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Abstract5

We determine the optimal dynamic investment policy for a mean quadratic variation ob-6

jective function by numerical solution of a nonlinear Hamilton-Jacobi-Bellman (HJB) partial7

differential equation (PDE). We compare the efficient frontiers and optimal investment poli-8

cies for three mean variance like strategies: pre-commitment mean variance, time-consistent9

mean variance, and mean quadratic variation, assuming realistic investment constraints (e.g. no10

bankruptcy, finite shorting, borrowing). When the investment policy is constrained, the efficient11

frontiers for all three objective functions are similar, but the optimal policies are quite different.12
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1 Introduction18

In this paper, we consider optimal continuous time asset allocation using mean variance like strate-19

gies. This contrasts with the classic power law or exponential utility function approach [24].20

Mean variance strategies have a simple intuitive interpretation, which is appealing to both21

individual investors and institutions. There has been considerable recent interest in continuous22

time mean variance asset allocation [32, 21, 25, 20, 6, 11, 31, 18, 19, 29]. However, the optimal23

strategy in these papers was based on a pre-commitment strategy which is not time-consistent [7, 5].24

Although the pre-commitment strategy is optimal in the sense of maximizing the expected25

return for a given standard deviation, this may not always be economically sensible. A real-26

world investor experiences only one of many possible stochastic paths [22], hence it is not clear27

that a strategy which is optimal in an average sense over many stochastic paths is appropriate. In28
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addition, the optimal strategy computed from the pre-commitment objective function assumes that29

the stochastic parameters are known at the beginning of the investment horizon, and do not change30

over the investment period. In practice, of course, one would normally recompute the investment31

strategy based on the most recent available data.32

For these reasons, a time-consistent form of mean variance asset allocation has been suggested33

recently [7, 5, 30]. We may view the time-consistent strategy as a pre-commitment policy with a34

time-consistent constraint [30].35

Another criticism of both time-consistent and pre-commitment strategies is that the risk is only36

measured in terms of the standard deviation at the end of the investment period. In an effort to37

provide a more direct control over risk during the investment period, a mean quadratic variation38

objective function has been proposed in [9, 16].39

This article is the third in a series. In [29], we developed numerical techniques for determining40

the optimal controls for pre-commitment mean variance strategies. The methods in [29] allowed us41

to apply realistic constraints to the control policies. In [30], we developed numerical methods for42

solution of the time-consistent formulation of the mean-variance strategy [5]. The methods in [30]43

also allowed us to apply constraints to the control policies.44

In this article, we develop numerical methods for solution of the mean quadratic variation policy,45

again for the case of constrained controls. We also present a comparison of pre-commitment, time46

consistent and mean quadratic variation strategies, for two typical asset allocation problems. We47

emphasize here that we use numerical techniques which allow us to apply realistic constraints (e.g.48

no bankruptcy, finite borrowing and shorting), on the investment policies. This is in contrast to49

the analytic approaches used previously [32, 21, 6, 7].50

We first consider the optimal investment policy for the holder of a pension plan, who can51

dynamically allocate his wealth between a risk-free asset and a risky asset. We will also consider52

the case where the pension plan holder desires to maximize the wealth-to-income ratio, in the case53

where the plan holder’s salary is stochastic [10].54

The main results in this paper are55

• We formulate the optimal investment policy for the mean quadratic variation problem as56

a nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE). We extend57

the numerical methods in [29, 30] to handle this case.58

• We give numerical results comparing all three investment policies: pre-commitment mean59

variance, time-consistent mean variance, and mean quadratic variation. In the case where60

analytic solutions are available, our numerical results agree with the analytic solutions. In the61

case where typical constraints are applied to the investment strategy, the efficient frontiers62

for all three objective functions are very similar. However, the investment policies are quite63

different.64

These results show that, in deciding which objective function is appropriate for a given economic65

problem, it is not sufficient to simply examine the efficient frontiers. Instead, the actual investment66

policies need to be studied in order to determine if a particular strategy is applicable to specific67

investment objectives.68
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2 Dynamic Strategies69

In this paper, we first consider the problem of determining the mean variance like strategies for a70

pension plan. It is common to write the efficient frontier in terms of the investor’s final wealth. We71

will refer to this problem in the following as the wealth case.72

Suppose there are two assets in the market: one is risk free (e.g. a government bond) and the73

other is risky (e.g. a stock index). The risky asset S follows the stochastic process74

dS = (r + ξσ)S dt+ σS dZ1 , (2.1)

where dZ1 is the increment of a Wiener process, σ is volatility, r is the interest rate, and ξ is the75

market price of risk (or Sharpe ratio). The stock drift rate can then be defined as µS = r+ ξσ. We76

specify the drift rate of the stock in terms of the market price of risk ξ, to be consistent with [10].77

This also allows us to compare results obtained by varying σ, while keeping ξ constant, in addition78

to varying σ, while keeping µS constant.79

Suppose that the plan member continuously pays into the pension plan at a constant contri-80

bution rate π ≥ 0 in the unit time. Let W (t) denote the wealth accumulated in the pension plan81

at time t, let p denote the proportion of this wealth invested in the risky asset S, and let (1 − p)82

denote the fraction of wealth invested in the risk free asset. Then,83

dW = [(r + pξσ)W + π]dt+ pσWdZ1 , (2.2)

W (t = 0) = ŵ0 ≥ 0 .

Define,84

E[·] : expectation operator,

V ar[·] : variance operator,

Std[·] : standard deviation operator,

Et,w[·], V art,w[·] or Stdt,w[·] : E[·|W (t) = w], V ar[·|W (t) = w] or Std[·|W (t) = w]

when sitting at time t,

Ept,w[·], V arpt,w[·] or Stdpt,w[·] : Et,w[·], V art,w[·] or Stdt,w[·], where p(s,W (s)), s ≥ t,
is the policy along path W (t) from stochastic process (2.2) .

(2.3)

For the convenience of the reader, we will first give a brief summary of the pre-commitment85

and time consistent policies.86

2.1 Pre-commitment Policy87

We review here the pre-commitment policy, as discussed in [29]. In this case, the optimal policy88

solves the following optimization problem,89

V(w, t) = sup
p(s≥t,W (s))

{
Ept,w[W (T )]− λV arpt,w[W (T )]

∣∣ W (t) = w

}
, (2.4)

where W (T ), t < T is the investor’s terminal wealth, subject to stochastic process (2.2), and where90

λ > 0 is a given Lagrange multiplier. The multiplier λ can be interpreted as a coefficient of risk91

aversion. The optimal policy for (2.4) is called a pre-commitment policy [5].92
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Let p∗t (s,W (s)), s ≥ t, be the optimal policy for problem (2.4). Then, p∗t+∆t(s,W (s)), s ≥ t+∆t,93

is the optimal policy for94

V(w, t+ ∆t) = sup
p(s≥t+∆t,W (s))

{
Ept+∆t,w[W (T )]− λV arpt+∆t,w[W (T )]

∣∣ W (t+ ∆t) = w

}
. (2.5)

However, in general95

p∗t (s,W (s)) 6= p∗t+∆t(s,W (s)) ; s ≥ t+ ∆t , (2.6)

i.e. solution of problem (2.4) is not time-consistent. Therefore, a dynamic programming princi-96

ple cannot be directly applied to solve this problem. However, problem (2.4) can be embedded97

into a class of auxiliary stochastic Linear-Quadratic (LQ) problems using the method in [32, 21].98

Alternatively, equation (2.4) can be posed as a convex optimization problem [22, 6, 1, 17]. More99

precisely, if p∗t (s,W (s)) is the optimal control of equation (2.4), then there exists a γ(t, w), such100

that p∗t (s,W (s)) is also the optimal control of101

inf
p(s≥t,W (s))

{
Ept,w

[(
W (T )− γ(t, w)

2

)2] ∣∣ W (t) = w

}
. (2.7)

Hence we can solve for p∗t (s,W (s)) using dynamic programming. Note that this does not contradict102

our assertion that the optimal policy for equation (2.4) is not time consistent, since in general γ(t, w)103

depends on the initial point (t, w) (see Remark 1.1 in [7], and [19]). Problem 2.7 can be determined104

from the solution of an Hamilton Jacobi Bellman (HJB) equation. We have discussed the numerical105

solution of the resulting HJB equation in detail in [29].106

2.2 Time-consistent Policy107

In [30], we focused on the so called time-consistent policy. We can determine the time-consistent108

policy by solving problem (2.4) with an additional constraint,109

p∗t (s,W (s)) = p∗t′(s,W (s)) ; s ≥ t′, t′ ∈ [t, T ] . (2.8)

In other words, we optimize problem (2.4), given that we follow the optimal policy in the future,110

which is determined by solving (2.4) at each future instant. Obviously, dynamic programming111

can be applied to the time-consistent problem. We have discussed the numerical algorithm for112

determining the optimal time-consistent policy in [30].113

Remark 2.1 We follow the definition of a time consistent policy as given in [5], with a constant114

risk aversion parameter. Note that in [8], it is suggested that a wealth dependent risk aversion115

parameter is more meaningful. Some computations with a wealth dependent risk aversion parameter116

are given in [30]. However, we will use the original form with a constant risk aversion, in the117

following. See Remark 2.2.118

2.3 Mean Quadratic Variation119

Instead of using the variance/standard deviation as the risk measure, we can use the quadratic120

variation [9],
∫ T
t (dWs)

2. From equation (2.2) we have121

(dWt)
2 = (p(t,W (t))σW (t))2dt , (2.9)
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and consequently, we obtain,122 ∫ T

t
(dWs)

2 =

∫ T

t
(σp(s,W (s))W (s))2ds . (2.10)

Remark 2.2 (Relation to Time Consistent Mean Variance) In [7], the following rather sur-123

prising result is obtained. Without constraints (the allowing bankruptcy case, discussed in later124

sections), if
∫ T
t (er(T−s)dWs)

2 is used as the risk measure, the mean quadratic variation strategy125

has the same solution as the time-consistent strategy. The term (er(T−s)dWs)
2 represents the future126

value of the instantaneous risk due to investing pW (in monetary amount) in the risky asset. In127

order to facilitate comparison with various alternative strategies, we will use the risk measure128 ∫ T

t
(er(T−s)dWs)

2 =

∫ T

t
(er(T−s)σp(s,W (s))W (s))2ds , (2.11)

in the following. Note that as discussed in [16], risk measure (2.11) is commonly used in optimal129

trade execution (with r = 0).130

Using equation (2.11) as a risk measure, we seek the optimal policy which solves the following131

optimization problem,132

V(w, t) = sup
p(s≥t,W (s))

Ept,w

{
W (T )− λ

∫ T

t
(er(T−s)σp(s,W (s))W (s))2ds

∣∣ W (t) = w

}
, (2.12)

where λ is a given Lagrange multiplier, subject to stochastic process (2.2). Let p∗t (s,W (s)), s ≥ t,133

be the optimal policy for problem (2.12). Then clearly,134

p∗t (s,W (s)) = p∗t′(s,W (s)) ; s ≥ t′, t′ ∈ [t, T ] . (2.13)

Hence, dynamic programming can be directly applied to this problem.135

3 Mean Quadratic Variation Wealth Case136

In this section, we formulate the mathematical model for the optimal mean quadratic variation137

investment strategy. Let,138

D := the set of all admissible wealth W (t), for 0 ≤ t ≤ T ;

P := the set of all admissible controls p(t,W (t)), for 0 ≤ t ≤ T and W (t) ∈ D. (3.1)

139

Remark 3.1 Strictly speaking, we choose P so as to enforce W ∈ D. However, when the control140

problem is formulated as the solution to an HJB PDE, then we choose D, and select a boundary141

condition which specifies a control which ensures that W ∈ D.142

We seek the solution of the optimization problem (2.12). Define143

V(w, t) = sup
p∈P

Ept,w

{
W (T )− λ

∫ T

t
(er(T−s)σp(s,W (s))W (s))2ds

∣∣ W (t) = w

}
. (3.2)
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Let τ = T − t. Then using equation (2.2) and Ito’s Lemma, we have that V (w, τ) = V(w, t) satisfies144

the HJB equation145

Vτ = sup
p∈P

{
µpwVw +

1

2
(σpw)2Vww − λ(erτσpw)2

}
; w ∈ D, (3.3)

with terminal condition146

V (w, 0) = w , (3.4)

and where147

µpw = π + w(r + pσξ)

(σpw)2 = (pσw)2 . (3.5)

Since PDE (3.3) can be degenerate depending on the control, we have no reason to believe that148

the solution is smooth. For this reason, we seek the viscosity solution to equation (3.3). This is149

discussed further in Section 5.1.150

In order to trace out the efficient frontier solution (in terms of mean and quadratic variation of151

the wealth) of problem (2.12), we proceed in the following way. Pick an arbitrary value of λ and152

solve problem (2.12), which determines the optimal control p∗(t, w). We also need to determine153

Ep
∗

t=0,w[W (T )].154

Let G = G(w, τ) = E[W (T )|W (t) = w, p(s ≥ t, w) = p∗(s ≥ t, w)] . Then G is given from the155

solution to156

Gτ =

{
µpwGw +

1

2
(σpw)2Gww

}
p(T−τ,w)=p∗(T−τ,w)

; w ∈ D , (3.6)

with the terminal condition157

G(w, 0) = w . (3.7)

Since the most costly part of the solution of equation (3.3) is the determination of the optimal158

control p∗, solution of equation (3.6) is very inexpensive, once p∗ is known.159

Then, if160

V (ŵ0, T ) = Ep
∗

t=0,ŵ0

{
W (T )− λ

∫ T

0
(er(T−s)σp∗(s,W (s))W (s))2ds

∣∣ W (0) = ŵ0

}
,

G(ŵ0, T ) = Ep
∗

t=0,ŵ0

{
W (T )

∣∣ W (0) = ŵ0

}
, (3.8)

we have that161

Ep
∗

t=0,ŵ0

{∫ T

0
(er(T−s)σp∗(s,W (s))W (s))2ds

∣∣ W (0) = ŵ0

}
= (G(ŵ0, T )− V (ŵ0, T ))/λ . (3.9)

It is useful also to determine the variance of the terminal wealth, V arp
∗

t=0,w[W (T )], under the162

optimal strategy in terms of mean quadratic variation. Let F = F (w, τ) = E[W (T )2|W (t) =163

w, p(s ≥ t, w) = p∗(s ≥ t, w)] . Then F is given from the solution to164

Fτ = {µpwFw +
1

2
(σpw)2Fww}p(T−τ,w)=p∗(T−τ,w) ; w ∈ D , (3.10)
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with the terminal condition165

F (w, 0) = w2 . (3.11)

Assuming F (ŵ0, T ), G(ŵ0, T ) are known, for a given λ, we can then compute the pair166

(V arp
∗

t=0,ŵ0
[W (T )], Ep

∗

t=0,ŵ0
[W (T )])

from V arp
∗

t=0,ŵ0
[W (T )] = F (ŵ0, T )− [G(ŵ0, T )]2 and Ep

∗

t=0,ŵ0
[W (T )] = G(ŵ0, T ).167

Remark 3.2 If we allow an unbounded control set P = (−∞,+∞), then the total wealth can168

become negative (i.e. bankruptcy is allowed). In this case D = (−∞,+∞). If the control set P is169

bounded, i.e. P = [pmin, pmax], then negative wealth is not possible, in which case D = [0,+∞). We170

can also have pmax → +∞, but prohibit negative wealth, in which case D = [0,+∞) as well.171

3.1 Localization172

Let,173

D̂ := a finite computational domain which approximates the set D. (3.12)

In order to solve the PDEs (3.3), (3.6) and (3.10), we need to use a finite computational domain,174

D̂ = [wmin, wmax]. When w → ±∞, we assume that175

V (w → ±∞, τ) ' H1(τ)w2 ,

G(w → ±∞, τ) ' J1(τ)w ,

F (w → ±∞, τ) ' I1(τ)w2 , (3.13)

then, ignoring lower order terms and taking into account the initial conditions (3.4), (3.7), (3.11),176

V (w → ±∞, τ) ' λerτk2

2k1 + k2
(1− e(2k1+k2)τ )w2 ,

G(w → ±∞, τ) ' ek1τw ,

F (w → ±∞, τ) ' e(2k1+k2)τw2 , (3.14)

where k1 = r + pσξ and k2 = (pσ)2. We consider three cases.177

3.1.1 Allowing Bankruptcy, Unbounded Controls178

In this case, we assume there are no constraints on W (t) or on the control p, i.e., D = (−∞,+∞)179

and P = (−∞,+∞). Since W (t) = w can be negative, bankruptcy is allowed. We call this case the180

allowing bankruptcy case.181

Our numerical problem uses182

D̂ = [wmin, wmax] , (3.15)

where D̂ = [wmin, wmax] is an approximation to the original set D = (−∞,+∞).183

Applying equation (3.13) at finite [wmin, wmax] will cause some error. However, we can make184

these errors small by choosing large values for (|wmin|, wmax). We have verified this in [29, 30], and185

numerical tests show that this property holds for the mean quadratic variation strategy as well. If186

asymptotic forms of the solution are unavailable, we can use any reasonable estimate for p∗ for |w|187

large, and the error will be small if (|wmin|, wmax) are sufficiently large [3].188
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3.1.2 No Bankruptcy, No Short Sales189

In this case, we assume that bankruptcy is prohibited and the investor cannot short the stock index,190

i.e., D = [0,+∞) and P = [0,+∞). We call this case the no bankruptcy (or bankruptcy prohibition)191

case.192

Our numerical problem uses,193

D̂ = [0, wmax] . (3.16)

The boundary conditions for V,G, F at w = wmax are given by equations (3.14). We prohibit the194

possibility of bankruptcy (W (t) < 0) by requiring that (see Remark 3.3 ) limw→0(pw) = 0, so that195

equations (3.3), (3.6) and (3.10) reduce to (at w = 0)196

Vτ (0, τ) = πVw ,

Gτ (0, τ) = πGw ,

Fτ (0, τ) = πFw . (3.17)

Another way of deriving this boundary condition is to note that we can rewrite equation (3.3)197

using the control q = pw. In this case q is the dollar amount invested in the risky asset. We can198

prohibit negative wealth by requiring that the amount invested in the risky asset q = 0 at w = 0.199

Remark 3.3 It is important to know the behavior of p∗w as w → 0, since it helps us determine200

whether negative wealth is admissible or not. As shown above, negative wealth is admissible for the201

case of allowing bankruptcy. In the case of no bankruptcy, although p ∈ P = [0,+∞), we must202

have limw→0(pw) = 0 so that W (t) ≥ 0 for all 0 ≤ t ≤ T . In particular, we need to make sure203

that the optimal strategy never generates negative wealth, i.e., Probability(W (t) < 0|p∗) = 0 for all204

0 ≤ t ≤ T . We will see from the numerical solutions that boundary condition (3.17) does in fact205

result in limw→0(p∗w) = 0. Hence, negative wealth is not admissible under the optimal strategy.206

More discussion of this issue are given in Section 6.207

Remark 3.4 (Behavior of W (t),W → 0) The precise behavior of the controlled stochastic pro-208

cess will depend on the behavior of pw as w → 0, from the solution of the HJB equation (3.3). If209

pw → C1w
γ , w → 0, C1 independent of w, then the behaviour of W (t) near W = 0 can be deter-210

mined from the usual Feller conditions. Equivalently, and more germane for PDE analysis, we can211

examine the Fichera function [15] to determine if boundary conditions are required at w = 0. We212

have the following possibilities213

• γ ≥ 1, w = 0 is unattainable, and no boundary condition is required;214

• 1/2 < γ < 1, which implies that w = 0 is attainable but no boundary condition is required;215

• γ = 1/2, w = 0 is attainable, and no boundary condition is required if π ≥ C2
1σ

2/2, otherwise216

a boundary condition is required;217

• 0 < γ < 1/2, w = 0 is attainable, and we need to supply a boundary condition. In this case218

we apply a reflecting condition (from equation (3.17)) if π > 0 and an absorbing condition if219

π = 0.220
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Note that for numerical purposes, we always apply conditions (3.17). In some cases, as noted above,221

boundary conditions at w = 0 are not actually required, but this does not cause any problems if the222

boundary condition is superfluous [26, 15]. This is convenient, since of course we do not know the223

precise behavior of (pw), w → 0 until we solve the HJB equation (3.3) and determine the control p.224

Remark 3.5 (Economic Interpretation of the Conditions on pw) The quantity pw is the225

dollar amount invested in the risky asset. Consequently, the above conditions on pw can be in-226

terpreted in economic terms. For example, we prohibit negative wealth by requiring that the dollar227

amount invested in the risky asset must tend to zero as the the investor’s wealth tends to zero. Note228

that this economically reasonable condition permits p to be finite or infinite at w = 0.229

3.1.3 No Bankruptcy, Bounded Control230

This is a realistic case, in which we assume that bankruptcy is prohibited and infinite borrowing231

is not allowed. As a result, D = [0,+∞) and P = [0, pmax]. We call this case the bounded control232

case. For example, typical margin requirements on a brokerage account limit borrowing to 50% of233

the market value of the assets in the account. This would translate into a value of pmax = 1.5.234

Our numerical problem uses,235

D̂ = [0, wmax] , (3.18)

where wmax is an approximation to the infinity boundary. Other assumptions and the boundary236

conditions for V and G are the same as those of no bankruptcy case introduced in Section 3.1.2.237

Note that for the bounded control case, the control is finite, thus limw→0(pw) = 0 and negative238

wealth is not admissible.239

We summarize the various cases in Table 1240

Case D̂ P
Bankruptcy [wmin, wmax] (−∞,+∞)

No Bankruptcy [0, wmax] [0,+∞)
Bounded Control [0, wmax] [0, pmax]

Table 1: Summary of cases.

3.2 Special Case: Reduction to the Classic Multi-period Portfolio Selection241

Problem242

The classic multi-period portfolio selection problem can be stated as the following: given some243

investment choices (assets) in the market, an investor seeks an optimal asset allocation strategy over244

a period T with an initial wealth ŵ0. This problem has been widely studied [24, 32, 21, 23, 6, 22].245

If we use the mean variance approach to solve this problem, then the best strategy p∗(w, t) can be246

defined as a solution of problem (2.4). We still assume there is one risk free bond and one risky247

asset in the market. In this case,248

dW = (r + pξσ)Wdt+ pσWdZ1 , (3.19)

W (t = 0) = ŵ0 > 0 .
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Clearly, the pension plan problem we introduced previously can be reduced to the classic multi-249

period portfolio selection problem by simply setting the contribution rate π = 0. All equations and250

boundary conditions stay the same.251

4 Wealth-to-income Ratio Case252

In the previous section, we considered the expected value and variance/quadratic variation of the253

terminal wealth in order to construct an efficient frontier. In [10], it is argued that at retirement, a254

pension plan member will be concerned with preservation of her standard of living. This suggests255

measuring wealth in terms of a numeraire computed based on the investor’s pre-retirement salary.256

This approach for retirement saving takes into account the stochastic feature of the plan member’s257

lifetime salary progression, as well as the stochastic nature of the investment assets.258

In this section, instead of the terminal wealth, we determine the mean variance efficient strategy259

in terms of the terminal wealth-to-income ratio X = W
Y , where Y is the annual salary in the year260

before she retires. As noted in [10], this is consistent with the habit formation model developed in261

[28, 12].262

In the following, we give a brief overview of the model developed in [10]. We still assume there263

are two underlying assets in the pension plan: one is risk free and the other is risky. Recall from264

equation (2.1) that the risky asset S follows the Geometric Brownian Motion,265

dS = (r + ξσ)S dt+ σS dZ1 . (4.1)

Suppose that the plan member continuously pays into the pension plan at a fraction π of her yearly266

salary Y , which follows the process267

dY = (r + µY )Y dt+ σY0Y dZ0 + σY1Y dZ1 , (4.2)

where µY , σY0 and σY1 are constants, and dZ0 is another increment of a Wiener process, which is268

independent of dZ1. Let p denote the proportion of this wealth invested in the risky asset S, and269

let 1− p denote the fraction of wealth invested in the risk-free asset. Then270

dW = (r + pξσ)W dt+ pσWdZ1 + πY dt , (4.3)

W (t = 0) = ŵ0 ≥ 0 .

Define a new state variable X(t) = W (t)/Y (t), then by Ito’s Lemma, we obtain271

dX = [π +X(−µY + pσ(ξ − σY1) + σ2
Y0 + σ2

Y1)]dt (4.4)

−σY0XdZ0 +X(pσ − σY1)dZ1 ,

X(t = 0) = x̂0 ≥ 0 .

Let272

µpX = π +X(−µY + pσ(ξ − σY1) + σ2
Y0 + σ2

Y1)

(σpX)2 =
(
σpX(p(t,X(t)), X(t)

)2
= X2(σ2

Y0 + (pσ − σY1)2) , (4.5)
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then the control problem is to determine the control p(t,X(t) = x) such that p(t, x) maximizes273

V(x, t) = sup
p∈P

Ept,x

{
X(T )− λ

∫ T

t
e2r′(T−s)(σpX)2ds

∣∣ X(t) = x

}
, (4.6)

subject to stochastic process (4.4), where r′ = −µY + σ2
Y0

+ σ2
Y1

. Note that we have posed the274

problem in terms of the future value of the quadratic variation using r′ as the discount factor. For275

the wealth case, with no constraints on the controls, the analytic solution for the time-consistent276

mean variance policy is identical to the mean quadratic strategy (2.12) [7]. However, there does277

not appear to be an analytic solution available for the wealth-to-income ratio case, hence we use r′278

as the effective drift rate (when there is no investment in the risky asset). There are clearly other279

possibilities here.280

Let τ = T − t. Then V (x, τ) = V(x, t) satisfies the HJB equation281

Vτ = sup
p∈P

{
µpxVx +

1

2
(σpx)2Vxx − λe2r′τ (σpx)2

}
; x ∈ D, (4.7)

with terminal condition282

V (x, 0) = x . (4.8)

We still use D and P as the sets of all admissible wealth-to-income ratio and control. As before, we283

let D̂ be the localized computational domain.284

We also solve for G(x, τ) = E[X(T )|X(t) = x, p(s ≥ t, x) = p∗(s ≥ t, x)] and F (x, τ) =285

E[X(T )2|X(t) = x, p(s ≥ t, x) = p∗(s ≥ t, x)] using286

Gτ = {µpxGx +
1

2
(σpx)2Gxx}p(T−τ,x)=p∗(T−τ,x) ; x ∈ D , (4.9)

Fτ = {µpxFx +
1

2
(σpx)2Fxx}p(T−τ,x)=p∗(T−τ,x) ; x ∈ D , (4.10)

with terminal condition287

G(x, 0) = x . (4.11)

F (x, 0) = x2 . (4.12)

We can then use the method described in Section 3 to trace out the efficient frontier solution288

of problem (4.6).289

We consider the cases: allowing bankruptcy (D = (−∞,+∞), P = (−∞,+∞)), no bankruptcy290

(D = [0,+∞), P = [0,+∞)), and bounded control (D = [0,+∞), P = [0, pmax]). For computational291

purposes, we localize the problem to to D̂ = [xmin, xmax], and apply boundary conditions as in292

Section 3.1. More precisely, if x = 0 is a boundary, with X < 0 prohibited, then limw→0(px) = 0,293

and hence294

Vτ (0, τ) = πVx ,

Gτ (0, τ) = πGx ,

Fτ (0, τ) = πFx . (4.13)

The boundary conditions at x→ ±∞ are given in equation (3.14), but using x instead of w and r′295

instead of r with k1 = −µY + pσ(ξ − σY1) + σ2
Y0

+ σ2
Y1

and k2 = σ2
Y0

+ (pσ − σY1)2.296
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5 Discretization of the HJB PDE297

The numerical scheme to solve the PDEs is similar to the scheme used in [29]. We briefly describe298

the discretization scheme in this section, and refer readers to [29] for details.299

Define,300

LpV ≡ a(z, p)Vzz + b(z, p)Vz , (5.1)

where301

z = w ; a(z, p) =
1

2
(σpw)2 ; b(z, p) = µpw ; d(z, p, τ) = −λ(erτσpw)2 (5.2)

(see equation (3.5)) for the wealth case introduced in Section 2; and302

z = x ; a(z, p) =
1

2
(σpx)2 ; b(z, p) = µpx ; d(z, p, τ) = −λe2r′τ (σpx)2 (5.3)

(see equation (4.5)) for the wealth-to-income ratio case introduced in Section 4. Then,303

Vτ = sup
p∈P
{LpV + d(z, p, τ)} , (5.4)

and304

Gτ = {LpG}p=p∗ , (5.5)

Fτ = {LpF}p=p∗ . (5.6)

Define a grid {z0, z1, . . . , zq} with z0 = zmin, zq = zmax and let V n
i be a discrete approximation305

to V (zi, τ
n). Set Pn = [pn0 , p

n
1 , . . . , p

n
q ]′, with each pni a local optimal control at (zi, τ

n). Let306

P ∗ = {P 0, P 1, . . . , PN}, where τN = T . In other words, P ∗ contains the discrete optimal controls307

for all (i, n). Let V n = [V n
0 , . . . , V

n
q ]′, and let (LPnh V n)i denote the discrete form of the differential308

operator (5.1) at node (zi, τ
n). The operator (5.1) can be discretized using forward, backward or309

central differencing in the z direction to give310

(LPn+1

h V n+1)i = αn+1
i V n+1

i−1 + βn+1
i V n+1

i+1 − (αn+1
i + βn+1

i )V n+1
i . (5.7)

Here αi, βi are defined in Appendix A.311

Equation (5.4) can now be discretized using fully implicit timestepping along with the dis-312

cretization (5.7) to give313

V n+1
i − V n

i

∆τ
= sup

Pn+1∈P̂

{
(LPn+1

h V n+1)i +d(zi, [P
n+1]i, τ)

}
, (5.8)

where P̂ = {[p0, p1, . . . , pq]
′ | pi ∈ P, 0 ≤ i ≤ q}. With Pn+1 given from equation (5.8), then314

equations (5.5) and (5.6) can be discretized as315

Gn+1
i −Gni

∆τ
=

{
(LPn+1

h Gn+1)i

}
, (5.9)

Fn+1
i − Fni

∆τ
=

{
(LPn+1

h Fn+1)i

}
. (5.10)
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Note that αn+1
i = αn+1

i (pn+1
i ) and βn+1

i = βn+1
i (pn+1

i ), that is, the discrete equation coefficients316

are functions of the local optimal control pn+1
i . This makes equations (5.8) highly nonlinear in317

general. We use a policy type iteration [29] to solve the non-linear discretized algebraic equation318

(5.8).319

Given an initial value ẑ0, we can use the algorithm introduced in [29] to obtain the efficient320

frontier.321

5.1 Convergence to the Viscosity Solution322

PDEs (5.5) and (5.6) are linear, since the optimal control is pre-computed. We can then obtain323

classical solutions of the linear PDEs (5.5) and (5.6). However, PDE (5.4) is highly nonlinear, so324

the classical solution may not exist in general. In this case, we are seeking the viscosity solution325

[2, 13].326

In [27], examples were given in which seemingly reasonable discretizations of nonlinear HJB327

PDEs were unstable or converged to the incorrect solution. It is important to ensure that we can328

generate discretizations which are guaranteed to converge to the viscosity solution [2, 13]. In the329

case of bounded controls, on a finite computational domain, the PDE (5.4) satisfies the conditions330

required in [4], so that a strong comparison property holds.331

In the case of allowing bankruptcy and no bankruptcy (see Table 1), the control p is unbounded332

near w = 0, which would violate some of the conditions required in [4]. However, we can avoid these333

difficulties, if we rewrite PDE (5.4) in terms of the control q = pw. From the analytic solutions,334

we note that q is bounded on a finite computational domain, hence a strong comparison property335

holds in this case as well. In fact, our numerical implementation for these two cases does in fact336

use q = pw as the control, as discussed in [30].337

Following the same proof given in [29], we can show that scheme (5.8) converges to the viscosity338

solution of equation (5.4), assuming that (5.4) satisfies a strong comparison principle. We refer339

readers to [29] for details.340

6 Numerical Results: Mean Quadratic Variation341

In this section we examine the numerical results for the strategy of minimizing the quadratic342

variation. We consider two risk measures when we construct efficient frontiers. One measure is343

the usual standard deviation, and the other measure is the expected future value of the quadratic344

variation, E[
∫ T

0 (er(T−s)dWs)
2]. We use the notation Q stdp

∗

t=0,w[W (T )] to denote345

Q stdp
∗

t=0,w[W (T )] =

(
Ep
∗

t=0,w

{∫ T

0
(er(T−s)σp∗(s,W (s))W (s))2ds

∣∣ W (0) = w

} )1/2

.

(6.1)

6.1 Wealth Case346

When bankruptcy is allowed, as pointed out in [7], the mean quadratic variation strategy has347

the same solution as the time-consistent strategy. The analytic solutions for the time-consistent348

strategy are given in Section 7. Given the parameters in Table 2, if λ = 0.6, the exact solution is349

(Stdp
∗

t=0,w[W (T )], Ep
∗

t=0,w[W (T )]) = (1.24226, 6.41437). Table 3 and 4 show the numerical results.350
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Table 3 reports the value of V = Ep
∗

t=0,w[W (T )−λ
∫ T

0 (er(T−s)dWs)
2], which is the viscosity solution351

of the nonlinear HJB PDE (3.3). Table 3 shows that our numerical solution converges to the352

viscosity solution at a first order rate. Table 4 reports the value of Ep
∗

t=0,w[W (T )], which is the353

solution of the linear PDE (3.6). We also computed the values of Ep
∗

t=0,w[W (T )2] (not shown in354

Tables), which is the the solution of PDE (3.10). Given Ep
∗

t=0,w[W (T )2] and Ep
∗

t=0,w[W (T )], the355

standard deviation can now be easily computed, which is also reported in Table 4. The results356

show that the numerical solutions of Stdp
∗

t=0,w[W (T )] and Ep
∗

t=0,w[W (T )] converge to the analytic357

values at a first order rate as mesh and timestep size tends to zero.358

r 0.03 ξ 0.33
σ 0.15 π 0.1
T 20 years W (t = 0) 1

Table 2: Parameters used in the pension plan examples.

Nodes Timesteps Nonlinear Normalized V (w = 1, t = 0) Ratio
(W) iterations CPU Time

1456 320 640 1. 5.49341
2912 640 1280 4.13 5.49092
5824 1280 2560 16.31 5.48968 2.008
11648 2560 5120 66.23 5.48906 2.000
23296 5120 10240 268.53 5.48875 2.000
46592 10240 20480 1145.15 5.48860 2.067

Table 3: Convergence study, wealth case, allowing bankruptcy. Fully implicit timestepping is
applied, using constant timesteps. Parameters are given in Table 2, with λ = 0.6. Values of

V = Ep∗

t=0,w[W (T ) − λ
∫ T

0
(er(T−t)dw)2] are reported at (W = 1, t = 0). Ratio is the ratio of

successive changes in the computed values for decreasing values of the discretization parameter h.
CPU time is normalized. We take the CPU time used for the first test in this table as one unit of
CPU time, which uses 1456 nodes for W grid and 320 timesteps.

Nodes Timesteps Stdp
∗

t=0,w[W (T )] Ep
∗

t=0,w[W (T )] Ratio Ratio

(W ) for Stdp
∗

t=0,w[W (T )] for E[W (T )]

1456 320 1.30652 6.41986 1.960
2912 640 1.27466 6.41711 1.972
5824 1280 1.25853 6.41574 1.975 2.007
11648 2560 1.25041 6.41505 1.986 1.986
23296 5120 1.24634 6.41471 1.995 2.029
46592 10240 1.244300 6.41454 2.000 1.995098

Table 4: Convergence study of the wealth case, allowing bankruptcy. Fully implicit timestepping
is applied, using constant timesteps. The parameters are given in Table 2, with λ = 0.6. Values of

Stdq∗

t=0,w[W (T )] and Eq∗

t=0,w[W (T )] are reported at (W = 1, t = 0). Ratio is the ratio of successive
changes in the computed values for decreasing values of the discretization parameter h. Analytic

solution is (Stdp∗

t=0,w[W (T )], Ep∗

t=0,w[W (T )]) = (1.24226, 6.41437).
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We also solve the problem for the no bankruptcy case and the bounded control case. The359

frontiers are shown in Figure 1, with parameters given in Table 2 and (W = 1, t = 0). Figure 1360

(a) shows the results obtained by using the standard deviation as the risk measure, and Figure 1361

(b) shows the results obtained by using the quadratic variation as the risk measure. Note that,362

in both figures, the efficient frontiers pass through the same lowest point. At that point, the plan363

holder simply invests all her wealth in the risk free bond all the time, so the risk (standard devia-364

tion/quadratic variation) is zero. For both risk measures, the frontiers for the allowing bankruptcy365

case are straight lines. This result agrees with the results from the pre-commitment strategy [29]366

and the time-consistent strategy [30].367

std[WT]

E
[W

T
]

0 2 4 6 8 10
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20

Allow bankruptcy

Bounded control

No bankruptcy

Q_std[WT]

E
[W

T
]

0 1 2 3 4 5 6 7

5

10

15
Allow bankrupcty

No bankruptcy

Bounded control

(a) Risk measure: std (b) Risk measure: Q std

Figure 1: Efficient frontiers (wealth case) for allowing bankruptcy (D = (−∞,+∞) and P =
(−∞,+∞)), no bankruptcy (D = [0,+∞) and P = [0,+∞)) and bounded control (D = [0,+∞) and
P = [0, 1.5]) cases. Parameters are given in Table 2. Values are reported at (W = 1, t = 0). Figure
(a) shows the frontiers with risk measure standard deviation. Figure (b) shows the frontiers with
risk measure quadratic variation.

Figure 2 shows the effect of varying σ while holding µS = r + ξσ constant. In this case, the368

efficient frontiers are different values of σ are well separated. Figure 3 shows the effect of varying σ369

while holding ξ constant. In this case, the curves for different values of σ are much closer together.370

Note as well that if the value of σ is increased with µS fixed, then the efficient frontier moves371

downward (Figure 2). On the other hand, as shown in Figure 3, the efficient frontier moves upward372

if σ is increased with fixed ξ (this makes the drift rate µS increase).373

Figure 4 shows the values of the optimal control (the investment strategies) at different time t374

for a fixed T = 20. The parameters are given in Table 2, with bounded control (p ∈ [0, 1.5]) and λ =375

0.604. Under these inputs, if W (t = 0) = 1, (Stdp
∗

t=0,w[W (T )], Ep
∗

t=0,w[W (T )]) = (1.23824, 6.40227)376

and Q stdp
∗

t=0,w[W (T )] = 1.52262 from the finite difference solution. From this Figure, we can see377

that the control p is an increasing function of time t for a fixed w. This agrees with the results378

from the pre-commitment [29] and time-consistent strategies [30].379
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Figure 2: Efficient frontiers (wealth case), bounded control. We fix µS = r + ξσ = .08, and vary
σ. Other parameters are given in Table 2. Values are reported at (W = 1, t = 0). Figure (a) shows
the frontiers with risk measure standard deviation. Figure (b) shows the frontiers with risk measure
quadratic variation.
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Figure 3: Efficient frontiers (wealth case), bounded control. We fix ξ = 0.33, and vary σ. Other
parameters are given in Table 2. Values are reported at (W = 1, t = 0). Figure (a) shows the
frontiers with risk measure standard deviation. Figure (b) shows the frontiers with risk measure
quadratic variation.
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Figure 4: Optimal control as a function of (W, t), bounded control case. Parameters are given in

Table 2, with λ = 0.604. Under these inputs, if W (t = 0) = 1, (Stdp∗

t=0,w[W (T )], Ep∗

t=0,w[W (T )]) =

(1.23824, 6.40227) and Q stdp
∗

t=0,w[W (T )] = 1.52262 from finite difference solution. Mean quadratic
variation objective function.

Remark 6.1 As we discussed in Remark 3.3, in the case of bankruptcy prohibition, we have to380

have limw→0(p∗w) = 0 so that negative wealth is not admissible. Our numerical tests show that as381

w goes to zero, p∗w = O(wγ). For a reasonable range of parameters, we have 0.9 < γ < 1. Hence,382

this verifies that the boundary conditions (3.17) ensure that negative wealth is not admissible under383

the optimal strategy. This property also holds for the wealth-to-income ratio case.384

6.2 Multi-period Portfolio Selection385

As discussed in Section 3.2, the wealth case can be reduced to the classic multi-period portfolio386

selection problem. Efficient frontier solutions of a particular multi-period portfolio selection problem387

are shown in Figure 5, with parameters in Table 2 but with π = 0. Again, we consider three cases:388

allowing bankruptcy, no bankruptcy, and bounded control cases. Figure 5 (a) shows the results389

obtained by using the standard deviation as the risk measure, and Figure 5 (b) shows the results390

obtained by using the quadratic variation as the risk measure. As for the wealth case, in both391

figures, the frontiers for the allowing bankruptcy case are straight lines.392

6.3 Wealth-to-income Ratio Case393

In this section, we examine the wealth-to-income ratio case. Tables 6 and 7 show the numerical394

results for the bounded control case, using parameters in Table 5. Table 6 reports the value of395

V = Ep
∗

t=0,x[X(T ) − λ
∫ T

0 (er(T−s)dXs)
2], which is the viscosity solution of nonlinear HJB PDE396

(4.7). Table 7 reports the value of Ep
∗

t=0,x[X(T )], which is the solution of the linear PDE (4.9). We397
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Figure 5: Efficient frontiers (multi-period portfolio selection) for allowing bankruptcy (D =
(−∞,+∞) and P = (−∞,+∞)), no bankruptcy (D = [0,+∞) and P = [0,+∞)) and bounded
control (D = [0,+∞) and P = [0, 1.5]) cases. Parameters are given in Table 2 but with π = 0.
Values are reported at (W = 1, t = 0). Figure (a) shows the frontiers with risk measure standard
deviation. Figure (b) shows the frontiers with risk measure quadratic variation.

µy 0. ξ 0.2
σ 0.2 σY 1 0.05
σY 0 0.05 π 0.1
T 20 years λ 0.25
Q [0, 1.5] D [0,+∞)

Table 5: Parameters used in the pension plan examples.

also computed the values of Ep
∗

t=0,x[X(T )2] (not shown in tables), which is the the solution of PDE398

(4.10).399

Given Ep
∗

t=0,x[X(T )2] and Ep
∗

t=0,x[X(T )], the standard deviation is easily computed. This is also400

reported in Table 7. The results show that the numerical solutions of V and Ep
∗

t=0,x[X(T )] converges401

at a first order rate as mesh and timestep size tends to zero.402

Efficient frontiers are shown in Figure 6, using parameters in Table 5 with (X(0) = 0.5; t = 0).403

Figure 6 (a) shows the results obtained by using the standard deviation as the risk measure, and404

Figure 6 (b) shows the results obtained by using the quadratic variation as the risk measure.405

Note that, although the frontiers in both figures pass through the same lowest point, unlike the406

wealth case, the minimum standard deviation/quadratic variation for all strategies are no longer407

zero. Since the plan holder’s salary is stochastic (equation (4.2)) and the salary risk cannot be408

completely hedged away, there is no risk free strategy.409

Figure 7 shows the values of the optimal control (the investment strategies) at different time410

t for a fixed T = 20. The parameters are given in Table 5, with λ = 0.2873. Under these inputs,411
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Nodes Timesteps Nonlinear Normalized V (w = 1, t = 0) Ratio
(W) iterations CPU Time

177 80 160 0.21 3.26653
353 160 320 1. 3.26534
705 320 640 3.86 3.26476 2.052
1409 640 1280 15.00 3.26447 2.000
2817 1280 2560 56.79 3.26433 2.071
5633 2560 5120 239.79 3.26426 2.000
11265 5120 10240 966.29 3.26422 1.750

Table 6: Convergence study. quadratic variation, Bounded Control. Fully implicit timestepping
is applied, using constant timesteps. Parameters are given in Table 5, with λ = 0.2873. Values

of V = Ep∗

t=0,x[X(T )− λ
∫ T

0
(er(T−s)dX2)] Ratio is the ratio of successive changes in the computed

values for decreasing values of the discretization parameter h. CPU time is normalized. We take
the CPU time used for the second test in this table as one unit of CPU time, which uses 353 nodes
for X grid and 160 timesteps.

Nodes Timesteps Stdp
∗

t=0,x[W (T )] Ep
∗

t=0,x[W (T )] Ratio Ratio

(W ) for Stdp
∗

t=0,x[W (T )] for E[W (T )]

177 80 1.39064 3.69771
353 160 1.35723 3.69524
705 320 1.34035 3.69403 1.979 2.041
1409 640 1.33187 3.69343 1.991 2.017
2817 1280 1.32762 3.69313 1.995 2.000
5633 2560 1.32549 3.69298 1.995 2.000
11265 5120 1.32443 3.69291 2.009 2.143

Table 7: Convergence study, wealth-to-income ratio case, bounded control. Fully implicit timestep-
ping is applied, using constant timesteps. Parameters are given in Table 5, with λ = 0.2873. Values

of Stdp∗

t=0,x[X(T )] and Ep∗

t=0,x[X(T )] are reported at (X = 0.5, t = 0). Ratio is the ratio of successive
changes in the computed values for decreasing values of the discretization parameter h.

if X(t = 0) = 0.5, (Stdp
∗

t=0,x[X(T )], Ep
∗

t=0,x[X(T )]) = (1.32443, 3.69291) and Q stdp
∗

t=0,w[X(T )] =412

1.49213 from the finite difference solution. Similar to the wealth case, we can see that the control413

p is a increasing function of time t for a fixed x.414

Remark 6.2 (Behaviour of the control as a function of time) The optimal strategy for the415

wealth-to-income ratio case, based on a power law utility function [10] has the property that, for416

fixed x, the control p is a decreasing function of time. In other words, if the wealth-to-income ratio417

is static, the investor reduces the weight in the risky asset as time goes on [10]. Using the mean418

quadratic variation criterion, the optimal strategy is to increase the weight in the risky asset if the419

wealth-to-income ratio is static.420
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Figure 6: Efficient frontiers (wealth-to-income ratio) for allowing bankruptcy (D = (−∞,+∞) and
P = (−∞,+∞)), no bankruptcy (D = [0,+∞) and P = [0,+∞)) and bounded control (D = [0,+∞)
and P = [0, 1.5]) cases. Parameters are given in Table 5. Values are reported at (W = 1, t = 0).
Figure (a) shows the frontiers with risk measure standard deviation. Figure (b) shows the frontiers
with risk measure quadratic variation.

7 Comparison of Various Strategies421

In this section, we compare the three strategies: pre-commitment, time-consistent and quadratic422

variation strategies. We remind the reader that the pre-commitment solutions are computed using423

the methods in [29], and the time-consistent strategies are computed using the methods in [30].424

The mean quadratic variation results are computed using the techniques developed in this article.425

7.1 Wealth Case426

We first study the wealth case for the three strategies. Figure 8 shows the frontiers for the case427

of allowing bankruptcy for the three strategies. The analytic solution for the pre-commitment428

strategy is given in [19],429 {
V art=0[W (T )] = eξ

2T−1
4λ2

Et=0[W (T )] = ŵ0e
rT + π e

rT−1
r +

√
eξ2T − 1Std(W (T )) ,

(7.1)

and the optimal control p at any time t ∈ [0, T ] is430

p∗(t, w) = − ξ

σw
[w − (ŵ0e

rt +
π

r
(ert − 1))− e−r(T−t)+ξ

2T

2λ
] . (7.2)

Extending the results from [5], we can obtain the analytic solution for the time-consistent431
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Figure 7: Optimal control as a function of (X, t), mean quadratic variation, wealth-to-income
ratio with bounded control. Parameters are given in Table 5, with λ = 0.2873. Under these inputs,

if X(t = 0) = 0.5, (Stdp∗

t=0,x[X(T )], Ep∗

t=0,x[X(T )]) = (1.32443, 3.69291) and Q stdp
∗

t=0,x[X(T )] =
1.49213 from finite difference solution.

strategy,432 {
V art=0,ŵ0 [W (T )] = ξ2

4λ2
T

Et=0,ŵ0 [W (T )] = ŵ0e
rT + π e

rT−1
r + ξ

√
TStd(W (T )) ,

(7.3)

and the optimal control p at any time t ∈ [0, T ] is433

p∗(t, w) =
ξ

2λσw
e−r(T−t) . (7.4)

Figure 8 shows that the frontiers for the time-consistent strategy and the mean quadratic434

variation strategy are the same. This result agrees with the result in [7]. It is also interesting to435

observe that this control is also identical to the control obtained using a utility function of the form436

[14]437

U(w) = −e
−2λw

2λ
. (7.5)

Figure 8 also shows that the pre-commitment strategy dominates the other strategies, according438

to the mean-variance criterion. The three frontiers are all straight lines, and pass the same point439

at (Std(W (T )), E(W (T ))) = (0, ŵ0e
rT + π e

rT−1
r ). At that point, the plan holder simply invests all440

her wealth in the risk free bond, so the standard deviation is zero.441

Remark 7.1 It appears that in general, the the investment policies for time consistent mean vari-442

ance and mean quadratic variation strategies are not the same. These two strategies do give rise443
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to the same policy in the unconstrained (allow bankruptcy) case. When we apply constraints to444

the investment strategy, the optimal polices are different, but quite close (see the numerical results445

later in this Section). However, as noted in [7], there exists some standard time consistent control446

problem which does give rise to the same control. But, as pointed out in [7], it is not obvious how447

to find this equivalent problem.448
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Figure 8: Comparison of three strategies: wealth case, allowing bankruptcy. Parameters are given
in Table 2.

Figure 9 (a) shows a comparison for the three strategies for the no bankruptcy case, and Figure449

9 (b) is for the bounded control case. We can see that the pre-commitment strategy dominates the450

other strategies. The mean quadratic variation strategy dominates the time-consistent strategy. For451

the bounded control case, the three frontiers have the same end points. The lower end corresponds452

to the most conservative strategy, i.e. the whole wealth is invested in the risk free bond at any453

time. The higher end corresponds to the most aggressive strategy, i.e. choose the control p to be454

the upper bound pmax(= 1.5) at any time. Figure 8 and 9 show that the difference between the455

frontiers for the three strategies becomes smaller after adding constraints.456

Since the frontiers for the time-consistent strategy and the mean quadratic variation strategy457

are very close for the bounded control case, it is desirable to confirm that the small difference is458

not due to computational error. In Table 8, we show a convergence study for both time-consistent459

strategy and mean quadratic variation strategy. The parameters are given in Table 2. We fix460

Stdp
∗

t=0,w[W (T )] = 5. Table 8 shows that the two strategies converge to different expected terminal461

wealth.462

It is not surprising that the pre-commitment strategy dominates the other strategies, since463

the pre-commitment strategy is the strategy which optimizes the objective function at the initial464

time (t = 0). However, as discussed in Section 1, in practice, there are many reasons to choose a465

time-consistent strategy or a mean quadratic variation strategy.466
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Refine Time-consistent Mean Quadratic Variation

Ep
∗

t=0,w[W (T )] Ep
∗

t=0,w[W (T )]

0 10.3570 10.4337
1 10.4508 10.5537
2 10.5055 10.6035
3 10.5319 10.6273
4 10.5448 10.6390
5 10.55139 10.6447

Table 8: Convergence study, wealth case, bounded control. Fully implicit timestepping is ap-

plied, using constant timesteps. The parameters are given in Table 2. We fix Stdp∗

t=0,w[W (T )] = 5

for both time-consistent and mean quadratic variation strategies. Values of Stdp∗

t=0,w[W (T )] and

Ep∗

t=0,w[W (T )] are reported at (W = 1, t = 0). On each refinement, new nodes are inserted between
each coarse grid node, and the timestep is divided by two. Initially (zero refinement), for time-
consistent strategy, there are 41 nodes for the control grid, 182 nodes for the wealth grid, and 80
timesteps; for mean quadratic variation strategy, there are 177 nodes for the wealth grid, and 80
timesteps.
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Figure 9: Comparison of three strategies: wealth case. (a): no bankruptcy case; (b): bounded
control case. The parameters are given in Table 2.

In Figure 10, we compare the control policies for the three strategies. The parameters are given467

in Table 2, and we use the wealth case with bounded control (p ∈ [0, 1.5]). We fix Stdp
∗

t=0,x[W (T )] '468

8.17 for this test. Figure 10 shows that the control policies given by the three strategies are469

significantly different. This is true even for the bounded control case, where the expected values470

for the three strategies are similar for fixed standard deviation (see Figure 9 (b)). Figure 10 (a)471

shows the control policies at t = 0+.472

We can interpret Figure 10 as follows. Suppose initially W (t = 0) = 1. If at the instant right473

after t = 0, the value for W jumps to W (t = 0+), Figure 10 (a) shows the control policies for474
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all W (t = 0+). We can see that once the wealth W is large enough, the control policy for the475

pre-commitment strategy is to invest all wealth in the risk free bond. The reason for this is that for476

the pre-commitment strategy, there is an effective investment target given at t = 0, which depends477

on the value of λ. Once the target is reached, the investor will not take any more risk and switch478

all wealth into bonds. However, there is no similar effective target for the time-consistent or the479

mean quadratic variation cases, so the control never reaches zero. Figure 10 (b) shows the mean480

of the control policies versus time t ∈ [0, T ]. The mean of both policies are decreasing functions of481

time, i.e. all strategies are less risky (on average) as maturity is approached. We use Monte-Carlo482

simulations to obtain Figure 10 (b). Using the parameters in Table 2, we solve the stochastic483

optimal control problem (2.12) with the finite difference scheme introduced in Section 5, and store484

the optimal strategies for each (W = w, t). We then carry out Monte-Carlo simulations based on485

the stored strategies with W (t = 0) = 1 initially. At each time step, we can get the control p for486

each simulation. We then can obtain the mean of p for each time step.487
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Figure 10: Comparison of the control policies: wealth case with bounded control (p ∈ [0, 1.5]).

Parameters are given in Table 2. We fix stdp
∗

t=0,w[W (T )] ' 8.17 for this test. More precisely,

from our finite difference solutions, (Stdp∗

t=0,w[W (T )], Ep∗

t=0,w[W (T )]) = (8.17479, 12.7177) for the

mean quadratic variation strategy; (Stdp∗

t=0,w[W (T )], Ep∗

t=0,w[W (T )]) = (8.17494, 12.6612) for the

time-consistent strategy; and (Stdp∗

t=0,w[W (T )], Ep∗

t=0,w[W (T )]) = (8.17453, 12.8326) for the pre-
commitment strategy. Figure (a) shows the control policies at t = 0+; Figure (b) shows the mean
of the control policies versus time t ∈ [0, T ].

7.2 Wealth-to-income Ratio Case488

Figure 11 and 12 shows a comparison for the three strategies for the wealth-to-income ratio case.489

Figure 11 is for bankruptcy case, Figure 12 (a) is for no bankruptcy case, and Figure 12 (b)490

is for the bounded control case. Similar to the allowing bankruptcy case, the pre-commitment491

strategy dominates the other strategies. Note that unlike the wealth case, the frontiers for the492
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three strategies do not have the common lower end point. As discussed in Section 6.3, no risk free493

strategy exists in this case because of the salary risk. Furthermore, since the salary is correlated494

with the stock index (σY1 6= 0), in order to (partially) hedge the salary risk, the most conservative495

policy is not to invest all money in the bond (p = 0) all the time. The three strategies have different496

views of risk, hence their most conservative investment policies would be different. Therefore, their497

minimum risks (in terms of standard deviation) are different. Also note that, the frontiers given498

by the time-consistent strategy and the mean quadratic variation strategy are very close, almost499

on top of each other.500

std[X T] at t = 0

E
[X

T
]a

tt
=

0

0 1 2 3 4

3

4

5

6

Pre-commitment

Mean quadratic variation

Time-consistent

Figure 11: Comparison of three strategies: wealth-to-income ratio case, allowing Bankruptcy.
Parameters are given in Table 5.

Similar to the wealth case, Figure 13 shows a comparison of the control policies for the three501

strategies. Parameters are given in Table 5, and we use wealth case with bounded control (p ∈502

[0, 1.5]). We fix Stdp
∗

t=0,x[X(T )] ' 3.24 for this test. The comparison shows that although the three503

strategies have a similar pair of expected value and standard deviation, the control policies are504

significantly different.505

Remark 7.2 (Average strategy) From Remark 6.2, we note that if the wealth-to-income ratio is506

static, the optimal strategy (under the mean-quadratic-variation criteria) is to increase the weight in507

the risky asset. This is also observed for the pre-commitment and time consistent policies [29, 30].508

Nevertheless, for all three optimal strategies, the mean optimal policy is to decrease the weight in509

the risky asset as t→ T .510

8 Conclusion511

In this article, we consider three mean variance like strategies: a pre-commitment strategy, a512

time-consistent strategy (as defined in [5]) and a mean quadratic variation strategy. Although the513
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Figure 12: Comparison of the three strategies: wealth-to-income ratio case. (a): no bankruptcy
case; (b): bounded control case. Parameters are given in Table 5.
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Figure 13: Comparison of the control policies: wealth-to-income ratio case with bounded control

(p ∈ [0, 1.5]). Parameters are given in Table 5. We fix stdp
∗

t=0,x[X(T )] ' 3.24 for this test. More

precisely, from our finite difference solutions, (Stdp∗

t=0,x[X(T )], Ep∗

t=0,x[X(T )]) = (3.24214, 4.50255)

for the mean quadratic variation strategy; (Stdp∗

t=0,x[X(T )], Ep∗

t=0,x[X(T )]) = (3.24348, 4.50168) for

the time-consistent strategy; and (Stdp∗

t=0,x[X(T )], Ep∗

t=0,x[X(T )]) = (3.24165, 4.50984) for the pre-
commitment strategy. Figure (a) shows the control policies at t = 0+; Figure (b) shows the mean
of the control policies versus time t ∈ [0, T ].
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pre-commitment strategy dominates the other strategies, in terms of an efficient frontier solution,514

it is not time-consistent.515

In practice, many investors may choose a time-consistent strategy. However, for both pre-516

commitment and time-consistent strategies, the risk is only measured in terms of the standard517

deviation at the end of trading. Practitioners might prefer to control the risk during the whole518

investment period [16]. The mean quadratic variation strategy controls this risk.519

In this paper, we consider two cases for a pension plan investment strategy: the wealth case and520

the wealth-to-income ratio case. We study three types of constraints on the strategy: the allowing521

bankruptcy case, a no bankruptcy case, and a bounded control case.522

We have implemented numerical schemes for the pre-commitment strategy and the time-consistent523

strategy in [29, 30]. In this paper, we extend the method in [29] to solve for the optimal strategy524

for the mean quadratic variation problem. The equation for the value function is in the form of a525

nonlinear HJB PDE. We use a fully implicit method to solve the nonlinear HJB PDE. It can be526

shown that our numerical scheme converges to the viscosity solution. Numerical examples confirm527

that our method converges to the analytic solution where available.528

We carry out a comparison of the three mean variance like strategies. For the allowing529

bankruptcy case, analytic solutions exist for all strategies. Furthermore, the time-consistent strat-530

egy and the mean quadratic variation strategy have the same solution. However, when additional531

constraints are applied to the control policy, analytic solutions do not exist in general.532

After realistic constraints are applied, the frontiers for all three strategies are very similar. In533

particular, the mean quadratic variation strategy and the time consistent mean variance strategy534

(with constraints) produce very similar frontiers. However, the investment policies are quite differ-535

ent, for all three strategies. This suggests that the choice among various strategies cannot be made536

by only examining the efficient frontier, but rather should be based on the qualitative behavior of537

the optimal policies.538

A Discrete Equation Coefficients539

Let pni denote the optimal control p∗ at node i, time level n and set540

an+1
i = a(zi, p

n
i ), bn+1

i = b(zi, p
n
i ), cn+1

i = c(zi, p
n
i ) . (A.1)

Then, we can use central, forward or backward differencing at any node.541

Central Differencing:542

αni,central =

[
2ani

(zi − zi−1)(zi+1 − zi−1)
− bni
zi+1 − zi−1

]
βni,central =

[
2ani

(zi+1 − zi)(zi+1 − zi−1)
+

bni
zi+1 − zi−1

]
. (A.2)

Forward/backward Differencing: (bni > 0/ bni < 0)543

αni,forward/backward =

[
2ani

(zi − zi−1)(zi+1 − zi−1)
+ max(0,

−bni
zi − zi−1

)

]
βni,forward/backward =

[
2ani

(zi+1 − zi)(zi+1 − zi−1)
+ max(0,

bni
zi+1 − zi

)

]
. (A.3)
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