
Taming Information-Stealing Smartphone
Applications (on Android)

Yajin Zhou1, Xinwen Zhang2, Xuxian Jiang1, and Vincent W. Freeh1

1 Department of Computer Science, NC State University
yajin zhou@ncsu.edu, {jiang,vin}@cs.ncsu.edu

2 Huawei America Research Center
xinwen.zhang@huawei.com

Abstract. Smartphones have been becoming ubiquitous and mobile
users are increasingly relying on them to store and handle personal in-
formation. However, recent studies also reveal the disturbing fact that
users’ personal information is put at risk by (rogue) smartphone applica-
tions. Existing solutions exhibit limitations in their capabilities in taming
these privacy-violating smartphone applications. In this paper, we argue
for the need of a new privacy mode in smartphones. The privacy mode can
empower users to flexibly control in a fine-grained manner what kinds
of personal information will be accessible to an application. Also, the
granted access can be dynamically adjusted at runtime in a fine-grained
manner to better suit a user’s needs in various scenarios (e.g., in a dif-
ferent time or location). We have developed a system called TISSA that
implements such a privacy mode on Android. The evaluation with more
than a dozen of information-leaking Android applications demonstrates
its effectiveness and practicality. Furthermore, our evaluation shows that
TISSA introduces negligible performance overhead.

Keywords: smartphone applications, Android, privacy mode

1 Introduction

Mobile phones are increasingly ubiquitous. According to a recent Gartner re-
port [2], in the third quarter of 2010, worldwide mobile phone sales to end
users totaled 417 million units, a 35 percent increase from the third quarter of
2009. Among the variety of phones, smartphones in particular received incredible
adoption. This trend is further propelled with the wide availability of feature-
rich applications that can be downloaded and run on smartphones. For example,
Google provides Android Market [1] that contains a large collection of Android
applications (or apps for short). It is important to note that these app stores or
marketplaces contain not only vendor-provided programs, but also third-party
apps. For example, Android Market had an increase from about 15,000 third-
party apps in November 2009 to about 150, 000 in November 2010.

Given the increased sophistication, features, and convenience of these smart-
phones, users are increasingly relying on them to store and process personal

information. For example, inside the phone, we can find phone call log with in-
formation about placed and received calls, an address book that connects to the
user’s friends or family members, browsing history about visited URLs, as well
as cached emails and photos taken with the built-in camera. As these are all
private information, a natural concern is the safety of these data.

Unfortunately, recent studies [9, 8, 13, 3] reveal that there are malicious apps
that can be uploaded to the app stores and successfully advertised to users
for installation on their smartphones. These malicious apps will leak private
information without user authorization. For example, TaintDroid [9] shows that
among 30 popular third-party Android apps, there are 68 instances of potential
misuse of users’ private information. In light of these privacy-violating threats,
there is an imperative need to tame these information-stealing smartphone apps.

To fulfill the need, Android requires explicit permissions in an app so that
the user is aware of the information or access rights that will be needed to
run the app. By showing these permissions to the end user, Android delegates
the task to the user for approval when the app is being installed. However,
this permission mechanism is too coarse-grained for two main reasons. First,
the Android permission mechanism requires that a user has to grant all the
requested permissions of the app if he wants to use it. Otherwise the app cannot
be installed. Second, if a user has granted the requested permissions to an app,
there is no mechanism in place to later re-adjust the permission(s) or constrain
the runtime app behavior.

To effectively protect user private information from malicious smartphone
apps, in this paper, we argue for the need of a new privacy mode in smartphones.
The privacy mode can be used to lock down (or fine tune) an app’s access to
various private information stored in the phone. More specifically, if a user wants
to install an untrusted third-party app, he can control the app’s access in a fine-
grained manner to specify what types of private information (e.g., device ID,
contracts, call log, and locations) are accessible to the app. Further, the user
can flexibly (re)adjust at runtime the previously granted access (e.g., at install
time).

As a demonstration, we have implemented a system called TISSA that im-
plements such a privacy mode in Android. Our development experience indicates
that though the privacy mode support requires modifying the Android frame-
work, the modification however is minor with changes in less than 1K lines of
code (LOC). We also have evaluated TISSA with more than a dozen of Android
apps that are known to leak a variety of private information. Our results show
that TISSA can effectively mediate their accesses and protect private informa-
tion from being divulged. Also, the privacy setting for each app is re-adjustable
at runtime without affecting its functionality.

The rest of this paper is organized as follows: Section 2 describes our system
design for the privacy mode support in Android. Section 3 presents its detailed
prototype. Section 4 presents evaluation results with a dozen of information-
stealing Android apps as well as its performance overhead. Section 5 discusses the

limitations of our approach and suggests future improvement. Finally, Section 6
describes related work, and Section 7 summarizes our conclusions.

2 Design of TISSA

2.1 Design Requirements and Threat Model

Design Requirements Our goal is to effectively and efficiently prevent private
information leakage by untrusted smartphone apps. Accordingly, to support the
new privacy mode in smartphones, we follow several design requirements to
balance privacy protection, system performance, user experience, and application
compatibility.

Lightweight Protection: Smartphones are usually resource constrained, espe-
cially on CPU, memory, and energy. Therefore, it naturally requires that our
security mechanism should be memory- and energy-efficient. Also, the perfor-
mance overhead of the solution should not affect user experience.

Application Transparency: The privacy mode should also maintain the compat-
ibility of existing Android apps. Accordingly, we may not change APIs currently
provided by the default Android framework. Also, from the usability perspec-
tive, it is not a good design to partially grant permissions at install time or later
revoke permissions at runtime. This is because when a permission is taken away
or does not exist, the app may suddenly stop or even crash. As a result it could
interfere with the normal execution of the app and hurt the user experience.

Small Footprint: Built on top of existing Android framework including its
security mechanisms, the privacy mode support should minimize the changes
necessary to the Android framework.

Threat and Trust Model As our purpose is to prevent private information
from being leaked by untrusted apps, we assume user downloaded third-party
apps as untrusted. Note that although our scheme can be equally applicable
to pre-installed apps on the device, we assume they are benign from privacy
protection perspective and will not release private data of the device without
authorizations. These pre-installed apps include those from device manufacturers
or network operators.

In addition, we also trust the underlying OS kernel, system services, and
the Android framework (including the Dalvik VM). Aiming to have a minimal
modification to the Android code base, our system is designed to build on top
of existing Android security mechanisms, which include the primitive sandbox
functions and permission enforcement of Android [11, 16]. Naturally, we assume
that an untrusted app cannot access system resources (e.g., filesystem) or other
apps’ private data directly. Instead, they can only be accessed through the nor-
mal APIs provided by various content providers or service components in the
Android framework.

Fig. 1. The TISSA Architecture.

2.2 System Design

In a nutshell, TISSA provides the desired privacy mode on Android by devel-
oping an extra permission specification and enforcement layer on the top of
existing Android permissions. As shown in Figure 1, TISSA consists of three
main components. The first one is the privacy setting content provider, which is
a privileged component to manage the privacy settings for untrusted apps. In
the meantime, it also provides an API that can be used to query the current
privacy setting for an installed app. If we consider TISSA as a reference mon-
itor, the privacy setting content provider is the Policy Decision Point (PDP).
The second component is the privacy setting manager, which is a privileged app
that a mobile user can use to manage or update the privacy settings for installed
apps. Therefore, it acts as the Policy Administration Point (PAP) in TISSA. The
third component is privacy-aware components, including those content providers
or services that are enhanced in a privacy-aware manner to regulate the access
to a variety of user’s personal information, including contacts, call log, locations,
device identity. These privacy-aware components are designed to cooperate with
the first component. In particular, once they receive requests from an app to
access private data they manage, they will query the privacy settings, and re-
sponse to the requests according to the current privacy settings for the app. In
other words, they function as the Policy Enforcement Points (PEPs) in TISSA.
As a result, there is only one instance of PDP and PAP while multiple PEPs
exist and they are integrated with individual content providers or services in the
Android framework.

To further elaborate how TISSA works, when an app tries to read a piece of
private data, it sends a reading request (arrow 1 in Figure 1) to the corresponding
content provider. The content provider is aware of the privacy requirement.
Instead of serving this request directly, it holds the request and makes a query
first to the privacy setting content provider (arrow 2) to check the current privacy
settings for the app (regarding the particular reading operation). The privacy
setting content provider in turn queries its internal policy database (arrow 3) that

stores user specifications on privacy settings of all untrusted apps, and returns
the query result back to the content provider (arrow 4). If this reading operation
is permitted (stored in the policy database), the content serves the access request
and returns normal results to the app (arrow 5). This may include querying its
internal database managed by the content provider.

However, if the reading operation is not permitted, the privacy setting may
indicate possible ways to handle it. In our current prototype, we support three
options: empty, anonymized, and bogus. The empty option simply returns an
empty result to the requesting app, indicating “non-presence” of the requested
information. The anonymized option instead provides an anonymized version
from the original (personal) information, which still allows the app to proceed
but without necessarily leaking user information. The bogus option on the other
hand provides a fake result of the requested information. Note these three options
may be further specialized for different types of personal information and be
interpreted differently for different apps. Accordingly, the apps will likely behave
differently based on the returned results. As a result, mobile users need to be
aware of the differences from the same app under different privacy settings and
exercise different levels of trust.

Through TISSA, we currently provide three levels of granularity for privacy
policy specifications. In the first level, a policy defines whether a particular app
can be completely trusted. If yes, it is given all requested accesses through the
normal Android permission mechanisms. If not, TISSA provides the second level
of policy specification, where one particular setting can be specified for each type
of personal information the mobile user wants to protect. Note that it is possible
that one app may access one type of personal information for its legitimate
functionalities, but should be denied to access other types of information. For
example, the Yellow Pages app (Section 4) may be normally allowed to access the
current location but the access to phone identity or contacts should be prevented.
Also, for the non-trusted access to other personal information, the third level of
policy specification specifies the above empty, anonymized, and bogus options
to meet different needs. For example, for a call log backup app, we do not want
to give the plain-text access to the call log content, but an anonymized version.
For a Coupon app (Section 4), we can simply return a bogus phone identity.

3 Implementation

We have implemented a proof-of-concept TISSA system based on Android ver-
sion 2.1-update1 and successfully run it on Google Nexus One. In our current
prototype, we choose to protect four types of personal information: phone iden-
tity, location, contacts, and call log. Our system has a small footprint and is
extensible to add the support of other personal information. In the following, we
explain in more details about the system implementation.

3.1 Privacy Setting Content Provider

The privacy setting content provider is tasked to manage a local SQLite database
that contains the current privacy settings for untrusted apps on the phone. It
also provides an interface through which a privacy-aware component (e.g., a
location manager) can query the current privacy settings for an untrusted app.
More specifically, in our current prototype, the privacy-aware component will
provide as the input the package name of the requesting app and the type of
private information it is trying to acquire. Once received, the privacy setting
content provider will use the package name to query the current settings from
the database. The query result will be an app-specific privacy setting regarding
the type of information being requested.

There are some design alternatives regarding the default privacy settings.
For example, in a restrictive approach, any untrusted app will not be given the
access to any personal information. That is, we simply apply the empty or even
bogus options for all types of personal information that may be requested by
the app – even though the user approves all requested permissions when the app
is being installed. On the contrary, a permissive approach may fall back to the
current Android permission model and determine the app’s access based on the
granted permissions. To provide the compatibility and transparency to current
apps, our current prototype uses the permissive approach.

Beside the API interface used to query the privacy settings for a given app,
there exists another API interface (in the privacy setting content provider)
through which the privacy setting manager can use to initialize or adjust privacy
settings in the policy database. Similarly, the input of this interface includes the
package name of a target app and its privacy settings. The output will be the
confirmation to the requested initialization or adjustment.

Because our policy database stores actual privacy settings for untrusted apps,
the security itself is critical. In our prototype, we leverage the existing Android
sandbox and permission mechanisms to protect its integrity. Specifically, the
database file is a private data file of the privacy setting content provider (thus
with the same UID in filesystem). Other apps have different UIDs and will
be denied to access it directly. To further restrict the update capability of the
database via corresponding API, we declare a dedicated Android permission (in
the privacy setting content provider) with the protection level of signature.
This means that the permission will only be granted to apps signed with the
same certificate as the privacy setting content provider. In our prototype, the
privacy setting manager is the only one that is signed by the same certificate.

In total there were 330 LOC in the privacy setting content provider imple-
mentation.

3.2 Privacy Setting Manager

The privacy setting manager is a standalone Android app that is signed with the
same certificate as the privacy setting content provider. As mentioned earlier, by
doing so, the manager will be given the exclusive access to the privacy setting

(a) A list of installed apps (b) The privacy settings for the
YellowPages app

Fig. 2. The Privacy Setting Manager.

database. In addition, the manager provides the visual user interface and allows
the user to specify the privacy settings for untrusted apps. We stress that the
privacy setting here is orthogonal to the permissions that the user has granted
at the app install time; that is, the privacy setting manager provides a separate
setting for the privacy mode.

In particular, the manager app includes two activity components. The default
one is PrivacySettingManagerActivity, which when activated displays a list of
installed apps. The phone user can then browser the list and click an app icon,
which starts another activity called AppPrivacySettingActivity and passes
the app’s package name. When the new activity is created, it queries the privacy
setting content provider for the current privacy settings and displays the results
to the user. It also has radio buttons to let user customize or adjust the current
settings. Any change of the settings will be immediately updated to the policy
database via the privacy setting content provider. In Figure 2, we show the
screenshots of the manager app, which show the list of installed app (Figure
2(a)) and the privacy setting for the Yellow Pages app (Figure 2(b))

In total there were 452 LOC in the privacy setting manager implementation.

3.3 Privacy-Aware Components

The third component in our prototype is those privacy-aware Android compo-
nents, including the contacts content provider, the location manager, and the
telephony manager. These Android components are enhanced for the privacy
mode support.

Fig. 3. Protecting Contacts in TISSA.

Contacts and Call Logs: Figure 3 shows the flowchart for the contact infor-
mation that is being accessed. Specifically, when an app makes a query to the
contacts content provider, the request is received by the content resolver, which
checks whether the app has the permission (based on existing Android permis-
sions). If not, a security exception is thrown to the app and the access stops.
Otherwise, it dispatches the request to the contacts content provider, which in
the privacy mode in turn queries the privacy setting content provider to check if
the requesting app can access the contacts data. If the app is allowed, the con-
tacts content provider then queries its own database and returns back authentic
contacts to the app. The dotted line in Figure 3 encloses those components
that also exist in the original Android. The rest components (outside the dotted
area) show the additional components we added for the privacy mode support
in Android.

From the privacy setting database, if the app is not trusted to access the
requested data, the contacts content provider will respond differently: an empty

setting returns an empty contact record; an anonymized settings returns an
anonymized version of the contact records; and an bogus setting simply returns
fake contact information. By doing so, we can protect the authentic contacts
information from being leaked by this untrusted app. In the meantime, as the
app is given different results, the mobile user should expect different app behavior
and exercise different levels of trust when interacting with the app.

Phone Identity: Mobile phones have unique device identifier. For example,
the IMEI and MEID numbers are unique identities of GSM and CDMA phones,
respectively. An Android app can use the functions provided by telephony service
to obtain these numbers. As a result, we hook these functions and return a device

Table 1. Detailed Breakdown of Android Modification in TISSA

Component Name LOC

Privacy Setting Provider 330

Application Management Program 452

LocationManager & LocationManagerService 97

TelephonyManager 61

ContactsProvider (Contacts&Call Log) 48

Total 988

ID based on the current privacy setting for the requesting app. For example, in
the case of the Yellow Pages app (Figure 2(b)), we simply return a bogus phone
identity number.

Location: There are several location content providers in Android to provide
either coarse-grained or fine-grained information (e.g., based on different devices
such as GPS and Wifi). However, for an app to obtain the location, there are
two main ways: First, it can obtain the information from the related devices
through the LocationManager; Second, an app can also register a listener to
receive location updates from these devices. When there is a location change, the
registered listener will receive the updated location information. Accordingly, in
our current prototype, we hook related functions to intercept incoming requests.
To handle each request, we query the privacy setting for the initiating apps and
then respond accordingly. Using the same Yellow Pages app example, our current
setting (Figure 2(b)) returns the authentic location information.

Our TISSA development experience indicates that the privacy mode support
in Android involves no more than 1K LOC implementation. As a result, we be-
lieve our approach has a small footprint – satisfying our third design requirement
(Section 2). The detailed breakdown of revised components in Android is shown
in Table 1.

4 Evaluation

We use a number of Android apps as well as standard benchmarks to test the ef-
fectiveness and performance impact of our system. Some of the selected Android
apps have been known to leak private information [9]. Our testing platform is
Google Nexus One that runs the Android version 2.1-update1 enhanced with
the TISSA privacy mode.

4.1 Effectiveness

To evaluate the TISSA effectiveness in preventing private information leakage
by untrusted apps, we choose 24 free apps from the Android Market at the
end of November 2010. (The complete list of tested apps is in Table 2.) Among
these 24 apps, 13 of them (marked with † in the table) are known to be leaking
private information as reported from the TaintDroid system [9]. The remaining
11 apps are randomly selected and downloaded from the Android Market. Most
of these apps require the permissions for locations (ACCESS COARSE LOCATION

Table 2. Example Apps for TISSA Effectiveness Evaluation

Third-party Apps (24 in total) Location Phone Identity Contacts Call Log

The Weather Channel†; Movies†; Horoscope†;

Layar†; Coupons†; Trapster†; Alchemy;

Paper Toss; Disney Puzzle; Find It; (10)

× ×

Wertago†; Yellow Pages†; DasTelefonbuch†;

RingTones†; Knocking†; (5)
× × × ×

Wisdom Quotes Lite†; Classic Simon Free;

Wordfeud FREE; Moron Test:Section 1;

Bubble Burst Free; (5)

×

Astrid Tasks†; (1) ×

CallLog; Last Call Widget;

Contact Analyzer; (3)
× × ×

or ACCESS FINE LOCATION) and phone identity (READ PHONE STATE). Also, one
third of them require the access of contacts and call log (READ CONTACTS).

In our experiments, we divide these apps into two sets. The first set has the 13
apps that are known to be leaking private information and the second set has the
remaining 11 apps. While both sets are used to verify the transparency of TISSA
to run apps, we use the first set to evaluate the effectiveness of TISSA. In the
second set, we use TISSA to capture suspicious access requests from these apps
and then verify possible information leakage with the TaintDroid system. Before
running the experiments, we turn on restrictive privacy policy as the default
one, i.e., not trusting any of these apps in accessing any personal information.
If a particular app requires the user registration, we will simply create a user
account and then log in with the app.

Our results with the first set of information-leaking apps show that TISSA
is able to effectively capture the access requests from these untrusted apps to
private data and prevent them from being leaked. As a demonstration, we show
in Figure 4 two experiments with the same app named Wisdom Quotes Lite: one
without the TISSA protection (Figure 4(a)) and another with TISSA protection
(Figure 4(b)). Note that this app has declared the permission to access the
phone identity, but this information will be leaked to a remote data server. The
evidence is collected by TaintDroid and shown in Figure 4(a). In particular, it
shows that the app is sending out the IMEI number to a remote server. From
the log, we can see that the data sent out is tainted with the taint tag 0x400,
which indicates the IMEI source. The destination IP address is xxx.59.187.65,
a server that belongs to the company that developed this app. The leaked IMEI
number (354957034053382) of our test phone is in the query string of HTTP GET

request to the remote server. After confirming this leakage, we use the privacy
setting manager to adjust the phone identity privacy for this app to be bogus.
Then we run this app again. This time we can find (Figure 4(b)) that although
the app is sending an IMEI number out, the value sent out is the bogus one,
instead of the real IMEI number – this is consistent with our privacy setting for
this app.

As another example, an app named Horoscope requested the permission of
reading current locations. However this app’s functionality does not justify such

(a) The leaked IMEI number without TISSA

(b) The leaked IMEI number with TISSA

Fig. 4. Experimenting with an Android App Wisdom Quotes Lite.

need. In our experiments, we find that phone location information is leaked by
this app (confirmed with TaintDroid and the leaked information was sent to
a remote server xxx.109.247.8). Then we use the privacy setting manager to
adjust the location privacy to be empty, which means the location service neither
returns the last known location nor updates the new location to this app. We
then re-run this app and do not find the true location information leaked.

In the experiments with the second set of apps, we use the default restrictive
privacy policy and enable the bogus option for the phone identity. Interestingly,
we observe that among these 11 apps, seven of them accessed the phone identity
information. We then re-run them in TaintDroid and our results successfully
confirm the information leakage among all these 11 apps. From the same set, we
also confirmed that two of them leak location information. As a result, among
the two sets of total 24 apps, 14 of them leak location information and 13 of them
send out the IMEI number. Six of them leak both location and IMEI information.
With TISSA, users can select the proper privacy setting and effectively prevent
these private information from being leaked.

We point out that although no app in our study leaks the contacts and
call log information, they can be similarly protected. Specifically, we can simply
adjust the privacy setting of an app which has the READ CONTACTS permission
to be empty, then any query from the app for contacts will be returned with
an empty contact list. Also, our experiments with these 24 apps indicate that
they can smoothly run and no security exceptions have been thrown to affect
the functionalities of these apps, which satisfies our second design requirement
(Section 2).

4.2 Performance

To measure the performance overhead, we use a JAVA benchmark – Caffeine-
Mark 3.0 – to gauge Android app performance and the resulting scores from the
benchmark are shown in Figure 5. Note that the benchmark contains a set of
programs to measure the app runtime (in particular the Dalvik VM) overhead.
From the figure, we can see that there is no observable performance overhead,
which is expected as our system only made minor changes to the framework and
the Dalvik VM itself was not affected by our system.

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

si
ev

e

lo
op

lo
gi

c

st
ri

ng

fl
oa

t

m
et

ho
d

ov
er

al
l

C
af

fe
in

eM
ar

k
3.

0
S

co
re

CaffeineMark 3.0 Benchmark

Android
Android with TISSA

Fig. 5. The Result of CaffeineMark 3.0 Benchmark.

In summary, our measurement results on performance indicate that TISSA
is lightweight in successfully supporting the privacy mode on Android, which
meets our first design requirement.

5 Discussion

We observe that giving bogus private information could be problematic for some
apps. For example the Weather Channel app needs to access the device location
information to provide the weather forecast of a particular area. If the user
chooses the bogus option for its access to this information, it will certainly not
work as intended (even though the program does not crash and still functions).
One possible enhancement is to provide accurate, but low-fidelity data. With the
same app example, it can work equally well with an approximate location. In fact,
a simple approximation option could return a random location within a radius
(say 10 or 100 miles) of the current location. This indicates that our system
can be readily extended to support much finer-grained access than currently
demonstrated in this paper. Also, for efficiency, TISSA only uses one single
privacy setting for one type of private information. This can be further extended
to provide finer access to user data. An example will be to release some personal
information, an option between empty and anonymous.

From another perspective, current application development can be improved
to provide more contextual information to better help users to make the decision.
Though the risk is still on the mobile user side, a privacy-aware app developer can
offer alternative mechanisms to obtain private information, such as by providing
a UI with necessary context information to justify the need for the access and
asking the user to provide the required input (e..g, a ZIP code).

We also note that TISSA is not a panacea for privacy protection. For an
app that backs up user contact data to a remote server, the user usually grants
the access to the app. However, there is no assurance that the data will not be
transferred to elsewhere or be stolen. Our solution does provide an anonymized

option for lightweight protection. Specifically, when an app reads the contacts

data, based on the anonymized setting, the privacy-aware component can return
an encrypted version with a key specified by the user or derived from a password.
Therefore, even if data are leaked during transfer or at the server side, the clear-
text information is not released. However, due to the resource constraints on
mobile phones, the encryption for anonymization cannot be sufficiently strong
as desired.

With TISSA enabled, a mobile user can specify privacy settings for installed
apps at anytime. Furthermore, the privacy setting can be integrated with the
application installer of Android, i.e., the privacy setting manager can be acti-
vated by the installer whenever a new app is installed. However, we note that
TISSA fundamentally does not provide mechanisms or solutions to help user
understand and reason about permission requirements for individual apps. To
further improve the usability of TISSA, several approaches can explored. For
example, as our future research directions, we can include additional contextual
or guiding information to facilitate the privacy setting. Also, we can provide
privacy-setting templates to reduce the burden on mobile users. This can be
done by applying certain heuristics with the consideration of a device’s location
[5] or an app’s category.

6 Related Work

Privacy issues on smartphones have recently attracted considerable attention.
A number of research efforts have been conducted to identify private data leak-
ing by mobile apps. TaintDroid [9] and PiOS [8] are two representatives that
target Android and iOS platforms, respectively. Specifically, TaintDroid [9] uses
dynamic taint analysis to track privacy data flow on Android. It first taints data
from privacy information sources, and then integrates four granularities of taint
propagation (i.e., variable-, method-, message-, and file-levels). When the data
leaves the system via a network interface, TaintDroid raises an alert (Figure 4)
with log information about the taint source, the app that sends out the tainted
data, and the destination. PiOS [8] instead applies static analysis on iOS apps
to detect possible privacy leak. In particular, it first constructs the control flow
graph of an iOS app, and then aims to find whether there is an execution path
from the nodes that access privacy source to the nodes of network operations. If
such path exists, it considers a potential information leak.

From another perspective, Avik [6] presents a formal language to describe
Android apps and uses it to formally reason about data flow properties. An
automatic security certification tool called ScanDroid [12] has been developed
to extract security specifications from manifests that accompany Android apps,
and then check whether data flows through those apps are consistent with those
specifications. Note that these systems are helpful to confirm whether a partic-
ular app actually leaks out private information. However, they are not designed
to protect user private information from being leaked, which is the main goal of
our system.

On the defensive side, Kirin [10] is a framework for Android which extracts
the permissions from an app’s manifest file at install time, and checks whether

these permissions are breaking certain security rules. The security rules are man-
ually defined to detect undesired combination of Android permissions, which
may be insecure and misused by malicious programs. As a result, Kirin aims to
enforce security check at install time, while our system provides a lightweight
runtime protection (after an app is installed).

As with our research, Apex [14] utilizes the Android permission model to
constrain runtime app behavior. However, there are three key differences. First,
they share different design goals. The main objective of Apex is to restrict the
usage of phone resources (e.g., when and how many MMS messages can be sent
within a day), instead of the exclusive focus on personal information leakage pre-
vention in our system. Second, by design, Apex limits itself to current available
permissions but allows for selectively granting permissions at install time or pos-
sibly revoking some permissions at runtime. In comparison, our privacy settings
is completely orthogonal to current Android permissions. Third, as mentioned
earlier, one undesirable consequence of Apex in only partially granting requested
permissions is that it may throw security exceptions to a running app, causing
it terminate unexpectedly, which violates our second design requirement and is
not user-friendly.

Saint [15] is another recent work that allows an app developer to provide
a security policy that will be enforced (by the enhanced Android framework)
to regulate install-time Android permission assignment and their run-time use.
Security-by-Contract [7] similarly allows an app to be bound to a contract, which
describes the upper-bound of what the app can do. Notice that these security
policies or contracts need to be provided during application development, not

by mobile users. As a result, it is unclear on how they can be applied by mobile
users to customize the privacy protection. MockDroid [4] allows users to mock
the access from an untrusted app to particular resources at runtime (by reporting
either empty or unavailable). The mocked access can be naturally integrated into
TISSA as another privacy setting option on smartphones.

7 Conclusion

In this paper, we argue for the need of a privacy mode in existing smartphones.
The need comes from the disturbing facts that (rogue) smartphone apps will
intentionally leak users’ private information. As a solution, we present the de-
sign, implementation and evaluation of TISSA, a privacy-mode implementation
in Android. TISSA empowers mobile users the fine-grained control and runtime
re-adjustment capability to specify what kinds of user information can be ac-
cessible (and in what way) to untrusted apps. Orthogonal to current Android
permissions, these privacy settings can be adjusted without necessarily affecting
the normal functionalities of apps. Our experiments demonstrate its effective-
ness and practicality. The performance measurements show that our system has
a low performance overhead.

References

1. Android Market, http://www.android.com/market/
2. Gartner November Report, http://www.gartner.com/it/page.jsp?id=1466313
3. IPhone and Android Apps Breach Privacy, http://online.wsj.com/article/

SB10001424052748704694004576020083703574602.html
4. Alastair R. Beresford, Andrew Rice, Nicholas Skehin, Ripduman Sohan: MockDroid:

Trading Privacy for Application Functionality on Smartphones. In: 12th Workshop
on Mobile Computing Systems and Applications. (2011)

5. A. J. Bernheim Brush, John Krumm, James Scott: Exploring End User Preferences
for Location Obfuscation, Location-Based Services, and the Value of Location. In:
12th ACM international conference on Ubiquitous computing. (2010)

6. Avik Chaudhuri: Language-Based Security on Android. In: 4th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security. (2009)

7. Lieven Desmet, Wouter Joosen, Fabio Massacci, Pieter Philippaerts, Frank Piessens,
Ida Siahaan, Dries Vanoverberghe: Security by Contract on the .NET Platform.
Information Security Technical Report. vol. 13 issue 1. 25-32. (2008)

8. Manuel Egele, Christopher Kruegel, Engin Kirda, Giovanni Vigna: PiOS: Detecting
Privacy Leaks in iOS Applications. In: 18th Annual Network and Distributed System
Security Symposium. (2011)

9. William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, Anmol N. Sheth: TaintDroid: An Information-Flow Tracking Sys-
tem for Realtime Privacy Monitoring on Smartphones. In: 9th USENIX Symposium
on Operating Systems Design and Implementation. (2010)

10. William Enck, Machigar Ongtang, Patrick McDaniel: On Lightweight Mobile
Phone Application Certification. In: 16th ACM Conference on Computer and Com-
munications Security. (2009)

11. William Enck, Machigar Ongtang, Patrick McDaniel: Understanding Android Se-
curity. IEEE Security & Privacy. vol. 7 no. 1. pp. 50–57. (2009)

12. Adam P. Fuchs, Avik Chaudhuri, Jeffrey S. Foster : SCan-
Droid: Automated Security Certification of Android Applications,
http://www.cs.umd.edu/ avik/papers/scandroidascaa.pdf. (2009)

13. Kevin Mahaffey, John Hering: App Attack: Surviving the Explosive Growth of
Mobile Apps (2010)

14. Mohammad Nauman, Sohail Khan, Xinwen Zhang: Apex: Extending Android Per-
mission Model and Enforcement with User-Defined Runtime Constraints. In: 5th
ACM Symposium on Information, Computer and Communications Security. (2010)

15. Machigar Ongtang, Stephen E. McLaughlin, William Enck, Patrick Drew Mc-
Daniel: Semantically Rich Application-Centric Security in Android. In: 25th Annual
Computer Security Applications Conference. (2009)

16. Asaf Shabtai, Yuval Fledel, Uri Kanonov, Yuval Elovici, Shlomi Dolev, Chanan
Glezer: Google Android: A Comprehensive Security Assessment. IEEE Security &
Privacy. vol. 8 no. 2. pp. 35–44. (2010)

