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Abstract 

In this paper we show some features of distortion risk measure orders. 
We look at necessary and sufficient conditions for coherency, and for 
consistency with second order stochastic dominance. The results are 
related to current risk measures used in practice, such as value-at-risk 
(VaR) and the conditional tail expectation (CTE), also known as tail- 
VaR. 
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1 Introduction 

1.1 Outline 

In this section we review the coherence properties for a risk measure of Artzner 

et al (1999), and review risk measures based on distortion functions. In Section 
2 we consider suflicient and necessary conditions for a distortion risk measure 

to be coherent. In Section 3 we consider consistency of the risk measure with 

second order stochastic dominance. 

1.2 Coherent capital requirements 

Given a loss random variable X, the risk measure is a functional p(X) : X I+ 

[0, co). The premium principle is the most commonly recognized actuarial risk 

measure, but principles for capital requirements are also coming into recog- 
nition. Capital requirement risk measures are used to determine the capital 

required in respect of a random loss X with a view to avoiding insolvency. 

The most common capital requirement risk measure in common use is the 
Value at Risk, or VaR measure. This is better known by actuaries as a quan- 

tile reserving principle, where the reserve requirement is a quantile of the loss 
distribution. 

Many of the accepted requisites for premium risk measures also apply to capital 

requirement risk measures. One of the major differences lies in recognition of 

gains. For a risk which may result in a gain (X 5 0) or a loss (X > 0), it 
is appropriate in pricing the risk to take consideration of the potential gains. 

In capital adequacy this can lead to unacceptable results - for example, a 
negative capital requirement. For results consistent with the objectives of 
captal requirement calculations, it is appropriate to use a loss distribution 

censored at zero, and this censoring is assumed in this paper. 

In Artzner et al (1999), a set of four axioms for a ‘coherent’ risk measure for 

capital adequacy are proposed. It is then demonstrated that a quantile risk 
measure, such as Value-at-Risk, or V&, does not satisfy these axioms, but that 
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a measure based on the expectation in the right tail of the loss distribution, 

(Conditional Tail Expectatibn, or Tail-VaR,) does satisfy the axioms and is 

therefore preferable. 

Their coherency axioms for a risk measure are: 

1. bounded above by the maximum loss (p(X) 5 max(X)) 

2. bounded below by the mean loss (p(X) 2 E(X)) 

3. scalar additive and multiplicative (p(uX + a) = up(X) + a) 

4. subadditive (p(X + Y) 2 p(X) + p(Y)) 

The conditional tail expectation (CTE) is defined for smooth distribution func- 

tions, given the parameter a, 0 < a: < 1, as: 

CTE, = E[ X 1 X > F;‘(a) 1. 

where FF’() is the inverse distribution function of the loss random variable, 
X. That is, F;‘(a) is the 1OOa percentile of the loss distribution. 

1.3 Distortion risk measures 

Distortion functions and distortion risk measures developed from research on 
premium principles by Wang (1995), and are defined as follows: 

A distortion function is a non-decreasing function with g(0) = 0 and g(1) = 1, 
and g : [0, l] + [0, l] . 

A distortion risk measure for a random loss X with decumulative distribution 

function S(z) is 
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where g() is the associated distortion function. 

The distortion risk measure adjusts the true probability measure to give more 

weight to higher risk events, that is, g(S(z)) can be thought of as a risk 
adjusted decumulative distribution function. Since X is a non-negative random 

variable, p(X) s &[X] h w ere the subscript indicates the change of measure. 

Using distorted probabilities, it is possible to define a distortion gv() that will 

produce the traditional VaB measure, V,, as the risk measure. 

w(t) = 
{ 

1 if 1-a<ts1, 

0 if O<t<l-a. 
(1) 

so that the risk measure is 

pv(X) = I- g,(S(z))dz = lVa czz = v, 

where V, is Fi’ (a) 

The CTE or Tail-VaB can also be expressed in terms of a distortion risk 
measure as follows: 

dt) = 
{ 

1 if 1-a<t<l, 

& if o<t<1--a. 

Both of these measures use only the tail of the distribution. Using the work 

of Wang (1995, 1996) and Wang, Young and Panjer (1997) on premium prin- 
ciples, it can be seen that there are advantages to distortions which utilize the 

whole censored loss distribution. The Beta-distortion risk measure uses the 

incomplete beta function: 

g(S(z)) = a@, b; S(z)) = joS(=) &ta-r(1 - t)b-‘dt = Fp(S(2)) 
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where &(z) is the distribution function of the beta distribution, and p(a, a) 
is the beta function with p&meters a > 0 and b > 0; that is: 

P(a, b) = r(u) r(b) = 
I’(a+ b) J 1 f-y 1 - tydt 

o 

The Beta-distortion risk measure is concave if and only if a 5 1 and b > 1, 

and is strictly concave if a and b are not both equal to 1 (see Wirch (1999b)). 

The PH-transform is a special case of the Beta-distortion risk measure The 

PH-transform risk measure is defined as: 

PPdX) = Jysx(r)tdz, 7 >l (3) 

2 Coherence and concave distortions 

Theorem 2.1 (Wang, 1996). If g zs a concave distortion finction, and 

Sx(z) = 1- F*(z), then th e zs OT e risk measure, p,(X) is a coherent risk d’ t t d 
measwe. 

Proof: The fist three coherency properties are proved for all concave distor- 

tion functions in Wang(1996). Th e f ourth, sub-additivity,‘is stated but 

not proved in Wang (1996). We present the full proof which is closely 
based on that in Wang(1995), and is attributed there to Hesselager: 

First note that for any concave distortion function g(), for any 0 < u < b 

andz>O, 

db + z)- da + ~1 I g(b) - g(a). (4) 

For any arbitrary increasing concave distortion function g, we define 

p,(X) = I,“g(Sx(z)) dz. Using mathematical induction for every g 
and related ps, we prove the result for arbitrary loss random variable 
V, and U a discrete loss random variable taking values in (0, . . ..n}. By 
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scalar additivity the proof also holds for U E {k, . . ..n + k} and by 

scalar mmtiphcativity.for U E {hk, . . . . (n + k)h}, h > 0. Any random 
variable can be approximated arbitrarily closely by a discrete variable 

with small span h. 
By mathematical induction: 
(i) For n = 0, Us = 0 almost surely, and p(Uc) = 0, so for any V 

p(V + Uo) = p(V) + 0. (5) 

(n) For n, U, E (0, . . . . n}, we assume that 

P(K + V) I P&L) + P(V). (6) 

(iii) For n + 1: Consider (U"+l,V) with U,+l E {O,l,...,rz + l}, and 

let (v',V) be distributed as (U,+1,VIU,,+I > 0). By (ii) and scalar 

additivity the result holds for U' E (1, . . ..n $1). That is: 

N’ + V) I PW + P(V). (7) 

With wo = Pr(U = 0) and &is(t) = Pr(V > tlU = 0), we have for 

t > 0 that 

s,(t) = (1 - wo)Sv-(t), 

Wt) = wosqo(t) t (1 - wo)Sv($ 
Su+v(t) = woSv,o(t) t (1 - 4Su-+v(t)- 

This yields (according to Equation (4)) for t > 0, 

d%+v(~)l - dWt)l - sL%(t)l 

= s[woSv~o(~) t (1 - wo)Su-+v(t)] 
-gw - wo)Wt)l - s[woSvlo(t) + (1 - wo)Sv(t)l 

I d(l - wob%~+v(~)l 

-d(l - wo)~u~(~)l - SK1 - wo)wq] 
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= g(l-wo) 
{ 

g[(l - fJJo)Sv*+v(t)l 
90 - uo) 

-g[(l - wo)Sv.(t)] _ gK1 - ~ob%(~)l 
41 - 4 dl - 4 I 

NOW define h[S(t)] = 8[(~I;Y_Jf~t~, a new increasing concave distortion 
function, and since g(l- wc) is a positive constant, integration over t on 

both sides implies that the right hand side is less than zero by Equation 

(7), and this yields 

P(V + V) L P(U + P(V). 0 (8) 

So a sufficient condition for a coherent distortion risk measure is a concave 

distortion function. In fact, the first and third coherence properties are satisfied 

by any distortion; only the second and fourth use the concavity of g(). 

It is interesting also to investigate necessary conditions for coherence. 

The inequality g(y) 2 Y VY E [O, 11 (9) 

is satisfied for al.I concave distortion functions. This inequality is a necessary 

condition for a distortion risk measure to satisfy the second and fourth co- 

herency properties; that is, that the risk measure is bounded below by the 

expected value of the loss, and that the risk measure is sub-additive. 

Theorem 2.2 Let g be a distortion function. If there exists some A such that 
foT t E A g(t) < t then the distorted risk measwe, p,(X): 

(a) is not bounded below by 4x1 and 

(b) is not subadditive. 

Proof: (a) For a RV X, let g(S(z)) < S(x) for some a < X < b; 
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Let 

a if X<a 
X if a<X<b 
b if X > b. 

Then 

1 if Yla 
SX(Y) if a<ylb 
0 if y > b. 

(10) 

(11) 

Then 

WI = a + J’sx(Y)~Y a 

< a+ J a6s(sx(YwY 

< P(Y) 
(b) Let A C [0, l] such that ‘d’t E A, g(t) < t. Then 

3 c E A such that Vt E [O,l], c -g(c) > t -g(t) (12) 

Assume fist that c < 0.5, so that 

c - g(c) 2 2c - g(2c) * g(2c) L c + g(c) 03) 

Let U -Uniform[O, 11, and defme Y and 2 

Y= 
{ 

1 if USC 

0 if u > c. 

and 

z= y:; 
{ 

U<l-c 
U>l-c. 
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so that 

Y+Z= 
i 

0 if c<U<l-c 
1 if u 5 car u > 1 - c. 

then p(Y) = p(Z) = g(c) and p(Y + 2) = g(2c) 

so that p(Y +Z) = g(2c) 2 c+g(c) from (13), and, since c E A, c > g(c) 

and g(2c) > 2g(c), that is p(Y + 2) > p(Y) •t p(Z) as required. 

Now let c > 0.5, and define Y, 2 as above. Now 

YtZ= 
2 if 1-c<u<c 

1 if U 5 1 - car U > c. 

then p(Y + 2) = 1 +g(2c- 1). From (12) g(2c- 1) > c- 1 +g(c), and, 

since c E A, c - 1+ g(c) > 2g(c) - 1. 

SO p(Y t 2) = 1 t g(2c - 1) > 1 + 2g(c) - 1 = p(Y) + p(Z) as required. 

Cl 

The VaR, distortion does not satisfy the inequality (9), as, for parameter a, 

g(t) = 0 < t for t < 1 - a (see equation (1)). The VaB measure therefore is 

not coherent. Examples of the problems with VaR are given in Wirch(1999a) 

and Wirch and Hardy(2000). 

Both the CTE and beta distortion functions are concave and, therefore co- 

herent. However, the beta distortion function is strictly concave (g!(t) < 0), 
whereas the piecewise linear distortion functions, including the CTE, are not 

(g;(t) = 0). This makes a difference in the following section where we consider 

stochastic ordering. 

3 Stochastic Order 

We say that a risk measure p() preserves a stochastic ordering < if 

x -c y * P(X) I P(Y). 
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The ordering is strongly preserved if strict stochastic ordering of random vari- 
ables leads to strict ordering of the risk measure. 

First Order Stochastic Dominance Lf Sx(t) < L+(t) for all t 2 0, and 
Sx(t) < Sy(t) for some t > 0, then X -~i,~ Y. 
(Note: There are many other equivalent conditions. See Wang (1998).) 

All distortion functions preserve first order stochastic dominance. That is, if 

X <lst Y then p(X) 5 p(Y) follows from the fact that the distortion function 

is an increasing function. 

Second Order Stochastic Dominance : For any two risks X and Y, if 

for all 2: 2 0, with strict inequality for some z E (0, ao) then we say that 

X precedes Y in second order stochastic dominance; or X +d Y. 
(Note: There are many other equivalent conditions such as stop-loss 

order. See Wang( 1998)) 

Not all risks can be ordered using second order stochastic dominance. Any 

pair of risks with survival distributions which cross an even number of times, 

cannot be compared, as the sign of the difference in integrals before the first 
crossing and after the last crossing are opposite. 

Where we can order random variables with second order stochastic dominance, 
an additional property that would be attractive in a risk measure is that it 

strongly preserves second order stochastic dominance. In fact, as we show be- 

low, this depends on whether or not the distortion function is strictly concave. 

Theorem 3.1 For a risk measure p(X) = Joa g(S(z))dz where g() is strictly 

concave, then X <2& Y * p(X) < p(Y) 
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Proof: (based on proof from Wang (1996)) 

Due to Miiller (1996) we only have to prove that the increasing, strictly 
concave distortion ri’sk measures preserve second order stochastic domi- 

nance where the decumulative distribution functions cross once only. 

Let E[X] 2 E[Y], X + 2nd Y and let to be the once crossing point, so 
that 

Sx(t) L SY(~) for t < t0 

Sx(t) 5 Sy(t) for t 2 to 

and since X +d Y either 

Sx(t) < Sy(t) for some t > to 

and/or S’x(t) > Sy(t) for some t < to 

Next, construct a new ddf, 

s,(t) = m={Sx(t), St-(t)} = 
{ 

F:i,’ t < to 
Y t 2 to 

so that: 

and 

PO(Z) - PBP7 I gF;($;l f[sx(t) - Sy(t)]dt 

(14) 

(15) 

with at least one of the above inequalities being a strict inequality. 

Subtracting the last two equations, we obtain 

PPP7 - PLdX) ’ gy(y jpSy(t) - Sx(t)]dt 2 0 (16) 

Thus, P,#) > ,4X). a 
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If the distortion function g(t) is not strictly concave, that is g”(t) = 0 for 

some t, then the risk mexure preserves second order stochastic dominance 
only weakly, that is we can find Y such that X +d Y but p(X) = p(Y) 

Theorem 3.2 A risk measure derivedfrom a distortionfinction which is con- 

cave but not strictly concave does not strongly preserve second order stochastic 

dominance. 

Proof: The proof parallels the proof of Theorem 3.1; however over any linear 

portion of the distortion function, we have w = M, a constant, 

the slope of the linear portion. 

For any risk X we can construct a risk Y such that E[X] = E[Y] and 

X +d Y, and where to, the once crossing point, is such that 
Sx(to) = Sy(tO) = b, and g(b) li es on one linear portion of the distortion 
function. Also suppose that the linear portion containing g(b) covers the 

range from g(a) to g(c) where a < b < c. Then 

1 = Sx(t) for t 2 t, 
=a for t = t, 

w4 < SX(t) for t, 2 t 2 tb = 6 for t = tb 

>Sx(t) fortb>t>& 
= Sx(t) fort 5 t, 

which implies that 

/ O’c[su(t) - Sx(t)]dt = 0 

(17) 

(18) 

and 

/ 
t;[Sy(t) - Sx(t)]dt = 0. (19) 

Constructing the same inequalities as in (14), (15), (16), we obtain 

p,(z) - ,oB(X) = ‘F-$;)’ jta[s,(t) - Sx(t)]dt 
Lb 

(20) 
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and 

(21) 

which gives, 

f&7(Y) = P,W). (22) 

That is, we construct a risk such that X <sd Y but p,(Y) = pa(X). q 

3.1 Example 

A simple example will illustrate the point of this section. Consider two random 

variables, X and Y: 

with probability 0.95 

with probability 0.025 

100 with probability 0.025. 

Y= 
50 with probability 0.975 

100 with probability 0.025. 

Clearly Y has the riskier distribution, and clearly X +d Y. 

The CTE with parameter 95% is the expected value of the loss, given the loss 
lies in the upper 5% of the distribution. In both these cases, the CTE(95%) 

risk measure is 75. In fact, for any parameter Q > 0.95 the CTE of these two 

risks will be equal. The CTE risk measure cannot distinguish between these 
risks in general. 

The beta distortion on the other hand will strictly order the risks, for any 
parameters 0 < a 5 1 and b/gepl, provided aa and b are not both equal to 1. 

For example, let b = 1 and a = 0.1 (this gives the PH-transform risk measure). 

Then 

pp(X) = 50(.05)'.' + 50(.025)'.' = 71.63 
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and pp(Y) = 50 + 50(.025)‘.’ = 84.58. 

4 Conclusions 

In this paper, we have shown that the CTE and other partially linear distorted 
risk measures do not strongly preserve second order stochastic dominance. The 

beta-distortion risk measure and other risk measures with increasing, strictly 
concave distortion functions do preserve second order stochastic dominance, 

and are superior in ordering risk. 
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