rigorous
perspective to address this topic.

In Section 4.1 we consider the parametrization of memetic algorithms and the balance
between global and local search. In practical applications, the available computational
resources have to be spread among global and local search, but finding a good balance
is not always easy. We consider a simple memetic algorithm that captures basic working
principles of memetic algorithms—the interplay of genetic operators like mutation and
selection with local search. We then present artificial examples where good parameter
settings are very hard to find. Moreover, only small changes to such a good parametriza-
tion lead to a phase transition from polynomial optimization times to superpolynomial
or even exponential times, with high probability. Our results show exemplarily that
parametrizing memetic evolutionary algorithms can be extremely hard. Moreover, they
rule out simple and effective design guidelines that do not depend on the problem at
hand.

Section 4.2 then considers the use of memetic algorithms for combinatorial problems.
Our motivation is to give an explanation why memetic algorithms are so effective for
many practical problems. To this end, we present instances for several problems from
combinatorial optimization where a memetic algorithm with so-called variable-depth
search drastically outperforms many other algorithms like the (1+1) EA, memetic al-
gorithms with a simple local search operator and simulated annealing. The negative
results even hold if we allow a broad range of parameter settings for these algorithms.
In addition, we prove that in one case the memetic algorithm is more powerful than its
single components.
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4.1 The Impact of Parametrization

4.1 The Impact of Parametrization

Memetic evolutionary algorithms integrate local search into the random search process
of evolutionary algorithms. As computational resources have to be spread adequately
among local and evolutionary search, one has to care about when to apply local search
and how much computational effort to devote to local search. Often local search is called
with a fixed frequency, the local search frequency , and then run for a fixed number of
iterations, the local search depth. There is empirical evidence that these parameters
have a significant impact on the performance of memetic algorithms, but a theoretical
understanding as well as concrete design guidelines are missing.

From the practitioner’s perspective one has to think carefully about how to spread the
available resources adequately among evolutionary (global) search and local search. If
the effect of local search is too weak, we fall back to standard evolutionary algorithms.
If the effect of local search is too strong, the algorithm may quickly get stuck in local
optima of bad quality. Moreover, the algorithm is likely to rediscover the same local
optimum over and over again, wasting computational effort. Lastly, too much local
search quickly leads to a loss of diversity within the population.

The importance of the parametrization has already been recognized by Hart (1994)
who investigated empirically the impact of the local search frequency and the local
search depth on three artificial test functions. Later on, this study was extended to
combinatorial optimization by Land (1998), referring to the balance between global
search and local search as the local/global ratio. In a more recent study Ishibuchi,
Yoshida, and Murata (2003) considered a hybrid algorithm where local search is called
with a fixed probability and investigated the impact of this parameter on a flowshop
scheduling problem. Another line of research was to adapt the parametrization of a
memetic algorithm to the problem at hand according to an analysis of the problem
structure (Merz, 2004; Watson, Howe, and Whitley, 2003). Finally, there were theoretical
investigations of simplified models of memetic algorithms explaining how to balance
global and local search (Sinha et al., 2004). However, as their arguments were non-
rigorous, their work could not lead to formal proofs.

At present, still no guidelines are available for the parametrization of memetic algo-
rithms and the empirical and theoretical knowledge in this respect is limited. Quoting
from Hart, Krasnogor, and Smith (2004a):

“The question of when to apply local improvement heuristics, to which in-
dividuals in EAs population and how much computational effort to devote
to them remains unanswered, and more research effort is required to gain
the understanding and insights that may lead to guidelines for the design of
efficient and effective algorithms.”

In this section, we address the first and the third question, that is, the choice of the
local search frequency and the local search depth. Our purpose is to stress the importance
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of these parameters from a rigorous theoretical perspective and to show that finding
simple guidelines to design efficient memetic algorithms is a difficult task. To this end,
we consider a simple memetic algorithm that reflects basic working principles of memetic
algorithms: the interplay of evolutionary operators like mutation and selection with local
search. Note that we do not consider crossover; we will, however, discuss possible effects
of introducing crossover at the end of Section 4.1.3. We present examples where the
algorithm is very sensitive to even small changes of the local search depth and the local
search frequency in a sense that the optimization time can change from polynomial
to superpolynomial and vice versa, with high probability. Concerning the local search
depth, we present a class of functions allowing us to specify an ideal value for the local
search depth that leads to a polynomial optimization time, with high probability. If
the local search depth differs from this ideal value by only a polylogarithmic additive
term in either direction, this is likely to imply superpolynomial optimization times. A
second hierarchy result implies that doubling or halving the local search frequency can
decide between polynomial versus exponential optimization times with overwhelming
probability. These hierarchy results imply that for every parametrization, apart from
mild restrictions, there is a function on which the algorithm is inefficient, although the
runtime can be polynomial with a better parametrization. These results rule out the
existence of simple and effective design guidelines for the considered memetic algorithm
that do not depend on the function at hand.

The reader might object that such a conclusion was already implied by the well-known
no free lunch theorem (NFL) (Igel and Toussaint, 2004). The NFL theorem states that
all parameter settings for an algorithm lead to equal average performance when the
performance is averaged over all functions (with respect to a finite domain such as {0, 1}n

and a finite codomain). This means that if there is a function where parametrization A
beats parametrization B with respect to the number of different search points evaluated
(the NFL theorem does not consider resampling), then functions exist where B beats A.
However, considering the class of all functions is not a realistic scenario. As argued
by Droste, Jansen, and Wegener (2002b), the vast majority of functions can neither be
stated effectively nor be evaluated in reasonable time. These functions therefore are of
no significance and no relevance for optimization. When making restrictions towards
functions with reasonable complexity (with respect to size and time for evaluation), a
no free lunch result probably cannot exist (Droste et al., 2002b). A second fundamental
limitation of the NFL theorem is that it does not make any statements regarding the
magnitude of the performance difference between two parameter settings. An optimistic
algorithm designer might conjecture that the choice of the parametrization affects the
expected runtime at most by factors of polynomial order. This conjecture cannot be
disproven by the NFL theorem, but we will disprove it in the following and thereby
show that the parametrization can indeed have a tremendous impact on performance.

The remainder of this section is structured as follows. In Section 4.1.1 we introduce
the considered memetic algorithm, the (µ+λ) Memetic Algorithm, shortly (µ+λ) MA.
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We prepare ourselves for the analysis of the (µ+λ) MA with some useful tools for the
analysis of population-based algorithms in Section 4.1.2. Section 4.1.3 deals with the
impact of the local search depth on the (µ+λ) MA while in Section 4.1.4 we focus on the
impact of the local search frequency. Finally, we finish with conclusions in Section 4.1.5.

4.1.1 The (µ+λ) Memetic Algorithm

The (µ+λ) Memetic Algorithm, shortly (µ+λ) MA, is defined for maximization, al-
though it can be easily adapted to minimization. We first describe two operators used
by the (µ+λ) MA. One is the standard mutation operator that flips each bit in the
search point independently from the other bits with probability 1/n. The result of a
standard mutation applied to x is denoted as mutation(x).

The local search operator employed in the (µ+λ) MA is defined as follows. Throughout
this section, N(x) denotes the open Hamming neighborhood of x and N∗(x) the closed
Hamming neighborhood that also includes x itself. For a set X ⊆ {0, 1}n we denote
N(X) :=

⋃

x∈X N(x) and N∗(X) := N(X)∪X. The local search depth is denoted by δ.

Operator 10 Local search(y)

for δ iterations do
if there is a z ∈ N(y) with f(z) > f(y) then y := z
else stop and return y.

return y.

This local search strategy is generic in that no pivot rule is specified how to choose z
from the set of all better Hamming neighbors. It generalizes several concrete local search
strategies such as first ascent or steepest ascent. The choice of the pivot rule will turn out
to be immaterial to the results obtained hereinafter. Hence every pivot rule is suitable
as long as each z ∈ N(y) is evaluated at most once.

The (µ+λ) MA (see page 88) operates with a population of size µ and creates λ off-
spring in each generation. This is done by choosing randomly a parent, then mutating
it, and, every τ generations, additionally applying local search to the result of the mu-
tation. The population for the next generation is selected among the parents and the
offspring, i. e., among µ + λ individuals, which explains the name (µ+λ) MA. Formally,
the (µ+λ) MA represents a class of algorithms as different pivot rules may be used in
the local search; it is parametrized by µ, λ, δ, and τ .

Note that the (µ+λ) MA does not accept worsenings at the end of a generation as
only individuals with maximal fitness in Pt∪P ′

t are chosen for the next generation. Such
a selection strategy is called elitist selection.

The time until a global optimum is found—the optimization time—is defined by
the number of f -evaluations until a global optimum is evaluated. Considering only
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Algorithm 11 (µ+λ) Memetic Algorithm

Let t := 0.
Initialize P0 with µ individuals chosen uniformly at random.
repeat

P ′
t := ∅.

Do λ times:
Choose x ∈ Pt uniformly at random. // parent selection
Create y by flipping each bit in x independently // mutation

with probability 1/n.
if t mod τ = 0 then y := local search(y). // local search
P ′

t := P ′
t ∪ {y}.

Let Pt+1 contain µ individuals from the multiset Pt ∪ P ′
t // selection

with maximal f -value. (Break ties in favor of P ′
t .)

t := t + 1.

f -evaluations is motivated by the fact that in practice these evaluations dominate the
runtime. Local search constitutes an inner loop within the main loop, hence the number
of f -evaluations within local search must be accounted for, too. Whatever pivot rule
is used, the number of f -evaluations in one local search call is trivially bounded by δn.
During t generations the number of f -evaluations is bounded by tλ(1 + δn/τ). This
implies that if λ and δ are polynomial, then the optimization time is polynomial if and
only if the number of generations until an optimum is found is polynomial.

Several well-known randomized search heuristics can be identified as special cases of
the (µ+λ) MA. The (µ+λ) MA without local search, i. e., δ = 0 or τ = ∞, equals the
(µ+λ) EA. The (1+1) MA with τ = 1 represents an iterated local search algorithm (see,
e. g., Lourenço et al., 2002).

4.1.2 Analysis of Population-based Evolutionary Algorithms

We prepare ourselves for the analysis of the (µ+λ) MA by first considering the (µ+λ) EA
without local search. We analyze the dynamics within its population by means of so-
called family trees as this will help us in Section 4.1.3 to analyze and understand the
behavior of the (µ+λ) MA. Moreover, the results on the (µ+λ) EA are of independent
interest.

The following results need to be put in an appropriate perspective. The analysis
of evolutionary algorithms with family trees as well as the following results have been
introduced by Witt (2006) for the analysis of the (µ+1) EA. Here, we show that Witt’s
approach can be generalized to the (µ+λ) EA with moderate technical effort. We think
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that the generalized results are important enough to be presented in this separate section,
although the improvements over Witt (2006) are minor from a technical point of view.

According to Witt, a family tree is a directed acyclic graph whose nodes represent
individuals and edges represent direct parent-child relations created by a mutation-based
evolutionary algorithm. After initialization, for every initial individual x∗ there is a
family tree containing only x∗. We say that x∗ is the root of the family tree T (x∗).
Afterwards, whenever the algorithm chooses an individual x ∈ T (x∗) as parent and
creates an offspring y out of x, a new node representing y is added to T (x∗) along with
an edge from x to y. That way, T (x∗) contains all descendants from x∗ obtained by
direct and indirect mutations.

As the (µ+λ) EA creates an infinite number of individuals, the growth of the family
trees is infinite as well. Note, however, that there may be family trees containing only
individuals that have been deleted from the current population. As µ individuals survive
in every selection, at least one tree is guaranteed to grow. A subtree of a family tree
is, again, a family tree. A (directed) path within a family tree from x to y represents a
sequence of mutations creating y out of x. The number of edges on a longest path from
the root x∗ to a leaf determines the depth of T (x∗).

Family trees can be used to derive lower bounds on the optimization time of mutation-
based evolutionary algorithms as follows. Suppose that after some time t the depth of
a family tree T (x∗) is still small. Then typically the leaves are still quite similar to the
root, which implies that the individuals in T (x∗) are still concentrated around x∗. If
the distance from x∗ to all global optima is not too small, then it is unlikely that an
optimum has been found after t steps.

The intuitive reasoning that T (x∗) is concentrated around x∗ is made rigorous in
the following lemma. The proof is adapted from Witt (2006, Lemma 2 and proof of
Theorem 4).

Lemma 4.1.1. Let x∗ be an individual entering the population in some generation t∗.
The probability that within the following t/λ generations some z∗ ∈ T (x∗) emerges with
H (x∗, z∗) ≥ 8t/µ is 2−Ω(t/µ).

Proof. Consider the family tree T (x∗) rooted with x∗. After generation t∗, T (x∗) contains
only x∗. In the following t/λ generations, t offspring are created. Let these offspring be
x1, . . . , xt, given in the order of creation. When the (µ+λ) EA is about to create a new
individual, each individual in T (x∗) is chosen for reproduction either with probability
1/µ (if it is contained in the current population) or with probability 0 (if it has been
deleted or if it is contained in the current offspring population). Hence, the probability
that, given a fixed index sequence 1 ≤ s1 < · · · < sℓ ≤ t, a path is created in T (x∗)
containing the individuals x∗ = xs0

, xs1
, . . . , xsℓ

is at most

ℓ−1∏

i=0

mut(xsi , xsi+1
)

µ
=

(
1

µ

)ℓ

·
ℓ−1∏

i=0

mut(xsi , xsi+1
)
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where mut(x, y) := Prob(y = mutation(x)). Observe that the latter product describes a
process of ℓ consecutive independent mutations. Let Fℓ describe the random number of
bit flips during ℓ consecutive independent mutations. Clearly, this number is an upper
bound for the Hamming distance H (x∗, sℓ). Hence, the probability that a fixed path
x∗, xs1

, . . . , xsℓ
emerges with a fixed index sequence 1 ≤ s1 < · · · < sℓ ≤ t such that

H (x∗, xℓ) ≥ 8t/µ is bounded above by

(
1

µ

)ℓ

· Prob(Fℓ ≥ 8t/µ).

The number of possible paths of length exactly ℓ that may be created during t/λ gen-
erations is bounded by

(t
ℓ

)
, the number of ways to choose an index sequence 1 ≤ s1 <

· · · < sℓ ≤ t. Summing over all values of ℓ, the probability that during t/λ generations
some z∗ ∈ T (x∗) emerges with Hamming distance at least 8t/µ to x∗ is bounded by

∞∑

ℓ=1

(
t

ℓ

)

·
(

1

µ

)ℓ

· Prob(Fℓ ≥ 8t/µ).

Using
(n
k

)
≤
(

ne
k

)k
by Lemma A.10, we obtain the bound

∞∑

ℓ=1

(
et

ℓµ

)ℓ

· Prob(Fℓ ≥ 8t/µ).

Due to random parent selection, the average length of a path is bounded by t/λ · 1/µ ≪
3t/µ. We can bound the summands with ℓ > 3t/µ if we exploit that such long paths are
very unlikely (cf. Witt, 2006, Lemma 2).

∞∑

ℓ=3t/µ+1

(
et

ℓµ

)ℓ

· Prob(Fℓ ≥ 8t/µ) ≤
∞∑

ℓ=3t/µ+1

(e

3

)ℓ

=
(e

3

)3t/µ
·

∞∑

ℓ=1

(e

3

)ℓ

=
(e

3

)3t/µ
· e

3 − e
= 2−Ω(t/µ).

Considering shorter paths of length ℓ ≤ 3t/µ, it is very unlikely that more than 8t/µ bits
flip during ℓ mutations. The expected number of flipping bits equals E(Fℓ) = ℓ < 4t/µ
and applying Chernoff bounds (Lemma A.6) with E(Fℓ) replaced by the upper bound
4t/µ, we obtain

Prob(Fℓ ≥ 8t/µ) ≤ (e/4)4t/µ ≤ e−4t/(3µ).

90



4.1 The Impact of Parametrization

Now,

3t/µ
∑

ℓ=1

(
et

ℓµ

)ℓ

· Prob(Fℓ ≥ 8t/µ) ≤ e−4t/(3µ) ·
3t/µ
∑

ℓ=1

(
et

ℓµ

)ℓ

≤ e−4t/(3µ) · 3t/µ · 3t/µ
max
ℓ=1

(
et

ℓµ

)ℓ

.

Since the maximum of the term (et/(ℓµ))ℓ is attained for ℓ = t/µ, we arrive at the bound

e−4t/(3µ) · 3t/µ · et/µ = 3t/µ · e−t/(3µ) = 2−Ω(t/µ).

Another property of populations in mutation-based evolutionary algorithms is that
with elitist selection at the end of the generation, high-fitness solutions tend to spread
in the population very quickly. The following result was known before for λ = 1 (Witt,
2006), but the case λ > 1 requires different proof ideas.

Lemma 4.1.2. Let x be an individual in the (µ+λ) MA’s current population at some
point of time and n, µ ≥ 2. The expected number of following generations until the
population contains only individuals with fitness at least f(x) is O(µ/λ · log µ + log µ).

Proof. Let x be a current elitist and call an individual fit if it has fitness at least f(x).
We now estimate the expected number of generations until the population is taken over
by fit individuals, which we call the expected takeover time. As fit individuals are always
preferred to non-fit individuals in the selection, the expected takeover time equals the
expected number of generations until µ − 1 fit individuals have been created, starting
with one fit individual.

Let Ti describe the random number of generations needed to increase the number
of fit individuals from 5i to 5i+1. Starting with a new generation with 5i < µ fit
individuals in the parent population, we now consider a phase of 32µ offspring creations,
disregarding generation boundaries. In one offspring creation process the (µ+λ) MA
selects a fit individual as parent with probability at least 5i/µ. Then with probability
at least (1 − 1/n)n ≥ 1/4 for n ≥ 2 mutation creates a clone. As local search can only
improve the fitness, the resulting offspring is a fit individual, regardless whether local
search has been called after the mutation or not. Let Ni denote the random number of
new fit offspring created in the phase, then E(Ni) ≥ 32µ ·5i/(4µ) = 8 ·5i and by Chernoff
bounds

Prob
(
Ni < 4 · 5i

)
≤ exp(−E(Ni)/8) ≤ exp(−5i) ≤ exp(−1).

If Ni < 4 · 5i the phase is called unsuccessful and we consider another phase of 32µ
offspring creations. The expected waiting time for a successful phase is 1/(1− exp(−1))
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and the expected number of offspring creations until Ni ≥ 4 · 5i is 32µ/(1 − exp(−1)).
Taking into account waiting times for the next generation boundary, this implies E(Ti) <
32µ/(λ(1 − exp(−1))) + 1 and the expected takeover time is at most

⌈log5 µ⌉−1
∑

i=0

E(Ti) ≤ ⌈log5 µ⌉ ·
(

32µ

λ(1 − exp(−1))
+ 1

)

= O(µ/λ · log µ + log µ).

4.1.3 The Impact of the Local Search Depth

We now want to investigate the impact of the local search depth on the performance of
the (µ+λ) MA. Our goal is to define a class of functions where there is only a small
critical window for values of the local search depth δ in which an efficient optimization is
possible. More precisely, there is an ideal value D = D(n) for the local search depth in
a sense that the choice δ = D guarantees an efficient optimization with high probability,
while even small deviations of δ from D lead to superpolynomial runtimes. The value
of D can be chosen almost arbitrarily given a fixed value of n.

It makes sense to restrict µ, λ, and the local search depth δ to polynomial values since,
of course, a memetic algorithm cannot run in polynomial time if the initialization or a
single generation with local search takes superpolynomial time. For important combi-
natorial problems, e. g. the traveling salesman problem (TSP), we do not expect that
local search always finds a local optimum in polynomial time due to PLS-completeness
results (Michiels, Aarts, and Korst, 2007). Moreover, artificial instances are known on
which local search takes even exponential time, see Michiels et al. (2007) for the metric
TSP and Englert, Röglin, and Vöcking (2007) for the Euclidean TSP.

Similar results also hold for pseudo-Boolean optimization. For a PLS-completeness
result we refer to Michiels et al. (2007, Theorem 6.4). Specialized PLS-completeness
results for memetic algorithms were presented by Krasnogor and Smith (2008). Rudolph
(1997b) presented so-called long k-paths, paths of Hamming neighbors with increasing
fitness whose length can be exponential (depending on k). An exponential length implies
that the path has to be “folded” in {0, 1}n in a sense that there are i < j such that the
i-th and the j-th point on the path have Hamming distance smaller than j− i. Standard
mutations have a positive probability of jumping from the i-th to the j-th point, hence
there is a chance to skip large parts of the path by taking a shortcut. However, long
k-paths are constructed in such a way that at least k bits have to flip simultaneously
in order to take a shortcut. The probability of such an event is exponentially small if
k = Θ(

√
n), in which case the path still has exponential length. A rigorous analysis for

the (1+1) EA on long k-paths was presented by Droste et al. (2002a).
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Long k-paths turn out to be very useful for our purposes. If we consider the first
points of a long k-path and assign increasing fitness values to them, we obtain a fitness-
increasing path of any desired length. We adapt the definition of long k-paths from
Rudolph (1997b).

Definition 4.1.3. Let k ∈ N and n be a multiple of k. The long k-path Pk
n of dimen-

sion n is a sequence of bit strings from {0, 1}n defined recursively as follows. The long
k-path of dimension 0 is the empty bit string. Assume the long k-path of dimension n−k
is given by the sequence Pk

n−k = (p1, . . . , pℓ) with bit strings p1, . . . , pℓ ∈ {0, 1}n−k

and ℓ ∈ N. Then the long k-path of dimension n is defined by prepending k bits to
these search points: let S0 := (0kp1, 0

kp2, . . . , 0
kpℓ), S1 := (1kpℓ, 1

kpℓ−1, . . . , 1
kp1), and

B := (0k−11pℓ, 0
k−212pℓ, . . . , 01

k−1pℓ). The search points in S0 and S1 differ in the k
leading bits and the search points in B represent a bridge between them. The long
k-path of dimension n, Pk

n, is the concatenation of S0, B, and S1.

Remark 4.1.4. This definition differs slightly from Rudolph’s definition as he bases his
construction on a long k-path (0, 1) of dimension 1. This implies that the rightmost
bit of a long k-path is treated differently from the other bits as these bits form blocks
of size k. In particular, this enforces n − 1 to be a multiple of k. We think that the
definition presented here is a more consistent way to define long k-paths and adapt the
following results to this small change.

We only remark that, given some search point x, it is possible to check if x belongs to
the long k-path and to compute its index on the path in linear time. Given two points
Ps,Ps+i for i > 0 and some index s, Ps+i is called the i-th successor of Ps and Ps is
called a predecessor of Ps+i. Long k-paths have the following important properties. The
proof is adapted from Droste et al. (2002a).

Lemma 4.1.5.

1. The length of the long k-path of dimension n is defined as the number of bit strings
in Pk

n and denoted by
∣
∣Pk

n

∣
∣. We have

∣
∣Pk

n

∣
∣ = k · 2n/k − k + 1. All points on the

path are different.

2. Let Ps ∈ Pk
n and Ps+i ∈ Pk

n with s, i ∈ N0.
If i < k then H (Ps,Ps+i) = i, otherwise H (Ps,Ps+i) ≥ k.

Proof. For n = 0 the length of the long k-path is k · 20 − k + 1 = 1, the other statements
are trivial.

Let the lemma hold for all dimensions smaller than n. The length of the long k-path
of dimension n is 2 ·

∣
∣Pk

n−k

∣
∣+ k − 1 = 2 · (k · 2(n−k)/k − k + 1) + k − 1 = k · 2k/n − k + 1.

By definition, all points on the path are different.

If Ps = 0kpa for pa ∈ S0, then the statement for Ps+i ∈ S0 follows from the induction
hypothesis as the first k bits are fixed to zeros in all points of S0. For bridge points,
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we observe H
(
0kpa, 0

k−j1jpℓ

)
= H

(
0kpa, 0

kpℓ

)
+ j as 0kpa and 0kpℓ only differ in the

trailing n − k bits and 0kpℓ and 0k−j1jpℓ differ only in the k leading bits. Applying the
induction hypothesis to pa and pℓ proves the claim for Ps+i ∈ B. Finally, all points S1

differ from all points in S0 by k leading bits, hence the claim follows for Ps+i ∈ S1.

If Ps is a point on the bridge, then the Hamming distance to the i-th successor on the
bridge is i. For the other successors, observe H

(
0j1k−jpℓ, 1

kpb

)
= H

(
1kpℓ, 1

kpb

)
+ j and

applying the induction hypothesis to pℓ and pb yields the result.

Lastly, if Ps ∈ S1 the claim follows directly from the induction hypothesis.

Throughout this section, k will be chosen as
√

n (Section 4.1.3) or
√

n/2 (Sec-
tion 4.1.4), both values yielding an exponential length for the long k-path. The long
k-path will be simply referred to as long path if the value of k is obvious. In the fol-
lowing, we assume that n is not too small as our results are asymptotic and notions
like polynomial times versus exponential times collapse if n is bounded above by a fixed
constant. We also allow ourselves to write c1 ≤ c2− o(1) for constants c1 < c2, assuming
that n is large enough.

Now we are ready to define functions where the local search depth has a large impact
on the (µ+λ) MA. The basic idea is to enforce the (µ+λ) MA to climb several paths
with increasing fitness, each one ending in a local optimum. The paths are connected,
such that mutation and local search may reach the next path from a local optimum.
However, the first points on the new path have a very low fitness, meaning that local
search has to run for a long time until it finds a solution that is competitive to the
old local optimum. If the local search depth is too small, local search stops with an
individual of worse fitness which is rejected immediately in the selection step. Hence,
for an efficient runtime behavior the local search depth must not be too small.

On the other hand, we want to design our functions in such a way that a large local
search depth also yields an inefficient behavior. If the local search depth is large, the next
local optimum on the path is found deterministically. This behavior is bad if promising
regions in the search space are found on the way to (but not too close to) the local
optimum. We define regions of target points representing global optima somewhere on
the way to the next local optimum. We thereby exploit that mutation and local search
employ different neighborhoods: the target is placed with Hamming distance 2 to the
path. All other search points, in particular those in between the path and the target, are
assigned a very low fitness. This barrier prevents local search from traversing between
the path and the target. For standard mutations flipping 2 bits are still very likely,
hence the target can be reached by mutation if the parent is a path point close to the
target. By these ideas, we obtain a function where the local search depth must not be
too large if we want to find the target. However, when climbing the path the target
can be missed easily. To ensure that the target is reached with high probability during
a run, we repeat the construction several times with separate target regions such that
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one target region is likely to be hit during a run. A sketch of this function is shown in
Figure 4.1.

index

fi
t
n
e
s
s

D
D

D

Figure 4.1: Sketch of the function fD. The x-axis shows the index on the long k-path.
The y-axis shows the fitness. The thick solid line shows the fitness of the
points on the long k-path. Encircled path points are close to a target region
with respect to Hamming distance. The long k-path can be separated into n
disjoint paths with increasing fitness, each one ending with a local optimum.
For the sake of clarity, only the first out of n paths are shown.

We now formalize this intuitive construction. Let Pi be the i-th point of the long
k-path Pk

n. For path points Pi,Pj ∈ Pk
n we define the path distance between Pi and Pj

as |i − j|, i. e., the absolute index difference. Note that according to Lemma 4.1.5 the
path distance coincides with the Hamming distance if |i − j| < k. Let m = log3 n and
choose some value D = D(n) such that D ≥ m. We now identify n paths as disjoint
parts of the long k-path. On each path the fitness increases with growing index and the
path ends with a local optimum. Each local optimum has a path distance of D + m to
the local optimum on the next path. The union of all such points is defined as

Paths :=

n(D+m)
⋃

i=0

{Pi}.

The fitness of a point on the long k-path is specified by the following height function.
Define qi := ⌈i/(D + m)⌉ and

height(i) :=

(

1 +
2m

D

)qi

·
(

i − qi · (D + m) +
D

2
+ m

)

.
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This function is piecewise linear on intervals i ∈ [j(D +m)+1, (j +1)(D +m)] on which
qi = j + 1 and the height function simplifies to

(

1 +
2m

D

)j+1

·
(

i − D

2

)

.

As such a linear function is strictly increasing and height(i(D + m) + D/2) = 0, the
points Pi·(D+m) are local optima. These points are also called peaks. The first points
whose fitness is competitive to the fitness of the previous peak are called competitive
points. They have a path distance of D from the previous peak as

height(i(D + m)) =

(

1 +
2m

D

)i

·
(

D

2
+ m

)

=

(

1 +
2m

D

)i+1

· D

2
= height(i(D + m) + D).

It is therefore correct to define

Peaks :=
n⋃

i=0

{Pi(D+m)} and Comp :=
n⋃

i=0

{Pi(D+m)+D}.

The path distance from a competitive point to the next peak equals m and due to the
properties of the long k-path, along with m ≤ k, we also have that the Hamming distance
to the next peak equals m. The target regions are defined such that they have Hamming
distance 2 to the set of path points and Hamming distance at most m/2 to all competitive
points. The latter condition immediately implies that the Hamming distance from every
peak to every target point is at least m/2.

Target := {x | H (x,Paths) = 2 ∧ H(x,Comp) ≤ m/2} .

Finally, the fitness function fD is defined as follows.

Definition 4.1.6. Let M := max
n(D+m)
i=0 {|height(i)|} + 1 and

fD(x) :=







height(i) if x = Pi ∈ Paths,

+M if x ∈ Target,

−M otherwise.

Obviously, all points in Target with fitness M are global optima. All points with
fitness −M form a plateau of equal fitness. Hence, if mutation creates an offspring y
with H (y,Paths ∪ Target) > 1, then y is surrounded by equally bad neighbors and local
search stops with y. If the (µ+λ) MA starts with an initial population of larger fitness,
such an offspring is rejected immediately.
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Randomized search heuristics are usually initialized uniformly at random. The fol-
lowing theorem, however, considers a deterministic initialization where all individuals
in the population occupy the first point on the path, P0. This modification is not es-
sential as the results can be adapted to hold for random initialization. One way to do
this is described in detail in Section 3 of Sudholt (2006b); this involves an additional
construction step, a slightly larger number of bits (without affecting polynomial runtime
bounds), and a more complex fitness function. As this additional construction step does
not give new insights, we allow ourselves to deal with a deterministic initialization for
the sake of clarity and simplicity. The interested reader may consult Sudholt (2006a,b)
for preliminary results that hold for random initialization.

Theorem 4.1.7. Let D ≥ 2 log3 n, λ = O(µ), and µ, δ, τ = poly(n). Initialize the
(µ+λ) MA with µ copies of P0, then the following holds:

– if δ = D, the (µ+λ) MA optimizes fD in polynomial time, w. h. p.

– if |δ − D| ≥ log3 n, the (µ+λ) MA needs superpolynomial time on fD, w. h. p.

Theorem 4.1.7 describes a small critical window of size only m = log3 n where an
efficient optimization is possible; outside this window the runtime is superpolynomial,
w. h. p. We remark that relaxing the size of the critical window allows for stronger results.
When replacing m = log3 n by m = nε for some 0 < ε ≤ 1/2 in the construction of fD

and Theorem 4.1.7, we obtain the following statement with slight adaptations of the
proofs. If δ = D, the (µ+λ) MA optimizes fD in polynomial time, but if |δ − D| ≥ nε,
the runtime is exponential. These claims then hold with overwhelming probability (cf.
Sudholt, 2006a).

Proof of Theorem 4.1.7. Recall m = log3 n. We have already argued that all peaks have
Hamming distance at least m/2 to all global optima. The probability of flipping at least
m/2 bits in a single mutation is bounded by

(
n

m/2

)

·
(

1

n

)m/2

≤ 1

(m/2)!
= 2−Ω(m log m).

By the union bound, w. h. p. even within 2cm log m mutations the probability that m/2
bits flip simultaneously in at least one mutation is still superpolynomially small if the
constant c > 0 is small enough. In the following, we assume that less than m/2 bits
flip in the first 2cm log m mutations and keep in mind the superpolynomially small error
probability.

We first consider the case δ ≤ D − m and observe that PD is the first successor
of P0 such that fD(PD) ≥ fD(P0). Since all initial search points have fitness fD(P0),
along with elitist selection, the only way to alter the current population is to cre-
ate an offspring Pi with i ≥ D by mutation and/or local search. As δ ≤ D − m,
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it is necessary for mutation to create some y ∈ N∗({Pm+1, . . . ,PD+m}). However,
H (P0, N

∗({Pm+1, . . . ,PD+m})) ≥ m. Hence, apart from a superpolynomially small er-
ror probability the (µ+λ) MA cannot find an optimum within a polynomial number of
steps.

For the case δ = D we estimate the expected number of generations until the path to
the next peak is climbed, as long as neither the target nor the very last peak has been
hit. Let x be a current elitist, i. e., an individual of maximal fitness. If x ∈ Paths \
(Peaks ∪ Target), there is a Hamming neighbor with larger fitness and the probability
of choosing x and producing an offspring with larger fitness is at least 1/(enµ). The
probability that this event happens at least once among λ offspring creations can be
estimated using 1− x ≤ e−x for x ∈ R, e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1 (see Lemma A.12),
and λ/(enµ) ≤ 1 (recall λ = O(µ)) if n is large enough.

1 −
(

1 − 1

enµ

)λ

≥ 1 − e
− λ

enµ ≥ 1 −
(

1 − λ

2enµ

)

=
λ

2enµ
. (4.1)

Hence, the expected number of generations until the next peak or a better individual is
reached is at most 2enµ/λ · (D + m) = O(nµδ/λ). Contrarily, if x is a peak, then every
τ generations there is a chance to create an individual on the next path by mutation
and then to climb the path by local search. If mutation creates the first successor of x,
local search may run back into x, depending on the pivot rule. However, if the second
successor of x is created, then the path is climbed and the resulting offspring has larger
fitness. As this holds regardless of the pivot rule, we rely on the latter event in the
following. Similar to (4.1), the expected number of generations until the best fitness
increases is bounded by τ ·2en2µ/λ. Together, the expected number of generations until
the path to the next peak is climbed is O(n2µτ/λ).

We see that there are ways to climb the next path efficiently. In order to show
that the target is likely to be hit, we have to consider all possible ways to climb the
path, which requires a more careful argumentation. We divide a run into phases.
Phase 0 starts with the initialization. Phase i, 1 ≤ i ≤ n − 1, starts when the
(i − 1)-th phase has ended. For 0 ≤ i ≤ n − 1, Phase i ends when an individual in
Si := {Pi(D+m)+D, . . . ,Pi(D+m)+D+m/2−2} is mutated for the first time. Assume that
at most m/2 − 2 bits flip in one mutation during all phases, which happens with high
probability. We claim that then we have a constant probability that the target is hit at
the end of each phase.

Consider some Phase i. We already argued that a path cannot be climbed by mutation,
only, hence we consider a generation with local search. In such a generation, the path
can only be climbed if mutation creates a point y ∈ {Pi(D+m)+1, . . . ,Pi(D+m)+m/2−2}
or a Hamming neighbor thereof that does not belong to the path. In both cases local
search ends with a point z ∈ Si. All points in Si are selected for the next generation,
hence there is a chance that a search point in Si will be chosen as parent in a future
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generation, resulting in the end of Phase i. Note that such an event is necessary in order
to advance to the next path.

Consider the mutation of Pj ∈ Si ending Phase i. Due to the definition of Target,
all search points with Hamming distance 2 from Pj either belong to Target or to
N({Pj−3,Pj−1,Pj+1,Pj+3}). The number of search points where the latter condition
holds is bounded by 4n. Thus, among all search points with Hamming distance 2 from Pj,
a (1 − O(1/n))-fraction belongs to Target, i. e., almost every 2-bit mutation will hit the
target. The probability of an arbitrary 2-bit mutation is

(n
2

)
(1/n2)(1−1/n)n−2 ≥ 1/(2e).

Hence the probability of hitting the target at the end of Phase i is Ω(1). We conclude
that the probability of not hitting the target in all n phases is exponentially small.
Moreover, the expected number of phases before hitting the target or the very last peak
is O(1). Given that no error occurs, which happens with a superpolynomially small
probability, the conditional expected number of generations is O(n2µτ/λ). Recall that
the computational effort within one generation is polynomial. Markov’s inequality then
implies that the optimization time is polynomial with high probability.

Now consider the case δ ≥ D + m. Since the longest fitness-increasing sequence of
Hamming neighbors in {0, 1}n contains D + m ≤ δ transitions, generations with local
search are guaranteed to create peaks, global optima, or local optima with fitness −M
that are immediately rejected in the following selection. We will show that a sequence
of mutations cannot lead us far away from all peaks in a typical run. In case µ = 1 the
population always contains a peak, hence we assume µ ≥ 2.

Once a new peak x is created, it may happen that mutation of x creates some prede-
cessor y on the long path. Despite the use of elitist selection, as long as the population
still contains older individuals with lower fitness, selection prefers y over these worse
individuals and y remains in the population. This way, if the population size is not too
small, the path leading to x may be climbed down and the Hamming distance to the
target can decrease.

Let x be such a new peak, then by Lemma 4.1.2 the expected number of generations
until the population consists of individuals with fitness at least fD(x) only, called the
expected takeover time, is O(µ/λ · log µ + log µ) = O(µ/λ · log µ) since λ = O(µ). By
Markov’s inequality, the probability that the takeover time is larger than cµ/λ·log µ is at
most 1/2 for a sufficiently large constant c > 0. Considering independent phases of length
⌈cµ/λ · log µ⌉ each, the probability that the takeover time is larger than ⌊µm/(24λ)⌋ is

2−Ω(m/(log µ)) = 2−Ω(log2 n) and hence superpolynomially small.

It is unlikely that the (µ+λ) MA reaches the target by climbing down the path before
the population is taken over by good individuals. We first consider the behavior of the
(µ+λ) MA in generations without local search, i. e., the behavior of the (µ+λ) EA, and
then take into account generations with local search. Fix a search point x ∈ Peaks, then
applying Lemma 4.1.1 with t/λ := ⌊µm/(24λ)⌋ yields that the probability of moving
away from the peak by Hamming distance at least m/2 is 2−Ω(m). If, in a generation
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with local search, a peak is created, we simply apply Lemma 4.1.1 anew for all those
offspring. By the union bound, the error probability for all applications of Lemma 4.1.1
in polynomial time is still superpolynomially small.

With high probability, at some point of time the population contains µ copies of the
last peak Pn(D+m). In this case at least m/2 bits have to flip in one mutation in order
to find the target. Recall that the time until such an event occurs is superpolynomial
with high probability.

An interesting question is whether the results will change if the (µ+λ) MA is enhanced
by a crossover operator that is applied prior to mutation, with some constant proba-
bility pc, 0 < pc < 1. Uniform crossover copies the bit value for each bit either from
the first or from the second parent; this choice is made independently and uniformly for
each bit. This means that bits where both parent differ are assigned randomly. When a
uniform crossover of two parents with Hamming distance h is performed, the offspring
is uniform in the space of 2h possible offspring. If both parents are very similar (i. e., if
h is small), an offspring created by crossover also has a good chance to be created by
mutation of the closer parent. If both parents are path points and h is not too small,
it is very unlikely that the offspring is again a path point (or a global optimum) as,
intuitively, the “density” of these points in the search space is quite low. It is therefore
very likely that crossover creates a search point with fitness −M , local search cannot
find an improvement, and the offspring is finally rejected by selection.

Other operators like ℓ-point crossover (this crossover randomly cuts both parents
into ℓ pieces and concatenates pieces for the offspring from alternating parents) may
exploit the block structure underlying long k-paths, so that shortcuts on the path cannot
be excluded any more. However, we can simply change the binary encoding of our
function by shuffling all bits to destroy the linkage between these bits. In this case
ℓ-point crossover probably will not have a significant advantage over mutation either. We
therefore conjecture that Theorem 4.1.7 can be adapted for a (µ+λ) MA with uniform
or ℓ-point crossover while preserving a critical window of polylogarithmic size. A proof
for this conjecture, however, remains open.

4.1.4 The Impact of the Local Search Frequency

The local search frequency is another essential parameter in the design of memetic al-
gorithms as it can be used to control the influence of the hybrid’s two components. As
local search is a very greedy strategy, the local search frequency can also be regarded
to control the amount of greediness. From the perspective of evolutionary computation,
one often speaks of balancing exploration and exploitation.

We will show that the choice of the local search frequency can also have a tremendous
impact on the performance of the (µ+λ) MA, similar to the results on the local search
depth in the previous section. The analysis of the constructed functions is more involved
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than the one made for the local search depth. Therefore, in the following we will only deal
with the (1+1) MA. We define two functions called Racecon and Raceuncon according
to given values for n, δ, and τ . The (1+1) MA is efficient on Racecon, but inefficient on
Raceuncon. Now, if the local search frequency is halved, the (1+1) MA suddenly becomes
inefficient on Racecon, but efficient on Raceuncon.

The functions Racecon and Raceuncon, which we call race functions, are constructed in
similar ways, so we describe them both at once. First of all, we partition all bit strings
into their left and right halves, which form two subspaces {0, 1}n/2 within the original
space {0, 1}n for even n. Each subspace contains a part of a long path. Except for
special cases, the fitness is the (weighted) sum of the positions on the two paths. This
way, climbing either path is rewarded and the (1+1) MA is encouraged to climb both
paths in parallel.

The difference between the two paths in the left and right half of the bit string is
that they are adapted to the two neighborhoods used by mutation and local search,
respectively. In the left half, we have a connected path consisting of the first Θ(n4 · δ/τ)
points of a long k-path, k =

√
n/2. The right half contains a similar path with path

distance (i. e., absolute index difference) only Θ(n) to the end of the path, but only every
third point of the path is present. Instead of a connected path, we have a sequence of
isolated peaks where the closest peaks have Hamming distance 3. As the peaks form a
path of peaks, we speak of an unconnected path. While the unconnected path cannot
be climbed by local search, mutation can jump from peak to peak as a mutation of 3
specific bits has probability at least 1/(en3). Concluding, local search is well suited to
climb the connected path while mutation is well suited to climb the unconnected path.

Now, the main idea is as follows: if the local search frequency is high, we expect the
(1+1) MA to optimize the connected path prior to the unconnected path. Contrarily,
if the local search frequency is low, the (1+1) MA is likely to optimize the unconnected
path prior to the connected one. Which path is optimized first can make a large perfor-
mance difference. In the special cases where the end of any path is reached, we define
separate fitness values for Racecon and Raceuncon. For Racecon, if the connected path is
optimized first (i. e., wins the race), a global optimum is found. However, if the uncon-
nected path wins the race, Racecon turns into a so-called deceptive function that gives
hints to move away from all global optima and to get stuck in a local optimum. In this
situation, the expected time to reach a global optimum is exponential. For Raceuncon,
the (1+1) MA gets trapped in the same way if the connected path wins and a global
optimum is found in case the unconnected path wins. A similar construction has been
presented by Witt (2008) for a function where the choice of the population size decides
whether a global optimum or a trap is reached.

We formalize the above-mentioned race functions. The connected path has length
ℓ = Θ(n4 · δ/τ). The precise value of ℓ including constant factors and terms of smaller
order will become obvious during the analysis of the (1+1) MA. The unconnected path
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has length r = n5 + Θ(n), but for technical reasons the (1+1) MA starts with the n5-th
point on the path.

Definition 4.1.8. Let n = 2k2 for some k ∈ N, k a multiple of 3, and let Pk
n/2 =

(P0,P1, . . . ) be the long k-path of dimension n/2. For w ∈ Pk
n/2 let p(w) = i if w = Pi.

For a search point x ∈ {0, 1}n we denote x = x′x′′ with x′, x′′ ∈ {0, 1}n/2 and call x
well-formed if and only if x′, x′′ ∈ Pk

n/2 and p(x′′)/3 ∈ N0.

Given appropriate lengths ℓ = Θ(n4 · δ/τ) and r = n5 + Θ(n), we define

Racecon(x) :=







n · p(x′) + p(x′′) if x well-formed, p(x′) < ℓ, p(x′′) < r,

2n − p(x′) if x well-formed, p(x′) < ℓ, p(x′′) ≥ r,

3n if x well-formed, p(x′) ≥ ℓ,

−1 otherwise.

Raceuncon(x) :=







n · p(x′) + p(x′′) if x well-formed, p(x′) < ℓ, p(x′′) < r,

2n − p(x′′) if x well-formed, p(x′) ≥ ℓ, p(x′′) < r,

3n if x well-formed, p(x′′) ≥ r,

−1 otherwise.

Now we state the main result of this section. The preconditions δ ≥ 36, δ/τ ≥ 2/n,
and τ = O(n3) require that “enough” iterations of local search are performed during
a polynomial number of generations. The reason is that local search must be a visible
component in the algorithm for the different local search frequencies to take effect. The
condition τ = nΩ(1) is required for technical reasons.

Theorem 4.1.9. Let δ = poly(n), δ ≥ 36, δ/τ ≥ 2/n, τ = nΩ(1), and τ = O(n3). If the
(1+1) MA starts with P0 Pn5, then with overwhelming probability

– the (1+1) MA with local search frequency 1/τ optimizes Racecon in polynomial time
while the (1+1) MA with local search frequency 1/(2τ) needs exponential time on
Racecon and

– the (1+1) MA with local search frequency 1/τ needs exponential time on Raceuncon

while the (1+1) MA with local search frequency 1/(2τ) optimizes Raceuncon in poly-
nomial time.

To prove this theorem, we will show that in one parameter setting one specific path is
optimized in a fixed amount of time and the other one is not. Therefore, we investigate
the progress of the algorithm on the two paths, i. e., the distance traveled on the path.
If xt = x′

tx
′′
t is the current search point in generation t, the progress in generation t

on the connected (unconnected) path is defined as p(x′
t+1) − p(x′

t) (p(x′′
t+1) − p(x′′

t )).
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The progress in a set of generations is the sum of the progress values for all considered
generations.

In the following, we derive upper and lower bounds on the progress in generations with
and without local search, both for the connected and the unconnected path, respectively.
In progress estimates we disregard situations where the end of a path is reached and
assume that the fitness of a search point x is always n · p(x′) + p(x′) if x is well-formed
and −1 otherwise. Applying the results to Racecon and Raceuncon will be straightforward.

The task of estimating the progress on a single long path in the whole search space
is not too difficult. However, with two long paths, the random progress variables for
both paths are not independent as selection is based on both paths. One requirement
for non-zero progress is to create a well-formed offspring. Then the fitness of the current
search point is increased if the offspring advances on both paths at the same time or
if the offspring advances on one path and stands still on the other one. Moreover, the
fitness is increased if the offspring advances on the connected path and steps back on
the unconnected one (assuming no shortcut is taken) as the position on the connected
path is weighted with the factor n. In all other cases the (1+1) MA does not change the
current solution.

Comparing the probability of reaching the d-th successor with the probability of reach-
ing a further successor on a long path for d < k, we observe that the latter probability
is by a factor of O(1/n) smaller than the former one since at least one additional bit is
required to flip. Based on this simple fact, we can derive a simple and useful bound on
the progress applicable to both the connected and the unconnected path.

Lemma 4.1.10. Let X1, . . . ,Xm be a sequence of independent and identically distributed
random variables over Z with Xi ≤ k = n1/2/2 for 1 ≤ i ≤ m and let X =

∑m
i=1 Xi.

Given a constant d ∈ N, let p := Prob(0 < Xi ≤ d). If Prob(Xi > d) = O(p/n), then
for every constant ε > 0

Prob
(

X ≥ max{(1 + ε)dmp, εn3/4}
)

= e−Ω(n1/4).

Proof. We can assume ε < 1, otherwise we prove a stronger bound by replacing ε
with 0 < ε′ < 1. A random variable Xi is called a small step if 0 < Xi ≤ d and
a large step if Xi > d. The expected number of small steps is mp and the expected
number of large steps is O(mp/n). Consider the case mp ≥ εn1/4. By Chernoff
bounds, the number of small steps is at least (1 + ε(1 − n−1/4)) · mp with probabil-
ity exp(−Ω(mp)) = exp(−Ω(n1/4)). Moreover, the number of large steps is at least

εn1/4 · mp/n with probability (n−1/4)Ω(n1/4) = exp(−Ω(n1/4)). Together, using the
bounds Xi ≤ d for small steps, Xi ≤ k ≤ n1/2 for large steps, and Xi ≤ 0 for all other
steps, with probability 1 − exp(−Ω(n1/4))

X ≤ (1 + ε(1 − n−1/4)) · dmp + εn3/4 · mp/n ≤ (1 + ε) · dmp.
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Now let mp ≤ εn1/4 and observe Prob(Xi > 0) = p(1 + O(1/n)), i. e., the expected
number of random variables with value greater than 0 is at most εn1/4(1+O(1/n)). The
probability that at least 2εn1/4 random variables are greater than 0 is exp(−Ω(n1/4))
by Chernoff bounds. Applying the trivial upper bound k to these variables, we have
X ≤ 2εn1/4 · k = εn3/4 with probability 1 − exp(−Ω(n1/4)).

For our progress estimates, we first consider the progress by mutations in a set of T
generations without local search. The expected progress on the connected path is about
T/(en) as the probability of hitting the next path point in one step is about 1/(en).
Similarly, the expected progress on the unconnected path is about 3T/(en3) since the
next peak is hit with probability about 1/(en3) and such a step yields a progress of 3.
Hence the following lemma should not come as a surprise.

Lemma 4.1.11. Let ∆con
mut (∆uncon

mut ) be the progress on the connected (unconnected) path
in T = Θ(n4) generations without local search. For every constant 0 < ε < 1 w. o. p.

(1 − ε) · T

en
< ∆con

mut < (1 + ε) · T

en

and

(1 − ε) · 3T

en3
< ∆uncon

mut < (1 + ε) · 3T

en3
.

Proof. The probability that at least k bits flip simultaneously in one of T generations is
exponentially small, hence it suffices to consider mutations of less than k bits if we keep
in mind an exponentially small error probability.

Consider either one of the two subspaces and a mutation of a well-formed parent.
Then reaching the d-th successor on the path in the considered subspace has probability
n−d · (1−1/n)n/2−d . In order to obtain a well-formed offspring, in the other subspace an
appropriate path point has to be created, which happens with probability (1− 1/n)n/2 ·
(1 + o(1)), dominated by the probability (1 − 1/n)n/2 to clone the current path point.
Together, the probability of reaching a well-formed offspring and advancing by 1 ≤ d ≤ k
on a fixed long path (provided d/3 ∈ N in case of the unconnected path) has probability
(1 + o(1)) · (1 − 1/n)n−d · n−d = (1 + o(1)) · n−d/e.

Let xt be the current search point in generation t. We see that, if Lemma 4.1.10 is
applied to random variables p(x′

t+1)−p(x′
t) describing the progress on the connected path,

all necessary conditions are fulfilled and we obtain the progress bound (1 + ε) · T/(en)
if Lemma 4.1.10 is applied w. r. t. an appropriate ε′ = ε − o(1) and d = 1. Similarly,
Lemma 4.1.10 with d = 3 yields the progress bound (1+ε) ·3T/(en3) on the unconnected
path.

For a lower bound on the connected path, observe that the probability of having
progress 1 in one generation is at least 1/(en). By a direct application of Chernoff
bounds, the progress in T steps is bounded below by (1 − ε) · T/(en) with probability

104



4.1 The Impact of Parametrization

exp(−Ω(T/n)) = exp(−Ω(n3)). We hereby exploit that, as long as no shortcuts are
taken, the progress on the connected path cannot be negative since a step from Ps to
Ps+i, i 6= 0, is accepted if and only if i > 0.

The progress on the unconnected path, however, depends on the progress on the
connected path since the position on the connected path dominates the fitness. This
implies that a mutation may step back on the unconnected path and advance on the
connected one and the offspring will nevertheless be accepted. Such a regressing mutation
has probability O(1/n4). Applying Lemma 4.1.10 to random variables max{0, p(x′′

t ) −
p(x′′

t+1)}, the progress by these steps is at least −n3/4. On the other hand, we have
progress 3 with probability at least 1/(en3) and by Chernoff bounds, we have at least
(1 − ε + cn−1/4) · T/(en3) ≥ (1 − ε) · T/(en3) + c · Ω(n3/4) such steps with probability
exp(−Ω(T/n)) = exp(−Ω(n)) for every constant c > 0. If c is large enough, the progress
is at least (1 − ε) · 3T/(en3) w. o. p.

In each iteration, local search flips a single bit in one of the two subspaces. As we
did not specify a pivot rule, we cannot tell a priori which subspace will be concerned by
which iteration of local search. But a closer look at the fitness function reveals that we
can indeed make exact predictions on the behavior of local search.

In the subspace containing the unconnected path, local search can have at most one
fitness-improving iteration, namely moving from a Hamming neighbor of a peak to the
peak itself. On the other hand, local search can spend many iterations climbing the
connected path in the other subspace. Consider a generation with local search where
the resulting offspring is accepted. We claim that either δ or δ − 1 iterations of local
search concern x′ and in the latter case, the first iteration alters x′′.

Consider a well-formed parent x, a mutation y of x and the outcome z of local search
applied to y. It is obvious that, if y has Hamming distance larger than 1 to all well-formed
search points, local search stops with z = y, resulting in an offspring with fitness −1
that is rejected by selection. If y has Hamming distance 1 to the set of all well-formed
search points, y has exactly one well-formed Hamming neighbor due to the structure of
long paths and the fact that the Hamming distance between two peaks is larger than 2.
Hence, there is a unique “wrong” bit in x′ or x′′ that is flipped by the first iteration of
local search. The remaining δ − 1 iterations then climb the connected path. Lastly, if y
is well-formed, then all δ iterations climb the connected path.

The difference between δ − 1 and δ iterations of local search climbing the connected
path is not large. In both cases it is very likely that p(z′) > p(x′) (unless mutation
created some predecessor far behind x′) and selection typically accepts z regardless of
the progress on the unconnected path. Contrarily, for the unconnected path one iteration
of local search can make a large difference. The probability of reaching the next peak
on the unconnected path by a direct mutation is approximately 1/(en3). However, in a
generation with local search, the same peak is also reached if mutation hits one of its
Hamming neighbors as then the first iteration of local search will climb the peak. Three

105



4 Memetic Evolutionary Algorithms

of these Hamming neighbors have only Hamming distance 2 to x, yielding a probability of
approximately 3/(en2) or reaching the next peak. If x′′ 6= P0, we also have a probability
of around 3/(en2) of reaching the previous peak. We conclude that on the one hand,
one iteration of local search significantly increases the probability of reaching the next or
the previous peak. On the other hand, selection typically does not distinguish between
these two cases, hence the expected progress in these steps on the unconnected path
is close to 0. In other words, the random progress on the unconnected path in these
steps is almost a martingale. In the following lemma we use a concentration result from
martingale theory to show that the total progress in these steps is close to 0.

Lemma 4.1.12. Let ∆uncon
ls be the progress on the unconnected path in T = O(n4)

generations with local search, provided that the parents are well-formed and their position
on the unconnected path is greater than 0. Let δ ≥ 6, then for every 0 < ε ≤ 1/4 w. o. p.

−6(T/n2)1/2+ε − n3/4 < ∆uncon
ls < 6(T/n2)1/2+ε + n3/4.

Proof. Like in the proof of Lemma 4.1.11, we only consider mutations flipping less than
k bits at once.

Let x = x′ Ps be the current well-formed search point. We first derive a fairly tight
bound on the probability of having progress 3i on the unconnected path for some
1 ≤ i < k/3 in a generation with local search. We have progress 3i if and only if lo-
cal search traverses y′ Ps+3i for some y′ on the connected path and the outcome of local
search is accepted. The argumentation preceding this lemma showed that such a search
point has to be traversed either before or after the first iteration of local search. This is
equivalent to the event that mutation creates a point in N∗(y′ Ps+3i).

First consider the case y′ = x′. With probability (1/n)3i · (1 − 1/n)n−3i, x′ Ps+3i is
reached directly by mutation. Moreover, there are 3i Hamming neighbors of x′ Ps+3i

with Hamming distance 3i − 1 to x and n − 3i Hamming neighbors with Hamming
distance 3i + 1. Thus, the probability of creating a mutant in N∗(x′ Ps+3i) is

n−3i

(

1 − 1

n

)n−3i

+ 3i · n−(3i−1)

(

1 − 1

n

)n−3i+1

+ (n − 3i) · n−(3i+1)

(

1 − 1

n

)n−3i−1

.

Note that for 1 ≤ j ≤ k, we have 1/e ≤ (1−1/n)n−j ≤ 1/e·(1−1/n)n−n1/2

= (1+o(1))/e
and the above bound is of order

1 + o(1)

e
· n−3i+1

[
1

n
+ 3i +

n − 3i

n2

]

=
1 + o(1)

e
· 3i · n−3i+1.

The probability of creating a point in N∗(y′ Ps+3i) for a different path point y′ 6= x′

such that the outcome of local search is accepted is by a factor of O(1/n) smaller. We
conclude that progress 3i on the unconnected path has probability (1+o(1))·3i/e·n−3i+1.
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Observe that y′ Ps−3i has the same probability of being traversed as y′ Ps+3i in case
s − 3i ≥ 0 (otherwise, the former probability is 0). Regarding the effect of selection,
y′ Ps+3i is more or equally likely to yield an accepted search point at the end of the
generation than y′ Ps−3i. Thus, if α is w. o. p. an upper bound for the progress in T
generations with local search, −α is a lower bound on the progress w. o. p. It suffices to
prove the claimed upper bound.

To this end, we focus on generations with progress ±3 since these steps have the
largest impact on the total progress. In all other generations, the probability of having
non-zero progress is O(n−5) and by Lemma 4.1.10, the progress in these generations is
bounded by n3/4/2.

Let S be the number of ±3-steps in T generations, then E(S) = (1+ o(1)) · 3/e ·T/n2 .
If T = O(n5/2) then Chernoff bounds imply S < n3/4/6 w. o. p. and the bound n3/4/2
for the progress by ±3-steps is immediate, proving the claim. On the other hand, if
T = Ω(n5/2) then Prob

(
S ≥ 2T/n2

)
= exp(−Ω(T/n2)) = exp(−Ω(n1/2)). Assume in

the following that S < 2T/n2.

Let X1, . . . ,XS ∈ {−1, 0,+1} be random variables such that 3Xj indicates the progress
by the j-th ±3-step. Then

|E(∆uncon
ls | X1, . . . ,Xj) − E(∆uncon

ls | X1, . . . ,Xj−1)| ≤ 1

and we can apply the method of bounded martingale differences (Lemma A.8). Let
X := X1 + · · · + XS and α = S1/2+ε + n1/2+ε/6, then

Prob(X ≥ E(X) + α) ≤ exp(−α2/(2S))

≤ exp(−Ω(S2ε + n1+2ε/S))

≤ exp(−Ω(n2ε))

as S2ε + n1+2ε/S ≥ n2ε both if S ≥ n and if S < n. It remains to bound E(X). Let
x = x′ Ps be the current well-formed search point, y′ Ps+3i be the first well-formed search
point reached during local search and z = z′ Ps+3i be the outcome of local search. The
assumption s > 0 implies that y′ Ps+3 and y′ Ps−3 have the same probability of being
reached. Selection only treats z′ Ps+3 and z′ Ps−3 differently if p(z′) = p(x′). Since at
least δ − 1 iterations of local search climb the connected path, a necessary condition
for p(z′) = p(x′) is that mutation creates the (δ − 1)-st or δ-th predecessor of x′ on the
connected path. By assumption δ ≥ 6 the probability for such a mutation is O(n−5). It
follows that Prob(Xi = 1) = 1/2+O(n−5) and Prob(Xi = −1) = 1/2−O(n−5), yielding
E(X) = S · O(n−5) = o(1).
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Adding up the bound 3X ≤ 3α + o(1) for the progress by ±3-steps and n3/4/2 for all
other steps, recalling ε ≤ 1/4, w. o. p.

∆uncon
ls ≤ n3/4/2 + 3α + o(1)

≤ n3/4/2 + 3S1/2+ε + n1/2+ε/2 + o(1)

≤ n3/4 + 3(2T/n2)1/2+ε + o(1)

≤ n3/4 + 6(T/n2)1/2+ε.

Recall that in a generation with local search, if the offspring is well-formed, then
the connected path is climbed for δ − 1 or δ iterations. On the unconnected path, it
is essential whether mutation jumps up or down the path. For the connected path,
this issue is not that important as local search clearly dominates the progress on the
connected path if δ is not very small.

Lemma 4.1.13. Let ∆con
ls be the progress on the connected path in T = nΘ(1) generations

with local search and δ ≥ 1, then w. o. p.

(1 − ε) · 2T/e · (δ − 2) − n3/4 < ∆con
ls < (1 + ε) · 2T/e · (δ + 2) + n3/4.

Proof. A generation only yields non-zero progress if the outcome of local search is ac-
cepted. We call such a generation an accepting generation. A sufficient condition for
an accepting generation is to clone the parent or to flip a single bit, in which case local
search creates a well-formed search point with larger or equal fitness. The probability for
such an event is (1−1/n)n +(1−1/n)n−1 = 2/e−o(1). On the other hand, a generation
is accepting only if mutation creates a point with Hamming distance at most 1 to a
well-formed search point. As there are only O(n) points with a fixed Hamming distance
i ≥ 2 from the parent that may lead to acceptance, the probability of an accepting
generation is bounded from above by 2/e + o(1).

Let A be the random number of accepting generations among the first T ones, then
by Chernoff bounds

Prob(A ≤ (1 − ε) · 2T/e) = exp(−Ω(T ))

and

Prob(A ≥ (1 + ε) · 2T/e) = exp(−Ω(T )).

In an accepting generation, a mutation creating an offspring y out of x with H (x′, y′) ≥ 2
is called a large step. In a large step, assuming that less than k bits flip, the progress
on the connected path is at least −(k − 1) + (δ − 1) ≥ −k + δ and at most k + δ. The
probability of a large step is O(1/n) as it is dominated by the probability of creating
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one out of O(n) points with Hamming distance 2 to x′ that lead to acceptance. Let L
denote the number of large steps, then by Chernoff bounds

Prob
(

L ≥ n1/4 + A/n1/2
)

≤ (n−1/2)−Ω(n1/4),

which implies Lk ≤ n3/4 + A w. o. p.
In all other accepting generations, if Ps is the parent, local search creates one of the

search points {Ps,Ps+1,Ps+2} in the first iteration. Thus, the progress in such a step
is bounded below by δ − 1 and above by δ + 1. Together, w. o. p. the total progress is
bounded above by

L · (k + δ) + (A − L) · (δ + 1) ≤ A(δ + 1) + Lk ≤ A(δ + 2) + n3/4

and below by

L · (−k + δ) + (A − L) · (δ − 1) ≥ A(δ − 1) − Lk ≥ A(δ − 2) − n3/4.

Along with the bounds on A, this proves the claim.

Using the progress bounds, we are now able to prove Theorem 4.1.9.

Proof of Theorem 4.1.9. We first give precise values for the lengths ℓ, r ∈ R of the two
paths. Note that ℓ and r need not be integral as race functions allow well-formed search
points x with p(x′) > ℓ or p(x′′) > r. Let ε > 0 be a constant small enough w. r. t.
constraints that will arise in the following. Let

ℓ :=
1 − ε

e
·
(

n3 +
2n4

τ
· (δ − 3)

)

− n3/4

and

r := n5 +
3(1 +

√
2)

2e
· n.

First, we investigate a period of n4 generations of the (1+1) MA with local search
frequency 1/τ and show that typically the end of the connected path is reached within
the period, while the end of the unconnected path is not. The number of generations
with local search is about n4/τ . To improve readability, we ignore rounding issues and
assume that n4/τ is the exact value. As

⌈
n4/τ

⌉
−
⌊
n4/τ

⌋
= O(1/n) · n4/τ (following

from τ = O(n3)), the error is negligible.
The end of the connected path is reached within n4 generations if the progress in n4

generations is at least ℓ. On the other hand, the end of the unconnected path is not
reached within the period if for every T ≤ n4 the progress in T steps is less than r−n5.
The probability of reaching the end of the unconnected path is maximized (apart from
rounding issues with T/τ) if T attains the maximal value n4. By the union bound,

109



4 Memetic Evolutionary Algorithms

multiplying the probability in case T = n4 with a factor of n4 yields an upper bound for
the probability of reaching the end at any point of time in the period.

Now, all that remains is to bound the progress in n4 generations. The following
statements hold w. o. p. Let ∆con be the total progress on the left path and ∆uncon be
the total progress on the right path in n4 generations. Applying Lemma 4.1.11 for
n4 −n4/τ generations without local search and Lemma 4.1.13 for n4/τ generations with
local search yields

∆con ≥ (1 − ε) · n4 − n4/τ

en
+ (1 − ε) · 2n4

eτ
· (δ − 2) − n3/4

=
1 − ε

e
·
(

n3 − n3

τ
+

2n4

τ
· (δ − 2)

)

− n3/4

≥ 1 − ε

e
·
(

n3 +
2n4

τ
· (δ − 3)

)

− n3/4 = ℓ.

For the unconnected path we show that after n4 generations we are still by a distance of
at least k away from the end, that is, n5 + ∆uncon ≤ r − k. The fact that the (1+1) MA
starts with Pn5 on the unconnected path enables us to apply Lemma 4.1.12 as n4 steps
can only decrease the position by n4 ·k implying that all considered parents differ from P0

on the unconnected path. By Lemmas 4.1.11 and 4.1.12

∆uncon ≤ (1 + ε) · 3(n4 − n4/τ)

en3
+ 6(n2/τ)1/2+ε + n3/4

≤ 3(1 + ε)

e
· n + 6n1+2ε · τ−1/2−ε + n3/4.

Recall τ = nΩ(1) and choose ε small enough to make τ ≥ n4ε. Then n1+2ε · τ−1/2−2ε ≤
n1−8ε2

= o(n) implying

n5 + ∆uncon ≤ n5 +
3(1 + ε)

e
· n + o(n) ≤ n5 +

3(1 +
√

2)

2e
· n − k = r − k

if ε is small and n large enough.
Together, the (1+1) MA with local search frequency 1/τ reaches the end of the con-

nected path within n4 generations. This implies that on Racecon, a global optimum is
found in n4 generations, w. o. p. On Raceuncon, however, the objective is now turned
to minimizing the position on the unconnected path. Since n5 + ∆uncon ≤ r − k the
Hamming distance to each point x′ Pr+i for i ≥ 0 is at least k and all points with
smaller Hamming distance have worse fitness. The only way to reach a global opti-
mum is a direct jump flipping at least k bits. The probability for such an event is at
most 1/(k!) = 2−Ω(n1/2 log n). Moreover, the probability of finding the optimum within

2−cn1/2 log n generations is still exponentially small if c > 0 is small enough, meaning that
the (1+1) MA needs exponential time w. o. p.
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The argumentation for the (1+1) MA with local search frequency 1/(2τ) is similar.
We now consider a period of

√
2n4 generations of the (1+1) MA with local search fre-

quency 1/(2τ) and redefine ∆con and ∆uncon according to this new period. The number
of generations with local search is about

√
2/(2τ) = 1/(

√
2τ). Again, we ignore rounding

issues to improve readability. Compared to the previous setting, the number of gener-
ations with local search decreases by a factor of

√
2. On the other hand, the number

of generations without local search increases by approximately a factor of
√

2. This
is a clear disadvantage for the connected path and an advantage for the unconnected
path. We claim that here the unconnected path wins the race, i. e., n5 + ∆uncon ≥ r and
∆con ≤ ℓ−k. Repeating the line of thought from above, the (1+1) MA needs polynomial
time on Raceuncon and exponential time on Racecon w. o. p.

First, we prove n5 + ∆uncon ≥ r using Lemmas 4.1.11 and 4.1.12. We have

∆uncon ≥ (1 − ε) · 3(
√

2n4 −
√

2n4/(2τ))

en3
− 6(n2/(

√
2τ))1/2+ε − n3/4

=
3(1 − ε)

e
· (
√

2n −
√

2n/(2τ)) − 6(n2/(
√

2τ))1/2+ε − n3/4

=
3(1 − ε)

e
·
√

2n − o(n),

the last equality following from the same arguments as above, along with n/τ = o(n).
If ε is small enough such that 3(1 − ε)

√
2 > 3(1 +

√
2)/2 and n is large enough then

n5 + ∆uncon ≥ r follows.

Finally, we show ∆con ≤ ℓ − k using Lemmas 4.1.11 and 4.1.13.

∆con ≤ (1 + ε) ·
√

2n4 −
√

2n4/(2τ)

en
+ (1 + ε) · 2

√
2n4

2eτ
· (δ + 2) + n3/4

=

√
2(1 + ε)

e
·
(

n3 − n3/(2τ) +
n4

τ
· (δ + 2)

)

+ n3/4

≤
√

2(1 + ε)

e
·
(

n3 +
n4

τ
· (δ + 2)

)

+ n3/4

If ε is small enough such that (1+ε) ·
√

2 < (1−ε) ·3/2 and n is large enough to dominate
small order terms,

∆con ≤ 1 − ε

e
·
(

3

2
· n3 +

3

2
· (δ + 2)n4

τ

)

− n3/4 − k

=
1 − ε

e
·
(

n3 +
τ

2n
· n4

τ
+

3

2
· (δ + 2)n4

τ

)

− n3/4 − k
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By hypothesis, δ/τ ≥ 2/n and δ ≥ 36 implying τ ≤ δ/2 · n = (δ − δ/2)n ≤ (δ − 18)n.
Plugging this into the above equality yields

∆con ≤ 1 − ε

e
·
(

n3 +
δ − 18

2
· n4

τ
+

3

2
· (δ + 2)n4

τ

)

− n3/4 − k

=
1 − ε

e
·
(

n3 +
2n4

τ
· (δ − 3)

)

− n3/4 − k = ℓ − k.

Finally, let us discuss some possible extensions. Theorem 4.1.9 can be extended to
a memetic algorithm calling local search probabilistically with probability 1/τ as the
number of local search calls in cn4 generations is concentrated around cn4/τ . Applying
Chernoff bounds to estimate the number of local search calls introduces additional factors
(1 − ε) and (1 + ε) into the preceding proof and these factors can easily be dealt with.

On the other hand, extending the result to offspring populations of size λ > 1 is
not that easy. Recall that for λ = 1 the progress in generations with local search on
the unconnected path is almost a martingale as typically jumps to the next and the
previous peak are treated equally by selection. Now, if λ > 1 there is at least a constant
probability that the current peak is cloned and then (assuming equal positions on the
connected path) the clone is preferred over the previous peak. As a consequence, the
martingale property is lost and the influence of local search on the unconnected path
grows, changing the behavior of the algorithm significantly. If τ = o(n), the progress on
the unconnected path might even be dominated by this effect. We conjecture that if the
local search frequency is fixed to 1/τ and τ = o(n), then the connected path wins the
race if λ = 1, but the unconnected path wins in case λ = 2, say. Such a behavior would
yield another example where the choice of the offspring population size is essential, as
presented by Jansen, De Jong, and Wegener (2005).

4.1.5 Conclusions

We presented a rigorous theoretical analysis of a simple memetic evolutionary algorithm,
the (µ+λ) MA. Much research effort has been spent in recent years to parametrize
memetic algorithms and to find a proper balance between local search and evolutionary
search. We have stressed the importance of this subject by presenting function classes
where both the choice of the local search depth and the choice of the local search fre-
quency have a tremendous impact on the optimization time of the (µ+λ) MA. For
almost every reasonable parameter setting, we have constructed a function for which
these parameters lead to an efficient optimization while most other parameter settings
are very inefficient. More precisely, for the local search depth even a tiny additive term
of log3 n can turn a polynomial optimization time into a superpolynomial one and vice
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versa. Regarding the local search frequency, variations by a small factor of 2 can even
decide between polynomial and exponential optimization times.

The analyses presented here are the first rigorous runtime analyses of memetic evolu-
tionary algorithms. Such analyses are challenging since these metaheuristics are typically
not designed to support an analysis. This section shows that a rigorous analysis is pos-
sible and worthwhile as we have gained valuable insights into the dynamic behavior of
memetic algorithms and into the interplay of genetic operators with local search. In
addition, we have extended Witt’s analysis of population dynamics for the (µ+1) EA to
the (µ+λ) EA with larger offspring populations, which is of independent interest.

4.2 Memetic Algorithms with Variable-Depth Search

In the previous section we have analyzed memetic algorithms on artificial functions. In
this section, we want to concentrate on combinatorial problems instead. Thereby, we
also investigate broader classes of memetic algorithms. One aspect is the design of the
two operators, mutation and local search. A local search procedure searching only for
Hamming neighbors with larger fitness behaves similarly to a sequence of mutations
with mutation probability 1/n. The previous section has shown that the difference is
large enough to allow the construction of an artificial function where this difference is
essential, but in a more practical combinatorial setting these two operators might still
behave similarly. When looking for a hybrid algorithm that is more powerful than its
single components, such an algorithm is probably not the best choice.

Therefore, in this section we investigate memetic algorithms where the two operators
use very different strategies. On one hand, mutation may use significantly larger muta-
tion probabilities. This accounts for the fact that in iterated local search algorithms the
perturbation move usually makes quite large jumps, i. e., a large mutation. On the other
hand, we consider a different local search procedure that does not use a strict elitist
strategy, but instead is able to traverse search points with inferior fitness. We will see
in the following that the latter extension is able to perform well in simple combinatorial
settings where many other common search heuristics fail dramatically.

Regarding problems from combinatorial optimization, a plethora of randomized search
heuristics has been proposed, analyzed, and applied over the past decades. Besides
evolutionary and memetic algorithms, simulated annealing belongs to the best known
heuristics. Simulated annealing is a simple hill climber that may, however, accept worse
solutions with a probability monotone in the current temperature. The temperature is
typically decreased over time, which gradually changes the focus from exploration to
exploitation.

All these heuristics have to deal with the possibility of reaching a poor local optimum.
Population-based heuristics usually rely on diversifying the search to explore different
local optima. However, it may happen that the whole population converges to non-global
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local optima and then the situation is not too different from trajectory-based algorithms,
that is, algorithms maintaining only a single current solution. These algorithms have to
rely on different mechanisms to overcome local optima.

We describe some common approaches to overcome local optima and give pointers to
related theoretical works, with a focus on combinatorial optimization.

1. Accept solutions with inferior fitness:
Simulated annealing may accept solutions with inferior fitness, enabling the algo-
rithm to climb down a hill. This well-known strategy proved to be effective for
Graph Bisection (Jerrum and Sorkin, 1998), the two-dimensional Ising model
(Fischer, 2004), and minimum spanning trees (Wegener, 2005b).

2. Decrease the attractiveness of local optima:
Tabu search maintains a tabu list of solutions that are “taboo” for the algorithm,
hence making local optima less attractive. Diversity mechanisms like fitness sharing
also decrease the attractiveness of local optima. If many individuals are concen-
trated on one local optimum, they are forced to “share” their fitness according to
their similarity. Hence, the algorithm is encouraged to decrease similarity in the
population. The effectiveness of fitness sharing has been shown in Section 3.2.6
for the toy problem TwoMax that, however, has a similar global structure as the
Mincut instance we will investigate in Section 4.2.3.

3. Use larger or multiple neighborhoods:
Evolutionary algorithms like the (1+1) EA use a stochastic neighborhood where
every search point has a positive probability of being created. This simple prop-
erty enables the approximation of maximum matchings (Giel and Wegener, 2003)
and balanced partitions (Witt, 2005). In addition, evolutionary algorithms may
use crossover to recombine different local optima. The usefulness of crossover was
first shown for toy problems (Jansen and Wegener, 2005). Moreover, crossover
together with fitness sharing is effective for (a problem equivalent to) 2-coloring
binary trees (Sudholt, 2005). The idea of using different neighborhoods is domi-
nant in multimeme algorithms (Neri et al., 2007) and variable neighborhood search
algorithms (see, e. g., Mladenović and Hansen, 1997) exploiting that a local opti-
mum w. r. t. one neighborhood need not be a local optimum w. r. t. another one.
Memetic algorithms like iterated local search also fall into this category as they
combine mutation and local search. Their usefulness so far has only been proven
for artificial problems (see Section 4.1).

Another common strategy is to restart the algorithm after convergence to local optima.
This can be seen as a very large perturbation and hence falls into the third category.

In this section we consider a special local search operator for use within the framework
of iterated local search, so-called variable depth search (VDS). Variable-depth search is
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well-known for the TSP as Lin-Kernighan strategy (Lin and Kernighan, 1973) and for
Graph Bisection as Kernighan-Lin (Kernighan and Lin, 1970). The idea is to perform
a sequence of local moves. The next local move is chosen in a greedy fashion. If there
is a local move that increases fitness, then a move with maximal fitness gain is chosen.
Otherwise, a move with minimal loss in fitness is selected. To prevent the algorithm from
looping, certain parts of the search space are made “tabu”. For binary search spaces
this means that if VDS flips some bit, then this bit cannot be flipped again during the
run of VDS. The output of VDS is then a best solution encountered during the sequence
of local moves.

Iterated local search using VDS combines approaches from all three mentioned cate-
gories to overcome local optima. Firstly, it easily traverses solutions with inferior fitness
if no fitness-improving move is available. Secondly, starting with a local optimum this
local optimum is made “tabu” like in tabu search since steps moving back towards the
local optimum are not allowed. A difference to classical tabu search is that we do not
keep a tabu list of single individuals, but render large parts of the search space tabu.
Finally, we employ different neighborhoods: VDS and mutation as perturbation.

This combination of strategies makes it easy for VDS to overcome local optima. An-
other remarkable aspect is the greedy component in VDS since we always choose a best
move among the feasible local moves. We will in the following give examples where this
greedy behavior provides a good guidance for the algorithm in order to find a global
optimum.

We investigate instances of problems from combinatorial optimization, namely Min-

cut, Knapsack, and Maxsat. Definitions and descriptions of these problems are
postponed to the following sections. The chosen instances contain non-global local op-
tima with large basins of attraction that are hard to overcome. We will see that memetic
algorithms with VDS are efficient on these functions while common trajectory-based al-
gorithms like the (1+1) EA, traditional iterated local search algorithms, and simulated
annealing fail to find a global optimum, even if they are given exponential time.

The instances we consider have a very simple structure. This helps to keep the argu-
mentation simple and to focus on the essentials. We assume that the reader is familiar
with basic knowledge on common combinatorial optimization problems. For details,
we refer to appropriate text books (e. g., Cormen et al., 2001; Papadimitriou, 1994;
Wegener, 2005a).

The remainder of this section is structured as follows. First, we define all investigated
algorithms in Section 4.2.1. Section 4.2.2 contains lower bounds on the runtime after
the whole population has reached or gotten close to local optima. In Sections 4.2.3,
4.2.4, and 4.2.5 we then deal with instances for the problems Mincut, Knapsack, and
Maxsat, respectively. We conclude in Section 4.2.6.
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4.2.1 Algorithms

We first define two local search operators used throughout this section. Both operators
can use multiple neighborhoods, but we restrict ourselves to neighborhoods defined as
follows.

Definition 4.2.1. Let the radius of a neighborhood N be the maximum distance from
any point to any of its neighbors, i. e., maxx,y{H(x, y) | y ∈ N(x)}. Then N is called a
proper neighborhood if it only depends on the Hamming distance, formally

∀x, y1, y2 : H (x, y1) = H (x, y2) ⇒ (y1 ∈ N(x) ⇔ y2 ∈ N(x)),

its radius is O(1), and x /∈ N(x) for all x.

The constant radius implies that the size |N | of the neighborhood is bounded by
a polynomial. Note that the Hamming neighborhood is a proper neighborhood. In
the following, we denote by Nk the neighborhood of all points with Hamming distance
exactly k. We reuse notions for a neighborhood N extended to a set X ⊆ {0, 1}n, i. e.,
N(X) :=

⋃

x∈X N(x) and N∗(X) := N(X) ∪ X.

The first local search operator we define repeatedly chooses neighbors with strictly
larger fitness. In contrast to the operator from Section 4.1 where the choice of the pivot
rule was left open, we here specify the pivot rule to be random. In order to distinguish the
operator from the algorithm called randomized local search, we refrain from the name
random local search, but instead call it standard local search. Standard local search
accepts any neighbor with strictly larger fitness and stops whenever a local optimum is
reached or the number of iterations reaches the local search depth δ(n).

Operator 12 Standard local search(y)

for δ(n) iterations do
Choose z ∈ N(y) with f(z) > f(y) uniformly at random

or stop and return y if no such z exists.
Let y := z.

return y.

We already explained the concept of VDS. In the following procedure S denotes the
sequence of solutions encountered during VDS and L is a set of indices for all bits that
have been locked.
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Operator 13 Variable-depth search(y)

S,L := ∅.
while Vy := {z ∈ N(y) | ∀i : (yi 6= zi ⇒ i /∈ L)} 6= ∅ do

Choose z ∈ Vy with maximal f -value uniformly at random. // choose neighbor
S := S ∪ {z}. // add to sequence
L := L ∪ {i | yi 6= zi}. // lock flipped bits
y := z.

return z ∈ S with maximal f -value chosen uniformly at random.

Note that, given a proper neighborhood, one run of VDS takes at most n iterations
since in every iteration of the loop at least one index is added to L.

We now take over the definition of the (1+1) Memetic Algorithm, shortly (1+1) MA,
from Section 4.1, but we redefine it as a generic framework for various algorithms. One
generalization is that any local search procedure may be used. Moreover, we may have
an arbitrary criterion that decides whether local search is to be used in the current
generation. Finally, the mutation probability pm is not fixed to 1/n, but instead it is a
parameter of the algorithm now.

Algorithm 14 (1+1) Memetic Algorithm

Choose x uniformly at random.
repeat

Create y by flipping each bit in x independently with prob. pm. // mutation
if criterion for using local search then y := local search(y). // local search
if f(y) ≥ f(x) then x := y. // selection

The (1+1) MA never using local search equals the (1+1) EA with mutation proba-
bility pm. Alternatively, local search may be applied periodically as in Section 4.1. We
may also choose to apply local search probabilistically with a fixed probability as done
in Ishibuchi et al. (2003). The algorithm where local search is called in each generation
equals iterated local search (Lourenço et al., 2002). In particular, we will often refer to
iterated VDS as the (1+1) MA calling VDS in every generation.

All algorithms considered so far have in common that the best-so-far fitness cannot
decrease. Simulated annealing always accepts better solutions, but it also allows worse
solutions to be accepted. This decision is made dependent on the size of the fitness
decrease and a parameter called temperature. If the temperature equals 0, simulated
annealing behaves like a hill climber, i. e., it does not accept worsenings. The larger the
temperature, the more likely it is to accept worse solutions. It is common practice to
start with a high temperature and then to decrease the temperature over time. This
way, simulated annealing can explore the search space in the beginning and then grad-
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ually turns into a hill climber focusing on exploitation. A strategy to turn down the
temperature is called a cooling schedule. Unless otherwise noted, simulated annealing
uses the Hamming neighborhood N = N1. It is formulated for maximization to match
previously defined algorithms.

Algorithm 15 Simulated Annealing

Let t := 0.
Choose x uniformly at random.
repeat

Choose y ∈ N(x) uniformly at random.
Set x := y with probability min{1, exp((f(y) − f(x))/T (t))}.
t := t + 1.

Simulated annealing with a fixed temperature is called Metropolis algorithm. It was
long unknown whether cooling down the temperature is essential for natural problems,
i. e., whether simulated annealing outperforms the Metropolis algorithm with an optimal
temperature. This question was recently solved in the affirmative by Wegener (2005b)
for the natural problem of computing a minimum spanning tree.

For the efficiency of an algorithm a plausible performance measure is the number of
generations until a global optimum is found. We will also consider the number of function
evaluations, referred to as optimization time. Thereby, we in particular account for the
computational effort of local search. Note that the number of function evaluations in a
generation with local search is bounded above by δ(n) · |N | for greedy local search and
by n · |N | for VDS.

4.2.2 Lower Bounds when Stuck in Local Optima

We start our investigations with lower bounds for different algorithms after having
reached (or gotten close to) a local optimum. Combinatorial fitness landscapes often
contain several local optima that are close to one another. Therefore, it makes sense to
group such local optima into sets and to consider the Hamming distance to such a set. A
set of local optima is difficult for an algorithm if it has a large basin of attraction. This
is especially true if the fitness decreases with every local move leading away from the
local optimum. If this holds up to a Hamming distance of α, the set is called α-difficult .

Definition 4.2.2. A non-empty set S∗ ⊆ {0, 1}n is called α-difficult for α = α(n) w. r. t.
the function f and a neighborhood N if y ∈ N(x) and H (x, S∗) < H(y, S∗) ≤ α implies
f(x) > f(y) for every x, y ∈ {0, 1}n and S∗ does not contain global optima.

The definition of α-difficulty for a neighborhood N ⊇ N1 implies that all search points
with Hamming distance less than α to S∗ have worse fitness than every point in S∗. This
immediately leads to lower bounds for the (1+1) MA once S∗ has been reached.
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Lemma 4.2.3. Let S∗ be α-difficult for some neighborhood that includes N1. If the
(1+1) MA using standard local search with a proper neighborhood N and mutation prob-
ability pm ≤ (1 − ε) · α/n for some ε > 0 reaches S∗, the remaining time until a global
optimum is found is at least 2cα with probability 1 − 2−Ω(α) for some constant c > 0.

Proof. It is safe to assume that α grows with n since otherwise the theorem is trivial.
Let r be the radius of N . Apart from individuals in S∗, the (1+1) MA only accepts
an offspring if mutation creates a solution with Hamming distance at least α − r to its
parent as otherwise local search runs back into S∗ or the generation ends with an inferior
solution. With mutation probability at most (1−ε)·α/n the expected number of flipping
bits in one mutation is at most (1 − ε) · α. The probability that at least α − r bits flip
is at most 2−Ω(α) by Chernoff bounds. The probability that this happens at least once
in 2cα steps, c > 0 a small enough constant, is still of order 2−Ω(α).

Simulated annealing can accept worse solutions with a certain probability that depends
on the loss in fitness and the current temperature T = T (t). Escaping a single local
optimum is easy if the temperature is high enough such that all local moves have a good
chance to be accepted. The reason is simple: if the current solution is close to the local
optimum, there are more local moves leading away from it than moving closer to it. If
the temperature is too low (or has been cooled down too fast), escaping a local optimum
is much more difficult. We can make this precise for a scenario where the temperature
leaves us with a noticeable bias towards search points with high fitness.

Lemma 4.2.4. Let S∗ be α-difficult for some neighborhood that contains N1 and let
|f(x) − f(y)| ≥ ∆ = ∆(α) if y ∈ N1(x) and x, y have Hamming distance at most α
to S∗. If simulated annealing with temperature T (t) ≤ ∆/(ln(4n/α)) reaches a search
point with Hamming distance at most (1 − ε)α to S∗ for some constant 0 < ε ≤ 1,
the remaining optimization time is at least 2cα with probability 1 − 2−Ω(α) for some
constant c > 0.

Proof. W. l. o. g. we can assume ε ≤ 1/2. Observe H (y, x∗) ≥ H(y, S∗) for every y and
every x∗ ∈ S∗. This allows us to focus on a single search point x∗ ∈ S∗ with minimal
Hamming distance to the current search point x. If H (x, S∗) = k and (1− ε)α ≤ k < α,
the probability of increasing the Hamming distance to x∗ (and hence S∗) by 1 is

p+ ≤ n − k

n
· e−∆/T < e−∆/T ≤ α

4n

due to the assumption on T . On the other hand, the probability of decreasing the
Hamming distance to S∗ by 1 is

p− ≥ k

n
≥ (1 − ε)α

n
≥ α

2n
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as all k steps moving closer to x∗ are accepted. Hence, conditional on an exchange of
the current search point, the probability of moving away from S∗ is at most 1/3 and the
probability of getting closer is at least 2/3.

The lower bound now follows from the Drift Theorem 2.3.10 applied to random vari-
ables α − H (x, S∗) (the process stopping at value 0) with a := 0 and b := εα. As in
previous applications of the Drift Theorem, we consider relevant steps, i. e., steps where
the current distance is changed. When considering a search point with Hamming dis-
tance at most (1 − ε)α to S∗, we start the drift analysis with X0 ≥ b. If a < Xt < b,
we have E(Xt+1 − Xt) ≥ 1/3 fulfilling the first condition of Theorem 2.3.10. The second
condition holds trivially as only steps of length ±1 are allowed. Hence Theorem 2.3.10
proves the claim.

An α-difficult local optimum is challenging for memetic algorithms and simulated
annealing as both have difficulties with large “valleys” in the fitness landscape. This
similarity between evolutionary algorithms and simulated annealing has already been
recognized by Jansen and Wegener (2007).

4.2.3 Mincut

Given an undirected graph G = (V,E), the problem Mincut is to partition all vertices
into two non-empty subsets V0, V1 such that the number of edges between V0 and V1 is
minimized. Such edges are called cut edges. We remark that specialized algorithms can
solve the Mincut problem in polynomial time, even in the case of weighted graphs (Stoer
and Wagner, 1994).

Given an ordering of the vertices V = {v1, . . . , vn}, we obtain a binary representation
x = x1 . . . xn ∈ {0, 1}n for n = |V | such that vi ∈ Vxi for every i. If V0 and V1 are non-
empty, the fitness function is encoded as follows. We choose the fitness as the number
of non-cut edges, written as

∑

{u,v}∈E(xuxv + (1 − xu)(1 − xv)). However, if V0 or V1 is
empty, i. e., x ∈ {0n, 1n}, the non-emptiness constraint is violated and we penalize such
a solution by assigning a negative f -value.

f(x) :=







∑

{u,v}∈E

(xuxv + (1 − xu)(1 − xv)) if x /∈ {0n, 1n},

−1 if x ∈ {0n, 1n}.

Consider the following instance G = (V,E) that consists of two cliques of size n/2, each
(see Figure 4.2).

V = {u1, . . . , un/2, v1, . . . , vn/2},
E = {{ui, uj}, {vi, vj} | 1 ≤ i < j ≤ n/2}.

Consider a partition V = V0 ∪ V1 where w. l. o. g. u1 ∈ V0. Obviously, the optimal
partition is V0 = {u1, . . . , un/2} with a cut of size 0. We claim that all partitions with
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cut

cut

Figure 4.2: A global optimum (top) and a local optimum (bottom) for the Mincut

instance with n = 16.

|V0| = 1 or |V0| = n − 1 are difficult local optima with a cut size of n/2 as V0 and V1

are constrained to be non-empty. A sketch of a global and a local optimum is given
in Figure 4.2.

Lemma 4.2.5. The set S∗ of partitions with |V0| = 1 or |V0| = n − 1 is α-difficult for
α = ⌊n/4 − 1⌋ w. r. t. N1.

Proof. Obviously S∗ does not contain global optima. We need to show that for every x
with H (x, S∗) ≤ α − 1 and every y ∈ N(x) with larger distance to S∗, f(y) < f(x)
holds. For x ∈ S∗ we have that every Hamming neighbor y is either infeasible or one
side of the cut contains exactly 2 vertices. In both cases f(y) < f(x) as demanded. For
infeasible x every local move results in a solution in S∗, hence the condition on all y is
trivial. If x is neither in S∗ nor infeasible and H (x, S∗) = d ≤ α−1, then the smaller set
of the partition contains d + 1 vertices. This implies that this side of the cut contains
at most d + 1 ≤ n/4 − 1 u-vertices and at most n/4 − 1 v-vertices. Every local move
leading away from S∗ has to add another u-vertex or another v-vertex to this side, which
increases the cut size and hence decreases the fitness.

During a typical run of the (1+1) EA or the (1+1) MA, it is equally likely for both
cliques to move towards different sides of the cut or move towards the same side. We
prove that the latter case leads to exponential optimization times and that this happens
with probability close to 1/2.

Theorem 4.2.6. Consider the (1+1) MA with standard local search using neighbor-
hood N1 and mutation probability pm ≤ 1/5. The optimization time for the Mincut

instance is at least 2cn with probability 1/2 − O(1/
√

n) for some constant c > 0.

121



4 Memetic Evolutionary Algorithms

Proof. We already proved that all local optima are α-difficult for α = ⌊n/4 − 1⌋. If n
is large enough, we have 1/5 ≤ (1 − ε) · α/n for an appropriate ε > 0, hence the claim
follows from Lemma 4.2.3 if we can prove that the algorithm reaches S∗ with probability
1/2 − O(1/

√
n).

Let S0 contain all four (feasible and infeasible) solutions with no cut edge. Let
S1 = N1(S0). We now argue that with high probability the algorithm evaluates a solu-
tion in S1 before evaluating one from S0. Consider the first generation where a solution
in S0 ∪ S1 is created. Let p0 and p1 denote the probabilities that this solution belongs
to S0 and S1, respectively. We claim that p1 = Ω(p0 ·

√
n). This implies that S1 is found

before S0 with probability 1 − O(1/
√

n).
Initialization creates a search point in S0 with probability 2−n+2. Assume that

the algorithm does not start in S0 ∪ S1. Consider a generation with current solution
x /∈ (S0 ∪ S1) and the next offspring creation. If S0 ∪ S1 is reached during local search,
the claim is trivial. Hence we focus on mutation only and fix a search point z ∈ S0. If x
has Hamming distance k to z, we have k solutions in S1 with Hamming distance k − 1
to x and n−k solutions in S1 with Hamming distance k+1. The probability of reaching
a specific y ∈ N1(z) differs from the probability Prob(z) of reaching z in just one bit
position. More precisely, the probabilities differ by factors pm/(1− pm) or (1− pm)/pm,
dependent on whether this bit has to be flipped or not. Let Prob(N1(z)) denote the
probability of reaching N1(z), then

Prob(N1(z)) ≥ k · Prob(z) · 1 − pm

pm
+ (n − k) · Prob(z) · pm

1 − pm

= Prob(z)

(
k(1 − pm)2 + (n − k)p2

m

pm(1 − pm)

)

= Prob(z)

(
k(1 − 2pm) + np2

m

pm(1 − pm)

)

.

We see that this term is increasing with k, hence in the worst case k = 2. Along with
pm ≤ 1/5, we arrive at the bound

Prob(N1(z)) ≥ Prob(z)

(
1 + np2

m

pm

)

.

In case pm ≤ 1/
√

n the term in brackets is at least 1/pm ≥ √
n. If pm > 1/

√
n, then this

term is at least npm ≥ √
n as well. We conclude

Prob(N1(z)) ≥ Prob(z) · √n.

Since this holds for all z ∈ S0, p1 ≥ p0 · √n follows and S1 is found before S0 with
probability 1 − O(1/

√
n).

As long as no local optimum is found, the fitness is indifferent to the question whether
the majority of the u-vertices is in V0 or in V1. The same holds independently for the
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v-vertices. Hence, if the first cut in S1 is created, given that S0 has not been found
yet, all cuts in S1 have the same probability of being found. Half of these cuts are local
optima, hence the probability that a local optimum is found equals 1/2. By the union
bound, the probability of reaching a local optimum is at least 1/2−O(1/

√
n)− 2−n+2 =

1/2 − O(1/
√

n).

Reusing ideas from the proof of Theorem 4.2.6, we show that also simulated annealing
fails with probability close to 1/2.

Theorem 4.2.7. Simulated annealing with an arbitrary cooling schedule where T (t) is
monotone decreasing needs at least 2cn steps for the Mincut instance with probability
1/2 − 2−Ω(n) for some constant c > 0.

Proof. We divide a run into two phases: the first phase ends when the temperature first
drops to n/12 and then the second phase starts. Let T1 be the number of generations
in Phase 1 and let S0 and S1 be defined as in the proof of Theorem 4.2.6. We first
prove that in Phase 1 no solution in S0 will be evaluated in exponential time, with high
probability.

Consider a search point x with H (x, S0) = k ≤ n/(4e6). The probability of increasing
the Hamming distance to S0 is

p+ ≥ n − k

n
· e−n/(2T ) ≥ 1

2
· e−6

as the worst fitness decrease equals n/2. The probability of decreasing the Hamming
distance to S0 equals

p− =
k

n
≤ 1

4
· e−6.

Together, the conditional probability of decreasing the Hamming distance is bounded
by 1/3, provided that the Hamming distance is changed.

The probability of initializing simulated annealing with a search point x such that
H (x, S0) ≤ n/(4e6) is 2−Ω(n). Assuming to start at a larger distance and applying the
Drift Theorem 2.3.10 to H (x, S0) in the interval [0, n/(4e6)], the probability that S0 is
reached within the first min{T1, 2

cn} steps is 2−Ω(n).
This concludes the proof if T1 ≥ 2cn. Otherwise, we consider Phase 2 and assume that

S0 has not been reached in Phase 1. By the locality of the search operator S1 is reached
before S0 and the probability that a local optimum is found equals 1/2.

Given a fixed Hamming distance k ≤ n/12 from S0, the minimal fitness difference ∆
between two neighbors, as defined in Lemma 4.2.4, is attained when only one clique is
cut. In that case the cut clique has k vertices on one side of the partition and when
adding a (k+1)-st vertex, the fitness decreases by n/2−2k ≥ n/3. Applying Lemma 4.2.4
with α = n/12 and ∆(α) = n/3 proves the claim for T ≤ ∆/(ln(4n/α)) = 1/(3 ln(48))
and hence for T ≤ n/12.
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We have seen that the local optima of the Mincut instance are extremely hard for
standard evolutionary algorithms, memetic algorithms, and simulated annealing. In
contrast to this, iterated VDS with the standard mutation probability pm = 1/n easily
escapes from this local optimum. The following proof is surprisingly simple.

Theorem 4.2.8. The expected number of generations of iterated VDS with mutation
probability pm = 1/n on the Mincut instance is O(n).

Proof. The first VDS reaches a global or local optimum. Assume that a local optimum
is reached. With probability at least 1/(en) the following mutation creates an infeasible
solution. In the following call of VDS, the first local move is to pull a single vertex to the
empty side of the cut. W. l. o. g. this is a u-vertex. In the subsequent moves, VDS moves
more u-vertices to the other side as these operations lead to a minimal fitness decrease.
Once at least half of the u-clique has been moved, the fitness even increases when moving
more u-vertices. Once all u-vertices have been moved, a global optimum is found. In
case mutation failed to create an infeasible solution, VDS ends again with a local (or
global) optimum. The expected waiting time for a successful mutation is O(n).

4.2.4 Knapsack

The Knapsack problem is a well-known NP-hard combinatorial problem. Suppose we are
given a knapsack that can hold objects up to a specified weight limit W . Among a set
of n objects with associated profit values p1, . . . , pn and weights w1, . . . , wn, we have to
select objects for the knapsack such that the total profit is maximized while respecting
the weight limit.

As a fitness function, we take the profit of all chosen objects if the weight limit is
respected. Otherwise, the fitness function gives hints to drop selected objects.

f(x) :=

{∑n
i=1 xipi if

∑n
i=1 xiwi ≤ W,

−∑n
i=1 xi if

∑n
i=1 xiwi > W.

Consider the following Knapsack instance I for odd n and N = (n + 1)/2.

1 ≤ i ≤ N : pi = wi = n

N < i ≤ n : pi = wi = n + 1

W = N · n

For all objects profit equals weight. Hence, this instance also represents an instance of
the subset sum problem, a restricted formulation of Knapsack.

Call the objects with weight n + 1 big and the other ones small. The weight limit is
chosen such that all N small objects exactly fit into the knapsack. This selection yields
a total profit of (n2 + n)/2. On the other hand, if one big object is chosen, there is only
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space for a total number of N − 1 objects. If the current packing also contains at least
one small object, the profit may be increased by dropping a small object and adding a
big object, which increases the profit by 1. Thus, a packing of all N − 1 big objects is
locally optimal w. r. t. N1 ∪N2 with a profit of (N − 1) · (n + 1) = (n2 − 1)/2. Note that
here considering the neighborhood N1 it not very interesting as almost all packings with
N − 1 selected objects are local optima w. r. t. N1.

We see that we have a non-optimal local optimum with all big objects and a unique
global optimum with N small objects. Furthermore, when reaching the local optimum
exchanging a big object for a small one decreases the fitness. Only after all big objects
have been exchanged for small ones, an N -th small object may be added to yield a global
optimum.

Theorem 4.2.9. Consider the (1+1) MA with standard local search using a proper
neighborhood and mutation probability pm ≤ 1/2. The optimization time for the Knap-

sack instance is at least 2cn with probability 1 − 2−Ω(n) for some constant c > 0.

Proof. Observe the following simple fact. As long as the (1+1) MA has not found the
global optimum OPT = 1N0N−1 yet, it shows the same behavior on the function given
by the Knapsack instance I as on every other function with the same fitness values for
all x 6= OPT. Hence, we may regard a modified instance I ′ with the same objects as in I,
but where W ′ = W − 1, so that OPT receives the same fitness as all other infeasible
solutions with the same number of chosen objects. The random time until OPT is
sampled for I ′ equals the random time until OPT is sampled for I; only afterwards, a
different behavior may occur. In order to account for local search sampling points within
the radius r of the neighborhood, we estimate the optimization time by the time until
a solution with Hamming distance at most r to OPT is sampled (either by mutation or
during local search).

Let Lk be the set of packings with k selected objects. We also call Lk a level of
packings. Let A <f B for A,B ⊆ {0, 1}n if all search points in A have lower fitness than
all search points in B. For the instance I ′ then

L0 <f L1 <f · · · <f LN−1 >f LN >f LN+1 >f · · · >f Ln. (4.2)

The same also holds for another modified instance I ′′ containing n objects with profit
and weight n + 1 and weight limit W ′′ = W ′, i. e., a variant of I ′ where all objects have
the same size. We argue that the (1+1) MA behaves at least as bad on I ′′ as on I ′.

Consider two random processes: one instance of the (1+1) MA on I ′ and another
instance of the (1+1) MA on I ′′. In every generation, both processes perform a mutation
which may be followed by a sequence of iterations of standard local search. For each
such micro-steps, the number of 1-bits in the next point only depends on the number of
1-bits of the previous point. This holds if the number of 1-bits is changed during such a
move. If there is no more local move available that would change the number of 1-bits,
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local search stops on this level of 1-bits. When considering a generation of the (1+1) MA
from a macro-perspective, if the offspring created by mutation and/or local search differs
from its parent in terms of the number of 1-bits, the acceptance only depends on the
number of 1-bits. In other words, the only differences between the processes occur when
deciding between points with the same number of 1-bits. Hence, the probability that the
process on I ′ has a point in Li at time t equals the probability that the process on I ′′ has
a point in Li at the same time. More generally, for each point of time the probability
distributions indicating the number of 1-bits in the current search point are identical for
both processes.

Only when choosing between any two packings x1, x2 from Lk a different behavior may
occur: if x2 has more big objects than x1, on I ′ x2 will be preferred over x1, while the
situation is completely symmetric on I ′′. Note that x2 has a larger Hamming distance
from OPT than x1 since the Hamming distance equals the number of selected big objects
plus the number of non-selected small objects. Due to the assumption pm ≤ 1/2, the
probability of creating a specific offspring decreases monotonically with increasing Ham-
ming distance from the parent. Hence the remaining time until a point with Hamming
distance at most r to OPT is sampled increases when replacing x1 by x2. Therefore,
we are pessimistic (from the perspective of proving a negative result) when we accept a
move where x2 is replaced by x1. This leads us to the symmetric instance I ′′ and justifies
why it is pessimistic to consider I ′′ instead of I ′. Note that local search on I ′′ will stop
as soon as LN−1 is reached as there are no neighbors with larger fitness. Contrarily,
local search on I ′ will stay on LN−1, but move away from OPT on this level if possible,
hence we are also pessimistic in this special case.

We focus on the symmetric instance I ′′, where we exploit the symmetry to prove the
desired lower bound. The point OPT can only be found if mutation and/or local search
create a search point in Z = {x | H (x,OPT) ≤ r}. Let xt be the t-th evaluated search
point, regardless whether this point has been evaluated after mutation or during local
search. The probability that during the first T evaluations a search point in Z is found
equals

∑T
t=1 Prob(xt ∈ Z). Note that we consider unconditional probabilities here; we

ask whether the t-th evaluation will yield a point in Z, without conditioning on previous
points such as xt−1. Fix t, then by the law of total probability

Prob(xt ∈ Z) =

n∑

k=0

Prob(xt ∈ Z | xt ∈ Lk) · Prob(xt ∈ Lk).

Observe that due to the perfect symmetry of Lk, each point in Lk is equally likely
to be xt. Moreover, the size of Z is polynomially bounded while Lk has size 2Ω(n) for
k = n/2±O(1). Hence, Prob(xt ∈ Z | xt ∈ Lk) = 2−Ω(n) and the probability of finding Z
within the first T generations is at most

T∑

t=1

Prob(xt ∈ Z) ≤
T∑

t=1

n∑

k=0

2−Ω(n) · Prob(xt ∈ Lk) = T · 2−Ω(n).
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Taking the union bound for T := 2cn steps, c a small enough positive constant, proves
the claim.

For Knapsack it makes sense to use a neighborhood like N1 ∪ N2, where additions
and removals of single objects are allowed as well as exchanges of two objects. In order
to provide a fair comparison of Iterated VDS with simulated annealing, we also consider
larger neighborhoods than the default neighborhood N1 for simulated annealing. As the
probability of changing the number of selected objects depends on the concrete fitness
difference and hence on the fact whether small or big objects are moved, the arguments
from the proof of Theorem 4.2.9 do not fully transfer to simulated annealing. Hence, we
present a different proof.

Theorem 4.2.10. The optimization time for simulated annealing on the Knapsack

instance is at least 2cn with probability 1 − 2−Ω(n) for every proper neighborhood, every
cooling schedule, and some constant c > 0.

Proof. The proof is an application of the Drift Theorem 2.3.10 to the random Hamming
distance of the current search point to the global optimum OPT. This corresponds to the
number of non-selected small objects plus the number of selected big objects. Consider
a search point x with Hamming at most (N − 1)/3 from OPT. The probability that
initialization creates such a search point is 2−Ω(n), hence we assume that this does not
happen.

Let Li be the level of all search points x with |x|1 = i. Apart from OPT itself, we have
that on a fixed level the fitness increases with the Hamming distance to OPT. Formally,
if y1, y2 ∈ Li and 0 < H(y1,OPT) ≤ H (y2,OPT), then f(y1) ≤ f(y2). If y1 and y2

both have the same Hamming distance k to the current search point, they have an equal
probability of being created, but y2 is more likely to be chosen by selection.

Consider the set Sk,i(x) := Nk(x) ∩ Li. We claim that for each k, i and every x the
following holds. If y is chosen uniformly at random from Sk,i and H (x,OPT) ≤ (N−1)/3,
then

E(H (y,OPT) − H(x,OPT) | y ∈ Sk,i) ≥ k

3
. (4.3)

Taking into account selection, this means that also the Hamming distance between old
search point and new search point increases by at least k/3 in expectation. We ignore
steps where the new solution is not accepted for our lower bound. In all accepted steps
we have k ≥ 1, hence also the expected distance increase without conditioning on Sk,i is
positive. This proves the first condition of Theorem 2.3.10 with respect to the distance
interval [0, (N − 1)/3]. The second condition follows from the bounded radius of the
neighborhood, hence the claim follows from Theorem 2.3.10.

In order to prove Inequality (4.3), observe that the number of flipping bits is known
as k and the number of final 1-bits is known as well. Hence, we already know that
the number of flipping 0-bits is (k + i − |x|1)/2 and the number of flipping 1-bits is
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(k − i + |x|1)/2. The only randomness left is the question how many of these bits
belong to small objects and how many to big objects. Consider the flipping 1-bits, i. e.,
objects that are unchosen. As x has Hamming distance at most (N − 1)/3 to OPT,
the number of chosen big objects in x is at most (N − 1)/3 and the number of chosen
small objects in x is at least N − (N − 1)/3 ≥ 2(N − 1)/3. In expectation, at least
(k − i + |x|1)/3 small objects are unchosen in y and at most (k + i− |x|1)/6 big objects
are unchosen, which contributes to the expected increase in Hamming distance a value of
(k− i+ |x|1)/6. Symmetrically, the flipping 0-bits contribute a term of (k+ i−|x|1)/6 to
the expected increase in Hamming distance, which proves Inequality (4.3) and completes
the proof.

Again, iterated VDS turns out to be effective. This even holds if mutation is never
used, corresponding to the choice pm = 0.

Theorem 4.2.11. Iterated VDS using neighborhood N1 ∪ N2 without mutation (i. e.,
pm = 0) optimizes the Knapsack instance within 2 generations with probability 1.

Proof. After initialization, VDS either runs into the local or the global optimum. Sup-
pose that we have found the local optimum of N − 1 big objects and consider the next
call of VDS. The least decrease in fitness is to exchange a big object for a small one.
This is repeated until all big objects have been replaced by small ones and then the last
small object is added.

4.2.5 Maxsat

Maxsat is another well-known and important combinatorial problem. Given n Boolean
variables x1, . . . , xn a literal is either a variable or a negated variable. A clause is a
disjunction of literals; for example (x1 ∨ x3 ∨ x4) is a clause with three literals. We say
that a clause is satisfied w. r. t. an assignment x to the variables if the clause evaluates
to true. Given a set C of clauses, the problem Maxsat asks for an assignment of the
variables such that the number of satisfied clauses is maximized. This problem is known
to be NP-hard even if all clauses only contain 2 literals.

A natural choice of the fitness function is to choose the number of satisfied clauses.
This function has already been investigated by Droste, Jansen, and Wegener (2000) on
the following instance.

∀i 6= j 6= k 6= i : (xi ∨ xj ∨ xk) ∈ C

(x1), (x2), . . . , (xn) ∈ C

An important observation is that this instance is symmetric in a sense that all variables
are treated equally. Note that every clause has exactly one non-negated literal, hence
the assignment 1n satisfies every clause. On the other hand, most clauses contain two

128



4.2 Memetic Algorithms with Variable-Depth Search

f(x)

|x|1
01 2n/3 n

Figure 4.3: Sketch of the fitness landscape according to the Maxsat instance with n =
30.

negated literals. This gives strong hints for a search heuristic to set variables to 0. Due to
this deceptive property Papadimitriou (1994) first defined this instance as a worst-case
example for the performance of a heuristic algorithm for Maxsat.

Due to symmetry of the instance, we can formulate the fitness as a function of unita-
tion, i. e., f(x) only depends on the number of 1-bits in x. If |x|1 = i, then i unit clauses
(i. e., clauses with just one literal) are satisfied. Among the other

(n
3

)
clauses there are

n ·
(i
2

)
clauses where the last two literals evaluate to false. Moreover, there are (n − i)

choices for the first variable such that the first literal also evaluates to false. Hence,
(n− i) ·

(i
2

)
clauses of length 3 are unsatisfied. We conclude that the number of satisfied

clauses and hence the fitness is given by the formula

f(x) =

(
n

3

)

− (n − |x|1) ·
(|x|1

2

)

+ |x|1 .

A sketch of the function f is shown in Figure 4.3.
It is easy to see that |x|1 = n implies a global optimum with fitness

(n
3

)
+ n. The

search point 0n has fitness
(n
3

)
and all x with |x|1 = 1 have fitness

(n
3

)
+ 1 as

(1
2

)
= 0.

Assuming n ≥ 6 and n multiple of 3, we claim that the fitness decreases with |x|1 in the
interval [1, 2n/3]. Even stronger, the set S∗ = {x | |x|1 = 1} is (2n/3 − 1)-difficult for
the neighborhood N1.

Lemma 4.2.12. If n ≥ 6 is a multiple of 3 then S∗ = {x | |x|1 = 1} is (2n/3−1)-difficult
for N1.

Proof. Let ai denote the fitness of all x with |x|1 = i. Note that H (x, S∗) = | |x|1 − 1| as
for x = 0n we have H (0n, S∗) = 1 and otherwise flipping |x|1 − 1 1-bits in x is necessary
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and sufficient to reach a point in S∗. This means that proving (2n/3 − 1)-difficulty
reduces to proving a0 < a1 > a2 > · · · > a2n/3. We have a0 < a1 and claim ai−1 > ai

for i ≥ 2 and i ≤ 2n/3.

ai−1 − ai = (n − i) ·
(

i

2

)

− (n − i + 1) ·
(

i − 1

2

)

− 1

= (n − i) · i(i − 1)

2
− (n − i + 1) · (i − 1)(i − 2)

2
− 1

= (n − i) · i(i − 1)

2
− (n − i) · i(i − 1)

2
· i − 2

i
− (i − 1)(i − 2)

2
− 1

= (n − i) · i(i − 1)

2
· 2

i
− (i − 1)(i − 2)

2
− 1

= (i − 1)

(

n − 3i

2
+ 1

)

− 1.

This expression is greater than 0 if i = 2 and n ≥ 4 as then the term in parentheses is
at least 2. For larger i, we exploit i ≤ 2n/3 and arrive at the bound (i− 1)− 1 > 0.

Theorem 4.2.13. Consider the (1+1) MA with standard local search using any proper
neighborhood and mutation probability pm ≤ 1/2. The optimization time for the Maxsat

instance is at least 2cn with probability 1 − 2−Ω(n) for some constant c > 0.

Proof. Let r be the radius of the neighborhood used by local search. The probability that
initialization creates a search point with at most 3n/5 1-bits is 1 − 2−Ω(n) by Chernoff
bounds. Afterwards, a necessary condition to accept a search point whose number of
1-bits is larger than 3n/5 is to create an offspring with at least 2n/3 − r 1-bits by
mutation. Let x be a parent with |x|1 ≤ 3n/5, then the expected number of 1-bits
in the mutant is |x|1 (1 − pm) + (n − |x|1)pm = pm(n − 2 |x|1) + |x|1. If |x|1 ≥ n/2,
then pm(n − 2 |x|1) + |x|1 ≤ |x|1. Otherwise, n − 2 |x|1 is non-negative and, along with
pm ≤ 1/2, pm(n − 2 |x|1) + |x|1 ≤ 1/2 · (n − 2 |x|1) + |x|1 = n/2. In both cases, the
expected number of 1-bits in the offspring is bounded by 3n/5. By Chernoff bounds, the
probability of constructing an offspring with at least 2n/3 − r 1-bits is 2−Ω(n). Taking
the union bound for 2cn steps, c > 0 a small enough constant, proves the claim.

Theorem 4.2.14. The optimization time of simulated annealing on the Maxsat in-
stance is at least 2cn with probability 1 − 2−Ω(n) for every cooling schedule and some
constant c > 0.

Proof. The probability that initialization creates a search point with at most 3n/5 1-bits
is 1 − 2−Ω(n) by Chernoff bounds. Consider a search point x with 3n/5 ≤ |x|1 ≤ 2n/3.
The probability that an offspring with less 1-bits is created equals |x|1 /n ≥ 3/5 and this
offspring is accepted with probability 1. The probability that an offspring with more
1-bits is created equals (n − |x|1)/n ≤ 2/5. The probability of acceptance depends on
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the fitness difference and the temperature, but the trivial bound 1 holds regardless of
the temperature. The expected decrease in the number of 1-bits is therefore at least
3/5 − 2/5 = 1/5, given 3n/5 ≤ |x|1 ≤ 2n/3. The Drift Theorem 2.3.10 applied to
the |x|1-value on the interval [3n/5, 2n/3] then yields that the probability of reaching a
search point with 2n/3 1-bits within 2cn steps is still 2−Ω(n) for some constant c > 0,
which proves the claim.

Again, we ask ourselves what iterated VDS can do. Interestingly, iterated VDS with-
out mutation is not effective for the Maxsat instance.

Theorem 4.2.15. Iterated VDS with neighborhood N1 without mutation (i. e., pm = 0)
finds the global optimum of the Maxsat instance only with probability 2−Θ(n).

Proof. The lower bound on the success probability follows trivially from the fact that
random initialization creates the global optimum with probability 2−n.

For the upper bound, Chernoff bounds yield that the probability of starting with x
such that 2 ≤ |x|1 < 2n/3 is 1 − 2−Ω(n). In this case the fitness can only be increased
by flipping a single 1-bit. Since this bit afterwards cannot flip back to 1, VDS returns
a local optimum with a single 1-bit. Having reached such a local optimum, the least
fitness decrease is obtained by flipping the unique 1-bit to 0. However, this implies that
1n cannot be reached. As all other search points have worse fitness, VDS again returns
a local optimum with a single 1-bit.

However, with mutation the global optimum can be reached efficiently.

Theorem 4.2.16. The expected number of generations of iterated VDS with mutation
probability pm = 1/n on the Maxsat instance is O(n).

Proof. The first VDS creates a local or global optimum. If a local optimum with a single
1-bit is reached, mutation creates 0n with probability 1/n · (1 − 1/n)n−1 ≥ 1/(en) and
the following VDS reaches 1n with probability 1. The expected number of generations
for this event is at most en.

This is a first example where a hybrid algorithm outperforms its single components
on a combinatorial problem.

4.2.6 Discussion and Conclusions

We have considered single instances for three combinatorial problems and shown that
a memetic algorithm with VDS drastically outperforms many popular trajectory-based
algorithms like the (1+1) EA, iterated local search, and simulated annealing. The list
of combinatorial problems where VDS is effective is not complete. Similar analyses,
using techniques from Section 4.2.2, can be performed, e. g., for Graph Bisection,
Maximum Clique, and Vertex Cover. We have chosen Mincut, Knapsack, and
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Maxsat since they represent typical and well-known problems from different classes of
problems: cutting, packing, and constraint optimization.

Furthermore, these three problems pose different challenges for randomized search
heuristics. The Mincut instance yields a multimodal landscape with symmetric slopes.
A search heuristic typically cannot tell in advance which hill might contain a global
optimum. This secret is not revealed until the algorithm climbs to the top of the hill
and then it may have to climb down a long distance. For Maxsat the fitness landscape is
deceptive, leading typical heuristics away from the global optimum. For the Knapsack

instance we exploited that, from a macro-perspective, optimization is like searching for a
needle in a haystack. All packings with the same number of objects have similar fitness,
but only those without (or only few) big objects are promising. From a micro-perspective
the instance is even worse since it gives deceptive hints towards big objects.

Iterated VDS is successful on these problem instances. This is partly due to the
fact that VDS can cope with deceptive functions as it always encounters the bit-wise
complement of the current search point. One may argue that iterated VDS is no more
than a hill climber tailored towards deceptive functions, like for example a hill climber
sampling around x in addition to the current population x. However, the Mincut

instance cannot be optimized by such a specialized strategy. Another argument is that
for Mincut and Maxsat VDS after some time discovers a positive gradient towards the
global optimum and then is able to reach it “on its own”, without the tabu mechanism.
Finally, VDS is robust w. r. t. modifications of the instance. In the Knapsack instance
the global and the local optimum are complementary. However, if we add some new
objects with low profit and large weight a simple algorithm for deceptive functions fails.
We conclude that VDS is more powerful than an algorithm tailored towards deceptive
functions.

However, we cannot conclude that memetic algorithms with VDS are, in general, su-
perior to common trajectory-based algorithms. The perspective taken in this section
is one-sided as we only presented instances where memetic algorithms with VDS per-
form well, compared to common search strategies. It may be possible to find instances
where memetic algorithms with VDS perform badly. Moreover, theory should not be
restricted to single instances. We therefore regard the presented analyses as appetizers
on the usefulness of memetic algorithms in combinatorial optimization from a theoretical
perspective. We are still in need of a complete lunch, that is, broader results for im-
portant classes of instances for combinatorial problems to bring forward the theoretical
understanding of hybrid algorithms.
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In nature several animals tend to live in large swarms like insect colonies, bird flocks or
fish schools. The reason is that in the swarm each animal is more effective for evolution
than single animals. For example, in a fish school chances of survival are higher for each
individual in the swarm. While a fish swimming alone is an easy target for predators, in
a fish school predators usually have difficulties to single out a fish to attack. Moreover,
the school has a much better perception of its environment; after all, many heads are
better than one. This enables the fish to quickly react to predator attacks and to find
food and, of course, mating partners more easily.

Many social insects like ants, termites, bees, or wasps live in colonies or hives. They
exhibit an astonishingly well-developed social behavior and are able to self-organize,
even in the absence of a central leader like a queen. The secret of self-organization is
the way the insects communicate. Honey bees communicate locations of food sources
by the language of dance that is understood by all nearby honey bees. On the other
hand, many insects use a form of indirect communication called stigmergy . Stigmergy
works by leaving traces in the environment that can be understood by other insects.
Termites use stigmergy to build complex nests by simple rules. A termite constructing
a nest deposits material like a mudball and invests it with pheromones, a chemical that
can be smelled by other termites. The smell of pheromones encourages other termites
to deposit their material close to freshly deposited pheromones. This way, a group of
termites can manage to synchronize so that they all work on the same spot.

Certain ant species use a similar strategy in their foraging behavior. While searching
the environment for food, the ants deposit pheromones on the ground. Other ants
are attracted by pheromones and tend to follow trails of previous ants. Despite its
simplicity, this mechanism enables the ants to find shortest paths between the nest and
a food source. When ants fan out to find food, it may happen that a lucky ant finds a
short path to a new food source. It then takes some food with it and makes its way back
to the nest. Since it is attracted by its own pheromone trail, it is likely that the ant
follows its own path back to the nest, thereby leaving a second pheromone trail. If other
ants happened to take a longer path to the food source, they arrive after the first ant
and, when trying to make their way back to the nest, there is a good chance for them
to be attracted by the short path, where already two pheromone trails have been laid.
This reinforces the short path even more and makes it more attractive. Concerning the
longer path, pheromones tend to evaporate after some time, so in the long run the long
paths will be forgotten and almost all ants will take the short path.
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Ant Colony Optimization

The fascinating collective behavior of swarms is a rich source of inspiration for the field of
computational intelligence (see, e. g., Kennedy, Eberhart, and Shi, 2001). In particular,
the ability of ants to find shortest paths has been transferred to shortest path problems
in graphs (Dorigo and Stützle, 2004). The idea is that artificial ants traverse the graph
from a start node (nest) to a target node (food). On each edge a certain amount of
artificial pheromone is deposited. At each node each ant chooses which edge to take
next. This choice is made probabilistically and according to the amount of pheromone
placed on the edges. As in real ant colonies, the pheromones evaporate over time. The
amount of evaporation is determined by the so-called evaporation factor ρ, 0 < ρ < 1.
In every pheromone update on every edge a ρ-fraction of the pheromone evaporates, i. e.,
if the edge contains pheromone τ , the remaining amount of pheromone is (1− ρ) · τ and
then eventually new pheromone is added. Intuitively, a large evaporation factor implies
that the impact of previously laid pheromones diminishes quickly and new pheromones
have a large impact on the system. Small evaporation factors, on the other hand, imply
that the system only adapts slowly to new pheromones.

In contrast to real ants, however, new pheromones are often not placed immediately
after traversing an edge. In order to avoid rewarding cycles or paths leading to dead
ends, pheromones are usually placed after the ant has found the target node and only
for edges that are not part of a cycle on the ant’s trail. Also, in such an artificial system
the amount of pheromone placed may depend on the length of the constructed path,
so that short paths are rewarded more than longer paths. Such an adaptation is often
necessary as the movement of artificial ants is usually synchronized, in contrast to real
ants in nature, where the order of ants arriving at a location is essential.

Optimization with artificial ants is known as ant colony optimization (ACO). ACO
algorithms have been used for shortest path problems, but also for the well-known Trav-
eling Salesman Problem (TSP) and routing problems. However, the use of artificial ants
is not limited to graph problems. ACO algorithms can also be used to construct solutions
for combinatorial problems, e. g., for pseudo-Boolean functions. Such a solution, i. e., a
bit string of length n, can be obtained by letting an artificial ant traverse a so-called
construction graph and mapping the path chosen by the ant to binary values.

Constructing Solutions by Artificial Ants

In Sections 5.1, 5.2, and 5.3, we will analyze various ACO algorithms for pseudo-Boolean
functions, based on the so-called graph-based ant system (GBAS) presented by Gutjahr
(2000). All algorithms rely on the same mechanism to construct new solutions by ar-
tificial ants. We formalize this procedure, adapted to our setting. For a more general
description of ACO algorithms, we refer the reader to Dorigo and Stützle (2004).
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Figure 5.1: Construction graph for pseudo-Boolean optimization with n = 5 bits.

A natural construction graph for pseudo-Boolean optimization is known in the liter-
ature as Chain (Gutjahr, 2008). We use a simpler variant as described by Doerr and
Johannsen (2007b), based on a directed multigraph C = (V,E). In addition to a start
node v0, there is a node vi for every bit i, 1 ≤ i ≤ n. This node can be reached from
vi−1 by two edges. The edge ei,1 corresponds to setting bit i to 1, while ei,0 corresponds
to setting bit i to 0. The former edge is also called a 1-edge, the latter is called 0-edge.
An example of a construction graph for n = 5 is shown in Figure 5.1.

In a solution construction process an artificial ant sequentially traverses the nodes
v0, v1, . . . , vn. The decision which edge to take is made according to pheromones on the
edges. Formally, we denote pheromones by a function τ : E → R

+
0 . From vi−1 the edge

ei,1 is then taken with probability τ(ei,1)/(τ(ei,0)+τ(ei,1)). We give a formal description
of this procedure for arbitrary construction graphs that returns a path P taken by the
ant. In the case of our construction graph, we also identify P with a binary solution x
as described above and denote the path by P (x).

Operator 16 Construct(C, τ)

Let P := ∅, v := v0, and mark v as visited.
repeat

Let Ev be the set of edges leading to non-visited successors of v in C.
if Ev 6= ∅ then

Choose e ∈ Ev with probability τ(e)/
∑

e′|e′∈Ev
τ(e′).

Let e = (v,w), mark w as visited, set v := w, and append e to P .
until Ev = ∅.
return the constructed path P .

All ACO algorithms considered in this thesis start with an equal amount of pheromone
on all edges: τ(ei,0) = τ(ei,1) = 1/2. Moreover, we ensure that τ(ei,0) + τ(ei,1) = 1
holds, i. e., pheromones for one bit always sum up to 1. This implies that the probability
of taking a specific edge equals its pheromone value; in other words, pheromones and
traversion probabilities coincide.
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We remark that the solution construction in ACO algorithms is often enhanced by
incorporating heuristic information for parts of the solution. The probability of choosing
an edge then depends on both the pheromones and the heuristic information. We,
however, prefer to stick to the black-box perspective, where no heuristic information
is available. This also allows for a fair comparison between different search heuristics.
Nevertheless, the impact of heuristic information remains an interesting topic for future
work.

Given a solution x and a path P (x) of edges that have been chosen in the creation
of x, a pheromone update with respect to x is performed as follows. First, a ρ-fraction
of all pheromones evaporates and a (1 − ρ)-fraction remains. Next, some pheromone
is added to edges that are part of the path P (x) of x. However, with these simple
rules we cannot exclude that pheromone on some edges may converge to 0, so that the
probability of choosing this edge becomes nearly 0. In such a setting, the algorithm
has practically no chance to revert a wrong decision. To prevent pheromones from
dropping to arbitrarily small values, we follow the MAX-MIN ant system by Stützle and
Hoos (2000) and restrict all pheromones to a bounded interval. The precise interval is
chosen as [1/n, 1 − 1/n]. This choice is inspired by standard mutations in evolutionary
computation where for every bit an evolutionary algorithm has a probability of 1/n of
reverting a wrong decision.

Depending on whether an edge e is contained in the path P (x) of the solution x, the
pheromone values τ are updated to τ ′ as follows:

τ ′(e) = min

{

(1 − ρ) · τ(e) + ρ, 1 − 1

n

}

if e ∈ P (x) and

τ ′(e) = max

{

(1 − ρ) · τ(e),
1

n

}

if e /∈ P (x).
(5.1)

We verify the invariant τ(ei,0) + τ(ei,1) = 1. This holds obviously at initialization.
Assume τ(ei,0) + τ(ei,1) = 1, then we claim τ ′(ei,0) + τ ′(ei,1) = 1. We perform a case
distinction depending on which edges have touched their upper or lower pheromone
bounds. First, we show that either pheromones are capped for both edges ei,0 and ei,1 or
no pheromones are capped. W. l. o. g. the edge ei,1 is rewarded, then pheromone for ei,1

is capped at 1 − 1/n if and only if pheromone for ei,0 is capped at 1/n:

(1 − ρ) · τ(ei,0) <
1

n

⇔ 1 − (1 − ρ) · τ(ei,0) > 1 − 1

n

⇔ (1 − ρ) · (1 − τ(ei,0)) + ρ > 1 − 1

n

⇔ (1 − ρ) · τ(ei,1) + ρ > 1 − 1

n
.
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In case the pheromones are not capped for both edges, we have

τ ′(ei,0) + τ ′(ei,1) = (1 − ρ) · (τ(ei,0) + τ(ei,1)) + ρ = (1 − ρ) · 1 + ρ = 1.

If both pheromones are capped, clearly τ ′(ei,0) + τ ′(ei,1) = 1/n + 1 − 1/n = 1, which
completes the proof of the invariant. Note that the pheromones on all 1-edges suffices
to describe all pheromones. In the following, we will also refer to pi = τ(ei,1) as success
probability pi for bit i, since for the functions investigated hereinafter setting specific
bits to 1 can be considered a success.

The pheromone values or the success probabilities form a probabilistic model that
somehow reflects a collective memory of many previous paths found by artificial ants.
In general, this model is more complex than for evolutionary algorithms. One major
difference is that typical evolutionary algorithms can be modelled as a Markov chain
since their behavior only depends on the current population. Pheromones in ACO,
however, may essentially depend on many past solutions. In an evolutionary algorithm
with standard mutation, the probability of setting a specific bit to 1 is either 1/n or
1 − 1/n. In an ACO algorithm, also values in between these two values are possible.
The underlying domain is continuous and we cannot exclude that it is infinitely large.
This makes an analysis much harder than for evolutionary algorithms and requires new
proof methods. Fortunately, the state space for pheromone values is countably infinite,
which spares us from dealing with uncountable spaces. Nevertheless, the analysis of
ACO algorithms is more challenging than for evolutionary algorithms.

Our Contribution

We strive at following the path taken for the analysis of evolutionary algorithms. The
analysis of evolutionary algorithms started for simply structured example functions with
interesting properties. Those toy problems encouraged or demanded the development of
new methods and tools and revealed important insights into the working principles of
evolutionary algorithms. This then allowed the analysis of more sophisticated artificial
problems and, finally, the analysis of problems from combinatorial optimization.

It therefore makes sense to start the investigation of ACO algorithms with simply
structured example functions as well. The rigorous runtime analysis of ACO algorithms
was started independently by Gutjahr (2008) and Neumann and Witt (2006) for (vari-
ations of) the function OneMax. Gutjahr (2008) analyzed a GBAS algorithm with a
chain construction graph using a slightly different pheromone update rule on a class
of generalized OneMax functions. For a fairly large value of ρ, he proved an upper
bound of O(n log n) on the expected number of function evaluations. Neumann and
Witt (2006) independently studied a simple ACO algorithm called 1-ANT that resem-
bles and generalizes the (1+1) EA. The 1-ANT keeps track of the best ant solution
found so far. If a generation creates a solution that is not worse than the best-so-far
solution, a pheromone update with respect to the new solution is performed. Otherwise,
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all pheromones remain unchanged. This resembles evolutionary algorithms with elitist
selection where the population also remains unchanged if a non-accepted solution is cre-
ated. Interestingly, Neumann and Witt (2006) proved that on the function OneMax,
the evaporation factor ρ has a tremendous impact on the performance of the 1-ANT. If
ρ is larger than a certain threshold, the 1-ANT behaves similar to the (1+1) EA. On the
other hand, if ρ is below the threshold, the 1-ANT tends to stagnate. As the best-so-far
OneMax-value increases more and more, the 1-ANT is forced to discover solutions with
more and more 1-bits. However, the impact of the following pheromone update is so
small that 1-bits are not rewarded enough and even rediscovering previously set 1-bits
gets increasingly harder. This leads to stagnation and exponential runtimes.

In Section 5.1 we investigate the 1-ANT on two other example functions, Leading-

Ones and BinVal, where bits have different priorities. The aim is to see whether
stagnation also occurs for these functions and with the same threshold values for ρ. As
the analysis methods of Neumann and Witt (2006) are tailored towards the symmetric
function OneMax, we also develop new methods to deal with non-symmetric functions.
The results show that the phase transition behavior observed for OneMax reappears
for LeadingOnes and BinVal and, in contrast to OneMax, we are able to determine
a tight bound for the location of the phase transition.

A lesson learned from the analysis of the 1-ANT is that performing an update only in
case a new best-so-far solution is found may, in general, not be a good design choice. In
fact, many ACO algorithms used in applications use so-called best-so-far reinforcement
where in every generation the current best-so-far solution is reinforced. In other words, in
every generation a pheromone update happens, using either the old or a newly generated
best-so-far solution. Section 5.2 shows how these algorithms, variants of the MAX-MIN
ant system (MMAS), can be analyzed for various example functions, including the class
of unimodal functions and plateau functions. Thereby, we follow and extend previous
work by Gutjahr and Sebastiani (2008), who first analyzed MMAS variants on OneMax,
LeadingOnes, and functions with plateaus. Their results and our contributions show
that the impact of ρ is by far not as drastic as for the 1-ANT. When decreasing ρ, the
algorithms become more and more similar to random search and the runtime on simple
functions grows with 1/ρ, but there is no phase transition for polynomially small ρ as
for the 1-ANT. We also demonstrate how (a restricted formulation of) the fitness-level
method from Section 2.3.2 can be adapted to the analysis of ACO algorithms. Finally,
we present lower bounds for ACO algorithms: a general lower bound for functions with
unique optimum that grows with 1/ρ and an almost tight lower bound for LeadingOnes.

Another aspect of ACO algorithms is that in practice often local search is used to
improve upon constructed ant solutions, similar to memetic evolutionary algorithms.
In addition to the effects of introducing local search already discussed for evolutionary
algorithms in Chapter 4, it is interesting to investigate the effect local search can have
on the pheromones. In a typical ACO algorithm without local search, old and new
best-so-far solutions are typically quite close to one another and the distribution of
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constructed ant solutions follows the most recent best-so-far solutions. When introducing
local search, old and new best-so-far solutions might be far apart. In Section 5.3 we
discuss this effect in more detail and possible implications on search dynamics. To
exemplify the impact on performance, we present an artificial function where an ant
algorithm with local search drastically outperforms its variant without local search and
a second function where the effect is reversed.

Particle Swarm Optimization

Particle swarm optimization represents another class of swarm algorithms inspired by the
behavior of fish schools and bird flocks. Originally developed by Kennedy and Eberhart
(1995), it has become a popular bio-inspired optimization principle in recent years. A
comprehensive treatment is given in the book by Kennedy et al. (2001). A typical particle
swarm optimizer (PSO) maintains a swarm of particles where each particle corresponds
to a solution of the problem at hand. Most applications of PSO deal with continuous
search spaces. There, each particle continuously moves through the space according to
a certain velocity, a real vector that indicates both the direction and the speed of the
particle. Each particle records the best previous position it has occupied up to now and
the best previous position of all particles in its neighborhood. In every iteration, the
velocity of a particle is stochastically updated in the direction of its own best position
and the best-so-far position in its neighborhood. This means that, intuitively, every
particle is attracted both by its memorized own best position and the best position it
was able to observe among its neighbors. This kind of behavior is motivated both from
animal swarms and from social-psychology theory as it combines cognitive and social
effects to determine the behavior of each particle (Kennedy and Eberhart, 1995).

Kennedy and Eberhart (1997) presented a first binary particle swarm optimizer, called
Binary PSO. As in classical PSO, velocities are used to determine the next position of
a particle. However, as each bit may only obtain discrete values 0 and 1, velocities are
used in a stochastic solution construction process. More precisely, the velocity value of
a bit determines the probability to set this bit to 1 in the next solution construction.
This closely resembles the solution construction of the binary ACO algorithms described
above. In contrast to pheromones in ACO, however, velocities in PSO do not directly
correspond to success probabilities, i. e., probabilities of setting bits to 1. Instead, a
velocity value v is translated into a probability using the sigmoid function

s(v) :=
1

1 + e−v

sketched in Figure 5.2. The success probability of a bit with velocity v is then s(v).
As the sigmoid function is strictly increasing, a larger velocity corresponds to a larger
success probability. A velocity of 0 corresponds to a success probability of 1/2. Note
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Figure 5.2: The sigmoid function s(v) = 1
1+e−v .

that as v increases from value 0 to larger values, the amount of increase of the success
probability becomes smaller and smaller as the sigmoid function saturates. It is possible
that the success probability attains values arbitrarily close to 0 or 1. One way to deal
with this possible divergence of velocities is to restrict the velocities to a fixed interval
[−vmax, vmax]. This solution has been proposed in the original formulation of the Binary
PSO (Kennedy and Eberhart, 1997), with vmax defined as a constant value.

In Section 5.4 we present a first rigorous analysis of a binary particle swarm optimizer.
As neighborhood we use a global neighborhood containing the whole swarm; a model
known as gbest model. This implies that all particles are attracted by the same best-so-
far position found by the swarm. Instead of choosing a fixed value for vmax, we adapt
vmax to asymptotically growing problem dimensions, such that the success probability is
always in the interval [1/n, 1 − 1/n]. This corresponds to the choice of the pheromone
bounds for the ACO algorithms described above. The adaptation is justified by proving
exponential lower bounds for a setting where the velocity bound vmax is fixed while the
problem size grows. For the adapted Binary PSO we then present a lower bound for
all functions with unique global optimum. Upper bounds are derived by adapting the
fitness-level method to PSO, similar to the analysis of MMAS ACO algorithms from
Section 5.2. For the function OneMax, we perform a more detailed analysis of a simple
Binary PSO variant. The so-called 1-PSO uses just one particle, hence the own best
position and the global best position coincide. Despite its simplicity, the 1-PSO turns out
to be surprisingly effective and competitive to evolutionary algorithms like the (1+1) EA.

5.1 The 1-ANT Ant Colony Optimization Algorithm

The theoretical runtime analysis for ant colony optimization lags far behind the results
for evolutionary algorithms. Until 2006 only convergence results (e. g., Gutjahr, 2003)
and results on the dynamics of models of ACO (e. g., Merkle and Middendorf, 2002)
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were known. In a survey on theoretical studies of ACO by Dorigo and Blum (2005),
researchers were encouraged to follow the approach taken for the analysis of EAs by
starting a rigorous runtime analysis of simple ACO algorithms on OneMax. Soon
after this appeal, first runtime analyses appeared in a work by Gutjahr (2008), and,
independently, in a work by Neumann and Witt (2006). In the latter paper, a simple
ACO algorithm called 1-ANT is defined based on the model of Gutjahr (2003) and the
runtime w. r. t. the fitness function OneMax is bounded from above and below. It is
shown that the evaporation factor ρ, the probably most important parameter in ACO
algorithms, has a crucial impact on the runtime. More precisely, it is proved that there
exists a threshold value for ρ below which no efficient optimization is possible. This
threshold behavior shows that the 1-ANT is not robust w. r. t. the choice of ρ.

A closer look at the paper by Neumann and Witt (2006) reveals that the mathematical
methods employed for the analysis of the 1-ANT differ heavily from those for the analysis
of EAs. Even more conspicuously, it seems that the mathematical tools are tailored for
the symmetric function OneMax. It is by no means clear whether a comprehensive
runtime analysis of the 1-ANT can be conducted on more complicated problems. A
recent analysis of the 1-ANT on the combinatorial minimum spanning tree problem by
the same authors (Neumann and Witt, 2008) basically considers a special case of the
1-ANT with two pheromone values and fails to deliver statements on the choice of ρ.

The aim of this section is to put forward the analysis of the 1-ANT on example prob-
lems in a similar fashion to Neumann and Witt (2006). As Gutjahr (2007) has observed,
such analyses are an important and emergent issue in the community of ACO. We choose
the non-symmetric functions LeadingOnes and BinVal investigated by Droste, Jansen,
and Wegener (2002a) and analyze the runtime of the 1-ANT on these functions w. r. t. n
and the evaporation factor ρ.

The motivation for analyzing example problems is the same as for initial studies of
evolutionary algorithms. Example functions are chosen that are simple enough to be
attacked by rigorous arguments, have interesting properties, and yet reflect typical char-
acteristics of practical problems. The simple function OneMax may be rediscovered
in a practical problem when a specific target point has to be hit and the fitness func-
tion gives good hints towards this point. In the case of the functions LeadingOnes

and BinVal, the bits have different priorities; some bits are more important than other
bits. For BinVal this resembles a situation where the fitness gives good hints towards
a target, but some local moves are rewarded more than others. The function Leading-

Ones contains strong dependencies between specific bits, a characteristic often found in
practical problems. Another interesting feature is that some bits are irrelevant to the
fitness, until other bits have been set correctly. The investigations for LeadingOnes

and BinVal in this section put forward the understanding of ACO algorithms in such
situations and lead to the development of new proof techniques.

Our upcoming analyses for these functions show that a similar phase transition be-
havior can be observed as proven by Neumann and Witt (2006) for OneMax. If ρ is
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asymptotically smaller than a threshold, no efficient optimization is possible; however,
for values a little above the threshold, polynomial runtimes are very likely. Hence, our
investigations again suggest that the 1-ANT is not robust w. r. t. the choice of ρ. The
proofs contribute new methods for the runtime analysis of ACO algorithms and may
serve as a basis for further theoretical studies.

The outline of this section is as follows. In Section 5.1.1, we provide the necessary
definitions and recapitulate the previous results for OneMax. Section 5.1.2 proves
general properties of the pheromone update mechanism that will be used in the following
analyses. Sections 5.1.3 and 5.1.4 deal with the main results of the section, namely
lower and upper bounds on the runtime of the 1-ANT on LeadingOnes, respectively.
A generalization of the results to the function BinVal is discussed in Section 5.1.5. Our
theoretical results are complemented by empirical results in Section 5.1.6 where we also
consider an extension of the 1-ANT creating multiple ant solutions in every generation.
We conclude in Section 5.1.7.

5.1.1 The Algorithm

We consider the 1-ANT algorithm defined by Neumann and Witt (2006). In its original
formulation, the pheromone model was designed such that all pheromones in the whole
construction graph sum up to 1 (instead of just the outgoing edges for every vertex).
Also, a slightly different construction graph was used, where then the probabilities of
choosing a 0-edge or a 1-edge differed from the respective pheromone values by a factor
of 2n. As still an absolute value of ρ was added to every rewarded edge, pheromones
had to be normalized in every pheromone update. This pheromone model has also been
used in the conference paper (Doerr, Neumann, Sudholt, and Witt, 2007b) and the
extended journal version this section is based on. In this thesis, however, we use the
simpler pheromone model, along with the simpler construction graph, both described in
the introduction to this chapter. The simpler model has already been proposed by Doerr
and Johannsen (2007b). The main advantage is that here pheromones on an edge exactly
reflect the probability that this edge is taken, which avoids pheromone normalization and
simplifies the calculations in comparison to Doerr et al. (2007b). There, many formulas
contain a factor 2n as an artifact from the different scale. Moreover, the simpler model
matches the pheromone model used for MMAS algorithms analyzed in the following
sections. The price for changing the model is that ρ-values in one model translate to
different ρ-values in the other model. This transformation can be done as follows. If ρold

is an evaporation factor in the old model,

ρnew =
2nρold

1 − ρold + 2nρold

is an equivalent evaporation factor in the simplified model. We aim at a consistent
pheromone model throughout this thesis, therefore we only consider the simpler model
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5.1 The 1-ANT Ant Colony Optimization Algorithm

in the following. The results for ρ-values reported in Neumann and Witt (2006) then
have to be translated into the simplified model. Another minor disadvantage is that
the experiments in Section 5.1.6 were done with the old pheromone model in mind.
However, we think that the advantage of a consistent presentation significantly outweighs
all mentioned drawbacks.

Recall that in our pheromone model for each bit the pheromones on its 0-edge and its
1-edge sum up to 1. In the initialization step of the 1-ANT, each edge gets a pheromone
value of 1/2. An initial solution x∗ is produced by the construction procedure described
before. The pheromone values are then updated with respect to the constructed solution,
according to the update formula from Equations (5.1). In each iteration following these
initial steps, a new solution x is constructed and the pheromone values are updated if
this solution is not inferior to the currently best solution x∗.

Algorithm 17 1-ANT

Set τ(e) := 1/2 for all e ∈ E.
Construct a solution x∗.
Update pheromones w. r. t. x∗.
repeat

Construct a solution x.
if f(x) ≥ f(x∗) then

Set x∗ := x.
Update pheromones w. r. t. x∗.

In the following, we use the term generation synonymously to iteration. Let pi =
Prob(xi = 1), 1 ≤ i ≤ n, be the probability of setting the bit xi to 1 in the next
constructed solution. Neumann and Witt (2006) have shown a close connection between
the 1-ANT and the (1+1) EA. The (1+1) EA sets a bit xi in x to 1 with probability
1/n (if x∗

i = 0) or 1 − 1/n (if x∗
i = 1). The 1-ANT behaves like the (1+1) EA if

ρ ≥ (n − 2)/(n − 1) (with respect to our pheromone model). The reason is that then
the 1-ANT’s pheromone values always attain their upper or lower bounds after the first
update has occurred.

For the function OneMax the influence of ρ has been analyzed in greater detail.
Neumann and Witt have shown that there is a phase transition from exponential to
polynomial runtime as ρ grows. In particular, they have given an exponential lower
bound for the case ρ = O(n−ε) and a polynomial upper bound for ρ = Ω(1) where ε > 0
is a positive constant. In addition, Doerr and Johannsen (2007b) have proven that no
polynomial expected runtimes are possible for ρ = o(1/log n). The main argument for
the lower bound is that the value of the currently best solution and the expected value
of the one constructed in the next iteration may differ. This makes it difficult even to
rediscover the best-so-far solution, which leads to an exponential optimization time. In
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contrast to this, the polynomial upper bound for large ρ relies on the observation that
the function value of the last accepted solution determines the expected value of the
next constructed solution almost exactly.

We consider the function LeadingOnes. Recall

LeadingOnes(x) =

n∑

i=1

i∏

j=1

xj ,

i. e., the function value equals the number of leading ones in the considered bit string x.
A non-optimal solution may always be improved by appending a single one to the leading
ones. LeadingOnes differs from OneMax in the essential way that the assignment of
the bits after the leading ones do not contribute to the function value. This implies that
bits at the beginning of the bit string have a stronger influence on the function value
than bits at the end. Because of this, the methods developed by Neumann and Witt
(2006) cannot be used for analyzing the 1-ANT on LeadingOnes as these methods
make particular use of the fact that all bits contribute equally to the function value. We
will develop new methods to deal with the circumstance that different bits may have
different priorities for the optimization process. A well-known linear function that relies
on the different priorities is BinVal (introduced by Droste et al. (2002a)) defined as

BinVal(x) =

n∑

i=1

2n−ixi,

which interprets a bit string as the binary representation of an integer. After having an-
alyzed the 1-ANT on LeadingOnes, we will show how to adapt the developed methods
for analyzing the 1-ANT on BinVal.

5.1.2 On the Pheromone Update Mechanism

To analyze the 1-ANT for pseudo-Boolean optimization, it is necessary to understand
the development of pheromone values for single bits. The probability of setting a bit to 1
is called success probability. Recall that the success probability equals the pheromone
value on the corresponding 1-edge. An analogous statement holds for the probability of
setting the bit to 0 and the 0-edge. Finally, throughout the analysis it is crucial to note
that the bits are processed independently by the construction procedure.

Consider an arbitrary but fixed bit xi. If this bit is set to 1 in the next constructed
solution, we speak of a success and a failure otherwise. Obviously, if a success occurs, the
success probability in the next step is increased, unless the pheromone bounds have been
hit in the previous step. The amount of increase depends on the previous pheromone
value on the 1-edge (or, equivalently, the previous success probability). We introduce a
notation for a success probability that has been increased t times.
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5.1 The 1-ANT Ant Colony Optimization Algorithm

Definition 5.1.1. Let p be the current success probability of a specific bit. Let p(t) be
its success probability after t ≥ 0 successes and no failures at the bit.

The following lemma describes how the rewarded success probability relates to the
unrewarded one.

Lemma 5.1.2. For every t ≥ 0, unless p(t) is capped by pheromone bounds,

p(t) = 1 − (1 − p) · (1 − ρ)t.

Proof. We prove the claim by induction on t. The case t = 0 is obvious. For t ≥ 1, using
the induction hypothesis,

p(t) = (1 − ρ)p(t−1) + ρ

= (1 − ρ)(1 − (1 − p) · (1 − ρ)t−1) + ρ

= 1 − ρ − (1 − p) · (1 − ρ)t + ρ

= 1 − (1 − p) · (1 − ρ)t.

By the preceding lemma, p ≥ q implies p(t) ≥ q(t) for all t ≥ 0. Note that this also holds
if the upper bound for the success probability is hit. This justifies in our forthcoming
analyses the places where actual success probabilities are replaced with lower bounds on
these probabilities.

5.1.3 A Lower Bound for LeadingOnes

We show that the 1-ANT is very inefficient on LeadingOnes if ρ = o(1/log n), i. e., if
ρ is asymptotically smaller than 1/log n. The following theorem shows that then even
polynomially many multistarts fail within polynomial time with overwhelming probabil-
ity.

One of the main reasons for the failure is that with the small evaporation factor,
the success probabilities at single bits can reach large enough values only slowly. In
consequence, the 1-ANT is faster in finding good solutions than in storing this knowledge
in the pheromone values.

Theorem 5.1.3. With probability 1 − 2−Ω(min{1/ρ, n}), the runtime of the 1-ANT on
LeadingOnes is at least 2c·min{1/ρ, n} for some constant c > 0.

Note that the statement of the theorem is only meaningful for ρ = o(1). However, if
we choose, e. g., ρ = 1/log2 n, the bound is already superpolynomially large.

Proof. Let k = 1/(4ρ). Consider the state of the 1-ANT at the earliest time when one
of the following two conditions is fulfilled.
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(i) The fitness fc of the current solution is at least n/2.

(ii) 1-ANT has performed k accepted steps.

We first convince ourselves that, in this situation, all success probabilities never left the
interval [1/4, 3/4], then, that with high probability we are not done yet, and finally, that
the next accepted step takes the time claimed in the theorem.

Consider the success probability of a certain bit. During one pheromone update,
the amount of new pheromone added is ρ. It follows that at most k accepted steps,
independent of the particular accepted solutions, can increase the pheromone and the
success probability by at most kρ. Hence the success probability p after k such steps is
bounded by p ≤ 1/2+kρ = 3/4. By symmetry, the same holds for the failure probability
1 − p. Hence p ∈ [1/4, 3/4].

Now let us regard the last (accepted) step before the system reached the state fixed
above. At the start of this step, we have all success probabilities in [1/4, 3/4] and our
current solution has fitness f0 < n/2. Hence the probability that the 1-ANT finds
the optimal solution in this single step is bounded by (3/4)(n/2)—recall that we know
already that this step will be accepted, hence the first f0 bits of this solution are 1 with
probability 1. Nevertheless, we see that with probability 1 − 2−Ω(n), we have not found
the optimum yet.

Finally, let us estimate the time to obtain an accepted step from the state fixed above.
We first estimate the current fitness fc. If we did not perform k accepted steps, then
clearly fc ≥ n/2. Hence let us assume that we actually did perform k accepted steps.
Conditional on the fact that a step was accepted, the probability that this lead to a
fitness increase is at least 1/4 since the probability of a success at the leftmost zero-bit
is at least 1/4. Hence E(fc) ≥ k/4, and Chernoff bounds imply Prob(fc ≥ k/8) =
1 − 2−Ω(k) = 1 − 2−Ω(1/ρ). Combining the two cases, we have

Prob(fc ≥ min{n/2, k/8}) = 1 − 2−Ω(min{1/ρ, n}).

If fc ≥ min{n/2, k/8}, then the probability that the next step is accepted is at most
(3/4)min{n/2, ⌊k/8⌋}, i. e., at most 2−Ω(min{1/ρ, n}). Consequently, there is some small con-
stant c > 0 such that a phase consisting of 2c·min{1/ρ, n} steps does not produce another
accepted step with probability 1 − 2−Ω(min{1/ρ, n}).

5.1.4 An Upper Bound for LeadingOnes

In contrast to the situation from the last section, large values of ρ allow the 1-ANT
to rediscover the leadings ones of previous solutions efficiently. In order to prove an
upper bound for the 1-ANT, we make use of the observations from Section 5.1.2 and the
following characteristics of LeadingOnes.

If k is the current best LeadingOnes-value, the success probabilities for the first k
bits are increased in every pheromone update as an update is only performed when the
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leading ones are rediscovered. We say that these bits are in increasing state. The bit
at position k + 1 is called an essential bit since it is essential for the fitness evaluation.
All bits following the first 0-bit have been irrelevant to the fitness evaluation up to
now. Since the pheromone update process is symmetric for 0-edges and 1-edges, the
probability that an ant creates a 1 on such a bit equals the probability that the ant
creates a 0. These bits are therefore said to be in random state.

Due to this randomness, an improvement may increase the current best Leading-

Ones-value from k to a value larger than k + 1 if the 1-ANT happens to create further
bits with value 1. If the best LeadingOnes-value increases to k+ℓ, the bits at positions
k + 2, . . . , k + ℓ are called free riders (see Droste, Jansen, and Wegener, 2002a) if ℓ ≥ 2.
In other words, free riders are 1-bits that we get “for free” in addition to the essential
1-bit at position k + 1.

Free riders may help to increase the fitness, but on the other hand they may also prove
as a burden for the 1-ANT. If an improvement creates many free riders, the 1-ANT is
forced to rediscover all these free riders in the following steps in order to have another
update. If ρ is small, this effect slows down the optimization. This is taken into account
in the proof of the following upper bound.

Theorem 5.1.4. The expected runtime of the 1-ANT on LeadingOnes is bounded
from above by O(n2 · (6e)2/ρ).

Note that the bound is polynomial for ρ = Ω(1/log n) and only O(n2) for ρ = Ω(1).
For ρ = o(1/log n), it is superpolynomially large.

Proof. We show that the expected time until increasing the so far maximum Leading-

Ones-value is always bounded by O(n · (6e)2/ρ) provided the optimum has not been
reached. Multiplying the expected time for an improvement by the maximum number
of improvements, n, will yield the theorem. In this proof, we focus on the main ideas.
Some technical details are deferred to lemmas that will be stated and proved afterwards.

Suppose the currently best LeadingOnes-value equals k < n. For an improvement,
it is necessary and sufficient to set the first k + 1 bits in a newly constructed solution
to 1. Since the essential bit at position k+1 was set to 0 in the last accepted solution, its
success probability was decreased in the last pheromone update. Therefore, we estimate
the success probability from below by 1/n for this bit. If we can prove that the first k bits
are all set to 1 after an expected number of O((6e)2/ρ) steps, we obtain the theorem as
the 1-ANT processes all bits independently.

The first k bits are all in increasing state, but their success probabilities may differ
significantly. To simplify the considerations, we remove the pheromone bounds for a
bit as soon as it enters the increasing state. This implies that the success probabilities
of these bits are allowed to exceed 1 − 1/n. We argue that we then underestimate the
expected optimization time by only a constant factor. The success probabilities with
and without pheromone bounds differ by at most 1/n. Hence, with at most n − 1
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bits in increasing state, the probability that solution constructions with and without
pheromone bounds differ in at least one of these bits is at most 1 − (1 − 1/n)n−1 ≤
1 − 1/e. If a solution construction with pheromone bounds creates value 0 for a bit
in increasing state, this solution is rejected by the 1-ANT as otherwise the bit would
not be in increasing state. Moreover, in this case the current best-so-far solution and all
pheromone values remain untouched. Hence, compared to the setting without pheromone
bounds for bits in increasing state, we have “idle” steps for the 1-ANT with pheromone
bounds. Our modification disregards these idle steps, therefore we underestimate the
expected optimization time by a factor of at most 1/(1 − 1/e).

As a result of our modification, the success probability of the i-th bit, 1 ≤ i ≤ k−1, has
been increased at least as often as the one of the (i+1)-st bit. However, the leading k bits
we want to rediscover are still of two different types. Such a bit has either been essential
in the past or it has been added to the leading bits as a free rider. This distinction is
crucial since the premises for the unrewarded success probabilities are different:

1. The success probability of an essential bit xi is decreased every time a best-so-far
solution with i − 1 leading ones is created. At the time xi enters increasing state,
we therefore expect its unrewarded success probability to be biased towards the
lower bound 1/n.

2. A free rider xi enters increasing state directly from random state, hence the un-
rewarded success probability pi is random. More precisely, due to the 1-ANT’s
symmetric treatment of bits in random state, the expected unrewarded success
probability equals 1/2. The distribution of pi is symmetric around the expecta-
tion, i. e., Prob(pi = x) = Prob(pi = 1 − x) for 0 ≤ x ≤ 1 (for a formal proof we
refer to Lemma 5.2.9 in Section 5.2). We are dealing with a discrete distribution
since the underlying state space is countably infinite.

In the following, when speaking of “rediscovering an essential bit (a free rider)”, this
means a success for a bit that has been an essential bit (a free rider) in the past,
but now has reached the increasing state. We first concentrate on rediscovering all
essential bits in increasing state. The unrewarded success probability of one such bit
is bounded below by the general lower bound for success probabilities, w(0) := 1/n.
Fortunately the rewarded success probabilities can be much larger. Temporarily scanning
the leading ones from right to left, the t-th essential bit in increasing state has been
rewarded at least t times. Hence, its success probability is bounded below by the worst-
case lower bound w(t), recalling the notation for rewarded success probabilities from
Definition 5.1.1. As the 1-ANT sets bits to 1 independently, the probability for successes
on all these bits is bounded by the product over w(t). The expected number of steps
until this happens is bounded by the reciprocal since the considered random variable is
geometrically distributed. We use the following estimation, the proof of which is deferred
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to Lemma 5.1.5 following this proof:

∞∏

t=1

1

w(t)
≤

∞∏

t=1

(

1 +
1

(1 + ρ)t − 1

)

= O
(

(2e)2/ρ
)

.

We are left with the task of rediscovering all free riders. We claim that this expected
time is at most O(32/ρ), implying a total bound of O((6e)2/ρ) for rediscovering all leading
ones.

The consideration of free riders is more difficult than the arguments for essential bits.
This is due to the fact that in an improvement the number of gained free riders is
random. This motivates us to divide the k leading ones into blocks of random length.
Denote by b the number of improving steps so far. All free riders gained during the
i-th improvement, 1 ≤ i ≤ b, form a block of free riders. Let us pessimistically assume
that an unbounded number of free riders is possible, i. e., we prolong the bit string if
necessary until the first 0-bit is created. We first estimate the success probability of a
block, i. e., the probability of setting all bits of the block to 1, in isolation and argue later
how to extend this analysis to multiple blocks. In the following, we will derive bounds
on the expected time to rediscover a single block after the block has received t updates.

Consider the bit string of all m bits in random state. Let pi be the success probability
of the i-th bit in random state at the time an improvement takes place. Consider the
new block of free riders created during this improvement and let T (t) denote the random
time until this new block of free riders is rediscovered (or the global optimum is found),
provided it has been rewarded t times. Our aim is to bound E

(
T (t)

)
. Therefore, we

abbreviate p = (p1, . . . , pm) and apply the law of total expectation

E
(

T (t)
)

= E
(

E
(

T (t) | p
))

as it is easier to estimate the inner, conditional expectation. Let L denote the random
length of the new block of free riders. By the law of total probability

E
(

T (t) | p
)

=
m∑

ℓ=0

E
(

T (t) | L = ℓ ∧ p
)

· Prob(L = ℓ | p).

In order to have block length ℓ, the 1-ANT has to be successful on the first ℓ bits and
to fail on the (ℓ + 1)-st bit. Therefore Prob(L = ℓ | p) =

∏ℓ
i=1 pi · (1 − pℓ+1). The

probability of rediscovering the first ℓ bits equals the product of the rewarded success

probabilities p
(t)
i since the 1-ANT processes bits independently. Since LeadingOnes is

considered, no pheromone update takes place unless these bits are rediscovered. Hence,
the waiting time is geometrically distributed with the mentioned product as parameter.
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This yields

E
(

T (t) | p
)

=
m−1∑

ℓ=0

ℓ∏

i=1

pi · (1 − pℓ+1) ·
ℓ∏

i=1

1

p
(t)
i

.

=

m−1∑

ℓ=0

(1 − pℓ+1)

ℓ∏

i=1

pi

p
(t)
i

=

m−1∑

ℓ=0

(1 − pℓ+1)

ℓ∏

i=1

pi

1 − (1 − pi) · (1 − ρ)t
, (5.2)

where the last equation follows from Lemma 5.1.2. Note that in case L = m the global
optimum has been found, hence we only deal with the case ℓ ≤ m − 1.

To estimate the unconditional expectation E
(
T (t)

)
, we repeat that the pi are inde-

pendent random variables and their distributions satisfy the symmetry Prob(pi = x) =
Prob(pi = 1 − x) for 0 ≤ x ≤ 1, implying E(pi = 1/2). Note, however, that the distri-
butions are time-dependent. In the initial step, Prob(pi = 1/2) = 1, which need not be
the case in later steps. We may ignore this time dependence by stating a bound which
holds for all distributions of the above kind.

E
(

T (t)
)

= E
(

E
(

T (t) | p
))

= E

( ∞∑

ℓ=0

(1 − pℓ+1)
ℓ∏

i=1

pi

1 − (1 − pi) · (1 − ρ)t

)

=

∞∑

ℓ=0

E(1 − pℓ+1)

ℓ∏

i=1

E

(
pi

1 − (1 − pi) · (1 − ρ)t

)

=
1

2

∞∑

ℓ=0

ℓ∏

i=1

E

(
pi

1 − (1 − pi) · (1 − ρ)t

)

.

For the third equation we have used the independence of the random variables and for
the fourth equation we have used E(1 − pi) = 1/2. The remaining expectation can be
bounded by the following inequality, which is proven by Lemma 5.1.6 following this
proof. The proof of Lemma 5.1.6 only relies on the symmetry of pi and hence it holds
regardless of the time dependence.

E

(
pi

1 − (1 − pi) · (1 − ρ)t

)

≤ 1

2 − (1 − ρ)t
.

Together, we bound E
(
T (t)

)
by

1

2

∞∑

ℓ=0

ℓ∏

i=1

1

2 − (1 − ρ)t
≤ 1

2

(

1 +
1

1 − (1 − ρ)t

)

= 1 +
1

2

1

(1 − ρ)−t − 1
,
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where we have estimated the sum by an infinite series. Plugging in (1 − ρ) ≤ 1/(1 + ρ)
yields

E
(

T (t)
)

≤ 1 +
1

2

1

(1 + ρ)t − 1
:= α(t).

We have successfully bounded the expected time to rediscover a single block of free riders.
Although the distributions of success probabilities in later blocks differ from those in
earlier blocks as is the case with the actual block lengths, our upper bound α(t) on
E
(
T (t)

)
holds regardless on the configuration of earlier blocks. This intuitively explains

that the product over the corresponding α(t) for all blocks represents a bound for the
expected time to rediscover all blocks of free riders in increasing state. A formal proof
of this is given by Lemma 5.1.7 following this proof. Recall that the t-th newest block
has been rewarded at least t times. Finally, the product of the α(t) can be bounded
similarly to the product of inverse worst-case lower bounds from Lemma 5.1.5, it is
proven by Lemma 5.1.8 at the end of this section. We obtain

∞∏

t=1

α(t) ≤
∞∏

t=1

(

1 +
1

2

1

(1 + ρ)t − 1

)

= O
(

32/ρ
)

which completes the proof.

We still have to deliver a few technical lemmas that have been used in the proof of
Theorem 5.1.4.

Lemma 5.1.5. Let w(0) = 1/n, then

∞∏

t=1

1

w(t)
≤

∞∏

t=1

(

1 +
1

(1 + ρ)t − 1

)

= O
(

(2e)2/ρ
)

.

Proof. By Lemma 5.1.2 and (1 − ρ) ≤ 1
1+ρ ,

∞∏

t=1

1

w(t)
=

∞∏

t=1

1

1 − (1 − 1/n)(1 − ρ)t

≤
∞∏

t=1

1

1 − (1 + ρ)−t

=

∞∏

t=1

(

1 +
1

(1 + ρ)t − 1

)

.
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For the second statement, we bound the first α = ⌈1/ρ⌉ factors of the above product
separately. By Bernoulli’s inequality (Lemma A.15),

α∏

t=1

(

1 +
1

(1 + ρ)t − 1

)

≤
α∏

t=1

(

1 +
1

ρt

)

≤
α∏

t=1

(

1 +
α

t

)

=
(2α)!

(α!)2

=
Θ(

√
α)(2α)2α

Θ(α)α2α
= O(4α)

where the last estimations follow from Stirling’s approximation (Lemma A.9) and α ≥ 1.
The remaining terms are bounded as follows, using (1 + 1/α)α ≥ 2.

∞∏

t=α+1

(

1 +
1

(1 + ρ)t − 1

)

≤
∞∏

t=α+1

(

1 +
1

(1 + 1/α)t − 1

)

≤
∞∏

t=α+1

(

1 +
1

2t/α − 1

)

≤
∞∏

t=α+1

(

1 +
2

2t/α

)

≤
∞∏

t=α+1

exp

(
2

2t/α

)

= exp

( ∞∑

t=α+1

2

2t/α

)

. (5.3)

Now,

∞∑

t=α+1

2

2t/α
≤

∞∑

t=α

2

2⌊t/α⌋

and grouping α summands and performing an index transformation with j = tα, we
arrive at

∞∑

t=α+1

2

2t/α
≤

∞∑

j=1

2α

2j
= 2α.

Plugging this into (5.3) yields

∞∏

t=α+1

(

1 +
1

(1 + ρ)t − 1

)

≤ e2α
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and for the whole product the bound O
(
(4e2)α

)
= O((2e)2/ρ).

Lemma 5.1.6. Consider a random variable X ∈ [0, 1] with finite support where the
symmetry Prob(X = x) = Prob(X = 1 − x) holds, then

E

(
X

1 − (1 − X)(1 − ρ)t

)

≤ 1

2 − (1 − ρ)t
.

Proof. We show that the expectation is maximized if Prob(X = 1/2) = 1. Let Ω(X)
denote the (finite) support of X. By the symmetry of the distribution,

E

(
X

1 − (1 − X)(1 − ρ)t

)

=
∑

x∈Ω(X)

Prob(X = x)
x

1 − (1 − x)(1 − ρ)t

=
∑

x∈Ω(X)∩[1/n,1/2)

Prob(X = x)

(
x

1 − (1 − x)(1 − ρ)t
+

1 − x

1 − x(1 − ρ)t

)

+ Prob(x = 1/2) · 1/2

1 − (1 − ρ)t/2
.

Since a finite set is considered, the term in parentheses attains a maximum at some
point x∗. The expectation is maximized if the distribution gives maximal mass to x∗

and 1 − x∗, which means mass 1/2 each if x∗ < 1/2 and mass 1 if x∗ = 1− x∗ = 1/2. It
is easy to see that x

1−(1−x)(1−ρ)t is concave for positive x and 0 ≤ (1− ρ)t ≤ 1, hence the

term in parentheses is non-decreasing, and we must choose x∗ = 1/2 to maximize the
expectation. This implies

E

(
X

1 − (1 − X)(1 − ρ)t

)

≤ 1/2

1 − (1 − 1/2)(1 − ρ)t
=

1

2 − (1 − ρ)t
.

We justify why blocks of free riders can be treated in isolation in the proof of The-
orem 5.1.4. The product of bounds on waiting times for single blocks yields an upper
bound on the waiting times for all blocks. We formulate the theorem also for BinVal

as it will be reused in Section 5.1.5.

Lemma 5.1.7. Consider the 1-ANT on either LeadingOnes or BinVal. Let Lk ∈ N0

be the (random) block length of the k-th block of “free-rider” bits gained during the k-th
increase in the number of leading ones. Abbreviate ℓ[1, i] := {L1 = ℓ1 ∧ · · · ∧Li = ℓi} for

a given history of lengths for the first i blocks. Given ℓ[1, i], let p
ℓ[1,i]
i,j denote the concrete

success probability of the j-th bit in the i-th block at a current point of time.
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Let Tall(k) be the unconditional random number of further steps until the 1-ANT for
the first time rediscovers the first k blocks of free-rider bits. If there are upper bounds
α1, . . . , αk such that

n∑

ℓi=0

Prob(Li = ℓi | ℓ[1, i − 1]) ·
ℓi∏

j=1

1

p
ℓ[1,i]
i,j

≤ αi

for all 1 ≤ i ≤ k, then

E(Tall(k)) ≤
k∏

i=1

αi.

Proof. Note that

Prob(ℓ[1, k]) =
k∏

i=1

Prob(Li = ℓi | ℓ[1, i − 1]). (5.4)

Applying the law of total probability with respect to the k block lengths, we have

E(Tall(k)) =
∑

ℓ[1,k]

Prob(ℓ[1, k]) · E(Tall(k) | ℓ[1, k]). (5.5)

In the conditional expectation on the right-hand side, the lengths of all considered blocks
are known and the concrete success probabilities are given as well. As all blocks cover
disjoint portions of the bit string and the 1-ANT processes all bits independently, the
probability of rediscovering all these bits is just the product of all success probabilities
involved. Since LeadingOnes or BinVal is considered, no pheromone update takes
place unless this event happens. Hence, the waiting time is geometrically distributed
with the product of success probabilities as parameter, i. e.,

E(Tall(k) | ℓ[1, k]) =

k∏

i=1

ℓi∏

j=1

1

p
ℓ[1,i]
i,j

.

Along with Equations (5.4) and (5.5),

E(Tall(k)) =
∑

ℓ[1,k]

k∏

i=1

Prob(Li = ℓi | ℓ[1, i − 1]) ·
ℓi∏

j=1

1

p
ℓ[1,i]
i,j

.

Abbreviate

Fi := Prob(Li = ℓi | ℓ[1, i − 1]) ·
ℓi∏

j=1

1

p
ℓ[1,i]
i,j

.
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Pessimistically assuming that all blocks can have lengths between 0 and n, we have

E(Tall(k)) =
∑

ℓ[1,k]

k∏

i=1

Fi ≤
n∑

ℓ1=0

n∑

ℓ2=0

· · ·
n∑

ℓk=0

k−1∏

i=0

Fi

=
n∑

ℓ1=0

F1 ·
n∑

ℓ2=0

F2 · · ·
n∑

ℓk=0

Fk

≤
k∏

i=1

αi

according to the given bounds.

Lemma 5.1.8. ∞∏

t=1

(

1 +
1

2

1

(1 + ρ)t − 1

)

= O
(

32/ρ
)

.

Proof. The proof is very similar to the proof of Lemma 5.1.5 as the calculations only
differ in some constants. We now bound the first α = ⌈1/(2ρ)⌉ factors separately. Using
Bernoulli’s inequality and Stirling’s approximation,

α∏

t=1

(

1 +
1

2

1

(1 + ρ)t − 1

)

≤
α∏

t=1

(

1 +
1

2ρt

)

≤
α∏

t=1

(

1 +
α

t

)

=
(2α)!

(α!)2

=
Θ(

√
α)(2α)2α

Θ(α)α2α
= O(4α).

The remaining terms are bounded as follows, using (1 + 1/(2α))α ≥ 3/2.
∞∏

t=α+1

(

1 +
1

2

1

(1 + ρ)t − 1

)

≤
∞∏

t=α+1

(

1 +
1

2

1

(1 + 1/(2α))t − 1

)

≤
∞∏

t=α+1

(

1 +
1

2

1

(3/2)t/α − 1

)

≤
∞∏

t=α+1

(

1 +
1

2

3

(3/2)t/α

)

≤
∞∏

t=α+1

exp

(
3

2

1

(3/2)t/α

)

= exp

(

3

2

∞∑

t=α+1

1

(3/2)t/α

)

. (5.6)
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Now,

∞∑

t=α+1

1

(3/2)t/α
≤

∞∑

t=α

1

(3/2)⌊t/α⌋

and grouping α summands and performing an index transformation with j = tα, we
arrive at

3

2

∞∑

t=α+1

1

(3/2)t/α
≤ 3

2
· α

∞∑

j=1

(2/3)j = 3α.

Plugging this into (5.6) yields

∞∏

t=α+1

(

1 +
1

(1 + ρ)t − 1

)

≤ e3α

and for the whole product the bound O
(
(4e3)α

)
= O

(
32/ρ

)
as (4e3)1/4 < 3.

Theorems 5.1.3 and 5.1.4 reveal a phase transition in the behavior of the 1-ANT on
LeadingOnes for ρ ∼ 1/log n. Below this threshold, no efficient optimization is possible
since the effect of pheromone updates is more or less irrelevant. This is similar to the
behavior observed on OneMax, where the threshold value (using the present notation)
has been confined to a small region around 1/log n, more precisely between Ω(1/log n)
(Doerr and Johannsen, 2007b) and O(1) (Neumann and Witt, 2006). This shows that
the 1-ANT is not robust w. r. t. the choice of the parameter ρ on two well-known and
simple example functions.

5.1.5 Generalization to BinVal

The example function BinVal (see Section 5.1.1) is a linear function, although, in some
respect an extreme example. The coefficient 2n−i of the i-th bit outweighs the sum
of all smaller coefficients. This leads to the following relation to LeadingOnes: If
LeadingOnes(x′) > LeadingOnes(x) for x, x′ ∈ {0, 1}n then also BinVal(x′) >
BinVal(x). This allows us to treat the LeadingOnes-value of the current solution as a
potential function while BinVal is optimized. It is sufficient to increase the potential at
most n times to reach the optimal solution (albeit the number of different BinVal-values
is 2n). Similarly, with probability 1 − 2−Ω(n), it is necessary to increase the potential
altogether by at least n/2 to reach the optimum since the initial LeadingOnes-value
does not exceed n/2 with this probability.

When the (1+1) EA optimizes BinVal, the described approach allows us to imme-
diately take over the upper bound O(n2) for the expected optimization time on Lead-

ingOnes. This is not the best bound possible since O(n log n) can be shown by a direct
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approach (Droste et al., 2002a). Such a direct approach seems difficult for the 1-ANT on
BinVal. Therefore, we rather try to transfer our results from LeadingOnes to BinVal

using the potential function.
With respect to the lower bound, we inspect the proof of Theorem 5.1.3. Instead of

considering the real BinVal, we take the LeadingOnes-value of a bit string as a pseudo-
fitness. The arguments on the pheromone values are still valid, and moreover, it is still
necessary to create a solution with pseudo-fitness at least n to optimize BinVal, implying
that the optimum is not found with probability 1 − 2−Ω(n) before the crucial point of
time in the proof is reached. The Chernoff-bound-type arguments on the (pseudo-)fitness
carry over, too. Moreover, for an accepted step, it is afterwards still necessary to create
a search point with pseudo-fitness at least fc. We have shown that ρ = o(1/log n) leads
to superpolynomial runtimes also on BinVal.

Theorem 5.1.9. With probability 1 − 2−Ω(min{1/ρ, n}), the runtime of the 1-ANT on
BinVal is at least 2c·min{1/ρ, n} for some constant c > 0.

We can also adapt the proof of the upper bound on LeadingOnes for BinVal. As for
LeadingOnes, the first leading ones are in increasing state since a failure on a leading
one is not accepted by the 1-ANT. In addition, a sufficient condition for an improvement,
provided we have k leading ones, is to have successes for the first k +1 bits. We can also
speak of essential bits and free riders in the context of BinVal, where the distinction
is again made whenever a bit enters increasing state. Using Lemma 5.1.5, the expected
time to rediscover all essential bits is bounded by O((2e)2/ρ).

The only but essential difference between LeadingOnes and BinVal is that Bin-

Val is influenced by the configuration of the bits following the leftmost zero. Hence,
the former “random state” is now biased towards high success probabilities and the
probability of a bit being a “free rider” is likely to exceed 1/2. Recall E

(
T (t)

)
=

E
(
E
(
T (t) | p1, . . . , pm

))
. While the estimation of the inner conditional expectation from

Equation (5.2) still holds true for BinVal, we cannot rely on the symmetry of the
pi-variables to estimate the outer expectation. However, we can make an estimation
that does not rely on specific properties of the success probabilities p1, . . . , pm. Instead,
we show a bound that holds for all success probabilities.

Lemma 5.1.10. For all m, t ≥ 1 and all p1, . . . , pm ∈ [0, 1]

m−1∑

ℓ=0

(1 − pℓ+1)
ℓ∏

i=1

pi

1 − (1 − pi)(1 − ρ)t
≤ 1

1 − (1 − ρ)t
.

Proof. For 0 ≤ j ≤ m − 1 define

Sj :=
m−1∑

ℓ=j

(1 − pℓ+1)
ℓ∏

i=j+1

pi

1 − (1 − pi)(1 − ρ)t
.
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Observe that for 1 ≤ j ≤ m − 1 the Sj are due to the following recursive formulation:

Sj−1 = (1 − pj) +
pj

1 − (1 − pj)(1 − ρ)t
· Sj.

We prove Sj ≤ 1/(1 − (1 − ρ)t) by induction on j. The case j = 0 proves the lemma.
We start with j = m − 1:

Sm−1 = (1 − pm) ≤ 1 ≤ 1

1 − (1 − ρ)t
.

Assume Sj ≤ 1/(1 − (1 − ρ)t) and note that Sj does only depend on pj+1, . . . , pm. This
yields

Sj−1 = 1 − pj +
pj

1 − (1 − pj)(1 − ρ)t
· Sj

≤ max
pj

{

1 − pj +
pj

1 − (1 − pj)(1 − ρ)t
· 1

1 − (1 − ρ)t

}

since Sj−1 is monotone increasing with Sj . Call the term in brackets r(pj). We now
argue that r(pj) is monotone increasing with pj. Hence, the maximum is attained for
pj = 1 and it follows

Sj−1 ≤ 1 − 1 +
1

1 − (1 − 1)(1 − ρ)t
· 1

1 − (1 − ρ)t
=

1

1 − (1 − ρ)t
.

The derivative of r(pj) is

d

dpj
r(pj) = −1 +

1 − (1 − pj)(1 − ρ)t − pj(1 − ρ)t

(1 − (1 − pj)(1 − ρ)t)2
· 1

1 − (1 − ρ)t

= −1 +
1 − (1 − ρ)t

(1 − (1 − pj)(1 − ρ)t)2
· 1

1 − (1 − ρ)t

= −1 +
1

(1 − (1 − pj)(1 − ρ)t)2

and this term is positive as (1 − (1 − pj)(1 − ρ)t)2 ≤ 1.

Lemma 5.1.10 bounds the expected time to rediscover a single block of “free-rider”
bits after t updates by α(t) := 1/(1 − (1 − ρ)t). Lemma 5.1.7 proves that the product
over the α(t) is an upper bound on the expected time to rediscover all “free riders.” We
estimate

∞∏

t=1

1

1 − (1 − ρ)t
≤

∞∏

t=1

(

1 +
1

(1 + ρ)t − 1

)

= O
(

(2e)2/ρ
)
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where the first inequality follows from (1−ρ) ≤ 1/(1+ρ) and the second estimate follows
from Lemma 5.1.5. This holds independently from the success probability of a bit at
the time when it first becomes a “free rider.” Together with the bound O((2e)2/ρ) to
rediscover the essential bits in increasing state, we have shown the following theorem.

Theorem 5.1.11. The expected runtime of the 1-ANT on BinVal is bounded from
above by O(n2 · (4e2)2/ρ).

As for LeadingOnes, Theorems 5.1.9 and 5.1.11 show a phase transition behavior for
ρ ∼ 1/log n. This strengthens the impression that the efficiency of the 1-ANT on pseudo-
Boolean optimization problems is not robust w. r. t. the pheromone update mechanism
and the choice of ρ.

5.1.6 Experiments

This section complements our theoretical investigations with experimental studies. The
theoretical results are asymptotic ones. The aim of our experimental investigations is to
show that the properties proven in the previous sections can also be observed for realistic
input sizes. Later on, we also examine what happens if more than one ant is used in
each iteration.

First, we examine how the experimental results for the 1-ANT complement our the-
oretical investigations. Our theoretical results show a phase transition in the runtime
behavior of the 1-ANT on LeadingOnes and BinVal for ρ ∼ 1/log n. Experiments
can reveal details about this phase transition that are not covered by our analyses, for
example the exact location of the transition, including constant factors. Therefore, we
investigate 18 values of ρ proportional to 1/log n for the problem size n = 64. The precise
choice of these values is due to the old pheromone model. With respect to ρ-values in
the old model, values ρ = c/(n log n) have been chosen for c ∈ {0.15, 0.2, . . . , 1.0}. After
transformation to the simplified model, the new ρ-values are not perfectly equidistant;
however, they are almost equidistant as the relationship between old and new ρ-values
is almost linear on this part of the ρ-scale. In the following plots, we use the scale of the
new pheromone model to maintain consistency throughout the thesis.

For the upper bound on LeadingOnes we argued that free riders slow down the
optimization if ρ is small. For BinVal, we expect to have more free riders and we
were only able to prove a worse upper bound than for LeadingOnes. It is therefore
interesting to ask whether this intuition about free riders is true, i. e., whether the 1-ANT
really performs worse on BinVal than on LeadingOnes.

The number of generations to obtain an optimal solution is shown in Figure 5.3 in
dependence of the evaporation factor ρ. The results are averaged over 100 runs in each
setting. Note that the number of generations is displayed on a logarithmic scale. We
see that with decreasing values of ρ the runtime increases drastically for both functions
and that the 1-ANT becomes inefficient for ρ < 0.08/log n. It can also be observed
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Figure 5.3: Number of generations for the 1-ANT and the λ-ANT to find the global
optimum on LeadingOnes and BinVal, resp., for λ = n = 64, averaged
over 100 runs for each value of ρ.

that the runtime of the 1-ANT on BinVal is larger than for LeadingOnes if ρ is
small. This supports our argumentation that free riders can be a burden for the 1-ANT.
On the other hand, for larger values of ρ the 1-ANT is more efficient on BinVal than
on LeadingOnes. This effect can also be explained by theoretical arguments. With
growing ρ the 1-ANT behaves more and more like the (1+1) EA and the (1+1) EA is
more efficient on BinVal than on LeadingOnes. This difference is not reflected in our
upper bound for BinVal as we focus on the runtime behavior for small ρ.

Another goal of our experimental studies is to examine situations related to our theo-
retical model where our rigorous analyses do not give a picture of the runtime behavior
of ACO algorithms. A possible weakness of the 1-ANT is that it produces in each itera-
tion just one single solution. Usually, many ants are used in one iteration for updating
the pheromone values. Therefore, we also study a more realistic ACO algorithm that is
closely related to the algorithm analyzed in the previous sections. Our algorithm called
λ-ANT uses λ ants instead of a single one. The best solution found among the λ solu-
tions is used for updating the pheromone values if this solution is at least as good as the
best solution found so far during the run of the algorithm.

For our experimental studies, we choose λ = n = 64 such that the number of ants
used in one iteration is sufficiently large to examine the effect of using more than one
ant. As ACO algorithms can easily be parallelized, we report the number of generations
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Figure 5.4: Number of fitness evaluations for the 1-ANT and the λ-ANT to find the
global optimum on LeadingOnes and BinVal, resp., for λ = n = 64,
averaged over 100 runs for each value of ρ.

(see Figure 5.3) as well as the number of fitness evaluations (see Figure 5.4) the λ-ANT
needs to reach the optimal solution for LeadingOnes and BinVal. These results show
that the number of generations can be reduced by using more than one ant in each
iteration. This has already been observed in the context of evolutionary algorithms
where the number of iterations can be reduced by producing λ offspring instead of a
single one (see, e. g., Jansen et al., 2005).

As in the case of the investigations for evolutionary algorithms it is hard to reduce the
number of fitness evaluations. Figure 5.4 shows larger average runtimes for the λ-ANT
compared to the 1-ANT if ρ is large. For smaller ρ the curves partly overlap. Therefore,
we use statistical tests for the hypothesis that the 1-ANT outperforms the λ-ANT. A
non-parametric Mann-Whitney test shows a significant advantage for the 1-ANT for
all observed values of ρ. The significance levels are p < 0.05 for LeadingOnes and
ρ = 0.041/log n, p < 0.01 for LeadingOnes and ρ = 0.054/log n, and p < 0.0001 for all
other ρ-values and all results on BinVal.

Due to these tests and insights from our theoretical investigations for the 1-ANT, we
conjecture that using just one ant is the optimal choice for our model when considering
the functions LeadingOnes and BinVal. However, a rigorous proof for this conjecture
remains open.
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5.1.7 Conclusions

We have investigated the runtime behavior of a simple ACO algorithm called 1-ANT.
Our investigations show some general properties for the update scheme used in the
1-ANT. Based on these investigations, we have shown that there is a phase transition
for ρ ∼ 1/log n from exponential to polynomial runtimes for the functions LeadingOnes

and BinVal. Our experimental investigations point out that this can even be observed
for instances of moderate size as well as for the λ-ANT using a linear number of ants
in each iteration. Moreover, the experiments indicate that using many ants cannot
decrease the number of function evaluations. This result shows that ACO algorithms
using a single ant are not only interesting from a theoretical point of view, but also have
practical relevance.

5.2 MMAS Ant Colony Optimizers on Unimodal Functions and
Plateaus

The analysis of the 1-ANT from Section 5.1 has shown that the 1-ANT is very sensitive
w. r. t. the choice of the evaporation factor ρ. Decreasing the value of ρ only by a small
amount may lead to a phase transition and turn a polynomial runtime into an exponential
one. In contrast to this, a simple ACO algorithm called MMASbs has been investigated
in a recent article by Gutjahr and Sebastiani (2008) where this phase transition does
not occur.

The 1-ANT and MMASbs differ in their pheromone update mechanisms as well as in
their selection strategies. While MMASbs reinforces the current best-so-far solution in
each iteration, the 1-ANT only updates its pheromones in case the best-so-far solution
is exchanged. Regarding the selection, MMASbs only accepts strict improvements while
the 1-ANT also accepts solutions with equal fitness. In a recent survey, Gutjahr (2007,
page 76) conjectures with reference to the above-mentioned phase transition observed
for the 1-ANT:

“The reason seems to lie in the different update rules for the best-so-far
solution: exchanging x∗ also in case of an equally good solution, as it is
done in 1-ANT, obviously deteriorates the performance of the algorithm on
OneMax. For LeadingOnes, the situation appears to be quite similar as
for OneMax.”

By an investigation of variants of MMASbs, we will disprove this conjecture that the
different behavior of MMASbs and 1-ANT, i. e., the lack/presence of the phase transition,
is due to their different selection strategies. Actually, we show that the different behavior
results from the different pheromone update mechanisms.

The 1-ANT needs exponential time to optimize even very simple functions like One-

Max, LeadingOnes, or BinVal in case the evaporation factor is set too low (see Neu-
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mann and Witt (2006) and Section 5.1). Hence the update mechanism of MMASbs with
pheromone updates in each iteration is to be preferred over the mechanism used by the
1-ANT. This motivates us to study MMAS variants with this more persistent update
scheme. First, we consider the MMASbs algorithm by Gutjahr and Sebastiani (2008), in
this thesis referred to as MMAS*, and show both improved and extended results. Due
to the update mechanism of MMAS*, it is possible to use the fitness-level method (see
Section 2.3.2) for the analysis of this algorithm. In Gutjahr and Sebastiani (2008), it
is presented in a relatively general and formal way. Within this section, we state the
method more intuitively by extending the presentation for evolutionary algorithms. Af-
ter having clarified the fitness-level method in the context of ACO algorithms, we show
that it is easy to obtain upper bounds on the simple pseudo-Boolean functions OneMax

and LeadingOnes. These results for MMAS* have already been obtained in Gutjahr
and Sebastiani (2008), but our simplified presentation of the fitness-level method yields
really simple and short proofs which are easily transferable to other functions of similar
structure. In particular, we prove general results on the important class of unimodal
functions, which are not contained in Gutjahr and Sebastiani (2008).

Since the fitness-level method contains several pessimistic assumptions on the behavior
of MMAS*, it only yields upper bounds. To judge the quality of the method, it is
therefore crucial to complement the results by good lower bounds on the optimization
time. A major contribution of this section and, at the same time, an extension to the
analysis by Gutjahr and Sebastiani (2008), are the proofs of such lower bounds in the
context of OneMax, and, in particular, LeadingOnes, where no lower bounds on
the runtime of MMAS* were known before. These bounds show that upper bounds
obtained before using the fitness-level method are almost tight. Still, there is room for
improvement. For the LeadingOnes example, we present an improved upper bound
which is tight with the lower bound for almost all values of ρ. This analysis indicates the
limits of the general method. Moreover, the detailed study of MMAS* on LeadingOnes

is interesting also from a methodological point of view. The random walk described by
pheromone values for “unimportant” bits is investigated in detail and its hitting times
for boundary values are bounded using a general study of martingale processes. This
technique fosters our understanding of the stochastic process behind random pheromone
values.

Afterwards, we examine the issue whether to accept equally good solutions or just
strict improvements. Accepting equally fit solutions allows MMAS algorithms to explore
plateaus of solutions with equal fitness. We compare the runtime behavior of MMAS*
with a variant MMAS that accepts solutions of equal fitness on functions with plateaus
of exponential and polynomial size, respectively. The analyses, which again rely on
the above-mentioned martingale process behind random pheromone values, reveal that
MMAS clearly outperforms MMAS* on both functions.

As our theoretical results are purely asymptotic, they are accompanied by empirical
results. A comparison of MMAS and MMAS* on the unimodal functions OneMax and
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LeadingOnes shows that these algorithms have similar performance. However, a closer
look reveals that for certain values of ρ MMAS is faster than MMAS*. This difference
is statistically significant. With regard to the above-mentioned conjecture in Gutjahr
(2007), accepting equally good solutions does not deteriorate the performance of MMAS*
on OneMax. Instead, the opposite is true for some values of ρ. Our theoretical results on
plateau functions predict larger runtimes for MMAS*. Experiments for the investigated
plateau functions show that the observed performance difference between MMAS and
MMAS* is huge, even for small problem dimensions.

The remainder of this section is structured as follows. In Section 5.2.1, we intro-
duce the above-mentioned algorithms that are the subject of our investigations. In
Section 5.2.2, we analyze MMAS* and MMAS on unimodal functions. Section 5.2.3
then compares MMAS* with MMAS on plateau functions. Section 5.2.4 contains exper-
imental supplements to a result from Section 5.2.3 and experiments comparing MMAS
with MMAS* as mentioned above. We finish with some conclusions.

5.2.1 Algorithms

We consider the runtime behavior of several ACO algorithms that all use the construction
procedure described in the introduction to this chapter. The first algorithm that has
been investigated in terms of rigorous runtime analysis is the 1-ANT shown in Figure 5.5.

The 1-ANT only performs a pheromone update in case the best-so-far solution x∗ is
replaced. If ρ is large, such an update has a large effect on the pheromone values. In
that case, the 1-ANT is able to reproduce the new best-so-far solution x∗ quite efficiently
and to discover better solutions in the region around x∗. However, if ρ is small, updates
are rare and they only have a small effect on the pheromones. This makes it hard for the
1-ANT to focus on promising regions of the search space. The analyses from Neumann
and Witt (2006) and Section 5.1 have revealed that the 1-ANT is unable to keep track of
the best-so-far solution. As the 1-ANT discovers better and better best-so-far solutions,
the hurdles for constructed solutions are set higher and higher. If the update strength is
too small, the algorithm fails in storing the knowledge gained by new best-so-far solutions
in the pheromones. The probability of reproducing the current best-so-far solution or
finding a better one decreases and the 1-ANT slowly gets stuck. In fact, even for really
simple functions like OneMax, the 1-ANT needs exponential time with overwhelming
probability if ρ is small, e. g., less than 1/log n.

One aim of this section is to elaborate on the different behavior of the 1-ANT and
the algorithm by Gutjahr and Sebastiani (2008) without phase transition behavior. The
latter authors call their algorithm MMASbs, we refer to it as MMAS*. This algorithm
is shown on the right-hand side in Figure 5.5. Compared to the 1-ANT, there are two
differences. First, MMAS* only accepts strict improvements, i. e., new solutions x with
f(x) = f(x∗) are rejected by MMAS* while they are accepted by the 1-ANT. A sec-
ond difference is that MMAS* reinforces the best-so-far solution in every generation,
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1-ANT

Set τ(e) := 1/2 for all e ∈ E.
Construct a solution x∗.
Update pheromones w. r. t. x∗.
repeat

Construct a solution x.
if f(x) ≥ f(x∗) then

x∗ := x.
Update pheromones w. r. t. x∗.

MMAS

Set τ(e) := 1/2 for all e ∈ E.
Construct a solution x∗.
Update pheromones w. r. t. x∗.
repeat

Construct a solution x.
if f(x) ≥ f(x∗) then x∗ := x.
Update pheromones w. r. t. x∗.

MMAS*

Set τ(e) := 1/2 for all e ∈ E.
Construct a solution x∗.
Update pheromones w. r. t. x∗.
repeat

Construct a solution x.
if f(x) > f(x∗) then x∗ := x.
Update pheromones w. r. t. x∗.

(1+1) EA

Choose x∗ uniformly at random.
repeat

Create x by flipping each bit
in x∗ with probability 1/n.

if f(x) ≥ f(x∗) then x∗ := x.

(1+1) EA*

Choose x∗ uniformly at random.
repeat

Create x by flipping each bit
in x∗ with probability 1/n.

if f(x) > f(x∗) then x∗ := x.

Figure 5.5: The algorithms considered in this section. The starred variants on the right-
hand side use a strict selection while the left-hand side algorithms also accept
equally fit solutions. The 1-ANT only updates pheromones in case the best-
so-far solution x∗ is replaced. Contrarily, MMAS updates pheromones in
every iteration. If ρ is so large that the pheromone borders are hit in a single
pheromone update, both the 1-ANT and MMAS collapse to the (1+1) EA
and MMAS* collapses to the (1+1) EA*.
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regardless whether it has been replaced or not. Hence in generations without improve-
ments the pheromones are changed towards the best-so-far solution in MMAS* while
the pheromones remain unchanged in the 1-ANT.

As mentioned in the introduction, Gutjahr (2007) conjectures that the different be-
havior of MMASbs and 1-ANT depends on the former difference: the fact that MMASbs

only accepts strict improvements. Therefore, we also investigate a variant of MMASbs

that accepts equally fit solutions. We call this algorithm MMAS, it is displayed on the
left-hand side of Figure 5.5. In Section 5.2.2, we will analyze the runtime behavior of
MMAS* and MMAS on simple unimodal functions. These results are then compared to
known results for the 1-ANT.

ACO algorithms like MMAS* are not far away from evolutionary algorithms. If the
value of ρ is chosen large enough in MMAS*, the pheromone borders 1/n or 1 − 1/n are
touched for every bit. In this case, MMAS* becomes the same as the algorithm called
(1+1) EA*, which is known from the analysis of evolutionary algorithms (Jansen and
Wegener, 2001).

As already pointed out by Jansen and Wegener (2001), the (1+1) EA* has difficulties
with simple plateaus of constant fitness as no search points of the same fitness as the
best so far are accepted. Accepting solutions with equal fitness enables the algorithm to
explore plateaus by random walks. Therefore, it seems more natural to replace search
points by new solutions that are at least as good. In the case of evolutionary algorithms,
this leads to the (1+1) EA which differs from the (1+1) EA* only in step 2.b) of the
algorithm. For the sake of completeness, both the (1+1) EA* and the (1+1) EA are
also shown in Figure 5.5. By essentially the same arguments, we also expect MMAS
to outperform MMAS* on plateau functions. The corresponding runtime analyses are
presented in Section 5.2.3.

5.2.2 Unimodal Functions, OneMax, and LeadingOnes

In the following, we derive upper bounds on the expected optimization time of MMAS*
and MMAS on unimodal functions, especially OneMax and LeadingOnes. These
results can then be compared to previous results for the 1-ANT. In contrast to the
1-ANT, there is a similarity between MMAS* and evolutionary algorithms that can be
exploited to obtain good upper bounds. Suppose that during a run there is a phase
during which MMAS* never replaces the best-so-far solution x∗ in step 4.b) of the
algorithm. This implies that the best-so-far solution is reinforced again and again until all
pheromone values have reached their upper or lower borders corresponding to the setting
of the bits in x∗. We can say that x∗ has been “frozen in pheromone.” The probability
of creating a 1 for every bit is now either 1/n or 1−1/n. The distribution of constructed
solutions equals the distribution of offspring of the (1+1) EA* and (1+1) EA with x∗ as
the current search point. We conclude that, as soon as all pheromone values touch their
upper or lower borders, MMAS* behaves like the (1+1) EA* until a solution with larger
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fitness is encountered. This similarity between ACO and EAs can be used to transfer the
fitness-level method (also called the method of f -based partitions) from Section 2.3.2
to ACO. In particular, upper bounds for MMAS* will be obtained from bounds for
the (1+1) EA by adding the so-called freezing time described in the following. This
correspondence has already been observed by Gutjahr and Sebastiani (2008). However,
as they strive for a higher level of generality, their presentation is rather formal.

We give a simplified and more intuitive presentation of the approach followed in Gut-
jahr and Sebastiani (2008), adapted to MMAS* with our choice of pheromone bounds.
In particular, we review some known results from Gutjahr and Sebastiani (2008) and
show that specialized results for MMAS* can be proven in an easy and intuitive way.
Our presentation follows the presentation of the fitness-level method for evolutionary
algorithms. This enables us to highlight the similarities between EAs and ACO and it
reveals a way to directly transfer runtime bounds known for EAs to MMAS*. This is
an important step towards a unified theory of EAs and ACO.

A Simplified Review of the Fitness-Level Method for ACO

Suppose the current best-so-far solution x∗ is not changed and consider the random
time t∗ until all pheromones reach their borders corresponding to the bit values in x∗. We
will refer to this random time as freezing time. Gutjahr and Sebastiani (2008) bound t∗

from above by − ln(n − 1)/ln(1 − ρ). This holds since a pheromone value which is only
increased during t steps by Lemma 5.1.2 is at least min{1 − 1/n, 1 − (1 − 1/n)(1 − ρ)t}
after the iterations, pessimistically assuming the worst-case starting value 1/n. We use
ln(1 − ρ) ≤ −ρ for 0 ≤ ρ ≤ 1 and arrive at the handy upper bound

t∗ ≤ ln n

ρ
. (5.7)

Following Gutjahr and Sebastiani (2008), we now use the freezing time t∗ to derive
a general upper bound on the expected optimization time of MMAS* by making use of
the following restricted formulation of the fitness-level method. Let f1 < f2 < · · · < fm

be an enumeration of all fitness values and let Ai, 1 ≤ i ≤ m, contain all search points
with fitness fi. In particular, Am contains only optimal search points. Now, let si,
1 ≤ i ≤ m − 1, be a lower bound on the probability of the (1+1) EA (or, in this case
equivalently, the (1+1) EA*) to create an offspring in Ai+1 ∪ · · · ∪ Am, provided the
current population belongs to Ai. The expected waiting time until such an offspring is
created is at most 1/si and then the set Ai is left for good. As every set Ai has to be
left at most once, the expected optimization time for the (1+1) EA and the (1+1) EA*
is bounded above by

m−1∑

i=1

1

si
. (5.8)

167



5 Swarm Intelligence

Consider t∗ steps of MMAS* and assume x∗ ∈ Ai. Either the best-so-far fitness
increases during this period or all pheromone values are frozen. In the latter case, the
probability of creating a solution in Ai+1 ∪ · · · ∪Am is at least si and the expected time
until the best-so-far fitness increases is at most t∗ + 1/si. We arrive at the following
upper bound for MMAS*:

m−1∑

i=1

(

t∗ +
1

si

)

.

This is a special case of Inequality (13) in Gutjahr and Sebastiani (2008). Using
t∗ ≤ (ln n)/ρ, we obtain the more concrete bound

m ln n

ρ
+

m−1∑

i=1

1

si
. (5.9)

The right-hand sum is the upper bound obtained for the (1+1) EA and (1+1) EA*
from (5.8). Applying the fitness-level method to MMAS*, we obtain upper bounds
that are only by an additive term (m ln n)/ρ larger than the corresponding bounds for
(1+1) EA and (1+1) EA*. This additional term results from the (pessimistic) assump-
tion that on all fitness levels MMAS* has to wait until all pheromones are frozen in order
to find a better solution. We will see examples where for large ρ this bound is of the
same order of growth as the bound for (1+1) EA and (1+1) EA*. However, if ρ is very
small, the bound for MMAS* typically grows large. This reflects the long time needed
for MMAS* to move away from the initial random search and to focus on promising
regions of the search space.

In the article by Gutjahr and Sebastiani (2008), the proposed fitness-level method
is applied in the context of the unimodal functions OneMax and LeadingOnes. We
re-prove specialized results for MMAS*. Our purpose is to demonstrate both power and
elegance of the fitness-level method. Moreover, the following proofs suggest how to apply
the method to other problems.

In the runtime analysis of the 1-ANT on OneMax by Neumann and Witt (2006), it is
shown that there exists a threshold value for ρ (in our notation basically ρ = O(1/nε) for
some small constant ε > 0) below which no polynomial runtime is possible. In Gutjahr
and Sebastiani (2008) it is shown that such a phase transition does not occur with
MMAS*. The following theorem has already been proven as Proposition 5.1 in Gutjahr
and Sebastiani (2008) with a more general parametrization for the pheromone borders.
We present a proof for MMAS* using our simplified presentation of the fitness-level
method.

Theorem 5.2.1. The expected optimization time of MMAS* on OneMax is bounded
from above by O((n log n)/ρ).

168



5.2 MMAS Ant Colony Optimizers on Unimodal Functions and Plateaus

Proof. The proof is an application of the above-described fitness-level method with re-
spect to the fitness-level sets Ai = {x | f(x) = i}, 0 ≤ i ≤ n. On level Ai, a sufficient
condition to increase the fitness is to flip a 0-bit and not to flip the other n − 1 bits.
For a specific 0-bit, this probability is 1/n · (1− 1/n)n−1 ≥ 1/(en). As the events for all
n − i 0-bits are disjoint, si ≥ (n − i)/(en) and we obtain the bound

n−1∑

i=0

en

n − i
= en

n∑

i=1

1

i
= O(n log n).

Using (5.9), the upper bound O((n log n)/ρ) follows.

Recall that the function LeadingOnes counts the number of leading ones in the
considered bit string. A non-optimal solution may always be improved by appending a
single one to the leading ones. Section 5.1 has shown for the 1-ANT on LeadingOnes

that a similar phase transition behavior as on OneMax exists: for ρ = o(1/log n),
the expected optimization time of the 1-ANT is superpolynomially large whereas it is
polynomial for ρ = Ω(1/log n) and even only O(n2) for ρ = Ω(1). Proposition 7.1
in Gutjahr and Sebastiani (2008) proves that this phase transition cannot occur with
MMAS* on LeadingOnes. We again present a proof for MMAS* using our simplified
presentation of the fitness-level method.

Theorem 5.2.2. The expected optimization time of MMAS* on LeadingOnes is
bounded from above by O(n2 + (n log n)/ρ).

Proof. For 0 ≤ i < n the (1+1) EA adds an (i + 1)-st bit to the i leading ones of the
current solution with probability si = (1 − 1/n)i · 1/n ≥ 1/(en). Using the bound (5.9)
results in the upper bound ((n + 1) ln n)/ρ + en2 = O(n2 + (n log n)/ρ).

In the following, we apply the method to arbitrary unimodal functions. We also
extend the method to yield upper bounds for MMAS on unimodal functions. This
extension is not immediate as MMAS may switch between solutions of equal fitness,
which may prevent the pheromones from freezing. Moreover, we present lower bounds
on the expected optimization time of MMAS* on all functions with unique optimum and
an improved specialized lower bound for LeadingOnes. On one hand, these bounds
allow us to conclude that the fitness-level method can provide almost tight upper bounds.
On the other hand, as can be seen from a more detailed analysis in Section 5.2.2, the
method still leaves room for improvement using specialized techniques.

Upper Bounds for Unimodal Functions

Unimodal functions are an important and well-studied class of fitness functions in the
literature on evolutionary computation. Recall from Definition 2.2.1 that a function is
unimodal if every non-optimal search point has a Hamming neighbor with strictly larger
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fitness. Unimodal functions are often believed to be easy to optimize. This holds if the
set of different fitness values is not too large. On the other hand, Droste et al. (2006)
proved for classes of unimodal functions with many fitness values that every black-box
algorithm needs exponential time on average.

We consider unimodal functions attaining d different fitness values for arbitrary d ∈ N.
Such a function is optimized by the (1+1) EA and (1+1) EA* in expected time O(nd)
(cf. Theorem 2.3.4). This bound is transferred to MMAS* by the following theorem.

Theorem 5.2.3. The expected optimization time of MMAS* on a unimodal function
attaining d different fitness values is O((n + (log n)/ρ)d).

Proof. Because of the unimodality there is for each current search point x a better
Hamming neighbor x′ of x in a higher fitness-level set. The probability for the (1+1) EA
(or, equivalently, MMAS* with all pheromone values at a border) to produce x′ in the
next step is at least 1/(en). By (5.9), this completes the proof.

In order to freeze pheromones after t∗ steps without an improvement, it is essential
that equally good solutions are rejected. The fitness-level argumentation, including the
bound from (5.9), cannot directly be transferred to MMAS as switching between equally
fit solutions can prevent the system from freezing. Nevertheless, we are able to prove a
similar upper bound on the optimization time of MMAS that is by a factor of n2 worse
than the bound for MMAS* in Theorem 5.2.3 if ρ = O((log n)/n). Despite the factor n2,
Theorem 5.2.4 yields a polynomial bound for MMAS if and only if Theorem 5.2.3 yields
a polynomial bound for MMAS*.

Theorem 5.2.4. The expected optimization time of MMAS on a unimodal function
attaining d different fitness values is O(((n2 log n)/ρ)d).

Proof. We only need to show that the expected time for an improvement of the best-
so-far solution is at most O((n2 log n)/ρ). The probability that MMAS produces within
O((log n)/ρ) steps a solution being at least as good as (not necessarily better than) the
best-so-far solution x∗ is Ω(1) since after at most (ln n)/ρ steps without exchanging x∗ all
pheromone values have touched their borders and then the probability of rediscovering x∗

is (1− 1/n)n = Ω(1). We now show that the conditional probability of an improvement
if x∗ is replaced is Ω(1/n2).

Let x1, . . . , xm be an enumeration of all solutions with fitness values equal to the best-
so-far fitness value. Because of the unimodality, each xi, 1 ≤ i ≤ m, has some better
Hamming neighbor yi; however, the yi need not be disjoint. Let X and Y denote the
event to generate some xi or some yi, respectively, in the next step. In the worst case
y1, . . . , ym are the only possible improvements, hence the theorem follows if we can show
Prob(Y | X ∪ Y ) ≥ 1/n2, which is implied by Prob(Y ) ≥ Prob(X)/(n2 − 1).

If p(xi) is the probability of constructing xi, we have p(xi)/p(yi) ≤ (1− 1
n)/ 1

n = n− 1
as the constructions only differ in one bit. Each yi may appear up to n times in the
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sequence y1, . . . , ym, hence Prob(Y ) ≥ 1
n

∑m
i=1 p(yi) and

Prob(X) =

m∑

i=1

p(xi) ≤ (n − 1) ·
m∑

i=1

p(yi) ≤ n(n − 1) · Prob(Y ).

Therefore, Prob(Y ) ≥ Prob(X)/(n2 − 1) follows.

Theorems 5.2.3 and 5.2.4 show that the expected optimization times of both MMAS
and MMAS* are polynomial for all unimodal functions as long as d = poly(n) and
ρ = 1/poly(n). The result for MMAS has extensive implications.

Recall that MMAS only differs from MMAS* by accepting equally good solutions. The
only difference between MMAS and the 1-ANT lies in the pheromone update mechanism:
MMAS reinforces the best-so-far solution in every step, while the 1-ANT only performs a
pheromone update in case the best-so-far solution is exchanged. The 1-ANT suffers from
a phase transition behavior with exponential runtimes for simple unimodal functions if
ρ is a small inverse polynomial. However, Theorems 5.2.3 and 5.2.4 prove that such
a phase transition can occur neither with MMAS* nor with MMAS. Therefore, the
phase transition behavior of the 1-ANT must result from the different pheromone update
mechanism, contrary to the conjecture in Gutjahr (2007).

A General Lower Bound

The function OneMax is probably the simplest function with unique global optimum.
The upper bound O((n log n)/ρ) from Theorem 5.2.1 is never better than Θ(n log n),
which describes the expected runtime of the (1+1) EA and (1+1) EA* on OneMax.
At the moment, we are not able to show a matching lower bound Ω(n log n) on the
expected optimization time of MMAS*; however, we can show that the expected opti-
mization time is growing with respect to 1/ρ as the upper bound suggests. We state our
result in a more general framework: as known from the considerations by Droste et al.
(2002a), the mutation probability 1/n of the (1+1) EA is optimal for many functions
including OneMax. One argument is that the probability mass has to be quite con-
centrated around the best-so-far solution to allow the (1+1) EA to discover Hamming
neighbors of the last accepted solution with good probability. Hence, the best-so-far
solution needs to be “rediscovered” with good probability. Given a mutation probability
of α(n), the probability of rediscovery equals (1−α(n))n, which converges to zero unless
α(n) = O(1/n). The following lemma exploits the last observation for a general lower
bound on the expected optimization time of both MMAS and MMAS*.

Theorem 5.2.5. Let f : {0, 1}n → R be a function with a unique global optimum.
Choosing ρ = 1/poly(n), the expected optimization time of MMAS and MMAS* on f is
Ω((log n)/ρ − log n).
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Proof. W. l. o. g., 1n is the unique optimum. If, for each bit, the success probabil-
ity (defined as the probability of creating a 1) is bounded from above by 1 − 1/

√
n

then the solution 1n is created with only an exponentially small probability of at most
(1 − 1/

√
n)n ≤ e−

√
n. Using the uniform initialization and Lemma 5.1.2, the success

probability of a bit after t steps is bounded from above by 1 − (1 − ρ)t/2. Hence,
all success probabilities are bounded as desired within t := (1/ρ − 1) · (ln(n/4)/2) =
Ω((log n)/ρ − log n) steps since

1 − 1

2
(1 − ρ)t ≤ 1 − e−(ln n−ln 4)/2

2
= 1 − 1√

n
.

Since ρ = 1/poly(n) and, therefore t = poly(n), the total probability of creating the
optimum in t steps is still at most te−

√
n = e−Ω(

√
n), implying the lower bound on the

expected optimization time.

Hence, the expected optimization time of MMAS* with ρ = 1 − Ω(1) on OneMax

is bounded by Ω((log n)/ρ). It is an open problem to show matching upper and lower
bounds. We conjecture that the lower bound for OneMax is far from optimal and that
Ω(n log n + n/(ρ log(2/ρ))) holds. A corresponding bound for LeadingOnes will be
given in the following.

Improved Upper and Lower Bounds for LeadingOnes

We improve the bound of Theorem 5.2.2 to O(n2 + n/ρ) and beyond. Thereby, we show
that it is not necessary for MMAS* to freeze the best-so-far solution in pheromone on
every fitness level. Moreover, the forthcoming Theorem 5.2.6 applies to MMAS as well,
where a straight application of the fitness-level method breaks down.

In the remainder of this section, it is crucial to distinguish two states for bits during
the optimization process on LeadingOnes, as already done in Section 5.1. Suppose
that the current best-so-far LeadingOnes-value equals k. We call the bits 1, . . . , k bits
in increasing state and the bits k + 2, . . . , n bits in random state. No special attention
is paid to the 0-bit at position k + 1.

Our notions are justified as follows: since, due to the structure of LeadingOnes,
all future best-so-far solutions must contain at least k leading ones, the pheromone
values of the 1-edges (i. e., the success probabilities) corresponding to the first k bits are
monotonically increasing in each iteration until the border 1− 1/n is reached. The bits
k+2, . . . , n have never had an impact on the LeadingOnes-value. Due to the symmetry
of the construction procedure, it is intuitively clear that such a bit is unbiasedly set to 1
with probability 1/2 in the next constructed solution, hence the bit is purely random.
A formal proof of this will be given later.

We state two improved upper bounds for LeadingOnes. The first bound is better
than the bound from Theorem 5.2.2 by a factor of order log n if ρ = O(1/n). The second
bound is better than the first one by another factor of order log n if ρ ≤ n−(1+Ω(1)).
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Theorem 5.2.6. The expected optimization time of MMAS and MMAS* on Leading-

Ones is bounded by O(n2 +n/ρ) and O
(

n2 · (1/ρ)ε + n/ρ
log(1/ρ)

)

for every constant ε > 0.

Proof. Let ℓ be a positive real value defined later. Divide a run into phases. Phase i,
0 ≤ i ≤ n, ends when the following two conditions are met:

1. the best-so-far LeadingOnes-value is at least i and

2. for 0 ≤ j ≤ i − 1 it holds that bit i − j has been reinforced at least (j + 1)ℓ times
after entering the increasing state.

We now show that the expected time spent in Phase i, 1 ≤ i < n, is bounded by
O(ℓ + n · e5/(ℓρ)). This implies that the expected optimization time is bounded by
O(nℓ + n2 · e5/(ℓρ)). Choosing ℓ := 5/ρ yields the first bound and ℓ := 5/(ερ ln(1/ρ))
yields the second bound.

Consider the first generation in Phase i for 1 ≤ i < n. As Phase i−1 has been finished
successfully, the first i − 1 bits are in increasing state and bit i − j, 1 ≤ j ≤ i − 1, has
been reinforced at least jℓ times. This implies that the success probability for this bit is
at least min{1−1/n, 1−(1−ρ)jℓ} ≥ (1−1/n) ·(1−(1−ρ)jℓ). The success probability for
bit i is at least 1/n, hence the probability of creating a solution with at least i leading
ones is at least

(

1 − 1

n

)i−1

· 1

n
·

i−1∏

j=1

(

1 − (1 − ρ)jℓ
)

≥ 1

en
·

∞∏

j=1

(

1 − (1 − ρ)jℓ
)

.

We estimate the
∏

-term on the right-hand side and deal with the first factors separately.
Define m := max{j ∈ N0 | (1 − (1 − ρ)jℓ) ≤ 1/2} such that the factors with j ≤ m are
at most 1/2. We estimate these terms from below by a linear function as follows. By
induction, we show that (1 − (1 − ρ)k) ≤ 1/2 implies (1 − (1 − ρ)k) ≥ kρ/2 for k ∈ N0.
This claim is obvious for k = 0. Assume that it holds for k − 1, then

1 − (1 − ρ)k = 1 − (1 − ρ)k−1(1 − ρ) = 1 − (1 − ρ)k−1 + ρ(1 − ρ)k−1

≥ 1 − (1 − ρ)k−1 +
ρ

2
≥ kρ

2
.

Hence the j-th factor, j ≤ m, is bounded from below by jℓρ/2. Solving the equation
1 − (1 − ρ)x = 1/2 for x yields the bound mℓ ≤ −(ln 2)/ ln(1 − ρ) ≤ (ln 2)/ρ. Let
α := (ln 2)/(ℓρ) ≥ m and assume w. l. o. g. α ∈ N, then the product of the first m factors
is at least

m∏

j=1

(

1 − (1 − ρ)jℓ
)

≥
m∏

j=1

jℓρ

2
≥

α∏

j=1

jℓρ

2
= α! ·

(
ℓρ

2

)α

≥
(α

e

)α
·
(

ℓρ

2

)α

=

(
ln 2

2e

)(ln 2)/(ℓρ)

≥ e−1/(ℓρ).
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All factors with index j > m are at least 1/2. They can be estimated as follows. We
exploit 1 + x ≤ ex for x ∈ R and 1 − x ≥ e−2x for 0 ≤ x ≤ 1/2 (cf. Lemma A.12).

∞∏

j=m+1

(

1 − (1 − ρ)jℓ
)

≥
∞∏

j=m+1

exp
(

−2(1 − ρ)jℓ
)

≥ exp



−2
∞∑

j=0

(1 − ρ)jℓ



 = exp

(

− 2

1 − (1 − ρ)ℓ

)

≥ exp

(

− 2

1 − e−ℓρ

)

.

If ℓρ > 1, the resulting bound is Ω(1). If ℓρ ≤ 1, then 1 − e−ℓρ ≥ ℓρ/2 and we
obtain the bound exp(−4/(ℓρ)). Together, the probability of creating a solution with
at least i leading ones is Ω(1/n · e−5/(ℓρ)) and the expected waiting time for this event
is O(n · e5/(ℓρ)). This fulfills the first goal of Phase i. After an additional waiting time
of ℓ steps the second goal is fulfilled as well as the first i bits are reinforced in every
step and bit i − j, 1 ≤ j ≤ i − 1, has already been reinforced at least jℓ times before
entering Phase i. Therefore, Phase i is completed in expected time O(ℓ + n · e5/(ℓρ)) as
claimed.

It is interesting that an almost tight lower bound can be derived. The following
theorem shows that the expected optimization time of MMAS* on LeadingOnes is
Ω(n2 + n/(ρ log(2/ρ))), hence never better than Ω(n2). (We write log(2/ρ) in the lower
bound instead of log(1/ρ) to make the bound Ω(n2) for every constant ρ and to avoid
division by 0.) Apart from this technical detail, the lower bound is tight with the upper
bounds from Theorem 5.2.6 for ρ = Ω(1/n) and ρ ≤ n−(1+Ω(1)), hence for almost all ρ.
The proof is lengthy, however, for the case of large ρ, one essential idea is easy to grasp:
already in the early stages of the optimization process, many, more precisely Ω(n), suc-
cess probabilities reach their lower borders 1/n, and the corresponding bits are set to 0.
To “flip” such a bit, events of probability 1/n are necessary. This can be transformed
into the lower bound Ω(n2) on the expected optimization time.

Theorem 5.2.7. Choosing ρ = 1/poly(n), the expected optimization time of MMAS*

on LeadingOnes is bounded from below by Ω
(

n2 + n/ρ
log(2/ρ)

)

.

To prove the preceding theorem, we recall the distinction of bits in increasing and
random state. We have already motivated why the latter bits are set to 1 with probability
exactly 1/2 even if the corresponding pheromone values on 1-edges might change from
step to step. This is equivalent to a random, time-dependent success probability. The
probability of setting the bit to 1 corresponds to the expected success probability.

Lemma 5.2.8. Let the random variable Pt denote the probability of setting a bit in
random state to 1 at time t. Then the bit is set to 1 at time t with probability E(Pt).
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Proof. We first observe that the underlying state space is countably infinite. This holds
since the initial pheromone value is fixed to 1/2 and each time step allows at most two
new, i. e., previously unvisited, pheromone values.

Conditioned on the fact that the random Pt equals p, the bit is set to 1 at time t with
probability p. By the law of total probability, the unconditional probability of setting
the bit to 1 equals

∑

p

p · Prob(Pt = p) = E(Pt).

If we can prove that E(Pt) = 1/2 holds for all t where the bit is in random state, our
analysis of the random-state bits is complete.

Lemma 5.2.9. Let Pt be as defined in Lemma 5.2.8. Then for 0 ≤ p ≤ 1 it holds
Prob(Pt = p) = Prob(Pt = 1 − p), hence E(Pt) = 1/2. This even holds if the bit is no
longer in random state at time t + 1.

Proof. We inductively show for all t′ ≤ t the following stronger statement: for each
vector of probabilities (p1, . . . , pt′) it holds

Prob((P1, . . . , Pt′) = (p1, . . . , pt′)) = Prob((P1, . . . , Pt′) = (1 − p1, . . . , 1 − pt′))

This symmetry will imply the lemma since

E(Pt) =
∑

0≤p≤1

p · Prob(Pt = p)

=
∑

0≤p<1/2

(p + (1 − p)) · Prob(Pt = p) +
1

2
· Prob(Pt = 1/2) =

1

2
.

Due to the pheromone initialization, we have P0 = 1/2 with probability 1. For the
induction step, let p be arbitrary but fixed. Conditioned on Pt = p, there are two
possible pheromone values on the 1-edges of the bit at time t + 1, or, equivalently, for
the random Pt+1: either d(p) := max{1/n, (1−ρ)p} or i(p) := min{1−1/n, (1−ρ)p+ρ}.
Depending on whether the best-so-far solution is exchanged in the considered step, the
probability of going from p to d(p) (or i(p)) takes one of the three values 0, 1 − p′

and 1 (or 0, p′, 1). Actually, given that the best-so-far solution is not exchanged, the
probability of increasing or decreasing the value is itself random and depends on the
bit’s setting in the last best-so-far solution. However, which of the three probabilities is
used is independent of the random Pt even if the bit happens to leave the random state
in the considered step. The event that a best-so-far solution with k ones is replaced
is equivalent to the event that the first k + 1 bits are all set to 1, hence the setting of
the bits k + 2, . . . , n is independent of this decision. Note that even in the step where

175



5 Swarm Intelligence

such a bit leaves the random state, it does not affect the decision whether to replace the
best-so-far solution.

We are left with two cases. If an exchange of the best-so-far solution happens from
time t to t + 1 then, given that Pt = p, Pt+1 takes the value d(p) with probability 1 − p
and the value i(p) with probability p. Conditioned on the event Pt = 1 − p, Pt+1 takes
the value d(1 − p) with probability p and the value i(1 − p) with probability 1 − p. By
the induction hypothesis, both events that we condition on are equiprobable. Moreover,
p → 1−p is a bijection on the probability space for Pt. Noting that d(1−p) = 1−i(p) and
i(1 − p) = 1 − d(p) and using the law of total probability, we have Prob(Pt+1 = i(p)) =
Prob(Pt+1 = 1 − i(p)), and, accordingly, Prob(Pt+1 = d(p)) = Prob(Pt+1 = 1 − d(p)).

If no exchange of the best-so-far solution happens then Pt is increased or decreased
with probability Pt∗ and 1 − Pt∗ , respectively, where t∗ < t is the time of the last
exchange (or 0 for the initial step). We additionally consider an arbitrary fixed p∗.
Conditioned on the event (Pt∗ = p∗) ∧ (Pt = p), we have Prob(Pt+1) = i(p) = p∗ and
Prob(Pt+1 = d(p)) = 1 − p∗. Analogously, if (Pt∗ = 1 − p∗) ∧ (Pt = 1 − p), we have
Prob(Pt+1 = i(1 − p)) = 1 − p∗ and Prob(Pt+1 = d(1 − p)) = p∗. Using the induction
hypothesis, both conditions are again equiprobable. Now (p∗, p) → (1 − p∗, 1 − p) is a
bijection on the probability space for (Pt∗ , Pt). By the law of total probability, we have,
also in this case, Prob(Pt+1 = i(p)) = Prob(Pt+1 = 1 − i(p)) and Prob(Pt+1 = d(p)) =
Prob(Pt+1 = 1 − d(p)). Altogether, the induction follows.

We summarize what has been derived so far: the bits in random state are indepen-
dently set to 1/2 in all constructed solutions until they leave the random state, where
the independence follows directly from the construction procedure of MMAS*. This will
allow us to treat the random bits in the same way as done in the analysis of the (1+1) EA
on LeadingOnes by Droste et al. (2002a). To prove a lower bound on the expected
optimization time, we have to take into account the “free rider” phenomenon, i. e., addi-
tional bits following the leftmost 0-bit that are collected “for free” in an improvement.
To prove a lower bound, we have to control the number of free riders in improving steps.
By the above analysis, the probability of i free riders is at most 2−i−1 per improvement
since having i free riders is equivalent to setting bits k + 2, . . . , k + i to 1 and setting
bit k+ i+1 to 0. Clearly, if k+ i > n, having i free riders is even impossible. Altogether,
the number of free riders in improving steps is now easy to control.

Lemma 5.2.10. After the first n/12 improvements the LeadingOnes-value of the best-
so-far solution is still less than n/2 with probability 1 − 2−Ω(n).

Proof. With probability at least 1−2−n/4 the initial LeadingOnes-value is at most n/4.
Working under this condition, we estimate the number of free riders in improving steps.
Modeling the free rider decisions as at most n/2 independent trials as in Droste et al.
(2002a), the number of free riders in k improvements is at most 2k with probability at
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least 1− e−k/16. Hence, the probability that n/12 improvements increase the Leading-

Ones-value by at least n/4 is 2−Ω(n).

The main obstacle in the proof of Theorem 5.2.7 is related to the success probabilities
of bits that leave the random state to become the leftmost zero-bit. For the lower
bound Ω(n2) given in the theorem, it would be nice to have many times, at best Ω(n)
times, bits whose random success probabilities equal the lower border 1/n when they
become the leftmost zero-bit. Then setting the bit to 1, as necessary for an improvement,
would require Ω(n) steps in expectation, and Ω(n) such situations would take an expected
number of Ω(n2) steps. With strict selection a weaker condition is sufficient. For MMAS*
a lower bound Ω(n2) follows if Ω(n) bits reach success probabilities at the lower border
at least once while being in random state.

Lemma 5.2.11. Consider a point of time where the best-so-far LeadingOnes-value is
less than n/2. If there are Ω(n) bits at the last n/2 positions whose success probabilities
have reached their lower border 1/n at least once up to now then the remaining expected
optimization time for MMAS* is Ω(n2).

Proof. The last n/2 bits are all in random state. Suppose a bit in random state has
reached the lower border 1/n on the success probability. For each subsequent improve-
ment, it can become necessary to set such a bit to 1, which has probability 1/n provided
that the success probability is still at the border. However, the success probability of
such a bit might increase again. Therefore, in each of the remaining improvements, we
distinguish the events whether setting the bit to 1 is relevant for an improvement or not.
If the bit is not relevant since it is still right of the leftmost zero after the improvement,
its success probability does not change with probability 1 − 1/n. Hence, by Chernoff
bounds (Lemma A.6), it holds with probability 1−2−Ω(n) that after O(n) improvements
(note that there are at most n improvements) there are still Ω(n) success probabilities
equal to 1/n left. We assume this to happen for some number cn, c > 0 a constant, of
bits and call these bits difficult. Pessimistically ignoring all other bits, an improvement
adds an expected number of at most 1 + 1/n < 2 difficult bits to the leading ones of the
best-so-far solution. The expected number of difficult bits gained in cn/4 improvements
is therefore less than cn/2, and this number is less than cn with probability at least 1/2.
Hence, the remaining optimization time is Ω(n2) with probability at least 1/2− 2−Ω(n),
and, therefore, also in expectation.

In order to complete the proof of the lower bound Ω(n2) we have to show that the pre-
conditions of Lemma 5.2.11 are fulfilled with high probability and many bits in random
state reach the lower border for their success probability. However, so far we only know
that in expectation, at least half of the bits in random state have a success probability
that is bounded from above by 1/2. The probability, however, might still be very close
to 1/2, which is the actual value in the initial step.
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Recall that in generations where the best-so-far solution x∗ is not replaced the success
probability at every bit is continuously increased or decreased as the algorithm contin-
uously focuses on x∗. Intuitively, chances to reach upper or lower borders are high if
some time elapses between improving steps. The following lemma bounds the average
time between improvements from below. If all success probabilities are close to 1/2, then
MMAS* behaves almost like random search. Hence, to obtain substantial progress in
the optimization, it must take some time between two improvements for the pheromone
values of the newly gained bits in increasing state to come up and reach their upper bor-
der 1−1/n. In the following, we will bound the average time between improving steps by
Ω(1/(ρ log(2/ρ))), where the average is taken over Θ(log(2/ρ)) improvements. Thereby,
we also prove a lower bound Ω(n/(ρ log(2/ρ))) for the expected optimization time on
LeadingOnes, corresponding to the second term in the bound from Theorem 5.2.7.

Lemma 5.2.12. Let ρ = 1/poly (n). Then there is some constant c > 0 such that after
each step improving the LeadingOnes-value, the number of steps required by MMAS*
for c log(2/ρ) further improvements is Ω(1/ρ) with probability Ω(1). Furthermore, the
expected optimization time is Ω(n/(ρ log(2/ρ))).

Proof. W. l. o. g., we assume 1/ρ to be growing with n since otherwise the first statement
of the theorem is trivial and the second one follows from Lemma 5.2.10.

We will show that a phase of s := 1/ρ− 1 steps following an arbitrary improving step
contains an expected number of at most O(log(2/ρ)) further improvements. This will
imply the lemma for the following reasons. First, we apply Markov’s inequality on the
random number of improvements in s steps, which is therefore bounded by O(log(2/ρ))
with probability at least 1/2. This is the first statement of the lemma. Second, we
sum up the expected number of improvements in c′n/log(2/ρ) phases of length s, where
c′ > 0 is another constant. This yields a total number of c′n/(ρ log(2/ρ))−c′n/log(2/ρ) =
Ω(n/(ρ log(2/ρ))) steps. If c′ is small enough, the total expected number of improvements
in this number of steps is less than n/24 and, by Markov’s inequality, less than n/12
with probability at least 1/2. By Lemma 5.2.10, with probability 1 − 2−Ω(n), n/12
improvements are not enough to reach even a LeadingOnes-value of at least n/2. The
sum of the failure probabilities is 1/2 + 2−Ω(n). Using the law of total probability, we
obtain the second statement of the lemma.

We are left with the claim. Let k be the LeadingOnes-value at the beginning of the
phase of length s. For some large enough variable γ to be chosen later, we concentrate
on the block of r := r(γ) := γ log(2/ρ) bits at positions k + 2, . . . , k + 2 + r − 1, i. e.,
following the leftmost 0-bit at the beginning of the phase. If all r bits are in increasing
state by the end of the phase, the phase is called successful. Clearly, if the phase is
unsuccessful, it contains, due to strict selection, at most r improvements, which is the
event whose probability has to be bounded from above.

In the beginning of the phase, all bits of the block are in random state. We apply
Lemma 5.2.9 to bound the number of block bits whose success probability is at most 1/2
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in the beginning of a phase. The probability is at least 1/2 for a single bit, and by Cher-
noff bounds, with a failure probability of most 2−r/12, less than r/4 success probabilities
are at most 1/2. We assume r/4 bits with this property and estimate the probability
of setting all these bits to 1 simultaneously in at least one improving step by the end
of the phase (which is necessary for the phase to be successful). The success proba-
bility of a bit with initial pheromone value 1/2 is still at most 1 − (1 − ρ)t/2 if it has
been only in increasing state for t steps. The total number of iterations in the phase is
1/ρ− 1. Hence, by the end of the phase, all considered success probabilities are at most
1− (1−ρ)1/ρ−1/2 ≤ 1−e−1/2 < 0.82. The probability of a single improving step setting
the r/4 bits to 1 is therefore at most (0.82)r/4 ≤ 2−r/14. By the union bound, the prob-
ability of this happening within s steps is at most s2−r/14 = 2log(2/ρ)−γ log(2/ρ) ≤ 2−r/15

if γ is large enough. More precisely, there is a constant γ0 such that the statement
holds for all γ ≥ γ0. Additionally taking into account the above failure probability, the
probability of the phase being successful is at most 2−r/12 + 2−r/15 ≤ 2−r/20 if γ is large
enough.

Using the last observation, we finally bound the expected number of improvements
per phase. Let I denote the random number of improvements. Then we have E(I) =
∑

v≥1 Prob(I ≥ v) ≤ ∑∞
i=0 r0Prob(I ≥ ir0), where now r0 := γ0 log(2/ρ) with γ0 as in

the last paragraph. In the definition of r, we can choose γ arbitrarily large. Applying
the result of the last paragraph for γ := iγ0, we obtain that Prob(I ≥ iγ0 log(2/ρ))
is at most 2−iγ0 log(2/ρ)/20 for all i ≥ 1. Since 2−γ0 log(2/ρ)/20 = 1 − Ω(1), we have
∑∞

i=1 2−iγ0 log(2/ρ)/20 = O(1), and, altogether, E(I) ≤ rProb(I ≥ 0) + r · O(1) = O(r) =
O(log(2/ρ)).

We remark that Lemma 5.2.12 does not contain a statement on the expected time
between two improvements. Rather, an amortized consideration over Ω(log(2/ρ)) im-
provements is given. The reason is that the very first improvements are easy to obtain
even for random search.

Now we are left with the proof that Ω(n) bits in random state reach their lower border
on the success probabilities during the first n/12 improvements. To this end, we consider
a bit in random state and again denote by Pt its random success probability at time t.
All the following estimations hold until the bit leaves the random state.

We are interested in the stopping time Tmin := min{t ≥ 0 | Pt = 1/n}. Before
this time, the stochastic process describing the Pt-value equals the same stochastic
process with the lower border 1/n on the success probability removed (i. e., Pt+1 =
min{1 − 1/n, (1 − ρ)Pt + ρ} if Pt is increased and Pt+1 = (1 − ρ)Pt otherwise. In the
following, we only consider this modified process, however, still denote it by Pt, t ≥ 0.

The Pt-process is not necessarily Markovian. Recalling the reasoning in the proof of
Lemma 5.2.9, Pt+1 is obtained either by making a binary decision with probability Pt

or by increasing or decreasing the value according to the result of an earlier decision
when the best-so-far solution is not exchanged while going from time t to time t+1. Let
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the random times Ti, i ≥ 0, describe the points of time where the best-so-far solution
is exchanged; in particular, T0 = 0 denotes the initialization of the best-so-far solution.
Since the bit describing the P -process is assumed to stay in random state, the lengths
Li := Ti+1 − Ti of the time spans between exchanges are independent of the Pt-values.
We consider the process Mi := PTi , i ≥ 0, which is just a macroscopic view of the
P -process at the exchange points. Since exactly the behavior at the exchange points is
relevant for the decision whether to increase or decrease the pheromone, the M -process
is Markovian. Furthermore, it can be characterized as follows.

Lemma 5.2.13. The Mi form a supermartingale, i. e., E(Mi+1 | M0, . . . ,Mi) ≤ Mi.

Proof. Since the process is Markovian, it suffices to condition on Mi. Given Mi = p, the
value is increased Li times with probability p and otherwise decreased Li times. Hence,
by the definition of the M -process,

E(Mi+1 | Mi = p)

= (1 − p) ·
(
Mi · (1 − ρ)Li

)
+ p · min

{

1 − 1

n
, 1 − (1 − Mi) · (1 − ρ)Li

}

≤ (1 − p) · p · (1 − ρ)Li + p − (1 − p) · p · (1 − ρ)Li = p = Mi.

We are still looking for a bound on Tmin. This will be obtained from the stopping
time TM-min := min{i ≥ 0 | Mi ≤ 1/n} by incorporating our knowledge on the average
time between two improvements from Lemma 5.2.12. The following lemma, which is
adapted from Lemma 3.1.8, states bounds on stopping times for martingale processes
in a quite general setting. In contrast to Lemma 3.1.8, we consider a real state space
instead of {0, . . . , n}. Moreover, the conditions are relaxed in two ways. First, we only
require a lower bound on the amortized variance in ℓ steps for some period ℓ. Second,
it is sufficient to bound the one-sided variance.

Lemma 5.2.14. Consider a stochastic process {Xt}t≥0 on a bounded subset of R+
0 . Let

Ft denote X0, . . . ,Xt, Et+1 := E(Xt+1 | Ft) and

∆t+1 = E
(
(Xt+1 − Et+1)

2 · IXt+1<Et+1
| Ft

)

with IF being the indicator function of event F .
Given α ∈ R, define T := min{t : |Xt − X0| ≥ α | X0}. If

1. {Xt}t≥0 is a supermartingale (i. e. E(Xt+1 | Ft) ≤ Xt) and

2. there exist δ > 0 and ℓ ≥ 1 such that
∑t+ℓ

k=t ∆k/ℓ ≥ δ for all 1 ≤ t ≤ T − ℓ

then

• E(T ) ≤ ℓ + (2X0 + α) · (α/δ) and

• Prob(XT < X0) ≥ α/(α + E(X0 − XT | XT < X0)).
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Note that the second condition of the lemma is implied if we have a lower bound on
the single-step one-sided variance according to ∆t ≥ δ for all 1 ≤ t ≤ T . We state the
more general condition since in the forthcoming analysis, Lemma 5.2.12 yields only a
statement on the amortized one-sided variance in Θ(log(2/ρ)) steps.

Proof of Lemma 5.2.14. We first replace {Xt}t≥0 by a simpler process {Yt}t≥0 defined
by

Yt := min{X0 + α,Xt}.

Hence, the Y -process is capped at X0 + α when the X-process reaches a point at
least X0 + α for the first time and is identical to the X-process before. By defini-
tion, the stopping time T in terms of the Y -process does not change. Second, {Yt}t≥0

clearly is a supermartingale, too. Third, by the definition of ∆t+1, the second condition
of the lemma holds for {Yt}t≥0 as well. We consider

V (t + 1) := Var(Yt+1 | Ft) = E
(
(Yt+1 − E(Yt+1 | Ft))

2 | Ft

)

and obtain

V (t + 1) ≥ ∆t+1.

for all t ≤ T − 1.

We define a third process {Zt}t≥0 by Zt := −(Yt)
2 +

t∑

k=1

V (k) and consider

E(Zt+1 | Ft) = −E
(
(Yt+1)

2 | Ft

)
+

t+1∑

k=1

E(V (k) | Ft).

Regarding the
∑

-term, the summand for k = t + 1 by definition of V (k) equals

E(V (k) | Ft) = V (k)

and for k ≤ t we have

E(V (k) | Ft) = V (k)

since the right-hand side is Ft-measurable. Secondly, by the formula E
(
A2
)

= (E(A))2 +
E
(
(A − E(A))2

)
we have

E
(
(Yt+1)

2 | Ft

)
= (E(Yt+1 | Ft))

2 + E
(
(Yt+1 − E(Yt+1 | Ft))

2 | Ft

)

≤ (Yt)
2 + V (t + 1),
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where the last inequality follows from {Yt}t≥0 being a supermartingale on the space R
+
0 .

Together,

E(Zt+1 | Ft) ≥ −(Yt)
2 − V (t + 1) +

t+1∑

k=1

V (k)

= −(Yt)
2 +

t∑

k=1

V (k)

= Zt.

Thus, {Zt}t≥0 is a submartingale with respect to {Yt}t≥0.
∑t+ℓ

k=t ∆k/ℓ ≥ δ implies, along with the supermartingale property, that we have non-
zero probability that Yt+1 < Yt at least every ℓ steps, hence E(T ) < ∞ follows. Since
Xt is bounded and positive by assumption, also |Yt| and V (t) are bounded, hence
E(|Zt+1 − Zt| | Ft) is bounded as well and we can apply the martingale stopping theorem
(Theorem 2.3.14) for submartingales. This yields E(ZT ) ≥ E(Z0) = (Y0)

2 = (X0)
2 on

one hand and, along with
∑T

k=1 V (k) ≥∑T
k=1 ∆k ≥∑⌊T/ℓ⌋·ℓ

k=1 ∆k ≥ ⌊T/ℓ⌋ℓδ ≥ (T − ℓ)δ,

E(ZT ) = E
(
Y 2

T

)
− E

(
T∑

k=1

V (k)

)

≤ E
(
Y 2

T

)
− δ · E(T − ℓ)

on the other hand. This implies

E(T ) ≤ E
(
Y 2

T

)
− (X0)

2

δ
+ ℓ ≤ (X0 + α)2 − (X0)

2

δ
+ ℓ = (2X0 + α)(α/δ) + ℓ,

the first statement of the lemma.

The second statement Prob(XT < X0) ≥ α/(α + E(X0 − XT | XT < X0)) follows,
using the martingale stopping theorem for supermartingales, from

0 ≥ E(XT ) − X0 = −Prob(XT < X0) · E(X0 − XT | XT < X0)

+ (1 − Prob(XT < X0)) · E(XT − X0 | XT > X0)

by rearranging terms and estimating E(XT − X0 | XT > X0) ≥ α.

We now study the M -process to bound TM-min. Note that M0 = P0 = 1/2 since our
consideration starts with the initialization of MMAS*.

Lemma 5.2.15. For every constant ε > 0 we have TM-min = O(nε log2(2/ρ)) with
probability Ω(1).
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Proof. To apply Lemma 5.2.14, we need a bound on the variance of the M -process.
However, this variance heavily depends on the current M -value since the process is not
homogeneous with respect to place. The closer the value is to one of its bounds 0 and
1 − 1/n, the smaller the expected displacement from the current position becomes. We
therefore split the run of the process into different phases.

Phase i, i ≥ 1, starts at the first point of time (counting the steps of the M -process)
where the current M -value is in the interval (ℓi, ui] := (1/n(i+1)γ , 1/niγ ], where γ = ε/2.
Phase 0 is different and starts when the value is in the interval (ℓ0, u0] := (1/nγ , 1/2] for
the first time. Let αi := ui − ℓi, i ≥ 0 denote the length of the interval. We additionally
introduce an infinitely long error phase, which is entered from Phase i when the current
M -value exceeds ui + αi. Note that, due to M0 = 1/2, we start with a non-error phase
of positive index. Obviously, if we can prove that Phase 1/γ starts after O(nε log2(2/ρ))
steps with probability Ω(1), the lemma follows.

The proof strategy is now to show that with probability Ω(1), the M -process passes
through phases with increasing index without falling into the error phase. Depending
on the size of ρ, some phases might be empty. We therefore estimate the number of
steps until Phase at least i+1 begins when Phase i has started. Let X0i be the M -value
at the start of Phase i. In terms of Lemma 5.2.14, we are interested in the first point
of time Ti+1 where distance αi from X0i has been reached and, in particular, in the
probability Prob

(
XTi+1

≤ X0i

)
. Since for E− := E

(
X0i − XTi+1

| XTi+1
< X0i

)
we have

E− ≤ X0i ≤ ui ≤ 2αi (for n large enough), it follows α/(E− + α) ≥ 1/3. Hence,
by the lemma, it holds XTi+1

≤ X0i − αi with probability at least 1/3. The latter is
sufficient to start Phase at least i + 1 without falling into the error phase. Assuming
XTi+1

≤ X0i − αi and repeating this argument at most 1/γ times, we conclude that

Phase 1/γ starts after an expected number of at most E∗ :=
∑1/γ

i=1 E(Ti) steps with
probability at least (1/3)1/γ . Additionally using Markov’s inequality, the total number
of steps to start Phase 1/γ is at most 2E∗ with probability at least (1/3)1/γ+1 = Ω(1)
since γ is constant. Hence, it suffices to prove a bound on E∗ using Lemma 5.2.14. This
will be done by bounding ∆-values and, thereby, E(Ti), separately for all phases. Each
∆-value can be bounded from below by identifying a possible decrease of the current
state and estimating the probability and the decrease from below.

Let us pessimistically ignore that Phase i may be left in favor of a higher-index phase
before time Ti+1. As the M -value is always at most 1/2, the M -process has probability
at least 1/2 of decreasing its value. Recall that the M -process records the P -value of
a random-state bit only at exchanges of the best-so-far solution. By Lemma 5.2.12, a
sequence of ℓ = Θ(log(2/ρ)) steps of the M -process takes Ω(1/ρ) steps of MMAS* with
probability at least Ω(1). If all these steps of the M -process were decreasing, this would
decrease the value at the beginning of the sequence by a factor of f := (1 − ρ)Ω(1/ρ) =
1 − Ω(1) using the pheromone update formula. Actually, some steps of the sequence
will probably be increasing. However, according to Chernoff bounds, since each single
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step is decreasing with probability Ω(1), we have Ω(ℓ) decreasing steps within ℓ steps
with probability Ω(1). Given a current value of v before the first decreasing step, the
sum of the amounts of decrease in decreasing steps (not counting increasing steps in
between since we are aiming at a bound of the one-sided variance ∆) is then at least
v − vf = Ω(1) · v, hence at least v · Ω(1/ℓ) on average over ℓ steps. Again using the
definition of the phases, we have v ≥ ℓi, hence this decrease is at least

1

n(i+1)γ
· Ω
(

1

ℓ

)

= Ω

(
1

n(i+1)γ log(2/ρ)

)

.

In order to compute ∆, the last value still has to be multiplied by the probability Ω(1)
of the event and taken to the square. Applying Jensen’s inequality, the average of the
squares is at least as large as the square of the average. Altogether, the average ∆-value
in Θ(log(2/ρ)) steps before time Ti+1 is at least δi = Ω(1/(n2(i+1)γ log2(2/ρ))).

We apply Lemma 5.2.14. Estimating (2X0i + αi) ≤ 5αi, we get E(Ti) ≤ 5α2
i /δi + ℓ =

O(n2(i+1)γ−2iγ log2(2/ρ) + log(2/ρ)) = O(n2γ log2(2/ρ)). By the definition of γ, we have
shown E(Ti) = O(nε log2(2/ρ)), and, using 1/γ = O(1), also E∗ = O(nε log2(2/ρ)). This
completes the proof.

Now all arguments for the proof of Theorem 5.2.7 are ready.

Proof of Theorem 5.2.7. A lower bound Ω(n/(ρ log(2/ρ))) follows from Lemma 5.2.12,
hence we only need to show a lower bound Ω(n2). Consider a time phase containing the
first n/12 improvements. Lemma 5.2.10 implies that at the end of the phase the current
LeadingOnes-value is still less than n/2 with probability 1− 2−Ω(n), which we assume
to happen.

Consider the last n/2 bits in random state and note that every improvement corre-
sponds to one step of the M -process. Choosing 0 < ε < 1, along with ρ = 1/poly(n) and
n large enough, the time bound for the M -process from Lemma 5.2.15 is cnε log2(2/ρ) ≤
n/12 for some constant c > 0. This implies that during the phase any of the last n/2 bits
independently reaches the lower border for its success proability at least once with prob-
ability Ω(1). By Chernoff bounds, we have Ω(n) such bits with probability 1 − 2−Ω(n).
Assuming this to happen, Lemma 5.2.11 is in force and the outstanding lower bound
Ω(n2) follows by the law of total probability.

In the lengthy proof, we had to carefully look at the random bits and to study the
structure of the optimization process. It seems to be even harder to prove a correspond-
ing lower bound for MMAS since accepting equally good solutions implies that more
than n exchanges of the best-so-far solution can happen. Also additional ideas are re-
quired to transfer the proof of Theorem 5.2.7 and to obtain an improved lower bound for
MMAS* on OneMax. Nevertheless, our analysis for LeadingOnes is important since
it contains important proof techniques for lower bounds on the runtime of MMAS algo-
rithms. Moreover, it rigorously shows that the upper bounds derived by the fitness-level
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method described in Section 5.2.2 can be very good and almost asymptotically tight.
Still, they leave room for improvement using specialized techniques as presented in The-
orem 5.2.6 since it is not necessary for the process to freeze the best-so-far solution in
pheromone for every fitness level.

5.2.3 Plateau Functions

The general upper bounds from Theorems 5.2.3 and 5.2.4 for unimodal functions yield a
gap of only polynomial size between MMAS and MMAS*. In addition, we have proven
the same upper bounds on LeadingOnes for both MMAS and MMAS*. This may give
the impression that MMAS and MMAS* behave similarly on all functions. However, this
only holds for functions with a certain gradient towards better solutions. On plateaus
MMAS and MMAS* can have a totally different behavior.

We reconsider the function Needle where only one single solution has objective
value 1 and the remaining ones get value 0. In its general form, the function is de-
fined as

Needle(x) :=

{

1 if x = xOPT,

0 otherwise,

where xOPT is the unique global optimum. Gutjahr and Sebastiani (2008) compare
MMAS* and (1+1) EA* w. r. t. their runtime behavior. For suitable values of ρ that
are exponentially small in n, MMAS* has expected optimization time O(cn), c ≥ 2 an
appropriate constant, and beats the (1+1) EA*. The reason is that MMAS* behaves
nearly as random search on the search space while the initial solution of the (1+1) EA*
has Hamming distance n to the optimal one with probability 2−n. To obtain from such
a solution an optimal one, all n bits have to flip, which has expected waiting time nn,
leading in summary to an expected optimization time Ω((n/2)n). In the following, we
show a similar result for MMAS* if ρ decreases only polynomially with the problem
dimension n.

Theorem 5.2.16. Choosing ρ = 1/poly(n), the optimization time of MMAS* on Nee-

dle is at least (n/6)n with probability 1 − e−Ω(n).

Proof. Let x be the first solution constructed by MMAS* and denote by xOPT the
optimal one. As it is chosen uniformly at random from the search space, the expected
number of positions where x and xOPT differ is n/2 and there are at least n/3 such
positions with probability 1− e−Ω(n) using Chernoff bounds. At these positions of x the
“wrong” edges of the construction graph are reinforced as long as the optimal solution has
not been obtained. This implies that the probability of obtaining the optimal solution
in the next step is at most 2−n/3. After at most t∗ ≤ (ln n)/ρ (see Inequality (5.7))
iterations, the pheromone values of x have touched their borders provided xOPT has not
been obtained. The probability of having obtained xOPT within a phase of t∗ steps is
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at most t∗ · 2−n/3 = e−Ω(n). Hence, the probability of producing a solution that touches
its pheromone borders and differs from xOPT in at least n/3 positions before producing
xOPT is 1−e−Ω(n). In this case, the expected number of steps to produce xOPT is (n/3)n

and the probability of having reached this goal within (n/6)n steps is at most 2−n.

The probability of choosing an initial solution x that differs from xOPT by n positions
is 2−n, and in this case, after all n bits have reached their corresponding pheromone
borders, the probability of creating xOPT equals n−n. Using the ideas of Theorem 5.2.16,
the following corollary can be proved which asymptotically matches the lower bound for
the (1+1) EA* given in Gutjahr and Sebastiani (2008).

Corollary 5.2.17. Choosing ρ = 1/poly(n), the expected optimization time of MMAS*
on Needle is Ω((n/2)n).

It is well known that the (1+1) EA that accepts each new solution has expected op-
timization time Θ(2n) on Needle (see Garnier, Kallel, and Schoenauer, 1999; Wegener
and Witt, 2005) even though it samples with high probability in the Hamming neigh-
borhood of the latest solution. On the other hand, MMAS* will have a much larger
optimization time unless ρ is superpolynomially small (Theorem 5.2.16). Our aim is to
show in the forthcoming Theorem 5.2.20 that MMAS is more efficient than MMAS* and
almost competitive to the (1+1) EA.

As in Section 5.2.2, the heart of our analysis will be the random process describing
the pheromone values if the fitness function does not give any information. The random
walk on the success probabilities of a bit in random state, which was captured by the
M -process, reappears. The situation now is easier: as long as the needle has not been
found, MMAS exchanges the best-so-far solution in each step. Hence, in terms of the
M -process (which however has no lower bound on success probabilities) we would have
the special case of Li = 1 for i ≥ 0. Our setting collapses to a Markovian random
walk Pt, t ≥ 0, on the state space [1/n, 1 − 1/n] that, according to the pheromone
update formula, increases or decreases its current state with probability Pt and 1 − Pt,
respectively. We call this random walk the P -process. Note that we assume each step
to exchange the solution, hence the process does not freeze after the needle has been
found. Until the first hitting time of the needle, the P -process and the random success
probability at a bit coincide.

Many analyses conducted in Section 5.2.2 carry over in simplified shape. In particular,
Lemma 5.2.9 is in force. In conjunction with Lemma 5.2.8, it implies the unconditional
success probability at time t to be purely random, hence the underlying bit is set to 1
with probability 1/2 at each point of time. We will however have to inspect success
probabilities at later points of time, assuming that the needle has not been found yet.
Assuming w. l. o. g. xOPT = 1n, this condition biases the current success probability
towards decreasing values.
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In the following, we will basically redo the random walk analysis from Lemma 5.2.15
to bound the time until a random success probability, starting at an arbitrary point
in [1, n, 1−1/n], exceeds 1/2. Intuitively, then the expected success probability will stay
at least 1/2 for all following points of time. This is made precise as follows.

Lemma 5.2.18. If Pt ≥ 1/2 then for every t′ ≥ t, E(Pt′ | Pt) ≥ 1/2.

Proof. We inductively show a stronger statement. If at some time t the so-called super-
symmetry

Prob(Pt ≥ p) ≥ Prob(Pt ≤ 1 − p) for all p ≥ 1/2

holds, then super-symmetry holds at all times t′ ≥ t. Using the same arguments as in
the proof of Lemma 5.2.9, super-symmetry at time t implies E(Pt) ≥ 1/2.

To prove the statement, assume super-symmetry to hold at time t. For the induc-
tion step, we exploit the following monotonicity of the formula i(p) = (1 − ρ)p + ρ =
1 − (1 − ρ)(1 − p) for the pheromone increase: p′ ≥ p ⇒ i(p′) ≥ i(p) (see Lemma 5.1.2).
Moreover, the probability of increasing a pheromone value (i. e., success probability) is
obviously monotone in the probability itself.

We exploit these observations to iteratively replace the distribution behind the ran-
dom variable Pt by a simpler distribution whose successor Pt+1 is easier to estimate;
actually, we will apply Lemma 5.2.9 in the end. Let µt(p) := Prob(Pt = p) be the prob-
ability mass of point p at time t. Given two points p1 > p2, we set µ′

t(p1) := µt(p1) − a
for some 0 ≤ a ≤ µt(p1), µ′

t(p2) := µt(p2) + a, and µ′
t(p) := µt(p) for all p /∈ {p1, p2}.

In other words, we conduct a so-called probability shift to decrease the mass of a point
corresponding to a higher success probability by some amount and increase the mass
of a lower point by the same amount. Let P ′

t be the random variable correspond-
ing to µ′

t. As a consequence, Prob(Pt ≥ p) ≥ Prob(P ′
t ≥ p) for all 0 ≤ p ≤ 1. Now,

due to the above-mentioned monotonicities, Prob(Pt+1 ≥ p) ≥ Prob
(
P ′

t+1 ≥ p
)

and
Prob(Pt+1 ≤ 1 − p) ≤ Prob

(
P ′

t+1 ≤ 1 − p
)
, i. e., also the distributions at the following

step stochastically dominate each other as needed to show super-symmetry at time t+1.

Starting from Pt, we carry out a sequence of probability shifts as follows. Let ℓ0 := −∞
and let ℓ1 < · · · < ℓr < 1/2 be all points in the lower half of the pheromone scale
with positive mass, sorted in ascending order. Note that there are only finitely many
such points after finitely many steps. Let µ denote the distribution which is itera-
tively modified. We start from µ := µt. Then, for 1 ≤ i ≤ r, we shift probability
Prob(1 − ℓi−1 > Pt ≥ 1 − ℓi) ≥ µ(ℓi) from all points in the interval (1 − ℓi−1, 1 − ℓi] to
the point 1 − ℓi. If µ(1 − ℓi) > µ(ℓi) after this shift, we additionally shift the difference
µ(1− ℓi)−µ(ℓi) from 1− ℓi to 1− ℓi+1, where ℓr+1 := 1/2. Inductively over i, it follows
from the super-symmetry at time t that we do not shift more probability than allowed.
Moreover, by the procedure, super-symmetry is still valid for the distribution P ′

t obtained
after the k iterations since even the perfect symmetry Prob(P ′

t = p) = Prob(P ′
t = 1 − p)

holds then. By Lemma 5.2.9, its successor P ′
t+1 is perfectly symmetrical, too. Hence,
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the actual distribution Pt+1 stochastically dominates a symmetrical distribution, and,
therefore, has super-symmetry. This completes the induction from t to t + 1.

We now describe the analysis of the random walk as it will be needed in the proof
of the theorem. Still concentrating on the random success probabilities Pt, t ≥ 0, at a
single bit, let ηa denote the first point of time t ≥ 0 such that Pt ≥ 1/2 given that for
the initial pheromone value it holds P0 = a < 1/2 (different from the initialization in
the MMAS algorithm).

Lemma 5.2.19. For every a < 1/2, E(ηa) = O(n2/ρ2).

Proof. We start with a useful transformation. Since we would like to reuse Lemma 5.2.14,
which was previously applied to bound the first hitting time of the state 1/n for the
M -process, we swap the meaning of ones and zeros and consider the process Xt := 1−Pt,
t ≥ 0, instead. We now are interested in the first hitting time for the states {x | x ≤ 1/2}
of the process Xt given X0 = 1 − a > 1/2. To this end, we are allowed to remove the
lower border 1/n on the success probabilities. In consequence, the X-process equals the
M -process given that Li = 1 for all i.

By Lemma 5.2.13, the X-process is a Markovian supermartingale. Hence, we can
apply the general Lemma 5.2.14. To this end, we need a lower bound on ∆t+1, which
is obtained by identifying a single decreasing step and the amount and probability of
decrease. We can assume Xt > 1/2.

For Xt+1 ≤ Xt to happen, an event of probability 1 − Xt ≥ 1/n is sufficient (note
that the upper bounds on success probabilities have not been removed). In this case,
Xt+1 = (1 − ρ)Xt. Moreover, due to Xt ≥ 1/2, we have Xt+1 ≤ Xt − ρ/2 then.
Altogether, ∆t+1 ≥ ((1−Xt)(ρ/2))2 ≥ ρ2/(4n2). We invoke Lemma 5.2.14 with α = 1/2,
δ := ρ2/(4n2), and ℓ = 1. As X0 ≤ 1, for the resulting stopping time T we have
E(T ) = O(n2/ρ2). Moreover, X0 > 1/2, XT ≤ 1, and |XT −X0| ≥ 1/2 implies XT ≤ 1/2.
Hence PT ≥ 1/2 and E(ηa) = O(n2/ρ2) as claimed.

The following theorem shows that the expected optimization time of MMAS on Nee-

dle is at most by a polynomial factor larger than the one of the (1+1) EA unless ρ is
superpolynomially small.

Theorem 5.2.20. The expected optimization time of MMAS on Needle is bounded
from above by O((n2 log n)/ρ2 · 2n).

Proof. By the symmetry of the construction procedure and uniform initialization, we
w. l. o. g. assume that the needle xOPT equals the all-ones string 1n. As in Wegener
and Witt (2005), we study the process on the constant function f(x) = 0. The first
hitting times for the needle are the same on Needle and the constant function, while
the constant function is easier to study as MMAS accepts each new search point forever
for this function.
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The proof idea is to study a kind of “mixing time” t(n) after which each bit is in-
dependently set to 1 with a probability of at least 1/2 regardless of its initial success
probability (recall that this means the probability of setting the bit to 1). Since bits are
treated independently, this implies that the probability of creating the needle is at least
2−n in some step after at most t(n) iterations. We successively consider independent
phases of (random) length t(n) until the needle is sampled. The number of phases re-
quired follows a geometric distribution with parameter at least 2−n, hence, the expected
number of phases required to sample the needle is at most 2n. By the linearity of expec-
tation, the expected time until 2n phases have elapsed is bounded by E(t(n)) · 2n. The
theorem follows if we can show that E(t(n)) = O((n2 log n)/ρ2).

We recall the above-described random walk on the success probabilities. Consider the
independent success probabilities of the n bits for any initial distribution. We call a
success probability good at a certain time t if is has been bounded from below by 1/2 at
least once in the t steps after initialization and bad otherwise. We are interested in the
time T ∗ until all n success probabilities have become good. For each single success prob-
ability, the expected time until becoming good is O(n2/ρ2) according to Lemma 5.2.19.
Due to Markov’s inequality, the time is O(n2/ρ2) with probability at least 1/2. Re-
peating 2 log n independent such phases, this implies that after O(n2/ρ2 · log n) steps,
each success probability is bad with probability at most 1/(2n). Hence, by the union
bound, the probability is only at most 1/2 that there is a bad success probability left
after this number of steps. Repeating this argument an expected number of at most 2
times, E(T ∗) = O((n2 log n)/ρ2) follows. By definition, all success probabilities have
been at least 1/2 at least once after T ∗ steps. Using Lemma 5.2.18, we obtain that T ∗

is an upper bound on t(n), and the theorem follows.

The function Needle requires an exponential optimization time for each algorithm
that has been considered. Often plateaus are much smaller, and randomized search
heuristics have a good chance to leave them within a polynomial number of steps. Gut-
jahr and Sebastiani (2008) consider the function NH-OneMax that consists of the
Needle-function on k = log n bits and the function OneMax on n − k bits, which
can only be optimized if the needle has been found on the needle part. The function is
defined as

NH-OneMax(x) =

(
k∏

i=1

xi

)(
n∑

i=k+1

xi

)

.

Taking into account the logarithmic size of the Needle-function of NH-OneMax,
MMAS* with polylogarithmically small ρ cannot optimize the needle part within an
expected polynomial number of steps. The proof ideas are similar to those used in
the proof of Theorem 5.2.16. After initialization the expected Hamming distance of
the needle part to the needle is (log n)/2, and it is at least (log n)/3 with probability
1 − o(1). Working under this condition, this means that the probability of sampling

189



5 Swarm Intelligence

the needle is at most 2−(log n)/3 = n−1/3 in each step before the needle is found. As
ρ = 1/polylog(n) holds, the lower pheromone borders of the (log n)/3 “wrong” bits from
the initial solution are reached in at most t∗ ≤ (ln n)/ρ = polylog(n) steps. Hence,
the needle is found before this situation has been reached with probability at most
polylog(n)/n1/3 = o(1). Afterwards, the probability of sampling the needle is at most

n−(log n)/3 = 2−Ω(log2 n). This proves the following superpolynomial lower bound.

Theorem 5.2.21. If ρ = 1/polylog(n), the expected optimization time of MMAS* on

NH-OneMax is 2Ω(log2 n).

Also the proof of Theorem 5.2.20 carries over to a major extent. The random walk
arguments leading to E(t(n)) = O((n2 log n)/ρ2) still hold since random bits are consid-
ered independently and the borders for the pheromone values have not been changed.
What has been changed is the size of the needle. As now the needle part only consists of
log n bits, the probability of creating it is at least 2− log n = 1/n after t(n) steps. Hence,
MMAS can find the needle after an expected number of O((n2 log n)/ρ2 ·n) steps. After
this goal has been achieved, the unimodal function OneMax, which contains at most
n+1 different fitness values, has to be optimized. We conclude from Theorem 5.2.4, the
general bound on unimodal functions, that MMAS optimizes OneMax in an expected
number of O((n3 log n)/ρ) steps. Putting the two bounds together, the following result
has been proved.

Theorem 5.2.22. The expected optimization time of MMAS on NH-OneMax is at
most O((n3 log n)/ρ2).

This bound is polynomial if ρ = 1/poly(n), in contrast to the superpolynomial bound
for MMAS* from Theorem 5.2.21. Hence, MMAS is superior to MMAS* on NH-

OneMax as well.

5.2.4 Experiments

We supplement our theoretical investigations by experiments. The time bounds pre-
sented in the previous sections are asymptotic, hence they do not reveal whether certain
effects predicted for large n also occur for small problem dimensions. Moreover, experi-
mental data can reveal details that are not captured by our theorems.

The Performance of MMAS on Needle

First, we take a closer look at MMAS on Needle for several values of ρ. Theorem 5.2.20
gives an upper bound of order O((n2 log n)/ρ2 · 2n), thus growing with 1/ρ. However,
we conjecture that for some values of ρ the upper bound is not tight. If ρ is extremely
large such that MMAS equals the (1+1) EA, the best-so-far solution performs a random
walk through the search space and the expected time until the needle is found is about

190



5.2 MMAS Ant Colony Optimizers on Unimodal Functions and Plateaus

100

1000

2-19 2-17 2-15 2-13 2-11 2-9 2-7 2-5 2-3 2-1

ρ

MMAS
2n

e/(e−1)·2n

10000

100000

1e+06

2-292-272-252-232-212-192-172-152-132-11 2-9 2-7 2-5 2-3 2-1

ρ

MMAS
n

e/(e−1)·2n

Figure 5.6: Average runtime for MMAS on Needle with n = 8 (left) and n = 16 (right)
and exponentially decreasing values of ρ. The data is averaged over 100 runs
for each setting.

e/(e−1) ·2n ≈ 1.58 ·2n due to Garnier et al. (1999). In addition, if ρ is extremely small,
MMAS degenerates to almost random search and the expected time to find the needle
is then close to 2n.

We are tempted to believe that the optimization time is always of order 2n and hence
independent of ρ. The upper bound O((n2 log n)/ρ2·2n) would then be far too pessimistic
for small values of ρ. This is true for extremely small ρ, but we do not know how MMAS
behaves with intermediate ρ-values. Therefore, we perform experiments for Needle

with n ∈ {8, 16} and exponentially decreasing values for ρ, ρ = 2−1, 2−2, 2−3, . . . and
measure the average runtime of MMAS during 100 independent runs for each setting.
The results are shown in Figure 5.6.

Consider the plot for n = 16. First, observe that the average runtime slightly decreases
when decreasing ρ from 2−1 to 2−8. A possible explanation is that the (1+1) EA tends
to resample the current solution, which happens with probability approximately 1/e.
Hence, the expected waiting time until a new solution is sampled is about 1/(1− 1/e) =
e/(e−1), which explains the bound of about e/(e−1) ·2n by Garnier et al. (1999). This
bound also holds for MMAS with very large ρ. When decreasing ρ, the probability of
resampling the current solution decreases and so does the average runtime.

When further decreasing ρ, the average runtime increases very fast. This can be
explained since the “mixing time” (cf. proof of Theorem 5.2.20) increases with a function
of 1/ρ. Due to the slow mixing, MMAS tends to spend a lot of time sampling the same
region of the search space over and over again. If we are unlucky, MMAS focuses on
regions that are far away from the needle where many (say Ω(n)) pheromones hit the
“wrong” borders. In this case the probability of generating the needle is far below 2−n,
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yielding an overly large average optimization time. This observation shows that it is
necessary for the upper bound from Theorem 5.2.20 to grow with some function of 1/ρ
for these ρ-values.

Lastly, at some point on the ρ-scale, MMAS suddenly turns into almost random search.
Here, ρ is so small that typically the needle is found by random search before the
pheromones get the chance to move towards a border. A comparison with the lower
horizontal line indicates that the average runtime is highly concentrated around 2n.

For n = 8, MMAS shows a similar behavior, although the effects are less pronounced.
We conclude that, surprisingly, MMAS shows a phase transition behavior for exponen-
tially decreasing values of ρ (in contrast to the phase transition behavior of the 1-ANT
for only polynomially decreasing ρ). Although MMAS is competitive with the (1+1) EA
for very large and very small values of ρ, it is much more inefficient for intermediate
values of ρ.

Comparing MMAS and MMAS* on Unimodal Functions

We now turn to a comparison of MMAS and MMAS*. Regarding unimodal functions,
the upper bound for MMAS from Theorem 5.2.4 can be by a factor of n2 larger than
the upper bound for MMAS* from Theorem 5.2.3. We believe that the larger bound for
MMAS is too pessimistic for many unimodal functions. In this bound, we had to account
for situations where pheromones in MMAS cannot freeze to a single solution on the cur-
rent fitness level. However, the only situation where many bits will not freeze properly
occurs when the current best-so-far solution consistently switches between different solu-
tions with the same fitness and large Hamming distance. Such a situation appears to be
very atypical for most unimodal functions. We expect MMAS to either freeze towards
a small set of solutions that are close in Hamming space or to find an improvement
beforehand. This behavior is very close to MMAS*. Another reason why we believe
that MMAS and MMAS* behave similarly is that the upper bounds for LeadingOnes

from Theorem 5.2.6 are equal for the two algorithms.

We perform experiments for the two unimodal functions investigated in Section 5.2.2,
OneMax and LeadingOnes. The experimental setting is taken over from the previous
subsection. That is, we use exponentially decreasing values for ρ to cover the range
from almost pure random search to an algorithm close to the (1+1) EA. Preliminary
experiments indicated a small but noticeable difference between MMAS and MMAS* for
a specific range of ρ-values. Therefore, we repeated the experiments with an increased
number of 1000 runs per setting. The results are shown in Figure 5.7.

The observed average runtimes for MMAS and MMAS* are nearly equal for almost
all values of ρ, except for a range of ρ-values, roughly around ρ = 2−9, where MMAS
is more efficient than MMAS*. We applied a statistical test to see for each ρ-value
whether the differences between MMAS and MMAS* are significant. A non-parametric
Mann-Whitney test revealed highly significant results (p ≤ 0.001) in favor of MMAS for
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OneMax with n = 8 and ρ ∈ {2−9, . . . , 2−5}, OneMax with n = 16, ρ ∈ {2−14, . . . , 2−5}
and ρ = 2−16, and finally for LeadingOnes with n = 16 and ρ ∈ {2−13, . . . , 2−7}.

The differences on OneMax are surprising in the light of the conjecture by Gutjahr
(2007) that accepting equally good solutions deteriorates the performance of MMAS*
on OneMax. Our statistical tests confirm that for some ρ-values the opposite holds and
that accepting equally good solutions can lead to a significant speed-up.

It seems that for OneMax jumping between equally fit solutions is beneficial. For a
possible explanation we identify bits with their corresponding 1-edges. Imagine two bits,
one with low pheromone and one with high pheromone. If only the low-pheromone bit is
reinforced, the increase in pheromone is larger compared to the case where only the high-
pheromone bit is reinforced. Also the probability of setting both bits to 1 simultaneously
increases more if only the low-pheromone bit is reinforced. The difference is even stronger
if the high-pheromone bit already hit the upper pheromone border. This observation
might explain why on OneMax it is better to switch between different bits to reinforce
than to reinforce the same bits over and over again.

Comparing MMAS and MMAS* on Plateaus

Now we compare the performance of MMAS* and MMAS on the plateau functions
Needle and NH-OneMax, averaged over 100 runs. The results from Section 5.2.3
predict much larger runtimes for MMAS*.

First consider Needle. After the random freezing time t∗, all pheromones in MMAS*
are frozen until the end of the run. If k bits are frozen towards the “wrong” bit value, the
probability of finding the needle with the next constructed solution is exactly (1/n)k ·
(1 − 1/n)n−k. This probability is extremely small. For, say, n = 16 and k = 12, it
is less than (1/16)12 = 2−64 and the expected time needed of finding the needle is
larger than 264. As these values are far too large to allow a complete simulation, the
optimization times of MMAS* with n = 16 are estimated by adding the expected time
to find the needle to the observed freezing time. (In rare cases where the needle was
found before all pheromones were frozen, the real optimization time was recorded.) The
resulting values still contain randomness as k is a random variable. On the other hand
the estimations yield a reduction of variance, which gives us an even better picture of
the average performance than a complete simulation. The optimization times for n = 8
were obtained by real simulations, though.

Figure 5.7 shows the resulting average optimization times. The data for MMAS is
taken over from Figure 5.6, but the large peaks from Figure 5.6 now clearly pale in com-
parison with the average runtime of MMAS*. One can see that MMAS and MMAS*
behave almost identically for very small values of ρ, since then both algorithms degener-
ate to pure random search. Focussing on the remaining ρ-values, there is no doubt that
MMAS outperforms MMAS*. For n = 8, MMAS* is by a factor of more than 100 slower
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Figure 5.7: Average runtime for MMAS and MMAS* on OneMax, LeadingOnes,
Needle, and NH-OneMax. The runtime of MMAS* on Needle with
n = 16 is estimated by the (conditional) expected remaining optimization
time once all pheromones are frozen. The case of NH-OneMax with n = 8
is omitted due to the small size of the needle.
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than MMAS. For n = 16, the differences are even more drastic: the average optimization
time of MMAS* is often larger than 1013 while MMAS never exceeds 106.

For Needle the best strategy is to choose ρ so small that MMAS and MMAS* degen-
erate to random search. This is different for NH-OneMax where, due to the underlying
OneMax-problem, we can expect MMAS and MMAS* to outperform pure random
search with a sufficiently large value of ρ. We investigate NH-OneMax with n = 16,
i. e., a needle consisting of 4 bits. The size of the needle may look small, but finding
needles is more challenging than for Needle. The problem dimension is much larger
than the size of the needle, and so the pheromone borders are more extreme compared
to Needle when considering equally sized needles. As a consequence, it is harder to
find the needle in case some bits have pheromones at the “wrong” borders.

Figure 5.7 shows the average optimization times for MMAS and MMAS*. The results
show that it is necessary to increase the value of ρ to deal with the OneMax-part of the
function until ρ ≥ 2−13. Larger values of ρ increase the optimization time of MMAS* as
this algorithm is not able to perform a random walk on the Needle-part of the function.
In contrast to this, MMAS also performs well for large values of ρ as the search for the
needle is achieved by replacing equally good solutions.

5.2.5 Conclusions

In this section, we have compared the 1-ANT with an MMAS variant investigated
by Gutjahr and Sebastiani (2008). The 1-ANT is extremely inefficient on OneMax

and LeadingOnes if the evaporation factor is small and exhibits a phase transition
from polynomial to exponential runtime, in sharp contrast to MMAS*. Gutjahr (2007)
conjectured that this difference is due to the different selection mechanisms, i. e., the
question whether to accept solutions of equal fitness. Therefore, we investigated a vari-
ant of MMAS*, called MMAS, that accepts equally fit solutions, so MMAS and the
1-ANT only differ in their pheromone update mechanisms. Our analyses from Sec-
tion 5.2.2 revealed that on OneMax and LeadingOnes there is no phase transition for
MMAS* and MMAS. Hence, the phase transition of the 1-ANT must result from the
pheromone update mechanism.

One conclusion drawn from this comparison is that MMAS is more effective for sim-
ple problems than the 1-ANT. Moreover, MMAS better reflects ACO algorithms used
in applications. Future work should therefore focus on the analysis of MMAS vari-
ants. Nevertheless, the analysis of the 1-ANT was an important step as it provided a
detailed insight into the effect of pheromone updates in ACO and stimulated further
studies (Attiratanasunthron and Fakcharoenphol, 2008; Doerr and Johannsen, 2007b;
Doerr, Johannsen, and Tang, 2008).

Gutjahr and Sebastiani (2008) have shown how to transfer the fitness-level method, a
powerful and well-known tool from the analysis of evolutionary algorithms, to the anal-
ysis of ACO algorithms. Here, we have presented these previous results in a simplified
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Table 5.1: Bounds on the expected optimization times for MMAS* and MMAS for ev-
ery constant ε > 0 and d the number of fitness values. The general lower
bound holds for all functions with unique global optimum. The bound for
MMAS on OneMax follows from Theorem 5.2.4. The lower bounds require
ρ = 1/polylog(n) for MMAS* on NH-OneMax and otherwise ρ = 1/poly(n).

framework and extended them to the broad class of all unimodal functions. More-
over, the upper bounds obtainable by this method have been improved using specialized
techniques for the LeadingOnes function, and the first lower bounds for MMAS* on
OneMax and LeadingOnes have been given. The analyses cover random walks of
pheromone values, which were not well understood before. In particular, we have es-
timated first hitting times for pheromone borders in a general framework for random
processes that are not homogeneous w. r. t. place. As an important insight, it has been
shown that every pheromone value quickly reaches one of the borders even if the corre-
sponding bit does not have any significant contribution to the fitness. The random-walk
analysis is considered valuable also from a methodological point of view.

Another goal of this section was to elaborate on the difference between MMAS and
MMAS*. Table 5.1 summarizes the considered bounds on the expected optimization
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times. Regarding unimodal functions, our theoretical bounds and experiments for One-

Max and LeadingOnes showed similar performance for both algorithms. However, for
a range of evaporation factors, surprisingly, MMAS empirically outperforms MMAS*.
The observed differences were confirmed by statistical tests. Unlike MMAS*, accepting
equally fit solutions allows MMAS to explore plateaus of equal fitness by a random walk
of the best-so-far solution. For well-known plateau functions such as Needle, replacing
equally fit solutions is essential. Both our asymptotical theoretical results and addi-
tional experiments clearly show that the performance gap between MMAS and MMAS*
on plateau functions is huge.

5.3 Hybridization of Ant Colony Optimization with Local

Search

Often ACO is combined with local search methods (Dorigo and Stützle, 2004; Hoos
and Stützle, 2004; Levine and Ducatelle, 2004). Experimental investigations show that
the combination of ACO with a local search procedure improves the performance signifi-
cantly. On the other hand, there are examples where local search cannot help to improve
the search process or even mislead the search process (Balaprakash, Birattari, Stützle,
and Dorigo, 2006). Therefore, it is interesting to figure out how the incorporation of
local search into ACO algorithms can significantly influence the optimization process.

Our aim is to point out situations where the effect of local search becomes visible
in a way that can be tackled by rigorous arguments. Therefore we present functions
where MMAS variants with and without local search show a strongly different runtime
behavior. On one function, MMAS with local search outperforms MMAS without local
search, while on a different function the effect is reversed. The differences shown in this
section are so drastic that the question of whether to use local search or not decides
between polynomial and exponential runtimes.

The outline of this section is as follows. In Section 5.3.1, we define MMAS variants with
and without local search. Section 5.3.2 discusses different effects that a combination of
ACO and local search can have. In Section 5.3.3, we present a rigorous analysis showing
the benefits of such a combination. Contrarily, in Section 5.3.4 we investigate a different
function and prove the opposite effect. We finish with some conclusions.

5.3.1 Algorithms

We consider the runtime behavior of two ACO algorithms. MMAS* has already been
defined in Section 5.2. We enhance MMAS* with local search and call the result
MMAS-LS*. In the following, local search(x) is a procedure that, starting from x, re-
peatedly replaces the current solution by a Hamming neighbor with strictly larger fitness
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until a local optimum is found. We do not specify a pivot rule, hence we implicitly deal
with a class of algorithms.

Algorithm 18 MMAS-LS*

Set τ(e) := 1/2 for all e ∈ E.
Construct a solution x∗.
Set x∗ := local search(x∗).
Update pheromones w. r. t. x∗.
repeat

Construct a solution x.
Set z := local search(x).
if f(z) > f(x∗) then x∗ := z.
Update pheromones w. r. t. x∗.

The fitness functions considered in the following only have a linear number of fitness
values, hence the number of iterations in one local search call is bounded by O(n).
Depending on the pivot rule, the number of fitness evaluations needed to find a better
Hamming neighbor may vary; however, it is trivially bounded by n. Hence, the number of
function evaluations is at most by a factor O(n2) larger than the number of generations.

We consider as performance measure the number of generations, also referred to as
optimization time. This yields an advantage for MMAS-LS* w. r. t. fitness evaluations.
However, the upcoming performance gaps are between polynomial and exponential val-
ues, and an advantage of order n2 is negligible.

5.3.2 The Effect of Hybridizing ACO with Local Search

The effect of using local search with ACO algorithms is manifold. Firstly, local search
can help to find good solutions more quickly as it increases the “greediness” within the
algorithm. Similar to memetic evolutionary algorithms, local search can also be used to
discover the real “potential” of a solution as it can turn a bad looking solution into a good
local optimum. Moreover, the pivot rule used in local search may guide the algorithm
towards certain regions of the search space. For example, first ascent pays more attention
to the first bits in the bit string, which may induce a search bias. However, we will not
deal with this effect here. In particular, our functions are designed such that the pivot
rule is not essential.

There is, however, another effect that we want to investigate more closely. The
pheromone values induce a sampling distribution over the search space. On a typical
fitness landscape, once the best-so-far solution has reached a certain quality, sampling
new solutions with a high variance becomes inefficient and the current best-so-far solu-
tion x∗ is maintained for some time. The analyses from Section 5.2 have shown that then
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the pheromones quickly reach the upper and lower bounds corresponding to x∗. This
means that the algorithm turns to sampling close to x∗. In other words, MMAS variants
typically reach a situation where the “center of gravity” of the sampling distribution
follows the current best-so-far solution and the variance of the sampling distribution is
low.

When introducing local search into an MMAS algorithm, this may not be true. Local
search is able to find local optima that are far away from the current best-so-far solution.
In this case the “center of gravity” of the sampling distribution is far away from the best-
so-far solution.

Assume there is a path of Hamming neighbors with increasing fitness leading to a local
optimum. Assume further that all points close to the path have lower fitness. Then for
MMAS* it is likely that the sampling distribution closely follows the path. The path
of increasing fitness need not be straight. In fact, it can make large bends through the
search space until a local optimum is reached. On the other hand, MMAS-LS*, when
starting with the same setting, will reach the local optimum within a single iteration of
local search. Then the local optimum becomes the new best-so-far solution x∗, while the
sampling distribution is still concentrated around the starting point. In the following
generations, as long as the best-so-far solution is not exchanged, the pheromone values on
all bits synchronously move towards their respective bounds in x∗. This implies for the
sampling distribution that the “center of gravity” takes a (sort of) direct route towards
the local optimum, irrespective of the bent path taken by local search. An illustration
is given in Figure 5.8.

Consequences are that different parts of the search space are sampled by MMAS*
and MMAS-LS*, respectively. Moreover, with MMAS* the variance in the solution
construction is always quite low as the sampling distribution is concentrated on certain
points on the path. But when the best-so-far solution with local search suddenly moves
a long distance, the variance in the solution construction may be very high as the bits
differing between the starting point and x∗ may have pheromones close to 1/2. These bits
are assigned almost randomly. This strongly resembles a uniform crossover operation
from evolutionary computation. There, every bit in the offspring receives a bit value
from a parent that is chosen uniformly at random and anew for each bit, which implies
that bits differing in the two parents are assigned randomly. MMAS-LS* in this setting
therefore simulates a uniform crossover of the starting point and the local optimum x∗.

Our aim in the following is to create functions where MMAS* and MMAS-LS* have a
different runtime behavior. Moreover, we want the performance difference to be drastic
in order to show how deep the impact of local search can possibly be. To this end, we
exploit that the sampling distributions can follow different routes through the search
space. For one function we place a target region with many global optima on the
straight line between starting point and local optimum and turn the local optimum into
a trap that is hard to overcome. In such a setting, we expect MMAS-LS* to drastically
outperform MMAS*. These ideas are made precise in Section 5.3.3. On the other hand,
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Figure 5.8: A sketch of the search space showing the behavior of MMAS* and MMAS-
LS*. The dots and circles indicate the sampling distributions of MMAS*
and MMAS-LS*, resp., at different points of time. While the distribution
of MMAS* tends to follow the fitness-increasing path from left to right, the
distribution of MMAS-LS* takes a direct route towards the local optimum.

if the region of global optima is made a region of traps and the global optimum is very
close to the local optimum, MMAS* has a clear advantage over MMAS-LS*. Another
function following this idea is defined and analyzed in Section 5.3.4.

5.3.3 A Function where Local Search is Beneficial

We now formally define a function where local search is beneficial according to the ideas
from Section 5.3.2. It is named SP-Target (short path with target). The path with
increasing fitness is given by the set SP = {1i0n−i | 0 ≤ i ≤ n}. The path ends with
the local optimum 1n. A large target area containing all global optima is specified by
OPT = {x | |x|1 ≥ (3/4) · n ∧ H(x,SP) ≥ n/(γ log n)}, where H (x,SP) denotes the
Hamming distance of x to the closest search point of SP and γ ≥ 1 is a constant to
be chosen later. For all remaining search points, the function SP-Target gives hints to
reach 0n, the start of the path SP.

SP-Target(x) :=







|x|0 if x /∈ (SP ∪ OPT),

n + i if x = 1i0n−i ∈ SP,

3n if x ∈ OPT .
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The function SP-Target is sketched in Figure 5.9. Note that we have actually defined
a class of functions dependent on γ. All following results will hold for arbitrary con-
stant γ ≥ 1 unless stated otherwise.

0n

1n

sh
or

t
p
at

h
S
P

OPT

Figure 5.9: Illustration of the Boolean hypercube and the function SP-Target. The ver-
tical position of a search point is determined by the number of 1-bits. Its
horizontal position is determined by the position of 1-bits in the bit string.
The objective value is indicated by the brightness; dark areas indicate low
values and light areas indicate high values.

The following theorem shows that MMAS* without local search is not successful. We
restrict ourselves to polynomially large 1/ρ here and also in the following as otherwise
the ACO component would be too close to random search.

Theorem 5.3.1. Choosing ρ = 1/poly(n), the optimization time of MMAS* on SP-

Target is at least 2cn2/9

with probability 1 − 2Ω(n2/9) for some constant c > 0.

To prove the preceding theorem, we have to take into account situations where the
pheromone values of MMAS* have not yet reached their bounds and the construction
procedure samples with high variance. This is the case in particular after initialization.
The following lemma will be used to check the probability of finding the optimum in the
early steps of MMAS* on SP-Target.

Lemma 5.3.2. If the best-so-far solution of MMAS* has never had more than 2n/3
1-bits, the probability of creating a solution with at least 3n/4 1-bits is 2−Ω(n) in each
generation.

Proof. The proof is an application of Chernoff bounds w. r. t. the number of ones in the
solutions created by MMAS*. Let the potential Pt := p1 + · · ·+ pn at time t denote the

201



5 Swarm Intelligence

current sum of the probabilities of sampling ones over all bits, which, by definition of
the construction procedure, equals the expected number of ones in the next constructed
solution. Observe that Pt ≤ 2n/3 implies by Chernoff bounds that the probability of
creating a solution with at least 3n/4 1-bits is 2−Ω(n). We now show: if all best-so-far
solutions up to time t have at most 2n/3 ones, then Pi ≤ 2n/3 for 0 ≤ i ≤ t. This will
prove the lemma.

For the last claim, we denote by k the number of ones in the best-so-far solution
according to which pheromones are updated. Due to the pheromone update mechanism,
the new potential Pi+1 is obtained from Pi and k according to Pi+1 = (1 − ρ)Pi + kρ.
Hence, if Pi ≤ 2n/3 and k ≤ 2n/3 then also Pi+1 ≤ 2n/3. The claim follows by induction
since P0 = n/2 ≤ 2n/3.

Proof of Theorem 5.3.1. We distinguish two phases in the run according to the best-so-
far solution x∗. Phase 1 holds as long as x∗ /∈ SP and |x∗|1 ≤ 2n/3, and Phase 2 applies
as long as x∗ ∈ SP. Our aim is to show that a typical run passes through the two phases
in their order with a failure probability of 2−Ω(n2/9). The probability of finishing the
second phase will be bounded by 2−Ω(n2/9) for each step of the phase. This implies the
theorem as, by the union bound, the total probability in 2cn2/9

generations, c > 0 a small
constant, is still 2−Ω(n2/9).

Consider the first (and best-so-far) solution x∗ created by MMAS*. By Chernoff
bounds, n/3 ≤ |x∗|1 ≤ 2n/3 with probability 1 − 2−Ω(n). There is only a single solution
in SP for each value of |x∗|1. By the symmetry of the construction procedure, we conclude
Prob(x∗ ∈ SP | |x∗|1 = k) = 1/

(n
k

)
. The last expression is 2−Ω(n) for n/3 ≤ k ≤ 2n/3.

Hence, with probability 1 − 2−Ω(n), there is a non-empty Phase 1. By Lemma 5.3.2,
the probability that a specific generation in Phase 1 creates an optimum is 2−Ω(n).
Otherwise, the behavior is as for MMAS* on the function |x|0. Using ρ = 1/poly(n) and
the analyses for the symmetric function |x|1 from Section 5.2.2, the expected time until
the first phase is finished is polynomial. By Lemma 2.3.6, the total failure probability
in Phase 1 is bounded by the product of its expected length and the failure probability
in a single generation. Therefore, the total failure probability for the first phase is still
of order 2−Ω(n).

In Phase 2 we have x∗ ∈ SP. The goal is now to show that a solution from SP with high
probability can only be created if the sampling distribution is sufficiently concentrated
around solutions in SP. This in turn makes creating solutions of high Hamming distance
from SP, including OPT, very unlikely.

We make this idea precise and consider a point 1i0n−i ∈ SP. This search point
consists of a prefix of i ones and a suffix of n − i zeros. For a newly constructed
solution x we define P (i) := p1 + · · · + pi as the expected number of ones in the prefix
and S(i) := (1−pi+1)+ · · ·+(1−pn) as the expected number of zeros in the suffix. The
number of ones in the prefix plus the number of zeros in the suffix yields the number of
bits equaling in 1i0n−i and x, i. e., n − H

(
1i0n−i, x

)
. We call P (i) (S(i)) insufficient if
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and only if P (i) ≤ i − i2/3 (S(i) ≤ (n − i) − (n − i)2/3) holds. We now show that with
insufficiencies it is very unlikely to create 1i0n−i. As this holds for all i, we conclude
that if SP is reached after a certain number of generations, the pheromones do not have
insufficiencies, with high probability.

Let s(i) denote the probability of constructing the solution 1i0n−i. We distinguish
three cases and apply Chernoff bounds to prove the following implications:

Case 1: i < n2/3. Then insufficient S(i) implies s(i) = 2−Ω(n1/3).

Case 2: i > n − n2/3. Then insufficient P (i) implies s(i) = 2−Ω(n1/3).

Case 3: n2/3 ≤ i ≤ n − n2/3. Then insufficient P (i) and insufficient S(i) each imply

s(i) = 2−Ω(n2/9).

We assume that the described insufficiencies do not occur whenever a best-so-far
solution x∗ = 1i0n−i in Phase 2 is accepted. The failure probability is 2−Ω(n2/9) for each
new best-so-far solution x∗. Generations in between two exchanges of x∗ cannot create
insufficiencies as P (i) and S(i) can only increase as long as x∗ is maintained. Hence, we

do not have insufficiencies in Phase 2 for at least 2Ω(n2/9) generations with probability
at least 1 − 2−Ω(n2/9).

Being in Phase 2 without insufficiencies, we show depending on the three cases for the
current x∗ = 1i0n−i that creating an optimal solution has probability 2−Ω(n2/9). In the
first case, the expected number of zeros in the suffix of x is at least (n − i)− (n − i)2/3.
By Chernoff bounds, the random number of zeros is at least (n − i) − 2(n − i)2/3 with

probability at least 1 − 2−Ω(n1/3). Along with i < n2/3, it follows that then the solution
has Hamming distance at most 3n2/3 from SP. By the definition of SP-Target, this is
not enough to reach OPT. The second case is treated analogously. In the third case, the
probability of obtaining less than i−2i2/3 ones in the prefix or less than (n−i)−2(n−i)2/3

zeros in the suffix is altogether bounded by 2−Ω(n2/9). Then the solution has Hamming
distance at most 4n2/3 from SP, which is also not enough to reach the optimum. This
finishes the analysis of the second phase, and, therefore, proves the theorem.

The following theorem proves the benefits of local search. Recall that the number of
fitness evaluations is at most by a factor of O(n2) larger than the stated optimization
time.

Theorem 5.3.3. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-LS*
on SP-Target is O(1/ρ) with probability 1 − 2−Ω(n). If γ ≥ 1 is chosen large enough but
constant, the expected optimization time is also O(1/ρ).

Proof. Note that every call of local search ends either with 1n or with a global optimum.
If the initial local search creates x∗ = 1n, all pheromone values increase simultaneously
and uniformly from their initial value 1/2 towards their upper bound 1−1/n. We divide
a run into two phases. The first phase ends when either all pheromones become larger
than 27/32 or when a global optimum has been found. The second phase ends when
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a global optimum has been found, hence it is empty if the first phase ended with an
optimum.

We bound the length of the first phase by the first point of time t∗ where all pheromone
values exceed 27/32. By Lemma 5.1.2 after t steps the pheromone values are at least
min{1 − 1/n, 1 − (1/2)(1 − ρ)t}. Solving the equation

1 −
(

1

2

)

(1 − ρ)t = 27/32 ⇐⇒ (1 − ρ)t = 5/16

yields the upper bound

t∗ ≤
⌈

ln(5/16)

ln(1 − ρ)

⌉

≤ ln(16/5)

ρ
+ 1 = O(1/ρ).

The assumption ρ ≤ 1/16 implies that at the last step in the first phase the pheromone
value at every bit is within the interval [25/32, 27/32], pessimistically assuming that a
global optimum has not been found before (neither by a constructed ant solution, nor
by local search). The next constructed search point x then fulfills the following two
properties with probability 1 − O(2−n/2400):

1. 3n
4 ≤ |x|1 ≤ 7n

8 ,

2. H (x,SP) ≥ n/(γ log n).

Using Chernoff bounds with δ := 1/25, the failure probability for the first event is
at most 2e−(25n/32)(δ2/3) = 2e−n/2400. To bound the failure probability of the second
event, given the first event, we exploit that all pheromone values are equal. Therefore,
if we know that |x|1 = k then x is uniform over all search points with k ones. Since
the number of search points with k ones is monotone decreasing for 3n/4 ≤ k ≤ 7n/8,
we only consider search points with k = 7n/8 ones as a worst case. The number of
such search points is

( n
n/8

)
, and the number of search points of Hamming distance at

most m := n/(γ log n) from SP is at most m ·
(

n
m

)
. Altogether, the probability of

H (x,SP) ≤ m, given that 3n/4 ≤ |x|1 ≤ 7n/8, is bounded from above by

m
(

n
m

)

( n
n/8

) ≤ m
(

en
m

)m

(
n

n/8

)n/8
≤ m · 2o(n) · 8−n/8.

The last expression is even O(2−n/8). Altogether, the sum of the failure probabilities is
O(2−n/2400) as suggested, and the first statement follows.

For the second statement we estimate the time in the second phase, provided that the
first phase has been unsuccessful. Using the bound (ln n)/ρ on the expected freezing
time from Section 5.2.2 and ρ = 1/poly(n), the time to reach the pheromone bound is
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O((log n)/ρ) = poly(n), or an optimum is created anyway. With all pheromones at the
upper bound, the solution construction process equals a standard mutation of 1n, i. e.,
flipping each bit in 1n independently with probability 1/n. Flipping the first m bits
results in a global optimum as 0m1n−m has Hamming distance at least m to 1i0n−i for
every i. The probability of creating 0m1n−m in a standard mutation is at least

(
1

n

)n/(γ log n)(

1 − 1

n

)n−n/(γ log n)

≥ e−1 · 2−n/γ .

This means that the expected time in the second phase is O(poly(n)2n/γ). Using that
the first phase is unsuccessful only with probability O(2−n/2400) and applying the law
of total probability, the expected optimization time altogether is O(1/ρ) + O(2−n/2400) ·
O(poly(n)2n/γ). The latter is O(1) for γ > 2400, which proves the second statement.

5.3.4 A Function where Local Search is Detrimental

Similarly to the function SP-Target, we design another function SP-Trap (short path
with trap) where local search is detrimental, using ideas from Section 5.3.2. We take
over the path with increasing fitness, SP = {1i0n−i | 0 ≤ i ≤ n}, but in contrast to
SP-Target, the former region of global optima now becomes a trap, TRAP = {x | |x|1 ≥
(3/4) · n∧H (x,SP) ≥ n/log n}. The unique global optimum is placed within distance 2
from the local optimum: OPT = {021n−2}. This ensures that local search climbing the
path SP cannot reach the global optimum. All remaining search points give hints to
reach the start of the path.

SP-Trap(x) :=







|x|0 if x /∈ (SP ∪ TRAP ∪ OPT),

n + i if x = 1i0n−i ∈ SP,

3n if x ∈ TRAP,

4n if x ∈ OPT .

The function SP-Trap is sketched in Figure 5.10.

In the remainder of this section, we prove that MMAS* is efficient on SP-Trap while
MMAS-LS* fails dramatically. Tuning the definition of SP-Trap, we could also extend
the following theorem by a polynomial bound on the expected optimization time. We
refrain from such modifications to illustrate the main effects.

Theorem 5.3.4. Choosing ρ = 1/poly(n), the optimization time of MMAS* on SP-Trap

is O((n log n)/ρ + n3) with probability 1 − 2−Ω(n2/9).

Proof. By the argumentation from the proof of Theorem 5.3.1, the probability that a
solution in TRAP is produced within O(n3) generations is at most 2−Ω(n2/9).
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Figure 5.10: Illustration of the Boolean hypercube and the function SP-Trap. The
vertical position of a search point is determined by the number of 1-bits. Its
horizontal position is determined by the position of 1-bits in the bit string.
The objective value is indicated by the brightness; dark areas indicate low
values and light areas indicate high values.

Under the assumption that TRAP is never reached until the global optimum is found,
MMAS* behaves equally on SP-Trap and a modified function where x ∈ TRAP receives
fitness |x|0. We apply the fitness-level method described in Section 5.2.2 to estimate the
expected optimization time on the latter, easier function. The number of fitness levels
is O(n). On every fitness level, the number of generations until either all pheromones
are frozen or the current best-so-far solution has improved is bounded by (ln n)/ρ with
probability 1. We pessimistically assume that an improvement can only happen once all
pheromones have been frozen. Then the optimization time is bounded by O((n log n)/ρ)
plus the sum of waiting times for improvements on all fitness levels. Showing that the
latter quantity is bounded by O(n3) with probability 1 − 2−Ω(n) completes the proof.

After freezing, the solution construction process equals a standard mutation of the
best-so-far solution x∗. The probability for an improvement from x∗ = 1n is at least
1/(en2). For all other x∗ /∈ TRAP, there is always a better Hamming neighbor, hence
the probability for an improvement is at least 1/(en). Together, the expected waiting
times for improvements on all fitness levels sum up to en2 + O(n) · en = O(n2). By
Markov’s inequality the probability of waiting more than cn2 steps is at most 1/2 for a
suitable constant c > 0. Hence, the probability that more than n independent phases
of length cn2 are needed is bounded by 2−Ω(n). Therefore, the bound O(n3) holds with
probability 1 − 2−Ω(n).
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Theorem 5.3.5. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-LS*
on SP-Trap is at least 2cn with probability 1 − 2−Ω(n) for some constant c > 0.

Proof. We follow the lines of the proof of Theorem 5.3.3. As long as OPT = 021n−2 is not
created, the behavior of MMAS-LS* on SP-Trap and SP-Target is identical. Reconsider
the first phase described in the proof of Theorem 5.3.3 (with the former OPT replaced
by TRAP) and denote by P := p1 + · · · + pn the sum of probabilities of sampling ones
over all bits. Throughout the phase, P ≤ 27n/32, hence the probability of sampling
at least n − 2 ones, which is necessary to reach OPT, is 2−Ω(n) according to Chernoff
bounds.

With probability 1 − 2−Ω(n), the first best-so-far solution 1n is replaced by some
x∗∗ ∈ TRAP where |x∗∗|1 ≤ 7n/8 when the first phase is ended. Due to strict selection,
x∗∗ then can only be replaced if OPT is created. The latter has probability 2−Ω(n) for
the following reasons: the P -value is at most 27n/32 ≤ 7n/8 when x∗∗ is accepted.
Hence, following the argumentation from the proof of Lemma 5.3.2, the P -value will not
exceed 7n/8 unless x∗∗ is replaced. With a P -value of at most 7n/8, creating OPT has
probability 2−Ω(n) and the claim follows for a suitable constant c > 0.

5.3.5 Conclusions

We have investigated the combination of ACO and local search from a theoretical point
of view and pointed out how this combination can influence the search process. In par-
ticular, we have rigorously shown that the combination of both methods can outperform
ACO algorithms not using local search procedures. Furthermore, we have proven that
the combination of ACO and local search may mislead the search process.

Our results represent a first step in the runtime analysis of hybridizations of ACO
algorithms. The runtime analysis of ACO has grown from the analysis of simple test
functions like OneMax and LeadingOnes to more complex artificial functions. The
proofs also show that the method of typical runs (cf. Section 2.3.3) can be applied for
ACO algorithms. We expect other techniques to be applicable for ACO algorithms as
well. Moreover, future work should focus on applying the techniques developed for the
analysis of ACO algorithms to problems from combinatorial optimization.

5.4 Analysis of a Binary Particle Swarm Optimizer

We now turn from ACO to PSO and investigate the runtime of the Binary Particle Swarm
Optimizer (Binary PSO) introduced by Kennedy and Eberhart (1997) for optimizing
pseudo-Boolean functions f : {0, 1}n → R. Recall from the introduction to this chapter
that the Binary PSO maintains a swarm of particles searching for good solutions. Each
particle consists of a current position from {0, 1}n, an own best position and a velocity
vector used in a probabilistic process to update its current position. The velocities for a
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particle are then updated in the direction of its own best position and the best position
found by the swarm.

In the original formulation all velocities are clamped to a fixed interval [−vmax, vmax] to
prevent divergence of the system. It is recommended to choose vmax as a constant value.
We prove in Section 5.4.1 that the effect on the performance is disastrous if the velocity
bound vmax is fixed while the problem size grows. Instead, we present a formulation of the
Binary PSO with vmax adjusted towards growing problem dimensions. The new choice
of vmax leads to provably efficient optimization times without alternative approaches for
velocity control as described, e. g., by Bratton and Kennedy (2007).

In Section 5.4.2 we present lower bounds on the runtime of the Binary PSO. Sec-
tion 5.4.3 shows how fitness-level arguments can be used for the analysis of the Binary
PSO. We exemplarily apply this technique to the class of unimodal functions. In Sec-
tion 5.4.4, we consider a specific variant of the Binary PSO in more detail. The 1-PSO
works with a swarm consisting of only one particle. Despite its simplicity, the 1-PSO
turns out to be surprisingly efficient. A thorough analysis on the function OneMax

in Section 5.4.4 shows that the 1-PSO is competitive to the (1+1) EA. This theoreti-
cal result is supplemented in Section 5.4.5 by an experimental comparison of these two
algorithms on OneMax. We conclude in Section 5.4.6.

5.4.1 The Binary PSO

We consider the Binary PSO by Kennedy and Eberhart (1997) for the optimization of a
pseudo-Boolean function f : {0, 1}n → R. The Binary PSO algorithm maintains µ triples
(x(i), x(i)∗, v(i)), 1 ≤ i ≤ µ, denoted as particles. Each particle i consists of its current
position x(i) ∈ {0, 1}n, its own best position x(i)∗ ∈ {0, 1}n and its velocity v(i) ∈ R

n.
Note that the velocity is from a continuous domain. In PSO terminology, the three
components of a particle are often called vectors. Using the language of optimization,
we will refer to particle positions synonymously as solutions.

The movement for each particle is influenced by the best particle in its neighborhood.
Hence, depending on the neighborhood structure, different particles may be guided by
different good solutions. In this section, however, we only consider a global neighborhood
consisting of the whole swarm. This model is known as gbest model and it implies that all
particles are influenced by a single global best position, denoted as x∗∗. For simplicity,
we hereinafter use the term global best and the symbol x∗∗ both for the global best
position and the particle whose own best position determined the global best position.

The velocities are updated as follows. The velocity vector is changed towards the
particle’s own best and towards the global best x∗∗. Using the language of social-
psychology, the first component is often called cognitive component and the latter is
often called social component. The impact of these two components is determined by
so-called learning factors c1, c2 ∈ R

+
0 representing parameters of the system. The factor
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c1 is the learning factor for the cognitive component and c2 is the one for the social
component. A common choice for the learning factors is to set c1 = c2 = 2.

We give a precise definition for the Binary PSO with a swarm size of µ and learning
factors c1, c2. By lower indices we address the n components of the three parts of the
particle.

Algorithm 19 Binary PSO

Initialize velocities with 0n and all solutions with ⊥.
repeat

Choose r1 ∈ (U [0, c1])
n and r2 ∈ (U [0, c2])

n.

for j := 1 to µ do // update current
for i := 1 to n do and best positions

Set x
(j)
i := 1 with probability s(v

(j)
i ), otherwise set x

(j)
i := 0.

if f(x(j)) > f(x(j)∗) or x(j)∗ = ⊥ then x(j)∗ := x(j).

if f(x(j)∗) > f(x∗∗) or x∗∗ = ⊥ then x∗∗ := x(j)∗.

for j := 1 to µ do // update velocities

Set v(j) := v(j) + r1 ⊗ (x(j)∗ − x(j)) + r2 ⊗ (x∗∗ − x(j)).
for i := 1 to n do // restrict velocities

Set v
(j)
i := max{v(j)

i ,−vmax}. to [−vmax, vmax]

Set v
(j)
i := min{v(j)

i , vmax}.

The algorithm starts with an initialization step, where all velocities are set to all-zeros
vectors and all solutions, including own best and global best, are undefined, represented
by the symbol ⊥. The subsequent loop chooses anew in each iteration random vectors
r1 ∈ (U [0, c1])

n and r2 ∈ (U [0, c2])
n with each component drawn independently and

uniformly from the given interval. These values are then used as weights for the cognitive
and the social component, respectively. Using the language of evolutionary algorithms,
we refer to iterations synonymously as generations.

In the next step of the loop, the velocity is probabilistically translated into a new
position for the particle, i. e., a new solution. As proposed in the original formulation,
we use the sigmoid function

s(v) :=
1

1 + e−v

(see Figure 5.2 for a sketch). Positive velocity components bias the corresponding bit
towards 1-values while negative velocities favor 0-values. At velocity 0n, each bit is
completely random, hence the first created solution is uniformly distributed over {0, 1}n.
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Afterwards, the own best and global best are exchanged if the newly constructed
solution is better. Note that the selection is strict, i. e., a best solution is only exchanged
in case the new solution has strictly larger fitness.

In the following step the Binary PSO performs some vector arithmetic to update the
velocity vectors probabilistically in the direction of the particle’s own best and the global
best. The operator ⊗ denotes componentwise vector multiplication. To ensure conver-
gence of the heuristic, every velocity vector is bounded componentwise by minimum and
maximum values, i. e., to an interval [−vmax, vmax]. This reflects the common choice of a
maximum velocity as studied by Shi and Eberhart (1998). For practical purposes, often
velocities in the interval [−4, 4] are proposed. Since we will however conduct an asymp-
totic analysis, we allow the maximum velocity to grow with the problem dimension n
and confine the components to logarithmic values by letting vmax := ln(n − 1). We will
justify this choice later.

As performance measures we consider the number of generations as well as the number
of function evaluations. We will deal with different parametrizations of the Binary PSO,
differing in the swarm size µ and the learning factors c1 and c2. In particular, we deal
with a remarkably simple yet effective algorithm, the so-called 1-PSO using just one
particle. With just one particle, own best and global best coincide. Therefore, it makes
sense to turn off the social component by setting c2 = 0. The cognitive learning factor is
set to the default value c1 = 2. Note that the same algorithm is described by the choice
c1 = 0 and c2 = 2. Dropping the upper index in the notation, the 1-PSO can be stated
as follows.

Algorithm 20 1-PSO

Initialize v := 0n and x∗∗ := ⊥.
repeat

Choose r ∈ (U [0, 2])n.

for i := 1 to n do // update current and best position
Set xi := 1 with probability s(vi), otherwise set xi := 0.

if f(x) > f(x∗∗) or x∗∗ = ⊥ then x∗∗ := x.

Set v := v + r ⊗ (x∗∗ − x). // update velocities
for i := 1 to n do // restrict velocities to [−vmax, vmax]

Set vi := max{vi,−vmax}.
Set vi := min{vi, vmax}.

Note that during the velocity update in expectation just x∗∗ − x is added to v.

There are several good reasons to investigate the 1-PSO. One is that in the Binary
PSO without social component, i. e., with c2 = 0, all particles behave like independent
instances of the 1-PSO. Moreover, by analyzing the 1-PSO we gain insight into the
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probabilistic model underlying the Binary PSO. This then helps to analyze more complex
PSO variants. Finally, the investigation of the 1-PSO is interesting on its own as the
1-PSO turns out to be surprisingly effective.

Lower Bound for Constant Velocity Range

The value vmax is often set to a constant value. This makes sense when dealing with
problems of bounded size. However, one should be aware of the fact that for growing
problem sizes a fixed value for vmax leads to an extreme decline in performance. The
following lower bound shows that if all velocities are restricted to constant values, then
the Binary PSO is too close to random search and the algorithm fails badly, even given
exponential time and a large number of global optima.

Theorem 5.4.1. Consider the Binary PSO with arbitrary values for µ, c1, and c2,
where vmax is redefined to a constant value. Then there is a constant α = α(vmax) such
that the following holds. If f contains at most 2αn global optima, the probability that the
Binary PSO finds a global optimum on f within 2αn function evaluations is 2−αn.

Proof. Choose α such that s(vmax) = 2−3α and note that α is a positive constant if
vmax is constant. We estimate the probability of constructing any specific solution x.
Since the Binary PSO treats 0- and 1-bits symmetrically, we can w. l. o. g. assume that
x is the all-ones string 1n. Then, even if all velocities are at vmax, the probability
of constructing x is still bounded by (s(vmax))

n = 2−3αn. By the union bound, the
probability of constructing any global optimum out of at most 2αn ones is bounded by
2αn · 2−3αn = 2−2αn. By the same argument, the probability that this happens at least
once in 2αn solution constructions is at most 2αn · 2−2αn = 2−αn.

For the common choice vmax := 4, the constant α is approximately 0.00873. As
20.00873·n is small for small n, the bad runtime behavior can only be observed if the
problem size is large enough. This certainly isn’t the case for n = 100 where 2αn < 2.
However, for a problem size of n = 10000, the claimed bound has grown to 2αn > 1026

and we would not expect to live long enough to see the Binary PSO find an optimum.

Theorem 5.4.1 rules out a constant default value for vmax that works well for all
problem sizes. We therefore propose to let vmax scale with the problem size. More
precise, we set vmax = ln(n − 1). As s(−vmax) = 1/n and s(vmax) = 1 − 1/n, the
probability of setting a bit to 1 is always in the interval [1/n, 1−1/n]. This corresponds
to the pheromone bounds in the ACO algorithms from the preceding sections. It is
inspired by standard mutation operators in evolutionary computation, where incorrectly
set bits have a probability of 1/n of being corrected. We will see in the following that
this choice leads to a surprisingly good runtime behavior.
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5.4.2 A Lower Bound for the Binary PSO

An important step towards runtime bounds for the Binary PSO is to understand the
dynamics of the probabilistic model underlying PSO, that is, the behavior of the velocity
vector. Consider a single bit that is set to 1 both in the own best and in the global best.
Then, as long as these solutions are not exchanged, its velocity value v is guided towards
the upper bound vmax. An important observation is that the velocity is only increased
in case the bit is set to 0 in the next constructed solution. The probability that this
happens is given by

1 − s(v) = 1 − 1

1 + e−v
=

1

1 + ev
,

and we see that this probability decreases rapidly with growing v. Hence, the closer the
velocity is to the bound vmax, the harder it is to get closer. A symmetric argument holds
for velocities that are guided towards −vmax.

Remark 5.4.2. Note that the mechanism to increase velocities in the Binary PSO dif-
fers from the mechanism to increase pheromones in MMAS. In MMAS, the best-so-far
solution is automatically reinforced in every generation. If a bit value is fixed to 1, the
corresponding success probability is increased with every generation, hence there is a
deterministic upper bound for the time until the pheromone bound is hit. In the Binary
PSO, the success probability is only increased if an appropriate bit value is sampled,
hence the time until the velocity bound is hit is random. If value 1 is a “good” bit
value present in own best and global best, then a “bad” bit value 0 has to be sampled
to increase the success probability. This may appear counterintuitive at first glance, but
it reflects the paradigm of particles moving from their current position towards good
solutions.

As long as the v-values are not too close to the velocity bounds −vmax and vmax, the
search of the Binary PSO is too random for it to find single optima with high probability.
We can make this idea precise by the following, general lower bound, which holds for
all practical choices of the learning factors c1 and c2 and a polynomial swarm size µ.
The maximum change of a velocity per generation will be abbreviated by c̄ := c1 + c2

hereinafter.

Theorem 5.4.3. Let f be a function with a unique global optimum, and let µ = poly(n)
and c̄ = O(1). Then the expected number of generations of the Binary PSO on f is
Ω(n/log n).

Proof. W. l. o. g. the global optimum is 1n. Let t := αn/ln n for a small constant α > 0,
which is chosen later. We show that the probability of not creating 1n within t genera-
tions is 1 − o(1), which implies the claim of the theorem.

We consider an arbitrary bit in an arbitrary particle. The event of creating a one at
this bit is called success. Let a bit be called weak if its success probability has been at
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most p := 1 − e ln(µn)
n up to and including the current generation. Let a set of bits be

called weak if it contains only weak bits. We will show that with probability 1− 2−Ω(n)

after t generations of the 1-PSO each particle still contains a weak subset of bits of size at
least n/e. The probability of setting all bits of such a weak subset to 1 simultaneously
is bounded from above by pn/e ≤ 1/(µn) for each particle. Note that this event is
necessary to create 1n in a particle. Thus, the probability of finding the optimum within
t generations creating µ new solutions each is still less than tµ/(µn) = O(1/log n) = o(1),
which will prove the theorem.

We still have to show that with probability Ω(1), after t generations, there is a weak
subset of size at least n/e in each particle. One step can increase the velocity by at
most c̄. Note that p = 1 − O((ln n)/n) since µ = poly(n). To reach success probability
at least p, the current velocity must be between s−1(p)− c̄ = ln(p/(1−p))− c̄ and s−1(p)
at least once. Pessimistically assuming the first value as current velocity, the probability
of not increasing it in a single step is at least

1

1 + e− ln(p/(1−p))+c̄
= 1 − ec̄(1 − p)

p + ec̄(1 − p)
≥ 1 − 2ec̄(1 − p)

if n is large enough for p ≥ 1/2 to hold. The last expression equals 1 − 2ec̄+1 ln(µn)/n
by definition of p. Hence, along with c̄ = O(1) and again µ = poly(n), the probability
of not increasing the velocity within t steps is at least

(

1 − 2ec̄+1 ln(µn)

n

)t

=

(

1 − O(ln n)

n

)αn/ln n

≥ 2e−1

if α is chosen small enough. This means that each bit in each particle independently has
a probability of at least 2e−1 of being weak at generation t. Using Chernoff bounds, the
probability of not having a weak set of size at least n/e in a specific particle is at most
e−Ω(n). As µ = poly(n), the probability that there exists a particle without weak subset
at generation t is still µe−Ω(n) = e−Ω(n).

5.4.3 Upper Bounds for the Binary PSO

In this section we derive an upper bound for the Binary PSO. The lower bound from
Theorem 5.4.3 relied on the fact that a velocity that is guided towards vmax does not reach
this value in short time and so the Binary PSO cannot find a single target efficiently. On
the other hand, if we consider a longer period of time, velocities may reach the bounds
−vmax or vmax they are guided to. In this case we say that the velocity has been “frozen”
as the only chance to alter the velocity again is to have an improvement of the own best
or the global best. The random time until a bit is frozen is called freezing time.

Observe that freezing is only possible for bits where own best and global best coincide
or in case one of the learning factors c1, c2 is 0. Freezing does not happen if, e. g.,
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c1 = c2 > 0 and own best and global best differ for a bit i. W. l. o. g., the own best has
bit value 1 and x∗∗

i = 0, then the new velocity v′i for this bit equals

v′i = vi + r1,i(1 − xi) + r2,i(0 − xi) = vi + r1,i − (r1,i + r2,i) · xi,

where r1,i (r2,i) denotes the i-th entry of the random vector r1 (r2). This means that if
vi ≫ 0, there is a good chance that xi = 1 and then v′i = vi − r2,i. Contrarily, if vi ≪ 0,
it is likely that xi = 0 and v′i = vi + r1,i. In both cases the velocity vi is driven towards
velocity value 0. As a side remark, note that if all these bits reach velocities close to 0,
the solution construction process is very similar to a uniform crossover between own
best and global best solution. So, it makes sense to define the freezing time only for bits
whose velocity can freeze at −vmax or vmax. We summarize our sufficient conditions for
freezing by the following definition.

Definition 5.4.4. A bit x
(j)
i of a particle x(j) in the Binary PSO is called well guided

with respect to a given time interval if at least one of the following conditions is met.

• The corresponding bit in the global best, x∗∗
i , remains fixed in the time interval

and c1 = 0.

• The corresponding bit in the own best, x
(j)∗
i , remains fixed in the time interval

and c2 = 0.

• Both x∗∗
i and x

(j)∗
i remain fixed in the time interval and x∗∗

i = x
(j)∗
i .

In order to arrive at an estimation of the expected freezing time, we investigate the
random process of velocities moving towards a bound. Assume we are interested in the
random hitting time until a velocity has increased towards a value of at least a, for some
fixed real value a. Intuitively, we expect a monotonicity to hold: larger initial velocities
are always better than smaller ones, in terms of the expected hitting time. However,
such a monotonicity does not hold in general. The reason is that the probability of
increasing a velocity decreases with the velocity itself and velocities being very close to a
can actually be inferior to values that are a little further away.

We give a simple example for the 1-PSO. Consider two bits with current velocity values
v1 and v2, guided towards vmax with vmax > 3. Assume that v1 = 2 and v2 = 2.5 and let
V ′

1 , V ′
2 denote the random velocities after the next step. We compare the probabilities

that the random new velocities reach a value of at least 3 in the next step. As the
current velocity for v2 is larger, we expect chances for this bit to be higher. In order to
increase the velocity, we have to create value 0 at the bit. The amount of increase is
then uniform over [0, 2]. Hence we have

Prob
(
V ′

1 ≥ 3
)

= (1 − s(v1)) ·
1

2
= s(−2) · 1

2
≈ 0.0596.
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On the other hand,

Prob
(
V ′

2 ≥ 3
)

= (1 − s(v2)) ·
3

4
= s(−2.5) · 3

4
≈ 0.0569

and Prob(V ′
2 ≥ 3) < Prob(V ′

1 ≥ 3), in contrast to our expectations. In this example, the
larger velocity only seems to have a clear advantage over the smaller velocity. In fact,
monotonicity does not hold as the probability of increasing a current velocity of v equals
1 − s(v), i. e., decreases rapidly with v.

Nevertheless, our observation does not imply in general that small velocities are su-
perior to large velocities. This only holds at a microscopic level. If, on the other hand,
v2 ≥ v1 + c̄ is presupposed in our example (recall that c̄ = c1 + c2 denotes the maximum
increase of velocity in a generation), then Prob(V ′

2 ≥ a) ≥ Prob(V ′
1 ≥ a) holds for every

value of a. The reason is that the increase of a velocity is bounded from above by c̄,
so V ′

1 cannot “overtake” V ′
2 in this case. Unfortunately, the corresponding inequality

V ′
2 ≥ V ′

1 + c̄ does not necessarily carry over to the next step. Therefore, we take a slightly
different viewpoint. If the current velocity V is random and follows a probability distri-
bution on the interval [−vmax, vmax], we study the process V − c̄ obtained by decreasing
all velocities by the maximum change of velocity, namely c̄. Values v ∈ [−vmax, vmax]
with positive probability mass are mapped to v− c̄ ∈ [−vmax− c̄, vmax− c̄]. If the modified
process decides to move from v − c̄ to some higher velocity, it does so with at least the
same probability as the original process since its velocity is lower. Although the modified
process might take a littler longer to reach the desired value a than the original, it has
an advantage that is maintained for the following time steps.

In the following, we introduce a relaxed concept of domination reflecting the preceding
considerations. One instance of the velocity-increasing process is allowed to be by up
to c̄ behind another instance and has an advantage from this perspective. For notational
convenience, we add c̄ to the velocity of the dominated process rather than subtracting c̄
from the dominating one.

Definition 5.4.5. Consider the random velocities of two bits that are well guided,

w. l. o. g., to +vmax. Denote by V
(t)
1 and V

(t)
2 their random velocity values after t gener-

ations have elapsed. We say that V
(t)
1 c̄-dominates V

(t)
2 , written as V

(t)
1 �c̄ V

(t)
2 , if for

all a ∈ R it holds

Prob
(

V
(t)
1 ≥ a

)

≥ Prob
(

V
(t)
2 ≥ a + c̄

)

.

If one velocity c̄-dominates another one at some time, this property will be preserved
in the following.

Lemma 5.4.6. For all t ≥ 0: V
(t)
1 �c̄ V

(t)
2 ⇒ V

(t+1)
1 �c̄ V

(t+1)
2 if the bit is well guided

in the time interval [t, t + 1].
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Proof. We assume that the distributions of V
(t)
1 and V

(t)
2 are continuous. If they are

discrete or have discrete components, the following arguments can be proven in the
same manner with a slight change of notation.

Suppose that we are at time t and that the current velocity x is sampled according

to V
(t)
1 . For any a ∈ R, we are interested in the event V

(t+1)
1 ≥ a. If x ≥ a, this happens

with probability 1 since, by our assumptions, velocities are not decreased. If x < a − c̄,
the event is excluded since a velocity is increased by at most c̄ in a step. Finally, if
x ∈ [a − c̄, a), the Binary PSO has to sample a 0-bit, which happens with probabil-
ity s(−x), and choose r1 + r2 ≥ a − x afterwards, where (slightly abusing notation)
r1 ∈ U [0, c1] and r2 ∈ U [0, c2]. Let G(s) := Prob(r1 + r2 ≥ s) denote the distribution

function for the sum of r1 and r2. Writing f
(t)
1 (x) for the density function of V

(t)
1 at x,

our considerations yield

Prob
(

V
(t+1)
1 ≥ a

)

= Prob
(

V
(t)
1 ≥ a

)

+

∫ a

a−c̄
f

(t)
1 (x) · s(−x) · G(x − a + c̄) dx (5.10)

for every a ∈ R. Analogously, we have

Prob
(

V
(t+1)
2 ≥ a + c̄

)

= Prob
(

V
(t)
2 ≥ a + c̄

)

+

∫ a+c̄

a
f

(t)
2 (x)·s(−x)·G(x−a) dx (5.11)

Using an index transformation, we rewrite (5.10) as

Prob
(

V
(t+1)
1 ≥ a

)

= Prob
(

V
(t)
1 ≥ a

)

+

∫ a+c̄

a
f

(t)
1 (x− c̄) ·s(−x+ c̄) ·G(x−a) dx (5.12)

as we will concentrate on a comparison of the integrals.

Abbreviating ∆(t)(a) := Prob
(

V
(t)
1 ≥ a

)

− Prob
(

V
(t)
2 ≥ a + c̄

)

, our aim is to show

that ∆(t)(a) ≥ 0 implies ∆(t+1)(a) ≥ 0. We obtain a pessimistic estimation of ∆(t+1)(a)

if we estimate Prob
(

V
(t+1)
2 ≥ a + c̄

)

from above and Prob
(

V
(t+1)
1 ≥ a

)

from below.

Since s(−x + c̄) ≥ s(−a) ≥ s(−x) for x ∈ [a, a + c̄], we obtain appropriate estimations
by replacing all sigmoid terms in (5.12) and (5.11) by s(−a). Hence,

∆(t+1)(a) = Prob
(

V
(t+1)
1 ≥ a

)

− Prob
(

V
(t+1)
2 ≥ a + c̄

)

≥ ∆(t)(a) +

∫ a+c̄

a
(f

(t)
1 (x − c̄) − f

(t)
2 (x)) · s(−a) · G(x − a) dx

= ∆(t)(a) +

∫ a+c̄

a
g(x) · s(−a) · G(x − a) dx, (5.13)

where g(x) := f
(t)
1 (x− c̄)− f

(t)
2 (x). Recall that our aim is to bound (5.13) by at least 0.

To this end, it is helpful to express also ∆(t)(a) in terms of the density functions. After
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the same index transformation as for (5.12), we obtain

∆(t)(a) =

∫ vmax+c̄

a+c̄
(f

(t)
1 (x − c̄) − f

(t)
2 (x)) dx =

∫ vmax+c̄

a+c̄
g(x) dx.

Now (5.13) can be written with unified integrals as

∆(t+1)(a) =

∫ vmax+c̄

a+c̄
g(x) dx +

∫ a+c̄

a
g(x) · s(−a) · G(x − a) dx

=

∫ vmax+c̄

a
g(x) · w(x) dx, (5.14)

where the weight function w(x) is defined by w(x) := s(−a) · G(x − a) for x ∈ [a, a + c̄]
and w(x) := 1 for x ≥ a+ c̄. The aim is still to bound the right-hand side in (5.14) by at
least 0. This is done by considering portions of the integral and bounding these terms
from below. Note that 0 ≤ w(x) ≤ 1 for x ≥ a and that w(x) increases monotonically
in x.

The function g(x) may be positive or negative on certain portions of the integral. In
the unweighted case, without w(x), we have for every b ∈ R

∫ vmax+c̄

b
g(x) dx = ∆(t)(b − c̄) ≥ 0 (5.15)

by our assumptions for time t. This implies that g(x) must be positive for x sufficiently
close to vmax + c̄. Hence, if there is a root of g(x) in the interval [a, vmax + c̄], then
g(x) ≥ 0 if x is greater than the largest root. If even g(x) ≥ 0 within the whole interval
[a, vmax + c̄] then

∫ vmax+c̄

a
g(x) · w(x) dx ≥

∫ vmax+c̄

a
g(x) dx ≥ 0.

If g(x) changes signs in the interval, we denote by r∗∗ < r∗ the largest two roots of g(x)
in the interval (defining r∗∗ = a if there is only a single root) and recall that g(x) ≥ 0
for x ≥ r∗. Here it is crucial that w(x) increases, implying that

∫ vmax+c̄

r∗∗
g(x) · w(x) dx =

∫ r∗

r∗∗
g(x) · w(x) dx

︸ ︷︷ ︸

≤ 0

+

∫ vmax+c̄

r∗
g(x) · w(x) dx

︸ ︷︷ ︸

≥ 0

≥
∫ r∗

r∗∗
g(x) · w(r∗) dx +

∫ vmax+c̄

r∗
g(x) · w(r∗) dx

= w(r∗) ·
∫ vmax+c̄

r∗∗
g(x) dx ≥ 0,
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the last inequality following from (5.15). If there are further roots (say, r∗∗∗ and r∗∗∗∗),

this argument can be iterated to yield
∫ r∗∗

r∗∗∗∗ g(x) ·w(x) dx ≥ 0, which inductively proves
∫ vmax+c̄
a g(x) · w(x) dx ≥ 0 for every number of roots.

We are aiming at an upper bound on freezing times, i. e., the first point of time
where a velocity value has reached the bound corresponding to the global best, which,
w. l. o. g., is +vmax. The concept of domination allows us to take the following worst-case
perspective for the velocity value after a number of steps t. We shift the velocity scale
up by c̄ and arrive at a simplified Markov process ṽt, t ≥ 0, called ṽ-process, defined on
[−vmax + c̄, vmax + c̄], as follows. Initially, ṽ0 := −vmax + c̄. For t ≥ 0, the random state
ṽt+1 is obtained as follows:

ṽt+1 :=

{

min{ṽt + r1 + r2, vmax + c̄} with probability 1
1+eṽt

ṽt otherwise,

where r1 ∈ U [0, c1] and r2 ∈ U [0, c2] are drawn independently anew in each step. The
reason for shifting the velocity scale is that we are looking for velocities that c̄-dominate
the ṽ-process. Hence, a velocity of at least vt in the current process at time t will be
related to a velocity of at least vt + c̄ in the ṽ-process. Note that an increase of the
first velocity value happens with probability 1/(1+ evt ), whereas this probability is only
1/(1 + evt+c̄) with the second velocity. However, the ratio of the two probabilities can
be bounded according to (1 + evt)/(1 + evt+c̄) ≥ e−c̄, i. e., independently of vt. From
an opposite perspective, a (random) velocity ṽt of the ṽt-process corresponds one-to-one
to a (random) probability P̃t := 1/(1 + e−ṽt) of setting the considered bit to 1 (called
success) at time t. At velocity ṽt − c̄, the actual process has a success probability of only
Pt := 1/(1 + e−ṽt−c̄).

We justify why the ṽ-process is really a worst case if we are interested in first hitting
times for the upper velocity bound vmax.

Lemma 5.4.7. Consider a bit of a particle that is well guided for t generations, w. l. o. g.,
to +vmax, and let vt and Pt denote its velocity and success probability, respectively, after
t generations have elapsed. Then vt c̄-dominates the ṽ-process. Moreover, for every

p ≥ 0, Prob(Pt ≥ 1 − ec̄p) ≥ Prob
(

P̃t ≥ 1 − p
)

, where P̃t denotes the success probability

of the ṽ-process.

Proof. We prove the first claim by induction. It is obvious that with every initial value
v0 ∈ [−vmax, vmax] of the real velocity v0 c̄-dominates ṽ0 := −vmax + c̄, the initial value
of the ṽ-process. Due to Lemma 5.4.6, this property is preserved for all following time
steps where the bit is still well guided.

The second property follows from the fact (1 + evt)/(1 + evt+c̄) ≥ e−c̄ by means of
1 − 1/(1 + ex) = 1/(1 + e−x).
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Having established the ṽ-process as a worst-case perspective for the real velocity pro-
cess, we can now move towards analyzing first hitting times for the real process. The
proof of Lemma 5.4.9 will use Chernoff and Hoeffding bounds. For convenience, we state
formulations that have been tailored toward our applications. The first bound is taken
over from Lemma A.6, the second one follows from Lemma A.7.

Lemma 5.4.8 (Chernoff and Hoeffding bounds). Let X1, . . . ,Xn be independent random
variables and denote X := X1 + · · ·+Xn. If Xi ∈ {0, 1} for 1 ≤ i ≤ n then for 0 < δ ≤ 1

Prob(X ≤ (1 − δ)E(X)) ≤ e−E(X)δ2/2.

If 0 ≤ Xi ≤ b for 1 ≤ i ≤ n, then for δ > 0

Prob(X ≤ (1 − δ)E(X)) ≤ e−2E(X)2δ2/(nb2).

The following lemma will be used to bound the expected freezing time for specific
bits. We state a more general result that also reveals insight into the distribution of
random velocities on their way to the velocity bounds. In fact, the lemma captures the
random success probabilities induced by these velocities very precisely, depending on
the number of generations t the bit has been given to “evolve” its distribution towards
the velocity bound. This will be important later on in Section 5.4.4, when performing a
more detailed analysis on the specific function OneMax.

Formally, Lemma 5.4.9 makes a statement about the random probability Pt of setting
a bit to 1, after it has been guided towards the velocity bound vmax for t time steps.
The length of the considered time span t can be chosen almost arbitrarily, subject to
a mild lower bound. For fixed t, the lemma presents lower bounds for the probability
that Pt exceeds a family of probability thresholds. The thresholds are specified by a
second value i; they decrease from high thresholds to lower thresholds as i increases.
The probability that Pt exceeds the i-th threshold is at least 1 − e−i. This means
that the probability of not overcoming the i-th threshold decreases exponentially with i.
Intuitively, this accounts for the fact that low velocities are increased far more easily
than high velocities. Failing to overcome low thresholds is, therefore, far more unlikely
than failing on higher ones.

Lemma 5.4.9. Consider a well-guided bit of a particle in the Binary PSO. After a
number t of elapsed generations, let Pt denote the probability of setting the bit according
to the bit value it is guided to, w. l. o. g. value 1.

Choosing c∗ := min{1, c̄/2}, t ≥ (16 ln n)/c∗ and n large enough, it holds for every
real-valued i ∈ [1, c∗t/192]

Prob

(

Pt ≥ 1 − 96iec̄

c∗ · t

)

≥ 1 − e−i
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or the bit’s velocity is capped by vmax anyway.
More generally, this statement holds if Pt denotes the success probability of a bit whose

velocity c̄-dominates the ṽ-process at time t.

Note that if we were only interested in an upper bound on the expected freezing time,
it would suffice to state the lemma only for one threshold, namely Pt = 1 − 1/n, which
corresponds to a velocity at vmax.

Proof. Instead of the actual velocity vt after t steps, we consider the ṽ-process. According
to Lemma 5.4.7, this provides a pessimistic estimation of the actual (random) velocity
value after t steps in terms of c̄-domination and justifies the more general claim in the
last sentence of the lemma. Moreover, the required success probability 1 − 96iec̄/(c∗t)
at the bit in the worst case corresponds to a success probability 1 − 96i/(c∗t) of the
ṽ-process. We show the following claim: with probability at least 1 − e−i, it holds for
the success probability P̃t of the ṽ-process after t steps that P̃t ≥ 1− 96i/(c∗t), or ṽt has
reached vmax + c̄ anyway; the latter case will pessimistically be ignored hereinafter.

Recall that the probability of increasing the ṽ-value decreases monotonically with the
ṽ-value. It is therefore bounded from below by 96i/(c∗t) before the velocity has reached
the desired value. Note that for smaller velocities this probability is much higher as it
increases rapidly with increasing distance from the bound. The progress of the velocity
from ṽ0 = −vmax + c̄ to the value corresponding to success probability 1 − 96i/(c∗t) is
divided into two big epochs. Throughout the first epoch, the ṽ-value is at most 0, which,
by definition of the ṽ-process, implies that each generation increases the velocity with a
probability of at least 1/2, i. e., independent of t and i. In the second epoch, we have to
be more careful. An increase of the velocity by a constant additive amount derates the
probability of a further increase by a constant factor. Hence, to obtain a good bound on
the probability of an increase throughout the second epoch, we divide the progress into
phases with exponentially decreasing probabilities.

We start with the first epoch. Our aim is to show that it ends after at most t/2
steps with high probability. For this to happen, the following two events together are
sufficient:

1. In the first t/2 steps, there are at least t/8 increases, or a positive ṽ-value is reached.

2. The total increase in t/8 increases is at least c∗t/16, or a positive ṽ-value is reached.

Since t ≥ (16 ln n)/c∗ is assumed in this lemma, the proposed total increase is at least
vmax, i. e., sufficient to leave the velocity range [−vmax + c̄, 0].

To estimate the joint probability of the two events, we use the Chernoff-Hoeffding
bounds from Lemma 5.4.8. As we are in the first epoch, an increase happens with prob-
ability at least 1/2. Using E(X) ≥ t/4, δ := 1/2 and the first bound of the lemma,
the failure probability for the first event is at most e−t/32, which is at most e−6i since
i ≤ c∗t/192 ≤ t/192. For the second event, we apply the second bound of Lemma 5.4.8.
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Here we observe that the random amount of increase is uniform over [0, c̄] with an ex-
pectation of c̄/2. By pessimistically minimizing c̄/2 with 1 and making the distribution
uniform over [0, 2c∗], the new average amount of increase c∗ yields a pessimistic estima-
tion. Hence, the second bound of the lemma can be applied using δ = 1/2, E(X) ≥ c∗t/8
and b ≤ 2c∗. We obtain a failure probability for the second event of at most e−t/64 ≤ e−3i,
altogether a failure probability of at most e−3i + e−6i for the first epoch.

Assuming a positive velocity, i. e., a success probability greater than 1/2 and a prob-
ability less than 1/2 for an increase of the velocity, we have entered the second epoch.
The number of phases that it is subdivided into equals ⌈log(c∗t/(192i))⌉. Note that
some phases may be empty and phases are traversed in decreasing order. Phase k,
1 ≤ k ≤ ⌈log(c∗t/(192i))⌉, is defined such that throughout the phase, the current suc-
cess probability (i. e., the probability of not increasing the velocity) is within the interval
[

1 − 96i2k

c∗t , 1 − 96i2k−1

c∗t

]

∩ [1/2, 1]; hence, the complementary probabilities exhibit an ex-

ponential decay. We use the inverse sigmoid function s−1(z) = ln(z/(1 − z)) to map a
success probability z of the ṽ-process back to a velocity. This allows us to bound the
length of the above-defined intervals on the velocity scale. In case that 1 − 96i2k

c∗t ≥ 1/2,
the length is at most

ln

(

1 − 96i2k−1

c∗t
96i2k−1

c∗t

)

− ln

(

1 − 96i2k

c∗t
96i2k

c∗t

)

= ln

(

2k

2k−1
· 1 − 96i2k−1

c∗t

1 − 96i2k

c∗t

)

≤ ln

(
2 · 2k

2k−1

)

= ln 4.

In the other case, which is equivalent to 96i2k

c∗t > 1/2, the interval ranges from 0 to

s−1
(

1 − 96i·2k−1

c∗t

)

. We have 96i2k−1

c∗t = 1
2 · 96i2k

c∗t ≥ 1
4 . Hence, s−1

(

1 − 96i·2k−1

c∗t

)

≤
ln((1 − 1/4)/(1/4)) ≤ ln 4, implying that the length of an interval on the velocity scale is
bounded by ln 4 in both cases. We will next show that, with high probability, we spend
at most tk

2k+1 steps in a phase. If this holds for all phases, the total time spent in all

phases of the second epoch is less than t
∑∞

k=1
k

2k+1 = t
2 . Together with the first epoch,

the number of steps does not exceed t.
In a similar (but more detailed) manner as for the first epoch, the following set of

conditions is sufficient to raise the velocity during the second epoch to the desired value.
Note that Condition 2. suffices to leave any considered interval of success probabilities.

For k =
⌈
log( c∗t

192i )
⌉

down to 1 it holds

1. If the current success probability is in the interval

[

1 − 96i2k

c∗t
, 1 − 96i2k−1

c∗t

]

∩
[
1

2
, 1

]

,

then tk
2k+1 steps contain at least 12ik/c∗ increases.

2. The total increase in 12ik/c∗ increases is at least ln 4.
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We may finish the considerations prematurely if the desired ṽ-value is reached within
less steps or less total increase.

It remains to estimate the probabilities of these events. This is done similarly as for
the first epoch by applying Lemma 5.4.8. For the first event we estimate E(X) ≥ 24ik/c∗

and use δ = 1/2. For the second event, we use E(X) ≥ 12ik and δ = 3/4 since, clearly,
12ik/4 > ln 4. Hence the failure probabilities for the two events can be bounded by
e−3ik and e−27ik/8, respectively. Together with the first epoch, the sum of all failure
probabilities is at most

e−3i + e−6i +

∞∑

k=1

(e−3ik + e−27ik/8) = e−3i + e−6i +
1

e3i − 1
+

1

e27i/8 − 1
≤ e−i,

which proves the lemma.

Finally, we can compute the expected time until bits freeze towards velocity bounds.

Lemma 5.4.10. Consider a selection of k ≥ 1 well guided bits in the swarm of the
Binary PSO with c̄ = Θ(1). Assuming that well-guidance is preserved, the expected time
until all k bits freeze to the velocity bounds they are guided to is bounded by O(n ln(2k)).

Note that the factor 2 in ln(2k) cannot be dropped as otherwise for k = 1 we would
have ln k = 0. However, if k > 1, then ln(2k) = O(ln k) and the bound simplifies to
O(n ln k).

Proof. Let c∗ := min{1, c̄/2}. Fix one of the selected bits and invoke Lemma 5.4.9 with
i := ln(2k) and t := 96iec̄n/c∗. Let Pt denote the probability that this bit is set to the
bit value it is guided to, then

Prob

(

Pt ≥ 1 − 96iec̄

c∗t

)

= Prob

(

Pt = 1 − 1

n

)

≥ 1 − e− ln(2k) = 1 − 1

2k
.

The probability that this bit does not freeze within t steps is at most 1/(2k). Taking
the union bound for k bits, the probability that any of these bits does not freeze within
t steps is at most 1/2. In this case, we repeat the argumentation with a new period of
t steps. The expected number of periods until all bits are frozen is at most 2, hence we
obtain the upper bound 2t = O(n ln(2k)).

The result on the expected freezing time allows the derivation of upper bounds for the
Binary PSO in a similar way as for evolutionary algorithms. For the sake of simplicity,
we first describe this idea for the 1-PSO. Due to the strict selection in the 1-PSO, the
global best is only exchanged in case a better solution is discovered. This means that
after some time either the global best has improved or all velocities in the global best
are frozen. In the latter case, since vmax = ln(n − 1), the probability of creating a 1
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for every bit x∗∗
i is now either s(−vmax) = 1/n or s(vmax) = 1 − 1/n. The distribution

of constructed solutions now equals the distribution of offspring for the (1+1) EA with
the global best x∗∗ as the current search point. Recall that we refer to the (1+1) EA*
as the (1+1) EA with strict selection. If for the 1-PSO all velocity values take their
upper or lower bounds, the 1-PSO behaves like the (1+1) EA* until a solution with
larger fitness is encountered. We arrive at upper bounds using a restricted fitness-level
method, similarly to the case of MMAS* in Section 5.2.

Let f1 < f2 < · · · < fm be an enumeration of all fitness values of f and let Ai,
1 ≤ i ≤ m, contain all solutions with fitness fi. We also say that Ai is the i-th fitness
level. Let si, 1 ≤ i ≤ m − 1, be a lower bound on the probability of the (1+1) EA
(or, equivalently, the (1+1) EA*) to create an offspring in Ai+1 ∪ · · · ∪ Am, provided the
current population belongs to Ai. Recall that summing up expected waiting times until
all fitness levels are left yields the upper bound

m−1∑

i=1

1

si
(5.16)

for the (1+1) EA and the (1+1) EA*. A similar bound holds for the 1-PSO and, more
generally, for the Binary PSO.

Theorem 5.4.11. Let Ai form the i-th fitness level of f and let si be the minimum
probability for the (1+1) EA to leave Ai towards Ai+1 ∪ · · · ∪ Am. If c̄ = Θ(1), the
expected number of generations for the Binary PSO to optimize f is bounded above by

O(mn log n) +

m−1∑

i=1

1

si
.

The right-hand sum is the upper bound obtained for the (1+1) EA and (1+1) EA*
from (5.16). Compared to the (1+1) EA, the bound on the number of generations only
increases by an additive term O(mn log n).

Also note that the upper bound does not depend on the swarm size µ. However,
when taking the number of function evaluations as performance measure instead of the
number of generations, the bound has to be multiplied by µ.

Proof of Theorem 5.4.11. Assume that the global best is located on the i-th fitness level.
As long as no improvement happens, for this particle own best and global best coincide.
Hence, all bits in the particle are well guided. By Lemma 5.4.10 the expected time until
all n bits in x∗∗ are frozen or an improvement happens in the meantime is O(n log(2n)) =
O(n log n).

In case all bits in x∗∗ are frozen, there is a probability of at least si that the new
position for x∗∗ is an improvement. The expected waiting time for an improvement is
thus bounded from above by 1/si and, together, the expected time on the i-th fitness
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level is bounded by O(n log n) + 1/si. Summing up expected waiting times for the first
m − 1 fitness levels proves the claim.

In the proof of Theorem 5.4.11 we only relied on the global best to find an improve-
ment. It may happen, though, that other particles find improvements somewhere else
or that other particles are attracted by the global best. The latter case can lead to a
better estimate of the probability of an improvement. If there are several particles whose
velocities have been frozen at borders corresponding to the global best, several particles
search in the region around x∗∗ in parallel. We make this precise for the Binary PSO
using only the social component, i. e., c1 = 0. In this extreme case, all particles follow
the global best and, as long as the global best is not exchanged, all bits are well guided.
After freezing, the swarm reduces the expected time to find an improvement by a factor
of order µ. This behavior resembles a (1+λ) EA that creates λ = µ offspring in each
generation.

Theorem 5.4.12. Let Ai form the i-th fitness level of f and let si be the minimum
probability for the (1+1) EA to leave Ai towards Ai+1∪· · ·∪Am. If µ = poly(n), c1 = 0,
and c2 = Θ(1), the expected number of generations for the Binary PSO to optimize f is
bounded above by

O

(

mn log n +
1

µ
·

m−1∑

i=1

1

si

)

.

Proof. We only need to prove that the expected number of generations to increase the
fitness from the i-th fitness level is at most O(n log n + 1/(µsi)).

Invoking Lemma 5.4.10 for all µn bits in the swarm, the expected time until all bits in
the swarm are frozen towards the bounds in x∗∗ (or an improvement happened anyway)
is O(n log(2µn)) = O(n log n) as log(2µn) = O(log n) follows from µ = poly(n).

Once all bits are frozen to the corresponding bounds of x∗∗, all particles behave equally
until the next improvement. This implies that the Binary PSO performs µ trials in each
generation to create a solution with higher fitness and the probability for an improvement
in one trial is bounded below by si. The probability that the Binary PSO does not find
an improvement within a period of 1/si trials is bounded by

1 − (1 − si)
1/si ≥ 1 − e−1 =

e − 1

e
.

The expected number of periods is therefore bounded by e/(e − 1). The number of
generations needed to have a period of 1/si trials equals ⌈1/(µsi)⌉. Hence the expected
number of generations to increase the fitness is bounded by

e

e − 1
·
(

1

µsi
+ 1

)

= O

(
1

µsi
+ 1

)

.

Adding the expected freezing time for the swarm yields the claimed bound O(n log n +
1/(µsi)) for fitness level i.
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5.4 Analysis of a Binary Particle Swarm Optimizer

The additive term O(mn log n) in the bounds from Theorems 5.4.11 and 5.4.12 results
from the (pessimistic) assumption that on all fitness levels, the Binary PSO has to wait
until all velocities are frozen in order to find a better solution. Nevertheless, fitness-level
arguments represent a powerful tool that can easily be applied to various problems. We
exemplarily present an application for unimodal functions.

Recall from Definition 2.2.1 that a function f is unimodal if every non-optimal search
point has a Hamming neighbor with strictly larger fitness. The probability for the
(1+1) EA* to create a specific Hamming neighbor as offspring equals 1/n·(1−1/n)n−1 ≥
1/(en). We conclude si ≥ 1/(en) for every non-optimal fitness level. Theorem 5.4.11
yields the following bound.

Corollary 5.4.13. Let f be a unimodal function with m different function values. Then
the expected number of generations for the Binary PSO to optimize f is bounded by

O

(

mn log n +
m−1∑

i=1

en

)

= O(mn log n + m · en) = O(mn log n).

5.4.4 The 1-PSO on OneMax

The function OneMax is one of the best known test functions for randomized search
heuristics. For several classes of heuristics, initial theoretical studies focused on the
analysis of OneMax. Probably the first rigorous runtime analysis of an evolutionary
algorithm was done on this function by Mühlenbein (1992). Droste (2006) presented a
first rigorous runtime analysis of an estimation-of-distribution algorithm on OneMax

and other linear functions. Finally, Neumann and Witt (2006) and Gutjahr (2008)
independently presented the first rigorous runtime analyses of an ant colony optimization
algorithm on OneMax. It makes sense to continue the tradition and to consider the
1-PSO on OneMax in more detail.

Corollary 5.4.13 yields a bound O(n2 log n) on the expected optimization time of the
1-PSO on OneMax. Compared to the bound Θ(n log n) that holds for the (1+1) EA
in this setting, this seems relatively rough. To improve the O(n2 log n) bound, we have
to show that it is not necessary for the 1-PSO to spend Θ(n log n) steps on each fitness
level until all bits have been frozen to the velocity bounds of the global best.

In the following, we will improve the optimization time bound of the 1-PSO on One-

Max to O(n log n). This implies that the 1-PSO has the same asymptotic upper runtime
bound as the (1+1) EA. For the proof, we will basically show that O(log n) steps adjust-
ing the velocity entries are enough on each fitness level for the 1-PSO to attain almost
the same probability of improving the current fitness as the (1+1) EA.

Consider a bit that has been well guided towards the velocity bound vmax for t steps.
Then the expected velocity value increases with t. This means that a bit whose entry in
the global best has been fixed to 1 for a long time has a good chance to contribute to
the OneMax-value of new solutions. We introduce a handy notation for such a bit.
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5 Swarm Intelligence

Definition 5.4.14. A bit is called t-strong for t ∈ N0, if its (random) velocity c̄-domi-
nates the ṽ-process at time t.

As a consequence from Lemma 5.4.6, we obtain the following statement.

Lemma 5.4.15. Consider a bit that is currently t-strong. If the bit is well guided towards
value 1 throughout the next s steps, the bit will be (t + s)-strong afterwards.

Proof. Let v0 denote the current velocity at the bit and let vs denote its velocity after s
steps. By the definition of strongness and c̄-dominance, Prob(v0 ≥ a) ≥ Prob(ṽt ≥ a + c̄)
for all a ∈ R. By Lemma 5.4.6 and the assumption that the x∗∗-entry stays fixed,
c̄-dominance is maintained for all following steps. After s steps, the current velocity vs

c̄-dominates ṽt+s, hence, by definition, the bit is (t + s)-strong.

We take a fresh look at Lemma 5.4.9 and note that its last paragraph just repeats
the definition of a t-strong bit. Let us recall the arguments leading to the lemma. The
random velocity vt of a t-strong bit gives us a random probability Pt of setting the
considered bit to 1, i. e., a success. If we just plug in a single value for i into the lemma,
we know that Pt respects the given bound on the success probability with probability at
least 1 − e−i. However, if the bound is not respected, no immediate conclusion except
the trivial bound Pt ≥ 1/n can be drawn.

Still, there is always a well-defined probability of a success at a t-strong bit. This
probability equals the expectation of the random Pt since E(Pt) =

∫
p · fPt(p) dp (or,

if Pt has a discrete distribution, E(Pt) =
∑

p ·Prob(Pt = p)). Since the distribution of Pt

has already been characterized quite precisely in Lemma 5.4.9, it is not too difficult to
derive good lower bounds on E(Pt), the expected success probability, using the lemma.
Note that c̄ = c1 + c2 = 2 and c∗ = min{1, c̄/2} = 1 hold as the 1-PSO is considered.

Lemma 5.4.16. The expected success probability of a t-strong bit, t ≥ 384 ln n, is at
least 1 − O(1/t + 1/n).

Proof. Note that the bound to be proven is never better than 1 − O(1/n). Hence, in
the following, we ignore the upper bound 1 − 1/n on success probabilities and allow
such a probability to become arbitrarily close to 1; the possible error introduced is
O(1/n). In order to apply Lemma 5.4.9, we consider a random variable X with support
{1 − 96e2i/t | 1 ≤ i ≤ t/192, i ∈ N}, i. e., the support matches the bounds on Pt given
in the lemma. We define a distribution for X according to

Prob
(
X = 1 − 96e2/t

)
= 1 − e−1,

Prob
(
X = 1 − 96e2i/t

)
= e−i+1 − e−i for 2 ≤ i ≤ t/192,

and Prob(X = 1/n) = e−t/192.

Obviously, all probabilities sum up to 1.
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5.4 Analysis of a Binary Particle Swarm Optimizer

Using Lemma 5.4.9, it follows that the success probability of the t-strong bit stochas-
tically dominates X. It is therefore enough to bound the expected success probability
according to X from below. Using the law of total probability, this expectation is at
least

(1 − e−1) ·
(

1 − 96e2

t

)

+

t/192
∑

i=2

(
e−i+1 − e−i

)
·
(

1 − 96e2i

t

)

≥ (1 − e−1) ·
(

1 − 96e2

t

)

+ (e−1 − e−t/192) −
t/192
∑

i=2

e−i+1 · 96e2i

t

≥ (1 − e−t/192)

(

1 − 96e2

t

)

− O

(
1

t

)

= 1 − O

(
1

t

)

.

Subtracting O(1/n) for the possible error, we obtain the claim of the lemma.

The expected success probability we have just bounded is the actual probability of
having a success at a t-strong bit. Hence, the lemma will be useful when we study
OneMax and are interested in reproducing 1-bits. However, we need an additional
statement. Given that a bit is t-strong, we are interested in the first point of time where
the bit is actually set to 1. Assuming that the bit remains well-guided towards 1, the
expected time until we have a success at such a bit decreases as t increases. Hence, we
pessimistically assume that the bit is always exactly t-strong and wait for a success at
the bit. More precisely, we are looking for the expected waiting time. If the success
probability Pt was deterministic, say Pt = p with probability 1, we could derive the
expected waiting time by inspecting a geometrically distributed random variable, which
would imply that the expectation would be 1/p. However, since we are dealing with
random probabilities, the expected waiting time is not necessarily the reciprocal of the
expected success probability. We need more arguments, as described by the following
lemma. Interestingly, since Pt follows a quite concentrated distribution, the following
asymptotic upper bound is still the reciprocal of the bound derived in Lemma 5.4.16.

Lemma 5.4.17. The expected time for a success at a t-strong bit, t ≥ 384 ln n, is
bounded by 1 + O(1/t + 1/n).

Proof. As in the proof of Lemma 5.4.16, we ignore the upper bound 1 − 1/n on suc-
cess probabilities. Since the expected time for a success at success probability 1 − 1/n
equals 1/(1 − 1/n) = 1 + O(1/n), the asymptotic upper bound of the lemma is not
affected.

We reconsider the random variable X defined in the proof of Lemma 5.4.16. Since
t ≥ 384 ln n, the last line of its definition implies Prob(X = 1/n) ≤ 1/n2. Since the
success probability of the t-strong bit stochastically dominates X, it is enough to bound
the expected time for a success according to X from above. Given that X has the value p,
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5 Swarm Intelligence

the waiting time for a success follows a geometric distribution with expectation 1/p. We
can bound the reciprocals of the single success probabilities according to 1/(1−96e2i/t) ≤
1 + 192e2i/t if n is not too small. By the law of total probability, the unconditional
expected waiting time is at most

(1 − e−1) ·
(

1 +
192e2

t

)

+

t/192
∑

i=2

(
(
e−i+1 − e−i

)
·
(

1 +
192e2i

t

))

+
1

n2
· n

≤
(

1 +
192e2

t

)

+

t/192
∑

i=2

(
(
e−i+1 − e−i

) 192e2i

t

)

+
1

n

≤
(

1 +
192e2

t

)

+

t/192
∑

i=2

(

e−i+1 192e2i

t

)

+
1

n
= 1 + O

(
1

t
+

1

n

)

.

During an improvement of the OneMax-value, some bits in x∗∗ may be turned from 1
to 0, but a larger number of bits is turned from 0 to 1. We refer to the latter as new
1-bits being gained during this improvement. In the following analysis, we will consider
random velocities of 1-bits gained while optimizing OneMax. Freshly gained 1-bits tend
to be weaker than older ones. Sorting the bits from weak to strong, this is reflected by
the following layering.

Definition 5.4.18. We say that an ordered sequence of bits 1, . . . , k forms an m-layer,
m ∈ N, if and only if bit j, 1 ≤ j ≤ k, is jm-strong. A set of k bits forms an m-layer if
and only if it can be arranged as an m-layer.

For the following theorem, we will consider layers where the j-th bit is basically
Θ(j ln n)-strong. Defining that a set of bits is successful if all have successes simultane-
ously, we show the following lemma. Note that we assume x∗∗ to be fixed to 1 for these
bits.

Lemma 5.4.19. Let k ≤ n bits form a (384 ln n)-layer. Then the expected time until all
have a success simultaneously is bounded by O(1).

Proof. We ignore the fact that velocities may increase while waiting for a success and
pessimistically assume that the velocities remain fixed. However, the velocities and,
therefore, the success probabilities at the k bits are still random variables. Let us
consider such a random variable for some fixed bit. While waiting for a success, we
consider the same random variable in all time steps. Hence, if we know the value of the
variable at the beginning of our considerations, the variable will take the same value in
all following time steps.
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5.4 Analysis of a Binary Particle Swarm Optimizer

We claim that multiplying the expected success times for the single bits as bounded in
Lemma 5.4.17 yields an upper bound on the expected time until all bits have successes
simultaneously. Bits are independently set to 1 by the 1-PSO with the same (random)
success probability over time; hence, conditioning on all outcomes of the k success prob-
abilities, the waiting time follows a geometric distribution. Applying the law of total
probability in the same way as in the proof of Lemma 5.4.17 proves the claim.

According to our assumption, the j-th bit, 1 ≤ j ≤ k, is 384j ln n-strong. Due to
Lemma 5.4.17, its expected success time is bounded by 1 + κ

384j lnn + κ
n for some large

constant κ. Taking the product over all j, we obtain

k∏

j=1

(

1 +
κ

384j ln n
+

κ

n

)

≤ e
Pn

j=1
κ

384j lnn
+ κ

n ,

which is O(1) since
∑n

j=1 1/j = O(ln n).

Now we can state the improved bound for OneMax.

Theorem 5.4.20. The expected optimization time of the 1-PSO on OneMax is bounded
by O(n log n).

Proof. The basic proof idea is to keep track of the velocities of the newly gained 1-bits
after improvements of the global best x∗∗. We wait on average O(log n) steps after an
improvement and show that after that, the probability of improving is at least in the
same order as for the (1+1) EA.

A difficulty with these arguments is that 1-bits in x∗∗ may be set to 0 if the global
best is exchanged. The current OneMax-value may only increase, but specific 1-bits
may be lost if enough new 1-bits are gained somewhere else. We say that the lost 1-bits
are reset. Resets may disturb the velocity increase on 1-bits as strong 1-bits may be
replaced by weaker 1-bits.

In order to simplify the argumentation, we first describe an analysis for an idealized
setting and then argue how to extend the arguments to the real setting. Assume in the
following that the 1-PSO does not accept resets of 1-bits, i. e., an improvement of the
OneMax-value is only accepted in case all 1-bits are set to 1 in the new global best.

We now divide a run of the 1-PSO into phases. Phase i for 0 ≤ i ≤ n − 1 starts with
the end of the previous phase (Phase 0 starts after initialization) and it ends when the
following two conditions are met:

1. The best-so-far OneMax-value is at least i + 1.

2. At least i + 1 1-bits form an m-layer for m := 384 ln n.

Note that the second condition will be fulfilled throughout the run as all 1-bits are
maintained forever in our idealized setting and hence their velocities are well guided and
monotone increasing over time.
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We claim that the expected time spent in Phase i is bounded above by m+O(n/(n−i))
for each 0 ≤ i ≤ n − 1. Note that phases may be empty. Moreover, when finishing
Phase n − 1 the global optimum has been found. Hence, the expected time to find a
global optimum is bounded by

n−1∑

i=0

(

m + O

(
n

n − i

))

= O(n log n) + O(n) ·
n∑

i=1

1

i
= O(n log n).

Consider the 1-PSO at the time it enters Phase i and assume pessimistically that the
best-so-far OneMax-value is still i. As Phase i−1 has been completed, i 1-bits form an
m-layer. According to Lemma 5.4.19, all these bits are set to 1 simultaneously after an
expected number of O(1) steps. Independently of these bits, the 1-PSO turns at least
one of the n− i 0-bits to 1 with a probability bounded below as follows. The probability
of creating a 0-value at any 0-bit is at most s(−vmax) = 1 − 1/n. The probability that
not all n − i 0-bits result in 0-values can be estimated, using 1 + x ≤ exp(x) ≤ 1 + x/2
for −1 ≤ x ≤ 0 (see Lemma A.12), by

1 −
(

1 − 1

n

)n−i

≥ 1 − exp

(

−n − i

n

)

≥ n − i

2n
.

The expected waiting time for this event is at most 2n/(n − i). As 1-bits and 0-bits
are treated independently, we can multiply expectations using the justification from the
proof of Lemma 5.4.19. Altogether, the expected time until constructing a solution with
OneMax-value at least i + 1 has been bounded from above by O(n/(n − i)).

Once the best-so-far OneMax-value has increased to at least i + 1, the velocities on
i + 1 1-bits are well guided and monotone increasing. At the beginning of the phase, i
1-bits form an m-layer. In order to obtain an m-layer of i + 1 bits, we can consider any
other 1-bit and wait for it to become m-strong. As a consequence from Lemma 5.4.15,
if x∗∗ remains fixed for these i + 1 bits, they form an m-layer of size i + 1 after m steps.
Together, the claimed bound m + O(n/(n− i)) follows for the expected time in Phase i.
This also finishes the analysis for the idealized setting without resets.

A reset of a bit can destroy the velocity layers as a strong 1-bit might be exchanged
by a weak 1-bit. In the worst case, such a new 1-bit is only 0-strong. If an improvement
resets d bits, an m-layer of i bits may shrink to an m-layer of i−d 1-bits. By an amortized
analysis, we wait for the velocities to recover so that we end up with an m-layer of i bits
again.

Consider an improvement in a setting where k bits form an m-layer. A t-strong bit is
reset with probability at most O(1/t + 1/n) according to Lemma 5.4.16. The expected
number of bits among these k layered bits reset during this improvement is therefore
bounded from above by

k∑

j=1

(
O(1)

384j ln n
+

O(1)

n

)

= O(1).
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5.4 Analysis of a Binary Particle Swarm Optimizer

Hence, an improvement prolongs the time spent in the current phase in expectation by
O(ln n). Note that we can repeat the argumentation if another improvement occurs in
the meantime since we only consider reset probabilities for all bits in a layer. As we
can only have n improvements, we obtain an additional term O(n log n) in our runtime
bound, which proves the time bound O(n log n) for the real setting.

5.4.5 Experiments for OneMax

The expected runtime of the (1+1) EA on OneMax is known to be of order Θ(n log n).
Theorems 5.4.3 and 5.4.20 show that the expected runtime of the 1-PSO is between
Ω(n/log n) and O(n log n). We conjecture that the runtime of the 1-PSO is of order
Θ(n log n) as well, but proving a corresponding lower bound seems difficult. We therefore
perform experiments to get an impression of the actual runtimes for various problem
dimensions and to compare the 1-PSO with the (1+1) EA.

A drawback of the 1-PSO might be that the velocities of 1-bits increase only slowly,
which may yield an increased waiting time to rediscover previously gained 1-bits. On
the other hand, the 1-PSO has the advantage that the velocities of 0-bits tend to −vmax

only slowly as well, and so an incorrect decision may be reverted more easily. In contrast
to the 1-PSO, the (1+1) EA only has a probability of 1/n to revert an incorrectly set bit.
Since it typically starts with a linear number of such bits, the lower bound Ω(n log n)
follows, as shown in Theorem 2.3.5. To conclude, the slow adaptation of velocities can
have effects in opposite directions; we cannot tell a priori which effect will dominate the
runtime and decide which algorithm performs better.

We therefore perform experiments for both the (1+1) EA and the 1-PSO with problem
dimensions n = 100, 200, . . . , 2000. For each setting 1000 independent runs are performed
and the number of generations until the optimum is found is measured. Figure 5.11 shows
box-and-whisker plots of the resulting runtimes. The box ranges from the first to the
third quartile, the horizontal line within the box denotes the median, and the whiskers
indicate minimum and maximum values.

One can observe that the median for the 1-PSO is consistently larger than the median
for the (1+1) EA. Even stronger, the boxes and the minimum values for the 1-PSO are
consistently higher than those for the (1+1) EA. Another observation is that the size of
the boxes is quite small, which implies that the runtime has a low variance. The variance
is similar for both algorithms.

As this study focuses on expected runtimes, we investigate the average runtimes in
more detail. Figure 5.12 shows the average runtimes for the (1+1) EA and the 1-PSO.
A regression analysis was done using gnuplot 4.2 with the standard settings. Both data
sets were fitted towards functions c·n log n for a constant c, log denoting the logarithm to
the base 2. For the (1+1) EA the function 1.70891n log n resulted in the best fit and for
the 1-PSO the function 1.97469n log n was best. Comparing the two constants indicates
that the expected runtime for the 1-PSO is about 15% larger than for the (1+1) EA.
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Figure 5.11: Box-and-whisker plot of the runtimes of the (1+1) EA (light gray) and the
1-PSO (dark gray) for n = 100, 200, . . . , 2000 and 1000 runs for each setting.
The whiskers show minimum and maximum values.
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Figure 5.12: Average runtimes for the (1+1) EA and the 1-PSO and the fitted functions
1.70891n log n for the (1+1) EA and 1.97469n log n for the 1-PSO.
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Finally, to see whether the observed differences in runtime are statistically significant,
we applied non-parametric Mann-Whitney tests to each sample of 1000 runs. For each
problem dimension n, a two-sided test resulted in highly significant differences with
p ≪ 0.0001. A one-sided test confirmed that the differences were in favor of the (1+1) EA
in all cases.

5.4.6 Conclusions

We have considered the runtime behavior of the Binary Particle Swarm Optimizer by
Kennedy and Eberhart. Thereby, we adapted the choice of the maximum velocity vmax

to growing problem sizes and justified why this adaptation is essential when dealing with
different problem sizes. For the resulting Binary PSO we have proved a lower bound
Ω(n/log n) on the expected number of generations for every function where the global
optimum is unique. This bound holds for almost every choice of the swarm size and the
learning factors for the cognitive and the social component of PSO.

Moreover, we were able to transfer a restricted fitness-level method from the analysis
of evolutionary algorithms to PSO. This can be used as a tool to prove upper bounds
for various parametrizations of the Binary PSO and various functions. An exemplary
application to the class of all unimodal functions showed that the Binary PSO is effective
on these functions.

A more detailed analysis on the function OneMax revealed the bound O(n log n) for
the 1-PSO and hence the same upper bound as known for the (1+1) EA. Experimental
results suggest that the expected runtimes of both the 1-PSO and the (1+1) EA have
the same order of growth, but the 1-PSO is by roughly 15% slower than the (1+1) EA.
The observed differences were confirmed by statistical tests.
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6 Conclusions and Outlook

Looking back at the topics addressed in this thesis, many questions have been answered,
but still many questions remain open. In Chapter 3 we have dealt with extensions
of simple evolutionary algorithms. In the black-box scenario, if no knowledge on the
problem is available, it makes sense to use unbiased search operators as there is no
reason to guide the search into predetermined regions of the search space. Nevertheless,
many evolutionary algorithms used in practice intentionally or unintentionally exhibit
some search bias. In Section 3.1 we have investigated an evolutionary algorithm with
a mutation operator biased towards bit strings with either few or many 1-bits. Our
investigations have led to insights in which situations such a search bias can be useful.
If good solutions have few or many 1-bits and the fitness function gives appropriate
hints towards these regions, the biased mutation operator leads to significant speed-
ups. On the other hand, we have seen an example where the search bias misleads
the search, resulting in an exponential performance gap (see Theorem 3.1.16). In many
other situations, the search bias is overridden by a strong fitness bias. Future work could
deal with other settings where a search bias is present. This also includes non-binary
search spaces (e. g., permutations), where common operators are less well understood.
Further theoretical investigations can increase our understanding of operator bias on
search dynamics, which is essential to design more robust or more adapted evolutionary
algorithms.

Section 3.2 has dealt with another important design aspect in evolutionary compu-
tation: population dynamics and the preservation of diversity. We have considered a
bimodal function where a large diversity in the population is needed to find the opti-
mum efficiently with high probability. The fitness landscape contains two large sym-
metric hills, one with a local and the other one with a unique global optimum. In a
common population-based evolutionary algorithm, the competition between groups of
individuals climbing different hills typically leads to the extinction of one such group
before both hills can be explored. This means that the global optimum is only reached
in polynomial time with probability close to 1/2. We have seen that some diversity
mechanisms from the literature do not perform much better in our setting. Contrarily,
deterministic crowding, where every offspring directly competes with his parents, and
fitness sharing, a mechanism to derate the fitness of clustered individuals, perform very
well on the considered function. This again increased our understanding of the effects
certain components of evolutionary algorithms have on their performance.
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Chapter 4 covered hybridizations of evolutionary algorithms with local search, known
as memetic algorithms. We have presented the first rigorous analyses of these algorithms,
thereby highlighting difficulties in their design as well as their strong potential, compared
to standard evolutionary algorithms.

Designing such a hybrid is not trivial as some parameters in the interplay of the evo-
lutionary part and local search must be chosen appropriately. For a simple memetic
algorithm we have considered the local search depth and the local search frequency to
balance the computational effort dedicated to the evolutionary and the local search.
Section 4.1 presented families of artificial functions where the choice of these parameters
is essential. Only slight changes to the parametrization can turn a polynomial runtime
into a superpolynomial or even exponential one. Moreover, for almost every parametriza-
tion there is a function where this parametrization is drastically outperformed by other
parametrizations. Although the constructed problems are clearly artificial, they rule out
a priori design guidelines for the parametrization that work well for all problems.

In Section 4.2 we have abandoned this pessimistic point of view towards a more op-
timistic perspective. We have considered the classical combinatorial optimization prob-
lems Mincut, Knapsack, and Maxsat. For single instances of these problems, we have
shown that a memetic algorithm with a particular kind of local search, variable-depth
search, performs surprisingly well in a setting where many common trajectory-based al-
gorithms fail. The shown negative results apply to the (1+1) EA, a memetic algorithm
using a “greedy” kind of local search, and simulated annealing. Moreover, the negative
results hold for very broad classes of parametrizations. This implies that the bad per-
formance is not due to a “wrong” parameter choice, but due to fundamental differences
in the search dynamics. Furthermore, the analysis of the Maxsat problem shows that
a hybrid algorithm can significantly outperform its single components.

Despite these initial studies on memetic algorithms, this research area is still in its
infancy. In order to gain a broader understanding of the capabilities and limitations of
these hybrid algorithms, thorough analyses on broader classes of combinatorial problems
are needed.

Finally, Chapter 5 contained some of the first rigorous analyses for swarm intelligence
algorithms: ant colony optimization (ACO) and particle swarm optimization (PSO).
The simple ACO algorithm 1-ANT, derived as a simple ACO algorithm for theoretical
studies, turned out to be very sensitive to the choice of the evaporation factor ρ. It took
some time until the reason became obvious: as opposed to common ACO algorithms,
the 1-ANT only performs a pheromone update in case an improvement of the best-so-far
fitness happens. If ρ is too small, this may lead to stagnation even on simple functions
such as OneMax, LeadingOnes, and BinVal (see Section 5.1).

Research has then focused on more “typical” ACO algorithms. Section 5.2 dealt
with the analysis of two variants of the MAX-MIN ant system (MMAS). Building upon
previous work by Gutjahr and Sebastiani (2008), we have presented an elegant way of
transferring the fitness-level method from evolutionary algorithms to ACO. This method
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can easily be applied to yield upper bounds for various functions. We also developed
lower bounds for all functions with unique global optimum and a good lower bound
for LeadingOnes. Moreover, we have shown that an MMAS variant accepting equally
good solutions outperforms its variant with strict selection on functions with plateaus.
On these functions it is essential that the best-so-far solution can perform a random
walk on the plateau. The mentioned analyses have led to important insights and to the
development of new proof techniques, especially for pheromone values of bits that do
not directly contribute to the fitness.

Another interesting topic with regard to Chapter 4 is the hybridization of ACO with
local search. As shown in Section 5.3, the use of local search can affect the sampling
distribution in a way which is not possible for memetic evolutionary algorithms. Sudden
changes of the best-so-far solution may guide the algorithm to sample in regions of the
search space that were never explored before, which is very unexpected behavior for a
trajectory-based algorithm. This effect has been demonstrated on artificial functions
designed such that the use of local search may lead to exponential performance gaps in
both directions. These studies also show that the analysis of ACO algorithms has made
significant progress and that nowadays analyses on more complex problems are possible.

An interesting topic for future work is to apply the analysis methods developed
throughout this work to the analysis of combinatorial graph problems like shortest paths,
the TSP, or spanning tree problems. For these problems it is possible to use the input
graph as construction graphs, which more naturally matches the ACO paradigm. The
mentioned problems also allow to asses the use of heuristic information in a sensible
manner—another important component in ACO. A first such analysis on minimum span-
ning trees covering these two issues has been presented by Neumann and Witt (2008),
however, for a strongly simplified pheromone model. As many new insights and meth-
ods have been developed since then, we hope that the analysis of more complex ACO
systems will be possible in the near future.

Regarding particle swarm optimization, Section 5.4 contains a first runtime analysis
of such an algorithm. In contrast to many applications in continuous spaces, a discrete
PSO variant has been considered. In the Binary PSO velocities are used to construct
new solutions, similar to pheromones in ACO. Also, the same bounds have been cho-
sen, so that the probability of creating value 1 at each bit is always in the interval
[1/n, 1 − 1/n]. We have justified this adaptation of the original Binary PSO as the
latter needs exponential time on every non-trivial function if the velocity bounds remain
fixed while the problem size grows. Similar to MMAS variants, we have also seen for
this PSO algorithm how the fitness-level method can be used for the analysis of the
Binary PSO. A more detailed analysis of a simple Binary PSO variant on OneMax has
delivered useful insights into the probabilistic model underlying the Binary PSO and a
runtime bound O(n log n), hence the same upper bound as for the (1+1) EA.

As particle swarm optimization has originally been defined for continuous optimiza-
tion, one topic for future research is to consider PSO in these search spaces. There, PSO
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6 Conclusions and Outlook

does not necessarily converge to the global optimum. Therefore, additional mutation op-
erators have been proposed in the literature and one globally convergent PSO algorithm
has been proposed. Initial runtime analyses by Witt (2009) have revealed interesting
similarities to a (1+1) evolution strategy, the continuous variant of the (1+1) EA. More-
over, it would be interesting to see a natural problem where the swarm dynamics in
ACO or PSO are essential in order to find the optimum efficiently.

All these open questions lead to the conclusion that the computational complexity of
evolutionary algorithms, hybridizations, and swarm intelligence remains an interesting,
challenging, and fruitful research area.
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Appendix A

Mathematical Tools

This appendix contains some mathematical tools used throughout this thesis. The follow-
ing statements assume a probability space, including a sample space Ω and a probability
function Prob. The first statements can be found in Mitzenmacher and Upfal (2005)
along with a general introduction into probability theory.

Lemma A.1 (Expectation of a geometric random variable). Let X be a geometric random
variable with parameter p, i. e.,

Prob(X = k) = (1 − p)k−1 · p.

Then E(X) = 1/p.

Lemma A.2 (Law of total probability). For an event A and mutually disjoint events
B1, . . . , Bk such that

⋃k
i Bi = Ω,

Prob(A) =
k∑

i=1

Prob(A ∩ Bi) =
k∑

i=1

Prob(A | Bi) · Prob(Bi).

If additionally Ω is finite,

E(A) =

k∑

i=1

E(A | Bi) · Prob(Bi).

Lemma A.3 (Law of total expectation). For random variables X,Y : Ω → R,

E(X) = E(E(X | Y )).

Lemma A.4 (Union bound). For a finite or countably infinite sequence A1, A2, A3, . . . of
events

Prob




⋃

i≥1

Ai



 ≤
∑

i≥1

Prob(Ai).
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Lemma A.5 (Markov’s inequality). For a random variable X : Ω → R that assumes only
non-negative values and t ∈ R

+,

Prob(X ≥ t · E(X)) ≤ 1

t
.

Lemma A.6 (Chernoff bounds). Let X = X1 + · · · + Xn be the sum of independent
random variables with Xi ∈ {0, 1} for all 1 ≤ i ≤ n. Then

Prob(X ≥ (1 + δ)E(X)) <

(
eδ

(1 + δ)1+δ

)E(X)

for δ > 0

Prob(X ≤ (1 − δ)E(X)) ≤
(

e−δ

(1 − δ)1−δ

)E(X)

for 0 < δ < 1

Prob(X ≥ (1 + δ)E(X)) ≤ e−E(X)δ2/3 for 0 < δ < 1

Prob(X ≤ (1 − δ)E(X)) ≤ e−E(X)δ2/2 for 0 < δ < 1.

These bounds also hold if E(X) is consistently replaced by a pessimistic bound on E(X)
(i. e., an upper bound for the first and the third inequality and a lower bound for the
second and the fourth one), see Scheideler (2000, page 52f.).

We state two Hoeffding bounds. The first bounds is adapted from (Scheideler, 2000,
Theorem 3.37). The second bound follows from the first one by symmetry of Xi and −Xi.

Lemma A.7 (Hoeffding bounds). Let X = X1 + · · · + Xn be the sum of independent
random variables with ai ≤ Xi ≤ bi for all 1 ≤ i ≤ n. Then for δ > 0

Prob(X ≥ E(X) + δ) ≤ e−2δ2/
Pn

i=1(bi−ai)
2

Prob(X ≤ E(X) − δ) ≤ e−2δ2/
Pn

i=1
(bi−ai)

2

.

The following tail inequality (Scheideler, 2000, Theorem 3.67) is an extension of the
Azuma-Hoeffding inequality.

Lemma A.8 (Method of Bounded Martingale Differences). Let X1, . . . ,Xn be arbitrary
(not necessarily independent) random variables and let f be a function such that for
every 1 ≤ i ≤ n there is a ci ≥ 0 with

|E(f | X1, . . . ,Xi) − E(f | X1, . . . ,Xi+1)| ≤ ci.

Then for δ > 0

Prob(f ≥ E(f) + δ) ≤ e−δ2/(2
Pn

i=1 c2i )

Prob(f ≤ E(f) − δ) ≤ e−δ2/(2
Pn

i=1
c2i ).
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The following variant for Stirling’s approximation can be found, e. g., in Mitzenmacher
and Upfal (2005, page 246).

Lemma A.9 (Stirling’s approximation). For n ∈ N,

√
2πn ·

(n

e

)n
≤ n! ≤

√
2πn ·

(n

e

)n
· e1/(12n).

In particular,

n! ≥
(n

e

)n
.

The following estimations are well known and easy to prove; the last inequality follows
from Stirling’s approximation.

Lemma A.10 (Binomial coefficients). For k, n ∈ N with k ≤ n,

nk

kk
≤
(

n

k

)

≤ nk

k!
≤
(ne

k

)k
.

The next estimation is contained in the proof of Lemma 2.10 in Mitzenmacher and
Upfal (2005).

Lemma A.11 (Harmonic numbers). For n ∈ N,

Hn :=
1

1
+

1

2
+

1

3
+ · · · + 1

n
≤ ln(n) + 1.

We present three bounds for the exponential function. The first bound is contained
in Motwani and Raghavan (1995, Proposition B.3). The second one holds for the two
boundary values x ∈ {−1, 0} and for all values in between since 1 + x/2 is linear and ex

is convex. The third bound follows from the first one as e−x ≥ 1 − x ⇔ ex ≤ 1/(1 − x)
for x < 1.

Lemma A.12 (Bounds for the exponential function).

1 + x ≤ ex for x ∈ R,

ex ≤ 1 +
x

2
for −1 ≤ x ≤ 0,

ex ≤ 1

1 − x
for x < 1.

The following estimations are useful when dealing with standard mutations. Proofs
are given by Motwani and Raghavan (1995, Proposition B.3).

Lemma A.13. For n ∈ N,

(

1 − 1

n

)n

≤ 1

e
≤
(

1 − 1

n

)n−1

.
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The last statements are well known and can be proved by simple inductions.

Lemma A.14 (Geometric series). For |x| < 1,

∞∑

i=0

xi =
1

1 − x
and

∞∑

i=1

xi =
x

1 − x
.

Lemma A.15 (Bernoulli’s inequality). For r ∈ N0 and x ∈ R, x ≥ −1,

(1 + x)r ≥ 1 + rx.
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Englert, M., Röglin, H., and Vöcking, B. (2007). Worst case and probabilistic analysis of
the 2-Opt algorithm for the TSP. In: Proceedings of the 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1295–1304.

Fischer, S. (2004). A polynomial upper bound for a mutation-based algorithm on the
two-dimensional Ising model. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO ’04), pages 1100–1112. Springer.

Fischer, S. and Wegener, I. (2005). The one-dimensional Ising model: Mutation versus
recombination. Theoretical Computer Science, 344(2–3):208–225.

Friedrich, T., Hebbinghaus, N., and Neumann, F. (2007). Rigorous analyses of simple
diversity mechanisms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’07), pages 1219–1225. ACM Press.

Friedrich, T., Oliveto, P. S., Sudholt, D., and Witt, C. (2008). Theoretical analysis
of diversity mechanisms for global exploration. In: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’08), pages 945–952. ACM Press.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation, 7(2):173–203.

Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching
problem. In: Proceedings of the 20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’03), pages 415–426. Springer.

Goldberg, D. E., Van Hoyweghen, C., and Naudts, B. (2002). From twomax to the
Ising model: Easy and hard symmetrical problems. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO ’02), pages 626–633. Morgan
Kaufmann.

245



Bibliography

Gutjahr, W. J. (2000). A graph-based ant system and its convergence. Future Generation
Computer Systems, 16:873–888.

Gutjahr, W. J. (2003). A generalized convergence result for the graph-based ant system
metaheuristic. Probability in the Engineering and Informational Sciences, 17:545–569.

Gutjahr, W. J. (2007). Mathematical runtime analysis of ACO algorithms: Survey on
an emerging issue. Swarm Intelligence, 1:59–79.

Gutjahr, W. J. (2008). First steps to the runtime complexity analysis of ant colony
optimization. Computers and Operations Research, 35(9):2711–2727.

Gutjahr, W. J. and Sebastiani, G. (2008). Runtime analysis of ant colony optimization
with best-so-far reinforcement. Methodology and Computing in Applied Probability,
10:409–433.

Hajek, B. (1982). Hitting-time and occupation-time bounds implied by drift analysis
with applications. Advances in Applied Probability, 14:502–525.

Hart, W., Krasnogor, N., and Smith, J. E. (2004a). Editorial introduction. Evolutionary
Computation: Special Issue on Memetic Algorithms, 12(3):v–vi.

Hart, W. E. (1994). Adaptive Global Optimization with Local Search. Ph.D. thesis,
University of California, San Diego, CA.

Hart, W. E. (2003). Locally-adaptive and memetic evolutionary pattern search algo-
rithms. Evolutionary Computation, 11(1):29–51.

Hart, W. E., Krasnogor, N., and Smith, J. E., editors (2004b). Recent Advances
in Memetic Algorithms, volume 166 of Studies in Fuzziness and Soft Computing.
Springer.

He, J. and Yao, X. (2004). A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor.
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Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &
OR, 24(11):1097–1100.

248



Bibliography

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent
Computation Program, California Institute of Technology, Pasadena, CA.

Moscato, P. (1999). Memetic algorithms: a short introduction. In: D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization, pages 219–234. McGraw-Hill.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University
Press.

Mühlenbein, H. (1992). How genetic algorithms really work: Mutation and hillclimbing.
In: Parallel Problem Solving from Nature (PPSN II), pages 15–26.

Neri, F., Toivanen, J., Cascella, G. L., and Ong, Y.-S. (2007). An adaptive multimeme
algorithm for designing HIV multidrug therapies. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 4(2):264–278.

Neumann, F. (2004). Expected runtimes of evolutionary algorithms for the Eulerian cycle
problem. In: Proceedings of the Congress of Evolutionary Computation (CEC ’04),
pages 904–910. IEEE Press.

Neumann, F. and Reichel, J. (2008). Approximating minimum multicuts by evolutionary
multi-objective algorithms. In: Parallel Problem Solving from Nature (PPSN X),
volume 5199 of LNCS, pages 72–81. Springer.

Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algorithms,
and the minimum spanning tree problem. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’04), volume 3102 of LNCS, pages 713–724.
Springer.

Neumann, F. and Wegener, I. (2006). Minimum spanning trees made easier via multi-
objective optimization. Natural Computing, 5(3):305–319.

Neumann, F. and Wegener, I. (2007). Randomized local search, evolutionary algorithms,
and the minimum spanning tree problem. Theoretical Computer Science, 378(1):32–40.

Neumann, F. and Witt, C. (2006). Runtime analysis of a simple ant colony optimization
algorithm. In: Proceedings of the 17th International Symposium on Algorithms and
Computation (ISAAC ’06), volume 4288 of LNCS, pages 618–627. Springer.

Neumann, F. and Witt, C. (2008). Ant Colony Optimization and the minimum spanning
tree problem. In: Proceedings of Learning and Intelligent Optimization (LION ’07),
volume 5313 of LNCS, pages 153–166. Springer.

249



Bibliography

Oliveto, P., He, J., and Yao, X. (2008). Population-based evolutionary algorithms for the
vertex cover problem. In: Proceedings of the Congress of Evolutionary Computation
(CEC ’08).

Oliveto, P. S., He, J., and Yao, X. (2007). Computational complexity analysis of evolu-
tionary algorithms for combinatorial optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281–293.

Oliveto, P. S. and Witt, C. (2008). Simplified drift analysis for proving lower bounds
in evolutionary computation. In: Parallel Problem Solving from Nature (PPSN X),
volume 5199 of LNCS, pages 82–91. Springer.

Ong, Y.-S., Lim, M.-H., Zhu, N., and Wong, K.-W. (2006). Classification of adaptive
memetic algorithms: a comparative study. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 36(1):141–152.

Papadimitriou, C. (1994). Computational Complexity. Addison Wesley.

Pelikan, M. and Goldberg, D. E. (2000). Genetic algorithms, clustering, and the breaking
of symmetry. In: Parallel Problem Solving from Nature (PPSN VI), pages 385–394.
Springer.

Quick, R. J., Rayward-Smith, V. J., and Smith, G. D. (1998). Fitness distance correlation
and ridge functions. In: Parallel Problem Solving from Nature (PPSN V), pages 77–86.
Springer.

Raidl, G. R., Koller, G., and Julstrom, B. A. (2006). Biased mutation operators
for subgraph-selection problems. IEEE Transactions on Evolutionary Computation,
10(2):145–156.

Rechenberg, I. (1973). Evolutionsstrategie – Optimierung technischer Systeme nach Prin-
zipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.

Reichel, J. and Skutella, M. (2007). Evolutionary algorithms and matroid optimization
problems. In: Proceedings of the Genetic and Evolutionary Compution Conference
(GECCO ’07), pages 947–954. ACM Press.

Rudolph, G. (1997a). Convergence Properties of Evolutionary Algorithms. Verlag Dr.
Kovač.
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